ON THE HOLDER CONTINUITY OF SOLUTIONS OF A
CERTAIN SYSTEM RELATED TO MAXWELL’S EQUATIONS

KYUNGKEUN KANG AND SEICK KIM

ABSTRACT. In this paper, we prove the Holder continuity of weak solutions
of a certain system arising from the Maxwell’s equations in a quasi-stationary
electromagnetic field.

1. INTRODUCTION

Let Q be a domain in R® and a € L*(Q) be a scalar function bounded by
two positive numbers m, M. In this paper we study the regularity problem of the
following system:

(1.1) Vx[a(w)qu]:f-i—ng} _—

V-u=0

Here we denote V x u = curlu and V - u = div u. The question about regularity of
solution of such system was raised by Professor M. Giaquinta. The main result of
this paper is Holder continuity of weak solutions of system (1.1) under appropriate
assumptions on the inhomogeneous terms f, g.

The above system arises from Maxwell’s equations in a quasi-stationary elec-
tromagnetic field where the displacement of electrical current is assumed to be
time independent. We are grateful to Professor M. Hong for valuable discussions
elucidate the connection to Maxwell equations. In the study of the penetration
of a magnetic field in materials, the electrical resistance strongly depends on the
temperature and by taking the temperature effect into consideration the classical
Maxwell system in a quasi-stationary electromagnetic field reduces to the following
mathematical model: find H(z,t) and u(z,t) such that

H;+V x [6(u)V x H] =0,
(1.2) V.-H=0,
u — Au=o(u) |V x H?,

where H and u represents, respectively, the strength of the magnetic field and
temperature while o(u) denotes the electrical resistivity of the material (see e.g.
[9]). In particular, in the steady-state we have the following steady-state system:

V x [o(u)V x H| =0,
(1.3) V-H=0,
—Au=o(u) |V x H?.

Global existence of a pair of weak solutions (H,u) of the system (1.2) was estab-
lished by YIN [9]. However, the continuity of weak solutions of the system (1.2)
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as well as the system (1.3) is unknown. In Sec. 3, we will show that, by using our
result on the linear system (1.1), weak solutions of the coupled nonlinear system
(1.3) are locally Holder continuous.

As we mentioned earlier, the motivation for studying the system (1.1) is an
interesting question which has been raised by GIAQUINTA & HONG [4]. The original
formulation of the question appears in terms of differential forms. However, in the
case when n = 3, it can be rephrased as follows: Are weak solutions to the following
system locally Hélder continuous?

(1.4) VX[‘@"?)Z:XOU]:O} in Q.

Indeed, the above system (1.4) is a special case of (1.1) and as we mentioned at the
beginning the answer is positive when n = 3. We don’t know the answer for higher
dimensions n > 4. In Sec. 4 we will formulate their original question by using
differential forms and discuss some related problems. Very recently, we received a
preprint by Professor H. Yin [10], in which a similar result to ours is obtained. It
seems [10] used an idea similar to ours, although technical details are different.

2. MAIN RESULTS: HOLDER ESTIMATES

In this section we shall always assume n = 3. First, we will introduce notations.

e For z € R" and p > 0 we define B,(z) = {y € R" : |z —y| < p}.
e For a measurable set S C R", we define f¢ f = 51 [ f dz.

o We denote (f)z,p = fz,p = J;Bp(m) fdz.

o We denote B, = B,(z) and f, = f;,, if  is clear from the context.

e Let D(N) = D(KR?) = {fe C®(Q;R") : V- f=0}. We denote by
H1(Q), g € [1,00), the completion of D() in the norm of LI(Q).

e () € Q) means ) is a precompact subset of Q.

e Foru = (u',--- ,u™), we denote by Vu the gradient matrix: (Vu);; = D;u’.
Now, we will state our main results. Consider the following linear system:
V x [a(z)V xu] = f .
(2.1) V.ou=0 in Q,

where f € HI(;R™) and a € L>(Q; R) such that m < a < M for some constants
m, M > 0. The restriction f € H?(Q2; R") arises from the consistency condition

0=V -Vx[a(z)Vxu]l=V-f
in the sense of distribution.
Theorem 2.1. Let u € WE2(Q;R™) be a weak solution of the system (2.1) with

loc
f e H].(Q), ¢ > n/2. Let B := Br(zo) € Q. Then there exists constants
a=alm,M,q) >0 and C = C(m,M,q,R) such that u is Hélder continuous in

BR/16(330) and

(2.2) el go.e (B gy < C [Illgamy + 1 lLzags)) -
Next, we consider the quasi-linear system:
Vx[o(e, )V xul=f | .
(2.3) V-u=0 in Q.

Here we assume f € H} (?) and o : @ x R® — R satisfies the following conditions:
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(a) m < o < M for positive constants m, M.
(b) o is Hélder continuous in Q x R*: [o], = [0]co.x(@xrn) < 00, for some
€ (0,1).
Theorem 2.2. Let u € Wli’f(Q;R") be a weak solution of (2.3) and assume f €
HP (), p>n. Let B := Bg(xg) € Q. Then, under above assumptions on o, Vu

loc
is locally Hélder continuous with exponent o = min(u,1 —n/p) and

||u||cl,a(ER/4) <C, C=C(m,M,p, [U]ua ||U||W1,2(B) ) ||f||Lp(B) ,R).

The following technical lemmas will be used in the proof of theorems.
Lemma 2.1 (Uniqueness). Let u € W, () be a weak solution of

V xla(x)V xu] =0 .
[v(_)u:(]] } m Q.

Then u =0 in €.

Proof. Since V - u = 0, integration by parts yields

/|qu|2=/|VXu|2+|V-u|2=/|Vu|2.
Q Q Q

On the other hand, by using u itself as a test function we have

m/ IV x uf? S/a(m)|qu|2:/Vx[a(x)qu]-u:(].
Q Q Q
Hence, Vu = 0 in . This completes the proof. O

Lemma 2.2. Let B C R™ be a open ball and let f € D(B). Then there exists
g € C®°(B;R*")ND(B) such that V. x g = f in B and g = 0 on 0B. Moreover, if
J € HP(B), 1< p < o0, then [IVallyim < C®) 1fllns)-

Proof. Let g be the unique solution of

—Ag=V xf in B,
g=20 on OB.

From the following vector identity,
(2.4) Vx(Vxf)=V(V-f)-Af,

and the representation formula of g in terms of the Green’s function, it is easy to
see Vxg= fand V-g = 0in B. The second part of lemma follows from LP-theory
of Laplace operator. a

Lemma 2.3. Suppose F' € C®°(B;R") satisfy V x F =0 in B. Then there ezists
@ € C®(B;R) such that Vo = F in B and ¢ = 0 on OB. Moreover, if F € L?(B),
then [l¢ll 2 < CIF|| .-

Proof. Let ¢ be the unique solution of
Ap=V-F in B,
=20 on OB.

Then Vo = F will follow immediately from Lemma 2.3. Also, [|V||;2 < C [|F||L2-
Since ¢ = 0 on 0B, we can use Poincaré inequality to get [|¢[|r2(p) < C||F||z2. O
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Lemma 2.4. Let w € Wy>(Bg;R") be a weak solution of
Vx(Vxw)=Vx(F+G+H) )
V.w=0 i Bg,
where F € CO*(Bg), p> 0, G € L?(Bg) and H € LY(Bg), ¢ > n. Then

[ el <€ (FRRM + |Gl + I, B747), 4 =1=n/g>0,
R

Proof. From the identity (2.4), w € WO1 ? is a weak solution of
—Aw=Vx(F+G+H) in Bg.

By using w itself as a test function we get

Vw-sz/ (F—FR)-wa—I—/ (G+H) -V xw.
Br Br B

R

Hence, Schwarz inequality yields

3
/ WM25/|F_E£+/ wﬁ+/ mﬁ+—/|va?
Bgr Bgr Bgr Br 4 Br

Since V - w = 0, integration by parts yields

/ wxwﬁ=/|va%HvMF=/ Vul?.
Bgr Br Br

The lemma follows from obvious inequalities [ [F' — Fr|* < C(n) [F]2 R™"2# and

IH 72 < VHIZ, |Br|' ™. D

Lemma 2.5. Let u € WH2(By; R") be a weak solution of
Vx[a(z)Vxul=Vxg in Q.

Then |V % ul s,y < € (Ilull 2y + I9llzocay) )

Proof. This is a Caccioppoli type inequality. The proof is straightforward. a

Lemma 2.6. Let ¢(t) be a nonnegative and nondecreasing function. Suppose that

o) < A[(2)" +¢] o) + Br?

for all p < r < Ry, with A, a, B nonnegative constants, § < a. Then there ezists a
constant 9 = €9(A, a, ) such that if € < g, for all p < r < Ry we have

2% 8
< Lt
o) <c|(2) o) + 5|
where ¢ is a constant depending on «, (3, A.
Proof. See [3] Lemma 2.1, page 86. d

Proof of Theorem 2.1. First, we shall assume that a € L*(Q) N C*°(Q) and f €
HL () NC>® (). The constant C' which appears in (2.2) will not depend on extra
smoothness of data. Since (2.1) is a linear system, the full result will then follow
from Lemma 2.1 and standard approximation argument. Also, we will assume
without loss of generality that B = Bjg(x¢). Moreover, we may assume n/2 < ¢ <

n. The case ¢ > n will be recovered by Hdélder’s inequality.
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Since V - f = 0, we conclude from Lemma, 2.2 that there exists g € C°°(Bg; R")
such that f =V x g and g = 0 on dBs. Then Sobolev-Poincaré inequality implies

(2.5) gl e (Bs) <C ||Vg||Lq(BS) <C ||f||L4(B8) , ¢ =ng/(n—q) >n.
Then by Lemma 2.3 there exists ¢ € C°°(Bg;R) such that

(2.6) Vo=a(x)Vxu—g
and
(2.7) lellasyy < C (I X ull 2y + I9ll2(sy) ) -

From Lemma 2.5 and (2.5), we can estimate [|¢||;2(5,) in (2.7)

(2.8) Il 2z < € (Il o) + 1/ lus)) -

By rewriting (2.6) as V x u = a~ 'V + a~'g we conclude
0=V-(Vxu)=V-[a V] +V-(alg).

Now we have a single elliptic equation

(2.9) —V-[a"'Vy] =V-(atg).

It is well known that the following estimate holds:

(2.10) pllcos iy < C (Il + 9l i) )

where C = C(M/m,q) and 8 = S(M/m) > 0 (see e.g. [5] Theorem 8.24).
Also, from (2.9) we have the following Caccioppoli inequality: for all r < 4

e [ el < o [t [ 1af)

r

n— 2 n—
< C ([‘P]Zco,ﬁ(34)7‘ 228 1 gl (Bs) T 2+27),

where C' = C(M/m) and v = (2 - %) > 0.
Since V - u = 0, (2.4) implies

—Au=Vx(Vxu) =Vx(@'Ve)+Vx(alyg).

A

Fix r < 2 and decompose u into two functions v and w := u — v such that v is the
unique solution of

—Av=0 in B,
v=u on OB,.
Then, w = 0 on 9B, and solves
—Aw=Vx(a'Vp)+V x(atg) in B,.

Hence, from (2.11) and Lemma 2.4 (with G = a='V¢ and H = a~!g) together
with Poincaré inequality, we get

[ w0l <€ ({elosgoyr™ + laller 5y 7).



6 KYUNGKEUN KANG AND SEICK KIM

Then, since v is harmonic, the following estimates hold for all p < r < 2:

n+2
(2.12) / w—uf < c(?) / = | +c/ o — w, |’
T B, B,

n+2
¢(?) / u — up|?
T B,

n 2 n
+ C ([¢]é0,ﬁ(34)r 2 1 lgll7ar Bs) " +27) ;

IN

INA

where C' = C(m, M).
Let ¢(p) := pr |u — u,|* and @ = min(B,~). Combining (2.5), (2.8) and (2.10),

(213 #(p<C [(ﬁ)"“ o) + 17 (|lulz2 ) + ||f||Lq(B))] -

r

Since (2.13) holds for any p < r < 2, by Campanato’s integral characterization of
Holder continuous function together with Lemma 2.6, we conclude

(2.14) [u]coe(,) < C(m, M, q) <||u||L2(B) + ”f”Lq(B)) :

Fix € B; and consider a ball B;(z) C By. Then

(2.15)  |u(e)] < |uy)] + [u(z) — u)| < |u)] + [u]co.x(By), Yy € Bi().
Integrating (2.15) with respect to y over B;(z) we get

(2.16) [u(@)| < C (Ilullya(sy) + [Wooam,) Vo € Br.
Combining (2.14), (2.16) we finally obtain

lullgo.e s,y < Cm, M, q) (llullsm + 1 fllzo)) -
This completes the proof. |

For the proof of Theorem 2.2, we need C'®-estimates of the linear system (2.1)
under the assumption that a is Holder continuous.

Lemma 2.7. Let u € W,22(Q;R™) be a weak solution of (2.1) where f € HP, ()

loc loc

for some p > n. Assume further that a € CO*(Q;R). Then if B := Bg(zo) € (,
Vu is Holder continuous in Br,4(xo) and

(2.17) [VU]CO,“(BRM) <C (||Vu||L2(B) + ||f||Lq(B)) )

Here, oo = min(1 — n/p, p) and C = C(n,m, M, p,[a], R).

Proof. The proof relies on the standard perturbation method. As in Theorem 2.1,
we may assume that f is smooth and B = By(zg). Then, by Lemma, 2.2 there exists
g such that f = Vxg and [gloos(s) < CIVgllzo(z) < Clf oz, v = 1-n/p > 0.
Let y € B5(0) and let Ry < 2 be a fixed number which will be specified later. Then
@)V x (V x w)] = V x ([a(y) — a@)] V xu) + V x g in Bg,(y) C B.

Fix an r < Ry and split » into v and w := u — v such that

—Av=0 in B,(y),

v=u on OB.(y).

Then, w € Wy">(B,(y)) and satisfies

—a(y)Aw =V x ([a(y) —a(@)]V xu+g) in B(y).
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Hence from Lemma 2.4 with F' = g and G = [a(y) — a(z)]V X u, we obtain

[ vl
B (y)

INA

C ([a2r IV % ull2as, ) + 9272

c (7'2N/ |v“|2 + ||f||ip(B) 7'”+2V> .
Br(y)

Since Vv is harmonic in B, (y), the following estimate holds for p < r < Ry:

/ IVl cl(f)"/ |Vu|2+/ |Vw|2]
B, (y) r B, (y) B.(y)

L(E) +r) [t sl

IN

IA

IA

We will apply Lemma 2.6 to the quantity ¢(p) := |, B, (1) |Vu|2. Choose Ry small

enough so that Ry* < 9. Then Lemma 2.6 implies
/B Vel <o IVl + 1 l50s)] s Yy € Bay Vo< Ro.
p\Y

Now set y = zg and Ry = 2. In the rest of the proof we will denote B, := B,.(x¢)-
By using standard covering argument if necessary, we obtain

@18) [ [Vl <Ot [IVulle + 1] V<2

Ed

On the other hand, for all p < r < 2,

(2.19) /B Vu— (Vu),> < C [(f)"+2 /B |V“_(V“)Tl2+/3, IVwI2]

p\"t2 B 2
c[(;) /B,.Wu (Vu)r|]
+ C(IVullas,) ™ + 1 ) ™) -

Combining (2.18) and (2.19) we conclude that Vu € C%7(By), v = min(v, /2). In
particular, as (2.16) in the proof of Theorem 2.1

(2.20) sup [Vl < C (Il + 1 fllzos)) -
1

IA

IA

We may then use inequality (2.19) again for p < r < 1, getting

[Vulooesn) < C (IIVull s + 1) @ =min(u,v).
This completes the proof. a

Proof of Theorem 2.2. First, by Theorem 2.1 we know u € C’loo’f(ﬂ) for some 8 > 0.
Then a(z) := o(x,u(x)) is locally Holder continuous with some exponent v > 0.
Hence, from Lemma, 2.7 we conclude Vu is locally Holder continuous. In particular,
Vu is bounded in B. As in (2.20) we have an estimate

sup [Vl < € (IVull sy + 1Lz ) -

Bryo
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Thus a(z) is Hélder continuous in Bg/; with exponent p and [a]co.w(B,,,) < K,
where K is a constant depends on ||Vullz2(gy; [|fllzz(5)s [0]x and other prescribed
quantities independent of u, f. Now, the theorem follows from Lemma, 2.7. a

Remark 2.3. In the proof of Theorem 2.1 we actually proved that if f € H;Io/cz (Q; R™)
and g € L] _(Q;R™), ¢ > n, then any weak solution of the system
Vx[a(z)V xul=f+Vxg } n o

(2.21) V.u=0

satisfies the following estimate in B := Bg(zg) €

(222)  llullgo.a (g, < C [Illgsm + 1 lass) + 19llLas)|
Also, the proof of Lemma 2.7 implies that a weak solution of

(2.23) Vx[a(a:,u)vy-:ii]o:f+ng} n O

where f € H] (Q), p > n, and g € Cloo’f(ﬂ), B > 0, is locally Holder continuous
with exponent @ = min(u,1 —n/p, ).

Remark 2.4. In two dimensional case, Holder continuity of weak solutions of (2.1)
may follow from Sobolev imbedding. In fact, if f = 0, then a weak solution u
belongs to Wllo’cp (Q) for all p € (1,00). However, when n = 3, C%%regularity is the
optimal result. To see this, consider a solution of the form u = (0,0,43%) : O — R3.
Let us assume for simplicity f = 0. Then, the system (2.1) becomes

Ds(a(z)D1u®) =0,
Ds(a(z)D2u?) =0,

(2.24) Dy (a(z)D1u®) + Da(a(x)Dau?) = 0,
D3U3 =0.
From the last equation of (2.24), we can set v(xy,%2) := usz(x1,x2,x3). It also

follows that a(z) depends only on z; and z>. Then v solves the following equation
of divergence form in two variables:

2
Ly := Z D;(a(z)Djv) =0 in Q.

i,j=1

The operator L is called an isotropic operator. PICCININI & SPAGNOLO showed
that v is locally Hélder continuous with exponent a = 2 arctan/m/M (see [§]
Theorem 2, page 396). To see that it is an optimal result, consult Example 2 of [§]
on page 400.

3. APPLICATION TO A MAXWELL SYSTEM

As mentioned in the introduction, the problem we have analyzed so far arises
from the Maxwell’s system in a quasi-stationary electromagnetic field. Especially
if the electric conductivity strongly depends on the temperature, then by taking
the temperature effect into consideration the classical Maxwell system in a quasi-
stationary electromagnetic field reduces to the following mathematical model (see
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[9], page 1029-1032):
H;+V x (o0(w)V x H) =0,
(3.1) V-H =0,
u — Au=o(u) |V x H)?,
where H and u are unknowns representing, respectively, the strength of magnetic
field and temperature while o(u) denotes the electric resistivity of the material

which is assumed to be strictly positive and bounded; i.e. there exist positive
numbers m, M such that

(3.2) 0<m<o(s) <M, VseR

In [9], YIN proved, under appropriate assumptions on boundary and initial condi-
tions, the existence of a pair of global weak solutions (H,u):
HeL> (O,T;Lz(Q;R3)) nL? (O,T;Wl*Q(Q;R3)) ,
uw € L* (0,T; L* (4 R)) N L7 (0, T; WH(Q;R)), g€ [1,5/4).
In addition, he showed that if a pair of weak solutions (H,u) are continuous, then
they are classical provided that ¢ is smooth enough. However, as pointed out by
him, the continuity of weak solutions is unknown even if ¢ is smooth. Continuity
of weak solutions of (3.1) heavily relies on the regularity theory of the following
system with bounded measurable coefficient a(z,t):
v+ V x [a(z,t)V xv] =0 .
(3.3) Vev=0 in Q,
where @ the space-time cylinder Q x (0,T") for some T' > 0. We don’t know at this
time whether or not weak solutions of the system (3.3) are Holder continuous.
In this section, we consider instead the following fully steady-state systems in-
troduced by YIN (see [9] page 1031):

Vx(c(uw)VxH)=0
(3.4) V-H=0 in Q.

—Au=o(u) |V x H)?
Using the results we obtained in previous section, we will show the C%“-regularity
of weak solutions of (3.4).

Theorem 3.1. Let (H,u) be a pair of weak solutions of (3.4). Then (H,u) €
CZOO’S(Q) for some a > 0. Moreover, the following estimates hold in Q' € Q:

(3.5) [H]co.a (1) + [u]coany < Clm, M, Y, Q, | Hl| 12, ||ull 2)-

Proof. Let B := Byr = Bagr(xo) € 2. We will show (u, H) is Hélder continuous in
Bgr = Bgr(zo)- Indeed, from the proof of Theorem 2.1 we have

(3.6)  1Hllow s,y < Clm M, B)|Hll gy, @ = a(m/M) > 0.

It remains to show that u is also Holder continuous in Bg. Using a vector identity,

(3.7) V- (FxG)=(VxF)-G-F-(VxGQG),
together with the first equation V X (o(u)V x H) = 0 of (3.4), we obtain
(3.8) V- [H x (o(uw)V x H)] = o(u) |V x H|”.

We rewrite the last equation of (3.4) as follows:
(3.9 —Au =V [H % (6(u)V x H)].
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As before, fix » < R and split u into two parts v and w := u — v such that

—Av=0 in B,
v=1u on OB,.

Then, as in (2.12), the following estimate holds for p <r < R:

n+2 .
(3.10) /|u—up|2§C(£) /|u—ur|2+CT2/ IVul?.
B, r B, B

We need to estimate ||Vw||2Lg( B,)- Since w € W,?(B,) and satisfies
—Aw =V [H x(c(u)V x H)] in By,

integration by parts and Schwarz inequality yields

(3.11) / |Vw|® < 2/ o(u)? |H>|V x H|” < 2M2/ |H|* |V x H|?.
B,

il E

Since H is continuous, it is bounded in B, and thus from (3.11)

(3.12) / Vwl? < Csup |H? [ |V x H.

Br B2R B'r
On the other hand, from the fact that H solves the first equation of (3.4) it follows

C

2 2 n— @

(3.13) / IV x HI < 72/3 |H = Hool? < ClH e, 7 272
r 27
combining (3.12) and (3.13) together with (3.6) we obtain the required estimate:
(3.14) VWl < Clm, M, R) [H|[4s g >+
Finally, by inserting (3.14) into (3.10) we conclude from Lemma 2.6
2

(315)  [ulconqsa < C0m M, R) (1l gy + 1H o)) -
Now theorem follows from (3.6), (3.15) and standard covering argument. O

Theorem 3.2. Let (H,u) be a pair of weak solutions of (3.4). Assume further
that o is Holder continuous with exponent p € (0,1). Then H € Cllo’f(ﬂ) and
ue CHM(Q).

loc

Proof. First, by Theorem 2.1 we have (u, H) € C2%(f2), which in turn implies o ()

loc

is Holder continuous with exponent 8 = au. Then H € Czl O’CB () by Lemma 2.7 and
thus o(u) |V x H|* € C25(Q). Since u solves

loc
(3.16) —Au=o(u)|VxH’ in 9
it follows from the theory of Laplace operator that u € C>? (Q). In particular, Vu

loc

is locally bounded and thus o(u) € C2*(9). By Lemma 2.7 again, H € C1*(Q).

loc loc

Therefore o(u) |V x H|? € C*(Q) and u € C*(Q) by (3.16). This completes the

loc

proof. a

Remark 3.3. Let (H,u) be a pair of weak solutions of (3.4). Suppose that o € C**
where k is a nonnegative integer and 0 < a < 1. Then

(3.17) HecktbeQ), wecckt?eq).

loc loc

In particular, if o € C1® then (H,u) is a pair of classical solutions.
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4. REMARKS ON THE CASE n > 4

First, we introduce some notations. Let Q be a domain in R", n > 3. Denote
by A¥ := A¥(Q) the class of k-forms in Q. Let * : A¥ — A" % be the Hodge star
linear operator, defined by setting

>I<(d:L‘i1 A=A dxi’c) = (dgjjl A---A dmjn—k)

and extending it linearly, where (i1,- - ,4,J1, - ,jn—k) IS an even permutation of
(1,2,--- ,n) so that dzt A---Adzi* Adxit A- - -Adzin-* = dvol. Let d* : A¥ — AF—1
be the adjoint of the exterior differential operator d : A¥~! — A* with respect to
the Hodge inner product:

(4.1) <%5y=/}uM@ where a, 8 € L2(Q; Ab).
Q

More precisely, it is defined by (da, 8) = {a,d*B) for smooth forms a € A¥~1(Q),
B € A¥(Q), one of which with compact support in . From the Stoke’s theorem, it
follows that d* = (—1)"k+7+1 x dx,

Let u = (ul, -+ ,u™) € WH2(Q; R"). For the sake of simplicity, we will use the
same notation u for the corresponding 1-form Y7 ; u®(z)dz®. In this context, we
denote its exterior differential du by

du = Z(D,-uj — Djut)dz’ A dxl.
i<j

A celebrated result by De Giorgi [1] states that weak solutions to linear elliptic
equations with L*-coefficients are Holder continuous. In contrast to this, as it is
well known, weak solutions of linear elliptic equations with L*°-coefficients may
have singularities. For example, De Giorgi [2] constructed a weak solution to an
elliptic system with L*-coefficients which belongs to W1:2(B;(0); R*), n > 3, but
is not bounded.

Related to those results, GIAQUINTA & HONG [4] raised an interesting question:
Are weak solutions of the following system locally Holder continuous?

(4.2) d*[il(ficﬁ‘]ozo} in Q.

Here a(z) € L*>(Q) is assumed to be bounded by two positive numbers m, M. More
generally, consider the following inhomogeneous system:

(4.3) dm“gﬂ;g+d9} in
where f € HJ (Q;R") and g € L] (Q;A%) = L] (Q;RMn=1/2),

When n = 3 the above system (4.3) is identical to the system (2.1) of Sec. 2 and
Theorem 2.1 states the answer to their question is positive when n = 3. However,
our method used in the proof of Theorem 2.1 cannot be applied to the case when
n > 4 and we don’t know the answer in that case.

Let us briefly mention why the case n = 3 is special. In the proof of Theorem
2.1, we made use of the fact that de Rham cohomology of a ball B € R” is trivial
in the sense that if a € A?(B) satisfies d*a = 0 then there exists a 3 € A"3(B)
such that df = xa. In the case when n = 3, § is a scalar function so that we may
apply well-known result of De Giorgi [1] to get C%*-estimate.
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The aim of this section is to compile known results from general theory of elliptic
systems which can be applied to the system (4.3). We have the following identity
similar to (2.4) (see e.g. [7], page 33):

(4.4) —Aa = d*(da) + d(d*a), Ya € A'(Q).

Hence if a(z) is continuous, then the perturbation method used in Lemma 2.7 can
be applied here without any change. Also if the ratio, M/m is sufficiently close to
1, then it can be shown that weak solutions u of the system (4.3) satisfy u € Wllo’cp
for some p > n. Holder continuity of u will then follow from Sobolev imbedding.

We again emphasize that most of results in this section can be inferred from
the general theories of elliptic systems, so we will provide proofs only when the
situation is not quite obvious.

Proposition 4.1. Let u € WE2(Q; R™) be a weak solution of (4.3). Suppose f €

loc

HP (RY), p>n/2 and g € L (Q;A?), ¢ > n. If a(z) is continuous, then u is

loc loc
locally Hélder continuous with exponent a = a(n,m,M,p,q) > 0.

Proof. See Theorem 3.1 in [3] and following remark on page 87. O
Proposition 4.2. Let u € Wll’z(Q;R”) be a weak solution of (4.3). Suppose f €

oc

”HQ/Q(Q;R”) and g € L (;A2), ¢ > n. Then, there exists a number g > 1 such

loc loc
that if M/m < €, then Vu € Lf’oc(Q;R"Z) for some p > n. In particular, u is
locally Hélder continuous in 2.

Proof. The proof relies on the L? theory for Laplace operator and a perturbation
argument (see e.g. [6] and Theorem 2.5 [page 154] in [3]). O

Proposition 4.3. Let u € Wll’z(Q;]R") be a weak solution of (4.3). Assume f €

HY (GR), p>nand g € CYP(Q;A2), B > 0. If a(z) is CO*-continuous, then

loc
Vu is locally Hélder continuous with exponent o = min(u, 1 —n/p, B).

Proof. See Theorem 3.2 (page 88) in [3] and also Lemma 2.7 in Sec 2. O

Lemma 4.1 (Caccioppoli-inequality). Let u € W.?(Q;R™) be o weak solution

loc

of the system (4.3) with f € H/ "D (Q;R") and g € L2 (0 A2). Let By =

loc loc

Bgr(zo) € Q. Then for any A € R,

1
43) [l <0 (g [ lwm N sy + lolleo )
Br/2 Br
where C = C(n,m, M).
Sketch of proof. As in Lemma 2.2, there exists h € W01’2(BR; A?) such that

(4.6) f=d'h in Bg; ||h||L2(BR) < C||f||L2"/(n+2)(BR)-

Let n € C§°(Br;R) be a cut-off function such that 0 <7 <1, 7 =1 in Bg/, and
|Vn| < 4/R. By choosing (u — \)n? as a test function it is easy to see

1
an [ <o (g [ sl [l [ o).
Br Br Br Br

Since d*u = 0 in §, (4.4) implies

(—Au,n*(w=N) = (du,d(n’(u—2N))
= (du,2ndn A (u—\)) + (du,n’du).
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On the other hand, integration by parts yields
(—Au,n’(u—A)) = / Vu -V (n?(u—A))
Q

= / 20 Dju'Djn(u’ — \') +/ 7 |Vul®.
Q Q

Therefore,
1
ay) [t <o (g [ et [ o).
Br R? Jpg Br
Combining (4.6), (4.7) and (4.8) we obtain (4.5). O

Lemma 4.2 (LP-estimates). Suppose f € H] (Q;R™), ¢ > 2n/(n+2) and g €

L7 (Q;A%), r>2. Letue Wllocz(ﬂ) be a weak solution of the system (4.3). Then,
Vue LP ( ]an) for some p > 2. More precisely, let B := Bgr(xo) € (2, then

loc

(49)  IVullgn(p, ) < C (IVullzam) + 1 psscsnrimy + 19]scs) ) -

Sketch of proof. Let h be as in (4.6). Setting A\ = (u)g and then using Sobolev-
Poincaré inequality, we obtain from (4.7) and (4.8)

2/s ) ) 9
(4.10) f Vu? < C (f |w|3) +f|h|2+f P ———
Br2 B B B n+2

It is so called reverse Holder inequality. It is well known that higher integrability
of Vu follows from (4.10) (see e.g. Proposition 1.1 [page 122] of [3]). Also, as
mentioned in Proposition 4.2, (4.9) can be derived by a perturbation argument

based on the LP-theory of Laplace operator. O
With preceding lemmas at hand, let us consider the quasi-linear system:
d*[o(z,u)du] = f + d*g .
(4.11) du=0 in Q,

where f € H} () and g € L] (Q;A?).

By using general theory of elliptic systems, it is again more or less straightforward
to show partial C%% (or C1:%)-regularity for weak solutions of the system (4.11)
under appropriate continuity assumptions on ¢. We denote k-dimensional Hausdorff

measure of ¥ C R" by H¥(X).
Proposition 4.4 (C%“-partial regularity). Suppose f € Hi/2 (Q) and g € L] (),

loc loc

for some ¢ > n and let u € Wl{j’f(ﬂ) be a weak solution of the system (4.11).
Assume that o is continuous. Then there exists an open set Qg C Q such that u is
locally Holder continuous with exponent 1—n/q in Qo. Moreover, H" *(2\ Q) =0

for some s > 2.
Proof. See Theorem 1.1 (page 166) in [3]. O

Proposition 4.5 (C!**-partial regularity). Suppose o is locally C%%-continuous
for some a € (0,1). Let u € I/Vﬁ;f(ﬂ) be a weak solution of the system (4.11) and
let feH! (GRY), p=n/(1—a), g€ C’loo’;’ (Q; R™). Then there exists an open set

Qo C Q such that u € Cllo’f‘(ﬂo) and H" 5(Q\ Qo) = 0 for some s > 2.
Proof. Tt follows from Proposition 4.5 and Lemma, 2.7. |
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