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Abstract. We study the families of periodic orbits of the spatial isosceles 3-body problem (for
small enough values of the mass lying on the symmetry axis) coming via the analytic continuation
method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular
momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic
orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced
problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem
at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov
problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits.
These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom
system. The continuation of periodic orbits is done in two different ways, the first going directly from
the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using
two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the
reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic
Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces
different results. This work is merely analytic and uses the variational equations in order to apply
Poincaré’s continuation method.
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1. Introduction. We consider a special case of the spatial 3-body problem,
the spatial isosceles 3-body problem, or simply the isosceles problem. This problem
consists of describing the motion of two equally massive bodies, m1 = m2 = 1/2,
having initial conditions and velocities symmetric with respect to a straight line which
passes through their center of mass, and a third body, with mass m3 = µ, having
initial position and velocity on this straight line. This problem is called the isosceles
problem because the three bodies form an isosceles triangle at any time, eventually
degenerated to a segment.

The most interesting application of the spatial isosceles 3-body problem was given
by Xia in [25]. He used two spatial isosceles 3-body problems to prove that five bodies
can escape to infinity in a finite time without collision. Other works on the spatial
isosceles 3-body problem are [16] and the references therein. If in the spatial isosceles
3-body problem the initial positions and velocities of the three bodies are contained
in a plane, then the motion remains always in this plane, and we have the so-called
planar isosceles 3-body problem. There are several papers about the planar isosceles
3-body problem, for instance, [9], [17], etc.

When the third body of the isosceles 3-body problem has infinitesimal mass (i.e.,
µ = 0) then we obtain the restricted isosceles problems. Depending on the motion
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1312 MONTSERRAT CORBERA AND JAUME LLIBRE

of the primaries m1 and m2 we have seven different cases for the restricted isosceles
problems. Here we consider, due to their richness in periodic orbits, only the cases
in which the primaries move in circular or elliptic orbits of the 2-body problem, the
circular and elliptic restricted isosceles problems, also called the circular and elliptic
Sitnikov problems.

The isosceles problem and the restricted isosceles problems possess the first inte-
gral of the angular momentum. In section 3 we will prove that the phase portrait of
any of these problems on each level of the angular momentum c with c �= 0 is the same.
Notice that the angular momentum c = 0 contains the triple and the double collision
orbits, but collision orbits are not treated in this work. With a fixed value of the
angular momentum c �= 0, we reduce by two dimensions (an angle and its derivative)
the phase space of the isosceles problem, obtaining the reduced isosceles problem. In
particular, we see that each periodic orbit of the reduced isosceles problem gives an
invariant two-dimensional torus of the isosceles problem, filled with either periodic or
quasi-periodic orbits, which is not a KAM tori. We note that the circular and elliptic
Sitnikov problems that appear in the literature are essentially our reduced circular
and elliptic Sitnikov problems.

The main objective of this work is to prove that the invariant two-dimensional
tori of the restricted isosceles problem that come from the known periodic orbits of the
reduced circular Sitnikov problem persist when we pass from the restricted isosceles
problem to the isosceles problem for µ > 0 sufficiently small. Consequently these
tori persist inside the general spatial 3-body problem. The main tool for proving this
result will be the classical Poincaré analytic continuation method of periodic orbits.
In particular, we continue the known periodic orbits of the reduced circular Sitnikov
problem to periodic orbits of the reduced isosceles problem for µ > 0 sufficiently
small. In order to do that, we will use the symmetries of the problem. The isosceles
problem is invariant under the time reversibility (t-symmetry), and it is also invariant
under a symmetry with respect to the plane defined by the motion of m1 and m2 (r-
symmetry). These symmetries will allow us to find r- and t-symmetric periodic orbits
for the reduced isosceles problem. We still distinguish another type of symmetric
periodic orbits, the doubly symmetric periodic orbits, which are simultaneously r- and
t-symmetric periodic orbits.

Using the analytical continuation method of Poincaré, we will continue the known
periodic orbits of the reduced circular Sitnikov problem (where µ = 0), which are
doubly symmetric periodic orbits, to symmetric periodic orbits of the reduced isosceles
problem for µ > 0 sufficiently small. Those periodic orbits are continued in two
different ways. The first goes directly from the reduced circular Sitnikov problem
to the reduced isosceles problem. The second uses two steps: first we continue the
periodic orbits from the reduced circular Sitnikov problem to symmetric periodic
orbits of the reduced elliptic Sitnikov problem (where µ = 0) for small values of the
eccentricity e, and then we continue those symmetric periodic orbits of the reduced
elliptic Sitnikov problem to the reduced isosceles problem for small values of µ > 0.

A key point in this work is the knowledge of an analytical expression for the
solution of the variational equations of the reduced circular (elliptic) Sitnikov problem
along the periodic solution that we want to continue. We must remark that all results
presented in this paper are analytical results.

The main results about continuation of periodic orbits from the reduced circular
Sitnikov problem to the reduced isosceles problem are summarized in the following
result.
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1313

Theorem A. Let γ be a periodic orbit of the reduced circular Sitnikov problem
with period T > π/

√
2, and let f(e) = (1 − e2)3/2. Then γ can be continued to

the following families of periodic orbits of the reduced isosceles problem with angular
momentum c = 1/4 and µ > 0 sufficiently small:

1. Case T = 2πω with ω > 1/(2
√
2) an irrational number.

(a) γ can be continued directly to one 2-parameter family (on µ and τ) of
doubly symmetric periodic orbits with period τ sufficiently close to T .

2. Case T = 2πp/q for some p, q ∈ N coprime with p > q/(2
√
2).

(a) p odd:
i. γ can be continued directly to one 2-parameter family (on µ and τ)

of doubly symmetric periodic orbits with period τ sufficiently close
to T .

ii. γ can be continued by two steps to two 2-parameter families (on
µ and e) of r-symmetric periodic orbits with period qT f(e) where
e > 0 is sufficiently small.

iii. γ can be continued by two steps to two 2-parameter families (on
µ and e) of t-symmetric periodic orbits with period qT f(e) where
e > 0 is sufficiently small.

(b) p even and q �= 1:
i. γ can be continued directly to one 2-parameter family (on µ and τ)

of doubly symmetric periodic orbits with period τ sufficiently close
to T .

ii. γ can be continued by two steps to two 2-parameter families (on µ
and e) of doubly symmetric periodic orbits of period qT f(e) where
e > 0 is sufficiently small.

(c) p even and q = 1:
i. γ can be continued by two steps to two 2-parameter families (on µ

and e) of doubly symmetric periodic orbits of period qT f(e) where
e > 0 is sufficiently small.

Using direct continuation we can continue all periodic orbits of the reduced circu-
lar Sitnikov problem except the ones that have period multiple of 4π. In particular,
we can continue the periodic orbits, with period 2πω and ω irrational. These periodic
orbits become quasi-periodic orbits in the restricted isosceles problem. So, in fact
we have continued quasi-periodic orbits of the restricted isosceles problem to either
periodic or quasi-periodic orbits of the isosceles problem for µ > 0 sufficiently small.

The continuation in two steps allows us to continue only periodic orbits of the
reduced circular Sitnikov problem with period T = 2πp/q for all p, q ∈ N coprime and
p > q/(2

√
2). These periodic orbits become periodic orbits of the restricted isosceles

problem. We note that the periodic orbits of the reduced circular Sitnikov problem
that cannot be continued directly can be continued in two steps. Moreover the rest of
the periodic orbits with period T = 2πp/q can be continued in both ways, obtaining
different periodic orbits for the reduced isosceles problem.

Since each periodic orbit of the reduced isosceles problem gives an invariant two-
dimensional torus of the isosceles problem, in particular we have continued the in-
variant two-dimensional tori of the circular restricted isosceles problem (µ = 0) to
invariant two-dimensional tori of the isosceles problem for µ > 0 sufficiently small.
In section 13 we state Theorem A translated to the language of tori for the isosceles
problem.

This paper is organized as follows. In section 2 we give the equations of motion
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1314 MONTSERRAT CORBERA AND JAUME LLIBRE

of the isosceles problem in appropriate cylindrical coordinates; these coordinates will
allow us to define the reduced isosceles problem in section 3. In section 4 we give
the relationships between the orbits of the reduced isosceles problem and the isosceles
problem. In particular, we see that if ϕ is an orbit for the reduced isosceles prob-
lem, then ϕ × S

1 is an invariant manifold for the isosceles problem (for more details
see Theorem 4.1). In section 5 we analyze the symmetries of the reduced isosceles
problem. In section 6 we define the restricted isosceles problems and the reduced re-
stricted isosceles problems. In this work, we will consider only the circular and elliptic
restricted isosceles problems, which are treated in sections 7 and 8, respectively. In
particular, we are interested in the invariant two-dimensional tori of these problems
that come from periodic orbits of the corresponding reduced problems. In section 7.1,
we summarize the basic properties given in [8] of the periodic solutions of the circular
Sitnikov problem. In section 8.1 we summarize the basic properties of the periodic
solutions of the elliptic Sitnikov problem and give the basic results on continuation of
periodic solutions from the circular Sitnikov problem (e = 0) to the elliptic Sitnikov
problem for e > 0 sufficiently small. These results have also been extracted from [8].
In section 9 we analyze the variational equations of the reduced circular and elliptic
Sitnikov problem and explicitly give the solution of the variational equations of the
Kepler problem along a circular or elliptic periodic solution and the solution of the
variational equations of the circular Sitnikov problem. In section 10 we analyze the
direct continuation of periodic solutions from the reduced circular Sitnikov problem
to the isosceles problem for µ > 0 sufficiently small; in particular, we prove statements
1(a), 2(a)i, and 2(b)i of Theorem A (see Theorem 10.1). In section 11 we analyze the
continuation of the symmetric periodic solutions of the reduced elliptic Sitnikov prob-
lem that we give in section 8 to the isosceles problem for µ > 0 sufficiently small. The
continuation by two steps from the reduced circular Sitnikov problem to the reduced
isosceles problem is analyzed in section 12; in particular, we prove the remaining
statements of Theorem A (see Theorem 12.8). In section 13 we summarize the basic
results on continuation of invariant two-dimensional tori from the circular restricted
isosceles problem to the isosceles problem for µ > 0 small.

2. Coordinates and equations of motion of the isosceles problem. Let
P1 and P2 be two particles, with equal masses m1 = m2, having initial positions and
velocities symmetric with respect to a straight line that passes through their center
of mass. Let P3 be a third particle, with mass m3, having initial position and velocity
on this straight line. The spatial isosceles 3-body problem, or simply the isosceles
problem in this work, consists of describing the motion of these three particles under
their mutual Newtonian gravitational attraction. We note that the solutions of the
isosceles problem are in fact solutions of the general spatial 3-body problem.

We choose an inertial coordinate system (X,Y, Z) in such a way that the Z-axis
is the straight line that contains the particle P3. The initial positions of the particles
P1, P2, and P3 in this coordinate system are (X,Y, Z2), (−X,−Y,Z2), (0, 0, Z1), re-
spectively, and their respective velocities are (Ẋ, Ẏ , Ż2), (−Ẋ,−Ẏ , Ż2), and (0, 0, Ż1)
(see Figure 2.1). Of course, the dot denotes the derivative with respect to the time t.

In order to develop our analysis we will use the cylindrical coordinates (r, z, θ) ∈
R

+ × R × S
1 introduced as follows. Here R

+ denotes the open interval (0,∞). First
we put the origin 0 of the coordinate system at the center of mass of m1, m2, and m3,
which implies taking Z2 = −m3Z1. Then we define a new variable z = Z1 − Z2 ∈ R

which denotes the distance between the third particle P3 and the orthogonal plane to
the Z-axis that contains the particles P1 and P2 with the convenient sign (positive
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Fig. 2.1. The isosceles problem.

if Z1 > Z2 and negative if Z1 < Z2). Finally we consider polar coordinates, (r, θ) ∈
R

+ × S
1, in the above orthogonal plane by taking X = r cos θ and Y = r sin θ.

We choose the unit of mass in such a way that m1 = m2 = 1/2 and m3 = µ,
and the unit of length is chosen so that the gravitational constant is one. Then the
kinetic energy and the potential energy in the coordinate system (r, ṙ, z, ż, θ, θ̇) are
given, respectively, by

T =
1

2

(
ṙ2 + r2θ̇2 +

µ

1 + µ
ż2

)
and U = − 1

8 r
− µ

(z2 + r2)1/2
.

Therefore the Lagrangian equations of motion for the isosceles problem are

d

dt
(ṙ) = rθ̇2 − 1

8 r2
− µr

(z2 + r2)3/2
,

d

dt

(
µ

1 + µ
ż

)
= − µz

(z2 + r2)3/2
,

d

dt
(r2θ̇) = 0.

(2.1)

We note that the third equation of system (2.1) can be integrated directly, ob-
taining the first integral of the angular momentum

C = r2θ̇.(2.2)

Of course, system (2.1) also has the first integral given by the energy H = T + U .

3. The reduced isosceles problem. To avoid singular situations, throughout
this work we consider only solutions of system (2.1) having nonzero angular momen-
tum (i.e., in particular, we do not consider solutions with collision between the masses,
either triple or double). We note that under this assumption it is sufficient to consider
solutions of (2.1) having a fixed value of the angular momentum C = c for some c �= 0,
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1316 MONTSERRAT CORBERA AND JAUME LLIBRE

because the phase portrait of the isosceles problem on each angular momentum level
c �= 0 is the same as that shown in the following proposition.

Proposition 3.1. Let (r(t), ṙ(t), z(t), ż(t), θ(t), θ̇(t)) be a solution of the isos-
celes problem (2.1) with angular momentum C = c for some c �= 0. If we take
α1/2 = c/c �= 0, then

ϕ(t) =

(
αr(α3/2t),

ṙ(α3/2t)

α1/2
, αz(α3/2t),

ż(α3/2t)

α1/2
, θ(α3/2t),

θ̇(α3/2t)

α3/2

)

is a solution of (2.1) with angular momentum c.
Proof. It is easy to see that system (2.1) is invariant under the transformation

(t, r, ṙ, z, ż, θ, θ̇) �−→ (α3/2t, αr, α−1/2ṙ, αz, α−1/2ż, θ, α−3/2θ̇).

Thus ϕ(t) is a solution of (2.1). Moreover the angular momentum of ϕ(t) is given by

α2r2(α3/2t)α−3/2θ̇(α3/2t) = α1/2c = c.

Then ϕ(t) is a solution of (2.1) with angular momentum c.
Assuming that the value of the angular momentum is fixed at C = c for some

c �= 0, we can reduce by two units the dimension of the phase space. Indeed, the
variable θ does not appear explicitly in system (2.1); moreover from (2.2), θ̇ = c/r2,
and thus we need to consider only the first two equations of (2.1) with θ̇ replaced by
c/r2. That is, we need to consider only the reduced isosceles problem

r̈ =
c2

r3
− 1

8 r2
− µr

(z2 + r2)3/2
, z̈ = − (1 + µ)z

(z2 + r2)3/2
.(3.1)

4. Relationships between the reduced isosceles problem and the isosce-
les problem. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a solution of the reduced isosce-
les problem (3.1) for a fixed c �= 0 with initial conditions r(0) = r0, ṙ(0) = ṙ0,
z(0) = z0, ż(0) = ż0. For each θ0 ∈ S

1, the solution ϕ(t) gives rise to a solution
γϕ,θ0,c(t) = (r(t), ṙ(t), z(t), ż(t), θ(t), θ̇(t)) of the isosceles problem (2.1) with angular
momentum c, having initial conditions r(0) = r0, ṙ(0) = ṙ0, z(0) = z0, ż(0) = ż0,
θ(0) = θ0 (mod 2π), θ̇(0) = c/r20, where θ̇(t) and θ(t) are given by

θ̇(t) =
c

r2(t)
and θ(t) =

∫ t

0

c

r2(τ)
dτ + θ0 = F (t) + θ0.(4.1)

It is well known that all solutions of the 3-body problem, except those that end
in collision, are defined for all t ∈ R (see [18] or [21]). Since our isosceles problem
is a particular case of the general 3-body problem, all its solutions with angular
momentum c �= 0 are defined for all t ∈ R.

Fixing a value of c �= 0, the union of the orbits γϕ,θ0,c = {γϕ,θ0,c(t) : t ∈ R},
varying θ0 ∈ S

1, is an invariant submanifold Eϕ,c of the phase space of the isosceles

problem E = {(r, ṙ, z, ż, θ, θ̇) ∈ R
+ × R

3 × S
1 × R}. In particular, Eϕ,c is an invariant

submanifold of Ec = {(r, ṙ, z, ż, θ, θ̇) ∈ E : r2θ̇ = c}. Note that Ec, called the angular
momentum level C = c, is a submanifold of dimension 5 of E because c �= 0. The
invariant submanifold Eϕ,c is called the relative set associated to the orbit ϕ = {ϕ(t) :
t ∈ R}, and it is diffeomorphic to ϕ× S

1.
By the qualitative theory of differential equations we know that the orbits of the

reduced isosceles problem (3.1) can be either equilibrium points, periodic orbits, or
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1317

orbits diffeomorphic to R. Thus if ϕ is an equilibrium point, then the corresponding
relative set is diffeomorphic to a circle S

1 (a relative periodic orbit). If ϕ is a periodic
orbit (i.e., a closed curve diffeomorphic to S

1), then the corresponding relative set
is diffeomorphic to a two-dimensional torus S

1 × S
1 (a relative torus). This relative

torus can be filled with either periodic or quasi-periodic orbits (in this last case the
orbits are dense on the torus). We note that these kinds of tori are not KAM tori
(see, for instance, [1]), because they are two-dimensional tori of a problem with three
degrees of freedom, and the KAM tori of such a system have dimension 3. Finally if
ϕ is neither an equilibrium point nor a periodic orbit, then the corresponding relative
set is diffeomorphic to a cylinder R × S

1. In particular, we have the following result.
Theorem 4.1. Let ϕ = {ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) : t ∈ R} be an orbit of the

reduced isosceles problem (3.1) for a fixed value of c �= 0; and let γϕ,θ0,c = {γϕ,θ0,c(t) =

(r(t), ṙ(t), z(t), ż(t), θ(t), θ̇(t)) : t ∈ R} be the orbit of the isosceles problem (2.1) with
θ(t) = F (t) + θ0 (see (4.1)) for a fixed θ0 ∈ S

1. Then Eϕ,c is diffeomorphic to one of
the following manifolds:

1. A circle S
1 ⊂ Ec formed by a periodic orbit of (2.1) with period 128πc3/(1 +

8µ)2 if ϕ = (8c2/(1 + 8µ), 0, 0, 0) is the equilibrium point of (3.1). This
periodic orbit is known as the collinear solution of Euler for the 3-body problem
(for more details see [21]).

2. A two-dimensional torus S
1 × S

1 ⊂ Ec if ϕ is a T -periodic orbit. Moreover
this torus is formed by the union of
(a) periodic orbits of period mT if F (T ) = 2πl/m with l ∈ Z, m ∈ N and l,

m coprime;
(b) quasi-periodic orbits if F (T ) = ω2π with ω an irrational number.

3. A cylinder S
1 × R ⊂ Ec if ϕ is neither the equilibrium point nor a periodic

orbit.

5. Symmetries. It is easy to check that the equations of motion of the reduced
isosceles problem (3.1) are invariant under the symmetry

(t, r, ṙ, z, ż) �−→ (−t, r,−ṙ,−z, ż).(5.1)

This means that if ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) is a solution of system (3.1), then also
ψ(t) = (r(−t),−ṙ(−t),−z(−t), ż(−t)) is a solution. We note that in the configuration
space {(r, z) ∈ R

+×R} this symmetry corresponds to a symmetry with respect to the
r-axis, so in what follows it will be denoted by the r-symmetry. On the other hand,
in the configuration space {(r, z, θ) ∈ R

+×R×S
1} the r-symmetry would correspond

to a symmetry with respect to the plane defined by the motion of the particles P1

and P2.
This symmetry can be used, in a standard way, to find periodic solutions as

follows. Suppose that ϕ(t) crosses orthogonally the r-axis at a time t = 0; that is,
z(0) = 0 and ṙ(0) = 0. Using symmetry (5.1) we have that the two solutions ϕ(t) and
ψ(t) coincide at t = 0; then by the theorem of uniqueness of solutions of an ordinary
differential equation they must be the same. If there is another time such that the
solution ϕ(t) crosses the r-axis orthogonally, then by symmetry (5.1) the orbit of ϕ(t)
must be closed, and ϕ(t) is called an r-symmetric periodic solution.

Since system (3.1) is autonomous, the origin of time can be chosen arbitrarily.
Thus, if γ(t) is a solution of (3.1) that crosses the r-axis in a point p at t = t0, then
ϕ(t) = γ(t + t0) is a solution of (3.1) that crosses the r-axis in the point p at t = 0.
Therefore we have proved the following well-known result.

Proposition 5.1. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a solution of the reduced
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1318 MONTSERRAT CORBERA AND JAUME LLIBRE

isosceles problem (3.1). If ṙ(t) and z(t) are zero at t = t0 and at t = t0 + T/2 but are
not simultaneously zero at any value of t ∈ (t0, t0+T/2), then ϕ(t) is an r-symmetric
periodic solution of period T .

Equations (3.1) are also invariant under the symmetry

(t, r, ṙ, z, ż) �−→ (−t, r,−ṙ, z,−ż),(5.2)

i.e., the time reversibility symmetry, which will be denoted in what follows by the t-
symmetry. As in the r-symmetry we can introduce the notion of t-symmetric periodic
solutions, which are characterized as follows.

Proposition 5.2. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a solution of the reduced
isosceles problem (3.1). If ṙ(t) and ż(t) are zero at t = t0 and at t = t0 + T/2 but are
not simultaneously zero at any value of t ∈ (t0, t0 + T/2), then ϕ(t) is a t-symmetric
periodic solution of period T .

We note that there could be periodic solutions of (3.1) that are simultaneously
r- and t-symmetric. These periodic solutions will be called doubly symmetric periodic
solutions (see, for instance, [12] for more information about doubly symmetric periodic
orbits) and are characterized by the following result.

Proposition 5.3. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a solution of the reduced
isosceles problem (3.1).

1. If ṙ(t) and z(t) are zero at t = t0 and ṙ(t) and ż(t) are zero at t = t0 + T/4
but are not simultaneously zero at any value of t ∈ (t0, t0 + T/4), then ϕ(t)
is a doubly symmetric periodic solution of period T .

2. If ṙ(t) and ż(t) are zero at t = t0 and ṙ(t) and z(t) are zero at t = t0 + T/4
but are not simultaneously zero at any value of t ∈ (t0, t0 + T/4), then ϕ(t)
is a doubly-symmetric periodic solution of period T .

6. Restricted isosceles problems. To obtain the restricted isosceles problems
we assume that the value of the mass m3 is infinitesimally small (i.e., µ = 0). Then
the equations of motion of the restricted isosceles problem become

r̈ = rθ̇2 − 1

8 r2
, z̈ = − z

(z2 + r2)3/2
,

d

dt
(r2θ̇) = 0.(6.1)

Notice that the first and the third equations of (6.1) do not depend on z; more-
over they are the equations of motion of a 2-body problem in polar coordinates. This
means that the particles P1 and P2 (the primaries) move on the plane z = 0 describing
a solution of this 2-body problem. Moreover the particle P3 that lies on the straight
line orthogonal to the plane containing P1 and P2 that passes through their center
of mass moves under the gravitational attraction of the previous two but does not
influence their motion. Thus, for every solution (r(t), θ(t)) of that 2-body problem,
system (6.1) defines a different restricted isosceles problem; it can be a circular, ellip-
tic, parabolic, hyperbolic, elliptic collision, parabolic collision, or hyperbolic collision
restricted isosceles problem depending on the nature of the solution (r(t), θ(t)).

As in the isosceles problem (2.1) if we assume that the value of the angular
momentum is fixed at C = c for some c �= 0, then we can reduce the dimension of the
phase space by two, obtaining the reduced restricted isosceles problem

r̈ =
c2

r3
− 1

8 r2
, z̈ = − z

(z2 + r2)3/2
.(6.2)

In this work we are interested only in the periodic solutions of system (6.2) for
c �= 0. So, we will consider only the reduced circular and elliptic restricted isosceles
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1319

problems, which we will call reduced circular Sitnikov problem and reduced elliptic
Sitnikov problem, respectively.

7. On the circular restricted isosceles problem. Without loss of generality
we can assume that the primaries describe a circular orbit of radius 1/2 (or, equiv-
alently, a circular orbit of period 2π). This corresponds to fixing the value of the
angular momentum to c = 1/4. Then the equation of motion for the infinitesimal
mass becomes

z̈ = − z

(z2 + 1/4)3/2
,(7.1)

which is the equation of the known circular Sitnikov problem.
Assume that (z(t), ż(t)) is a solution of (7.1) with arbitrary initial conditions

z(0) = z0 and ż(0) = ż0. Then it is clear that ϕ(t) = (r(t) = 1/2, ṙ(0) = 0, z(t), ż(t))
is a solution of the reduced circular Sitnikov problem

r̈ =
1

16 r3
− 1

8 r2
, z̈ = − z

(z2 + r2)3/2
,(7.2)

with initial conditions r(0) = 1/2, ṙ(0) = 0, z(0) = z0, ż(0) = ż0. Next we analyze
the periodic solutions of this problem.

Since we have taken r(t) = 1/2, ṙ(t) = 0, it’s clear that ϕ(t) = (r(t), ṙ(t), z(t), ż(t))
is a periodic solution of the reduced circular Sitnikov problem with period T if and
only if (z(t), ż(t)) is a periodic solution of the circular Sitnikov problem (7.1) with
period T . So, we start summarizing the basic results about periodic solutions of the
circular Sitnikov problem (7.1) that are needed for the development of this work. Then
we will analyze the periodic solutions of the reduced circular Sitnikov problem and
their relationship with the corresponding solutions of the circular restricted isosceles
problem.

7.1. Periodic solutions of the circular Sitnikov problem. Equation (7.1)
defines an integrable Hamiltonian system of one degree of freedom with Hamiltonian

H = v2/2−(z2 + 1/4
)−1/2

, where v = ż. The orbits for the circular Sitnikov problem
in the energy level h are described by the curve H = h, where h varies in [−2,∞).

The circular Sitnikov problem has been studied by several authors. In 1907 Pa-
vanini [19] expressed its solutions by means of Weierstrassian elliptic functions. Four
years later MacMillan [14] expressed the solutions in terms of Jacobian elliptic func-
tions (a detailed description of this work can be found in Stumpff [22]). Some other
analytical expressions for the solutions of this problem can be found, for instance, in
[23], [2], and [24]. In particular, in this paper we will use the analytical expressions of
the solutions of the circular Sitnikov problem for h > −2 that appear in [2], which are
given in terms of Jacobian elliptic functions. A detailed description of all Jacobian
elliptic functions to be used in this paper can be found in [4] and [8].

We remark that the knowledge of an analytic expression for the solutions of the
circular Sitnikov problem plays a key role in our analysis, because it allows us to prove
our results analytically.

In what follows we use the following notation for the Jacobian elliptic functions:
sn ν = sn (ν, k), cn ν = cn (ν, k), dn ν = dn (ν, k) are the sine, cosine, and delta
amplitude Jacobian elliptic functions, respectively; F (ν) = F ( am (ν), k), E(ν) =
E( am (ν), k), Π(ν, 2k2) = Π( am (ν), 2k2, k) are the normal elliptic integral of the first,
second, and third kind, respectively; am (ν) is the amplitude Jacobian elliptic function;
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1320 MONTSERRAT CORBERA AND JAUME LLIBRE

and finally K = K(k) = F (π/2, k), E = E(k) = E(π/2, k), Π(α2, k) = Π(π/2, α2, k)
are the complete elliptic integrals of the first, second, and third kind, respectively (see
[4] or [8] for the precise definitions).

Using the analytic expression for the solutions of the circular Sitnikov problem
given in Theorem A of [2], we see that the periodic solutions of that problem can be
written as follows (see [8] for more details).

Lemma 7.1. The periodic solutions of the circular Sitnikov problem have energy
−2 < h < 0 and can be written as

(z(t), ż(t)) =

(
k sn ν dn ν

1− 2k2 sn 2ν
, 2

√
2k cn ν

)
,(7.3)

where k =
√
2 + h/2 and ν is the function of t defined implicitly by

t =

√
2

8(1− 2k2)

[
2E(ν)− ν +Π(ν, 2k2)− 4k2 sn ν cn ν dn ν

1− 2k2 sn 2ν

]
+ C

= τ(ν, k) + C.

Here C is an integration constant whose value depends on the initial conditions of the
periodic solution (z(t), ż(t)).

Since sn ν and cn ν are periodic functions of period 4K and dn ν is a periodic
function of period 2K (see formulas 122 in [4]), from (7.3) we see that the period in
the new time ν is 4K, where K = K(k) is the complete elliptic integral of the first
kind and k =

√
2 + h/2. Moreover the period in the real time t is given by

T =

√
2

2(1− 2k2)
[2E(k)−K(k) + Π(2k2, k)];(7.4)

for more details see Theorem 2.3 in [8].
We note that (7.1) is autonomous, so the origin of time can be chosen arbitrarily.

In particular, in this paper we are interested only in periodic solutions (z(t), ż(t))
having initial conditions either z(0) = 0 or ż(0) = 0. The following lemma, taken
from [8], gives the values of the integration constant C for those initial conditions.

Lemma 7.2. Let T be the period of the periodic solution (z(t), ż(t)) given in (7.4).
1. If (z(t), ż(t)) has initial conditions z(0) = 0 and ż(0) =

√
2h+ 4, then taking

ν(0) = 0, we have t = τ(ν, k).
2. If (z(t), ż(t)) has initial conditions z(0) = 0 and ż(0) = −√

2h+ 4, then
taking ν(0) = 2K, we have t = τ(ν, k)− T/2.

3. If (z(t), ż(t)) has initial conditions z(0) =
√

1
h2 − 1

4 and ż(0) = 0, then taking

ν(0) = K, we have t = τ(ν, k)− T/4.

4. If (z(t), ż(t)) has initial conditions z(0) = −
√

1
h2 − 1

4 and ż(0) = 0, then

taking ν(0) = 3K, we have t = τ(ν, k)− 3T/4.
In order to simplify computations we will usually work with the new time ν

instead of the real time t, but always keeping in mind that ν is a function of t via
Lemma 7.2. The two following lemmas taken also from [8] give some relationships
between the real time t and the new time ν that will be useful later on.

Lemma 7.3. Let T be the period of the periodic solution (z(t), ż(t)).
1. ν(t+ qT ) = ν(t) + q4K for all t ∈ R and for all q ∈ N.
2. ν(t+ qT/2) = ν(t) + q2K for all t ∈ R and for all q ∈ N.
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1321

Lemma 7.4. Let T be the period of the solution (z(t), ż(t)). If ν(0) = lK for
l = 0, 1, 2, 3, then ν(qT/4) = (l + q)K for all q ∈ N.

The following result gives the properties of the function T = T (h).
Theorem 7.5. The period T satisfies
1. limh→−2 T (h) = π/

√
2;

2. limh→0 T (h) =∞;
3. dT/dh > 0 for all h ∈ (−2, 0);
4. limh→−2 dT/dh = π(1 + 4

√
2)/16;

5. limh→0 dT/dh =∞.
Proof. See the proof of Theorem C in [2].
Theorem 7.5 assures the existence of periodic orbits of the circular Sitnikov prob-

lem with period T = T (h) for all T > π/
√
2. In fact, since T = T (h) is an injective

function there is a one-to-one correspondence between h ∈ (−2, 0) and T ∈ (π/√2,∞),
so we can characterize the periodic orbits either by the period or by the energy.

7.2. Periodic solutions of the reduced circular Sitnikov problem. Notice
that equations (7.2) are invariant under symmetries (5.1) and (5.2). These symmetries
can be used to obtain symmetric periodic solutions for the reduced circular Sitnikov
problem. It is not difficult to prove the next result.

Proposition 7.6. All periodic orbits of the reduced circular Sitnikov problem are
doubly symmetric periodic orbits.

We note that the periodic solutions of the reduced circular Sitnikov problem are
periodic solutions for the infinitesimal mass, but in general they are not periodic
solutions involving the three masses; that is, they are not periodic solutions of the
circular restricted isosceles problem. Since the primaries describe a circular solution
of a 2-body problem with period 2π, the only periodic orbits of the circular Sitnikov
problem that give periodic orbits involving the three masses are the ones that have
a period commensurable with 2π; that is, T = T (h) = 2πp/q for some p, q ∈ N

coprime. In this case the period of the corresponding orbit involving the three masses
is τ = 2πp = qT (h). That is, during a period τ , the primaries have completed p
revolutions and the infinitesimal mass has completed q revolutions.

7.3. Invariant tori of the circular restricted isosceles problem. From sec-
tion 7.2, we have the following result, which can be obtained easily from Theorem 4.1.

Proposition 7.7. Let {(zh(t), żh(t)) : t ∈ R} be a periodic orbit of the circular
Sitnikov problem with energy h for some h ∈ (−2, 0); and let ϕh = {ϕh(t) = (r(t) =
1/2, ṙ(t) = 0, zh(t), żh(t)) : t ∈ R} be its corresponding orbit of the reduced circular
Sitnikov problem. Then the relative set of the circular restricted isosceles problem as-
sociated to the orbit ϕh is diffeomorphic to a two-dimensional torus S

1×S
1. Moreover,

this relative torus is formed by the union of
1. periodic orbits of period qT if T = T (h) = 2πp/q for some p, q ∈ N coprime

and p > q/(2
√
2);

2. quasi-periodic orbits if T = T (h) = 2πω for some irrational ω > 1/(2
√
2).

8. On the elliptic restricted isosceles problem. We assume that the pri-
maries are describing an elliptic orbit of the 2-body problem with period 2π and
eccentricity e. This corresponds to fixing the value of the angular momentum to
c = ce =

√
1− e2/4. Then, choosing conveniently the origin of time, a solution of the

reduced elliptic Sitnikov problem is a solution ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) of

r̈ =
1− e2

16 r3
− 1

8 r2
, z̈ = − z

(z2 + r2)3/2
,(8.1)

D
ow

nl
oa

de
d 

09
/2

5/
12

 to
 1

50
.1

28
.1

48
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1322 MONTSERRAT CORBERA AND JAUME LLIBRE

with initial conditions r(0) = (1 ± e)/2, ṙ(0) = 0, z(0) = z0, ż(0) = ż0 for some
z0, ż0 ∈ R.

Since r(t) is a 2π-periodic function, the periodic solutions of the reduced ellip-
tic Sitnikov problem must have period that is a multiple of 2π. Moreover ϕ(t) =
(r(t), ṙ(t), z(t), ż(t)) is a periodic solution of the reduced elliptic Sitnikov problem
with period T = 2kπ for some k ∈ N if and only if (z(t), ż(t)) is a periodic solution
with period T = 2kπ of the elliptic Sitnikov problem

z̈ = − z

(z2 + r(t)2)3/2
.

It is clear that equations (8.1) are invariant under symmetries (5.1) and (5.2).
These symmetries can be used to obtain symmetric periodic solutions for the reduced
elliptic Sitnikov problem. We remark that symmetries (5.1) and (5.2) for the reduced
elliptic Sitnikov problem correspond to the r- and the t-symmetry of the elliptic
Sitnikov problem defined in [7] and [8].

8.1. Periodic solutions of the reduced elliptic Sitnikov problem. In sec-
tion 7.2 we have seen that all periodic orbits of the reduced circular Sitnikov problem
are doubly symmetric periodic orbits. This fact does not occur when we consider the
reduced elliptic Sitnikov problem, as follows from the next result.

Proposition 8.1. For the reduced elliptic Sitnikov problem there exist four differ-
ent types of periodic orbits: nonsymmetric periodic orbits, doubly symmetric periodic
orbits, and r- and t-symmetric periodic orbits that are not doubly symmetric.

Proof. See the proof of Propositions 12, 15, and 23 in [7].
On the other hand, [8] gives initial conditions for some symmetric periodic solu-

tions of the elliptic Sitnikov problem (or, equivalently, the reduced elliptic Sitnikov
problem) with sufficiently small values of the eccentricity e > 0. These initial condi-
tions are obtained from the analytic continuation of the known periodic solutions of
the reduced circular Sitnikov problem to symmetric periodic solutions of the reduced
elliptic Sitnikov problem for sufficiently small values of the eccentricity e. Later on, in
section 11, the symmetric periodic solutions of the reduced elliptic Sitnikov problem
given in [8] will be continued to the reduced isosceles problem for sufficiently small
values of µ > 0. Here we summarize the main results of [8] about symmetric periodic
orbits of the reduced elliptic Sitnikov problem.

In what follows ϕc(t;x0, µ) = (r(t;x0, µ), ṙ(t;x0, µ), z(t;x0, µ), ż(t;x0, µ)), with
x0 = (r0, ṙ0, z0, ż0), denotes the solution of the reduced isosceles problem (3.1) with
angular momentum C = c �= 0, satisfying the initial conditions r(0; r0, ṙ0, z0, ż0, µ) =
r0, ṙ(0; r0, ṙ0, z0, ż0, µ) = ṙ0, z(0; r0, ṙ0, z0, ż0, µ) = z0, ż(0; r0, ṙ0, z0, ż0, µ) = ż0.

Theorem 8.2. Given p, q ∈ N coprime with p > q/(2
√
2), let ϕ1/4 (t; r0 = 1/2,

ṙ0 = 0, z0 = 0, ż0 = ż∗0 = ±√
2h+ 4, µ = 0

)
be a periodic solution of the reduced cir-

cular Sitnikov problem with period T = 2πp/q.
1. This solution can be continued to two families ϕce(t; r0 = (1 − e)/2, ṙ0 =
0, z0 = 0, ż0 = żP

0 = ż∗0 + O(e), µ = 0) and ϕce(t; r0 = (1 + e)/2, ṙ0 = 0, z0 =
0, ż0 = żA

0 = ż∗0+O(e), µ = 0) of r-symmetric periodic solutions of the reduced
elliptic Sitnikov problem having period τ = 2πp = qT for e > 0 sufficiently
small.

2. If p is odd, then those r-symmetric periodic solutions are not doubly symme-
tric, whereas if p is even, then they are doubly symmetric.

Proof. See the proof of Theorem 4.4 in [8].
Theorem 8.3. Given p, q ∈ N coprime with p > q/(2

√
2), let ϕ1/4 (t; r0 = 1/2,
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1323

ṙ0 = 0, z0 = z∗0 = ±
√

1
h2 − 1

4 , ż0 = 0, µ = 0) be a periodic solution of the reduced

circular Sitnikov problem with period T = 2πp/q.
1. This solution can be continued to two families ϕce

(t; r0 = (1 − e)/2, ṙ0 =
0, z0 = zP

0 = z∗0 + O(e), ż0 = 0, µ = 0) and ϕce
(t; r0 = (1 + e)/2, ṙ0 = 0, z0 =

zA
0 = z∗0+O(e), ż0 = 0, µ = 0) of t-symmetric periodic solutions of the reduced

elliptic Sitnikov problem having period τ = 2πp = qT for e > 0 sufficiently
small.

2. If p is odd, then those t-symmetric periodic solutions are not doubly symme-
tric, whereas if p is even, then they are doubly symmetric.

Proof. See the proof of Theorem 4.6 in [8].
We note that in Theorems 8.2 and 8.3 we continue four different initial conditions

of the periodic orbit of the reduced circular Sitnikov problem with period T = 2πp/q
for given p, q ∈ N coprime, p > q/(2

√
2); they are ϕ1/4

(
t; 1/2, 0, 0,

√
2h+ 4, 0

)
and

ϕ1/4

(
t; 1/2, 0, 0,−√

2h+ 4, 0
)
in Theorem 8.2, and ϕ1/4(t; 1/2, 0,

√
1
h2 − 1

4 , 0, 0) and

ϕ1/4(t; 1/2, 0,−
√

1
h2 − 1

4 , 0, 0) in Theorem 8.3. These four initial conditions are con-
tinued to eight families of periodic orbits of the reduced elliptic Sitnikov problem for
e > 0 sufficiently small. The following theorem says how many of these eight families
of periodic orbits are really different (see [8] for more details).

Theorem 8.4. The periodic solutions of the reduced circular Sitnikov problem
with period T = 2πp/q, for given p, q ∈ N coprime p > q/(2

√
2), can be continued to

1. two families of r-symmetric periodic orbits and two families of t-symmetric
periodic orbits (that are not doubly symmetric) of the reduced elliptic Sitnikov
problem with period τ = 2πp = qT , for e > 0 sufficiently small, when p is
odd;

2. two families of doubly symmetric periodic orbits of the reduced elliptic Sitnikov
problem with period τ = 2πp = qT , for e > 0 sufficiently small, when p is
even.

Proof. See the proof of Theorem 4.15 in [8].

8.2. Invariant tori of the elliptic restricted isosceles problem. From The-
orem 4.1(2)(a), the next result follows.

Proposition 8.5. Let ϕ = {ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) : t ∈ R} be a periodic
orbit of the reduced elliptic Sitnikov problem with period τ = 2πn for some n ∈ N.
Then the relative set of the restricted isosceles problem associated to the orbit ϕ is
diffeomorphic to a two-dimensional torus S

1 × S
1 ⊂ Ece , which is formed by periodic

orbits of period τ .
We remark that the orbits of the circular restricted isosceles problem coming from

periodic orbits of the reduced circular Sitnikov problem are not in general periodic
orbits (see Proposition 7.7).

By means of Propositions 7.7 and 8.5, Theorem 8.4 can be extended to the re-
stricted isosceles problem, obtaining the following result.

Theorem 8.6. Let Γpq be the periodic two-dimensional tori of the circular re-
stricted isosceles problem that comes from the periodic orbit of the reduced circular
Sitnikov problem with period T = p2π/q, p, q ∈ N coprime and p > q/2

√
2. Then

Γpq can be continued to two or four families (two for even p and four for odd p) of
periodic two-dimensional tori of the elliptic restricted isosceles problem.

9. Variational equations. The main objective of this work is to continue the
known symmetric periodic orbits of the reduced circular and elliptic Sitnikov problems
to symmetric periodic orbits of the reduced isosceles problem for µ > 0 sufficiently
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1324 MONTSERRAT CORBERA AND JAUME LLIBRE

small. Those periodic orbits will be continued by using the classical analytic continu-
ation method of Poincaré (for details see [21] or [15]). In order to apply this method
to our problem we must know the solution of the variational equations of the reduced
circular and elliptic Sitnikov problems along the periodic solutions that we want to
continue. In this section we will analyze those variational equations.

Let (r(t), R(t), z(t), Z(t)) be a solution of the reduced circular (e = 0) or elliptic
(0 < e < 1) Sitnikov problem

ṙ = R, Ṙ =
1− e2

16 r3
− 1

8 r2
, ż = Z, Ż = − z

(z2 + r2)3/2
,(9.1)

with initial conditions r(0) = r0 = (1 ± e)/2, R(0) = R0 = 0, z(0) = z0, Z(0) = Z0.
In particular, (r(t), R(t)) is a circular or elliptic solution of the Kepler problem

ṙ = R , Ṙ =
1− e2

16 r3
− 1

8 r2
;(9.2)

and (z(t), Z(t)) is a solution of the circular or elliptic Sitnikov problem

ż = Z , Ż = − z

(z2 + r2(t))3/2
(9.3)

(see sections 7 and 8).
The variational equations of system (9.1) along the solution curve (r(t), R(t), z(t),

Z(t)) are given by the matrix differential equation

d

dt
A = B(t)A,(9.4)

with initial condition A(0) = I (the 4× 4 identity matrix), where

A =

(
A1 A2

A3 A4

)
, B(t) =


0 1 0 0

b1(t) 0 0 0
0 0 0 1

b2(t) 0 b3(t) 0

 ,

with A1, A2, A3, and A4 given by
∂r

∂r0

∂r

∂R0

∂R

∂r0

∂R

∂R0

 ,


∂r

∂z0

∂r

∂Z0

∂R

∂z0

∂R

∂Z0

 ,


∂z

∂r0

∂z

∂R0

∂Z

∂r0

∂Z

∂R0

 , and


∂z

∂z0

∂z

∂Z0

∂Z

∂z0

∂Z

∂Z0

 ,

respectively, and

b1(t) = −3(1− e2)

16 r4(t)
+

1

4 r3(t)
, b2(t) =

3 r(t) z(t)

(z2(t) + r2(t))5/2
, b3(t) =

2 z2(t)− r2(t)

(z2(t) + r2(t))5/2
.

If we denote q1 = r0 , q2 = R0 , q3 = z0, and q4 = Z0 system (9.4) can be written
like the linear system of differential equations,

d

dt

(
∂r

∂qi

)
=
∂R

∂qi
,

d

dt

(
∂R

∂qi

)
=

(
−3(1− e2)

16 r4(t)
+

1

4 r3(t)

)
∂r

∂qi
,

(9.5)D
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1325
d

dt

(
∂z

∂qi

)
=
∂Z

∂qi
,

d

dt

(
∂Z

∂qi

)
=

3 r(t)z(t)

(z2(t) + r2(t))5/2
∂r

∂qi
+

2 z2(t)− r2(t)

(z2(t) + r2(t))5/2
∂z

∂qi
,

(9.6)

with initial conditions

∂r

∂qi
(0) = δ1,i ,

∂R

∂qi
(0) = δ2,i ,

∂z

∂qi
(0) = δ3,i ,

∂Z

∂qi
(0) = δ4,i ,

where i = 1, . . . , 4, δi,j = 1 if i = j and δi,j = 0 if i �= j.
Since equations (9.5) do not depend on ∂z/∂qi and ∂Z/∂qi, they can be solved

separately. Thus, the derivatives ∂r/∂r0, ∂r/∂R0, ∂R/∂r0, and ∂R/∂R0 are given
by the solution of the matrix differential equation

d

dt
A1 =

 0 1

−3(1− e2)

16 r4(t)
+

1

4 r3(t)
0

A1 ,(9.7)

with initial condition A1(0) = I (the 2 × 2 identity matrix); that is, they are given
by the solution of the variational equations of the Kepler problem (9.2) along the
solution curve (r(t), R(t)).

On the other hand,

∂r

∂z0
(t) = 0 ,

∂R

∂z0
(t) = 0 ,

∂r

∂Z0
(t) = 0 ,

∂R

∂Z0
(t) = 0,(9.8)

because the first two equations of (9.1) do not depend on z and Z; consequently
changes on the initial conditions z0 and Z0 do not affect the solution (r(t), R(t)).

By (9.6) and (9.8), the derivatives ∂z/∂z0 , ∂z/∂Z0 , ∂Z/∂z0, and ∂Z/∂Z0 are
given by the solution of the matrix differential equation

d

dt
A4 =

 0 1

− 2 z2(t)− r2(t)

(z2(t) + r2(t))5/2
0

A4,(9.9)

with initial condition A4(0) = I (the 2× 2 identity matrix); that is, they are given by
the solution of the variational equations of the circular or elliptic Sitnikov problem
(9.3) along the solution curve (z(t), Z(t)).

We note that we do not know an exact expression for the symmetric periodic
solutions of the nonautonomous elliptic Sitnikov problem, and thus their variational
equations cannot be solved explicitly. However, since the eccentricity e is sufficiently
small, the solution of these variational equations may be expressed as a power series
of the eccentricity e. We have computed analytically the terms of zero order in e.
They are given by the variational equations of the circular Sitnikov problem.

Finally the derivatives ∂z/∂r0, ∂z/∂R0, ∂Z/∂r0, and ∂Z/∂R0 are obtained by
solving the nonhomogeneous linear system of differential equations that comes from
replacing in (9.6) ∂r/∂qi and ∂R/∂qi, i = 1, 2, by the solutions (∂r/∂qi)(t) and
(∂R/∂qi)(t) of the variational equations of the Kepler problem (9.2) along the so-
lution curve (r(t), R(t)). If we know a fundamental matrix Φ(t) of the variational
equations of the circular or elliptic Sitnikov problem (9.3) along the solution curve
(z(t), Z(t)) (i.e., a fundamental matrix of the homogeneous system), then we can solve
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1326 MONTSERRAT CORBERA AND JAUME LLIBRE

the nonhomogeneous one using the method of variation of constants (see, for instance,
[11, p. 81]). Thus, for i = 1, 2, we have that

∂z

∂qi
(t)

∂Z

∂qi
(t)

 = Φ(t)

∫ t

0

Φ−1(s)

 0

3 r(s)z(s)

(z2(s) + r2(s))5/2
∂r

∂qi
(s)

 ds.

In order to compute the solution of the variational equations of the Kepler problem
(9.2), for 0 � e < 1, and of the circular Sitnikov problem (9.3) with r(t) = 1/2, we
could use a theorem of Diliberto [10] on the integration of the homogeneous variational
equations of a plane autonomous differential system in terms of geometric quantities
along a given solution curve of the system (see also the paper of Chicone [5], where,
in addition to using the Diliberto theorem to address his problem, he corrects a flaw
in the theorem). But we compute here the solution of those variational equations
directly using a result that appears in [8].

We note that the Kepler problem (9.2) and the circular Sitnikov problem (9.3)
with r(t) = 1/2 can be written like a second order differential equation of the form

ẍ = f(x).(9.10)

The solution of the variational equations of (9.10) along a given nonconstant solution
curve x(t) are given by the following result.

Proposition 9.1. The linear variational equations of (9.10) along a nonconstant
solution curve x(t) have a fundamental matrix Φ(t), satisfying that det(Φ(0)) = 1,
which is given by

Φ(t) =

(
ẋ(t) g(t)

f(x(t)) ġ(t)

)
,

where g(t) = ẋ(t)
∫

dt
ẋ2(t) without the constant due to integration.

Moreover, the solution of these variational equations is given by
∂x

∂x0
(t)

∂x

∂y0
(t)

∂y

∂x0
(t)

∂y

∂y0
(t)

 = Φ(t)Φ−1(0),

where y = ẋ, x0 = x(0), and y0 = ẋ(0).
Proof. See the proof of Proposition B.1 in [8].

9.1. Variational equations of the Kepler problem. We start computing a
fundamental matrix of the variational equations (9.7) of the Kepler problem (9.2) for
0 � e < 1 along an arbitrary elliptic solution (a circular solution if e = 0)

r(t) = 1
2 (1− e cosu).(9.11)

As usual u is the eccentric anomaly which is a function of t via the Kepler’s equation

u− e sinu = t− τ =M,(9.12)

where M is the mean anomaly and τ is the time of pericenter passage. Later on we
will give the solution of those variational equations when (r(t), R(t)) is the solution
with initial conditions r(0) = (1± e)/2 and R = ṙ(0) = 0.
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1327

We note that when e = 0 we cannot apply Proposition 9.1 to solve the variational
equations (9.7) of the Kepler problem (9.2) along the solution curve (9.11), because
r(t) = 1/2 is constant.

Proposition 9.2. When e = 0, the solution of the variational equations (9.7) of
the Kepler problem (9.2) along the solution curve (9.11) is given by

A1(t) =

(
cos t sin t

− sin t cos t

)
.

Proof. The proof follows easily, noting that the solution of the variational equa-
tions (9.7) when e = 0 is a matrix whose columns are the solutions of the differential
equation

d

dt

(
ω1

ω2

)
=

(
0 1

−1 0

)(
ω1

ω2

)
,

with initial conditions ω1(0) = 1, ω2(0) = 0 and ω1(0) = 0, ω2(0) = 1, respec-
tively.

When 0 < e < 1, to solve the variational equations (9.7) of the Kepler problem
(9.2) along the solution curve (9.11), we apply Proposition 9.1. Thus a fundamental
matrix of those variational equations is given by

Φ(t) =

 Φ11(t) Φ12(t)

Φ21(t) Φ22(t)

 =

 ṙ(t) g(t)

1− e2

16 r3(t)
− 1

8 r2(t)
ġ(t)

 ,

where g(t) = ṙ(t)
∫

dt
ṙ2(t) .

In order to simplify our computations we will work with the eccentric anomaly,
u, instead of the real time, t, but keeping in mind that u is a function of t via (9.12)
when it is necessary.

Replacing r(t) by (9.11) in Φ21(t) and simplifying we get that

Φ21(t) = − e2 − e cosu

2(1− e cosu)3
.(9.13)

Differentiating (9.11) with respect to t we obtain

Φ11(t) = ṙ(t) =
dr

du

du

dt
=

e sinu

2(1− e cosu)
.(9.14)

Substituting ṙ(t) into g(t) and working with the variable u instead of the variable t,
we have that

Φ12(t) = g(t) =
2 sinu

e(1− e cosu)

∫
(1− e cosu)3

sin2 u
du

=
2

e(1− e cosu)
[−(1 + 3e2) cosu− 3e2u sinu+ e3 sin2 u+ 3e+ e3].(9.15)

Finally, differentiating g(t) we obtain

Φ22(t) = ġ(t) =
dg

du

du

dt
=

2

e(1− e cosu)3
[sinu(1− 3e2 − 3e4)− 3e2u cosu

+ 5e3 sinu cosu+ 3e3u+ e4 sin3 u].(9.16)
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1328 MONTSERRAT CORBERA AND JAUME LLIBRE

In short, we have proved the following result.
Proposition 9.3. A fundamental matrix of the variational equations (9.7) of

the Kepler problem (9.2) along the solution curve (9.11), when 0 < e < 1, is Φ(t) =
(Φij(t)), where Φij(t), with i, j = 1, 2, are given by (9.13), (9.14), (9.15), and (9.16),
and u is the eccentric anomaly as a function of t via the Kepler equation (9.12).
Moreover the solution of these variational equations is

A1(t) = Φ(t)Φ
−1(0).(9.17)

Now we compute the solution of the variational equations (9.7) of the Kepler
problem (9.2) along the elliptic solution (r(t), R(t)) with initial conditions r(0) =
(1± e)/2 and R(0) = 0.

Case r(0) = (1− e)/2. Without loss of generality, we can assume that u(0) = 0.
Then the Kepler equation (9.12) becomes

u− e sinu = t.(9.18)

Therefore, by Proposition 9.3, the fundamental matrix Φ(t) evaluated at t = 0 (or,
equivalently, at u = 0) is given by Φ11(0) = Φ22(0) = 0, Φ12(0) = −2(1 − e)2/e,
Φ21(0) = e/(2(1− e)2). Therefore, from (9.17) after doing some computations, we get

∂r

∂r0
(t) =

(1 + 3e2) cosu+ 3e2u sinu− e3 sin2 u− 3e− e3

(1− e)2(1− e cosu)
,

∂r

∂R0
(t) = (1− e)2

sinu

(1− e cosu)
,(9.19)

∂R

∂r0
(t) = − 1

(1− e)2(1− e cosu)3
[(1− 3e2 − 3e4) sinu

− 3e2u cosu+ 5e3 sinu cosu+ 3e3u+ e4 sin3 u],

∂R

∂R0
(t) = (1− e)2

(cosu− e)

(1− e cosu)3
,

and u is the eccentric anomaly as a function of time via (9.18).
Case r(0) = (1 + e)/2. Without loss of generality, we can assume that u(0) = π,

and the Kepler equation (9.12) becomes

u− e sinu = t+ π.(9.20)

By Proposition 9.3, the fundamental matrix Φ(t) evaluated at t = 0, or, equiva-
lently, at u = π, is given by Φ11(0) = 0, Φ12(0) = 2(1+e)

2/e, Φ21(0) = −e/(2(1+e)2),
Φ22(0) = 6eπ/(1 + e)2. Thus, by (9.17) we have

∂r

∂r0
(t) = − (1 + 3e

2) cosu+ 3e2u sinu− e3 sin2 u− 3e− e3 − 3e2π sinu
(1 + e)2(1− e cosu)

,

∂r

∂R0
(t) = −(1 + e)2

sinu

1− e cosu
,(9.21)

∂R

∂r0
(t) =

1

(1 + e)2(1− e cosu)3
[(1− 3e2 − 3e4) sinu− 3e2u cosu

+ 5e3 sinu cosu+ 3e3u+ e4 sin3 u+ 3e2π cosu− 3e3π],
∂R

∂R0
(t) = −(1 + e)2

(cosu− e)

(1− e cosu)3
,

and u is the eccentric anomaly as a function of time via (9.20).
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1329

9.2. Variational equations of the circular Sitnikov problem. The vari-
ational equations (9.9) of the circular Sitnikov problem (9.3) with r = 1/2 along a
given periodic solution curve (z(t), Z(t)) were solved in [8]; therefore we will refer to
the corresponding results in this paper when it is necessary.

9.3. Variational equations of the elliptic Sitnikov problem for small
values of the eccentricity. We consider the elliptic Sitnikov problem (9.3) where
r(t)(1− e cosu)/2 is the elliptic solution of the Kepler problem (9.2), 0 < e < 1, and
u is the eccentric anomaly, which is a function of t via equation (9.12).

If the eccentricity e is small, then r(t) may be expanded in terms of the mean
anomaly M and of the eccentricity e, and r(t) = (1 − e cosM)/2 + O(e2) (see, for
instance, [3]). Thus, system (9.3) may be written as

ż = Z, Ż = − z

(z2 + 1/4)3/2
− e

[
3

4

z

(z2 + 1/4)5/2
cosM

]
+O(e2).(9.22)

Let (z(t), Z(t)) be a periodic solution of system (9.22). If the eccentricity e is
sufficiently small, then by the Poincaré expansion theorem (see, for instance, [20] or
[13]) (z(t), Z(t)) may be expanded in power series of e and

(z(t), Z(t)) = (z(0)(t) + z(1)(t)e+O(e2), Z(0)(t) + Z(1)(t)e+O(e2)),

where (z(0)(t), Z(0)(t)) is a given solution of the circular Sitnikov problem (or, equiv-
alently, a solution of (9.22) for e = 0).

We analyze here the solution of the variational equations of the elliptic Sitnikov
problem (9.3) along the solution curve (z(t), Z(t)) for e > 0 sufficiently small. These
variational equations are given by the matrix differential equation

d

dt
A4 =

(
0 1

b(t) 0

)
A4,

with initial condition A4(0) = I (the 2× 2 identity matrix), where

b(t) =
2z2(t)− 1/4

(z2(t) + 1/4)5/2
+ e

[
3

4

4z2(t)− 1/4
(z2(t) + 1/4)7/2

cosM

]
+O(e2)

=
2z(0)

2(t)− 1/4
(z(0)

2(t) + 1/4)5/2
+ eF (t) +O(e2),

and

F (t) =
−6z(0)

3(t)z(1)(t) + 9z(0)(t)z(1)(t)/4 + 3 cosM(4z(0)
2(t)− 1/4)/4

(z(0)
2(t) + 1/4)7/2

.

Thus the derivatives (∂z/∂z0, ∂Z/∂z0) and (∂z/∂Z0, ∂Z/∂Z0) are given by the solu-
tion of system

dx

dt
= y,

dy

dt
=

(
2z(0)

2(t)− 1/4
(z(0)

2(t) + 1/4)5/2
+ F (t)e+O(e2)

)
x,

with initial conditions x(0) = 1, y(0) = 0 and x(0) = 0, y(0) = 1, respectively. By the
Poincaré expansion theorem this solution may be expanded in power series of e and

∂z

∂z0
(t)

∂z

∂Z0
(t)

∂Z

∂z0
(t)

∂Z

∂Z0
(t)

 =


∞∑

n=0

x1(n)(t)e
n

∞∑
n=0

x2(n)(t)e
n

∞∑
n=0

y1(n)(t)e
n

∞∑
n=0

y2(n)(t)e
n

 ,(9.23)D
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1330 MONTSERRAT CORBERA AND JAUME LLIBRE

where (
x1(0)(t)

y1(0)(t)

x2(0)(t)

y2(0)(t)
) is the solution of the variational equations (9.9) of the circular

Sitnikov problem along the solution curve (z(0)(t), Z(0)(t)) and

 x1(n)(t) x2(n)(t)

y1(n)(t) y2(n)(t)

 =


∂n

∂en

(
∂z

∂z0

)
(t)

∣∣∣∣
e=0

∂n

∂en

(
∂z

∂Z0

)
(t)

∣∣∣∣
e=0

∂n

∂en

(
∂Z

∂z0

)
(t)

∣∣∣∣
e=0

∂n

∂en

(
∂Z

∂Z0

)
(t)

∣∣∣∣
e=0

 .

We remark that the solution of the variational equations (9.9) of the circular
Sitnikov problem along the solution curve (z(0)(t), Z(0)(t)) is unbounded when t goes
to infinity. Therefore, with a fixed value of e, (9.23) is valid only for t less than a
constant which depends on the value of e.

10. Continuation of periodic orbits from the reduced circular Sitnikov
problem to the reduced isosceles problem. In this section we will use the ana-
lytic continuation method of Poincaré to continue the periodic orbits of the reduced
circular Sitnikov problem to symmetric periodic orbits of the reduced isosceles prob-
lem for µ > 0 sufficiently small.

Choosing conveniently the origin of time, the periodic orbit of the reduced circular
Sitnikov problem with period T > π/

√
2 is the orbit associated to the periodic solution

with initial conditions ϕ1/4(t; r0 = 1/2, ṙ0 = 0, z0 = 0, ż0 = ż∗0 =
√
2h+ 4, µ = 0).

Here h ∈ (−2, 0) is the energy of the periodic orbit of period T ∈ (π/
√
2,∞) (see

Theorem 7.5 for details). We remark that the notation used here is the one defined
in section 8.

Since the reduced isosceles problem is autonomous, if we continue using differ-
ent initial conditions defining the same periodic orbit, then we will obtain the same
continued periodic orbits. So, it will be sufficient to continue periodic solutions with
initial conditions ϕ1/4 (t; 1/2, 0, 0, ż

∗
0 , 0) for −2 < h < 0. We note that these periodic

solutions are doubly symmetric, so we can investigate their continuation to periodic
solutions of the reduced isosceles problem for µ > 0 small that are either doubly
symmetric, r-symmetric, or t-symmetric. Here we analyze only the continuation to
doubly symmetric periodic solutions. We have also analyzed the continuation to r-
and to t-symmetric periodic solutions, but these two types of continuation provide
again the same families of doubly symmetric periodic orbits of the reduced isosceles
problem for µ > 0 small (for details see [6]).

By Proposition 5.3(1), if we can find initial conditions r0 and ż0 such that the
solution ϕ1/4(t; r0,0,0, ż0, µ) = (r(t; r0, ż0, µ), ṙ(t; r0, ż0, µ), z(t; r0, ż0, µ), ż(t; r0, ż0, µ))
of the reduced isosceles problem (3.1) with c = 1/4 satisfies

ṙ(τ/4; r0, ż0, µ) = 0, ż(τ/4; r0, ż0, µ) = 0,(10.1)

and ṙ,ż are not simultaneously zero for t ∈ (0, τ/4), then ϕ1/4(t; r0, 0, 0, ż0, µ) is a
doubly symmetric periodic solution with period τ .

Observe that τ = T = T (h), r0 = 1/2, ż0 = ż∗0 =
√
2h+ 4, and µ = 0 is a

solution of (10.1) for each −2 < h < 0. It corresponds to the doubly symmetric
periodic solution ϕ1/4 (t; 1/2, 0, 0, ż

∗
0 , 0) of the reduced circular Sitnikov problem. Our

aim is to find solutions of (10.1) near the known solution τ = T , r0 = 1/2, ż0 = ż∗0 ,
and µ = 0. For this goal, we will apply the implicit function theorem to (10.1) in a
neighborhood of that point, choosing (r0, ż0) as the dependent variables and (µ, τ) as
the independent ones.
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1331

We note that there are five other choices for the dependent (independent) vari-
ables. Since we want to continue periodic solutions from µ = 0 to µ > 0 small, we
are interested in solutions of (10.1) depending on µ. So, the other possible choices for
the independent variables are (µ, r0) and (µ, ż0). Since the reduced isosceles problem
possesses the first integral of the energy, we also could be interested in expressing
the solutions of (10.1) as a function of µ and of the energy h̃. We have analyzed
these other possible choices for the independent variables, then saw that the implicit
function theorem using either (µ, r0) or (µ, h̃) as the independent variables cannot be
applied to this problem because the corresponding determinant vanishes. Moreover,
if we apply the implicit function theorem using (µ, ż0) as the independent variables,
we obtain the same solutions of (10.1) as we do using (µ, τ). The difference is that
these solutions are parameterized by (µ, ż0) instead of (µ, τ).

We apply the implicit function theorem to system (10.1) in a neighborhood of
the point τ = T , r0 = 1/2, ż0 = ż∗0 , and µ = 0, choosing µ and τ as the independent
variables. If

det


∂ṙ(τ/4; r0, ż0, µ)

∂r0

∂ṙ(τ/4; r0, ż0, µ)

∂ż0

∂ż(τ/4; r0, ż0, µ)

∂r0

∂ż(τ/4; r0, ż0, µ)

∂ż0


|(µ=0,τ=T,r0=1/2,ż0=ż∗

0 )

�= 0,(10.2)

then for each (µ, τ) in a sufficiently small neighborhood of (0, T ), there exist two
unique functions r0 = r0(µ, τ) and ż0 = ż0(µ, τ) such that r0(0, T ) = 1/2, ż0(0, T ) =
ż∗0 , and r0, ż0 satisfy system (10.1). We note that the negative values of µ do not have
physical meaning. Therefore, if condition (10.2) is satisfied, then for each (µ, τ) in a
sufficiently small neighborhood of (0, T ) with µ � 0, ϕ1/4(t; r0(µ, τ), 0, 0, ż0(µ, τ), µ)
is a doubly symmetric periodic solution of the reduced isosceles problem (3.1) for
c = 1/4 with period τ . Since the functions that appear in system (10.1) are analytic,
the functions r0(µ, τ) and ż0(µ, τ) are also analytic and may be expanded in power
series of µ and τ = τ − T in U , a sufficiently small neighborhood of (0, 0); that is,
r0 = 1/2 +O(µ, τ) and ż0 = ż∗0 +O(µ, τ).

Now we compute the value of the determinant (10.2). The derivatives that appear
in this determinant are obtained by evaluating at time t = T/4 the corresponding
solution of the variational equations of the reduced restricted isosceles problem (6.2)
for c = 1/4 along the solution curve ϕ1/4(t; 1/2, 0, 0, ż

∗
0 , 0). These variational equations

were solved in section 9. Then, from (9.8),

∂ṙ(τ/4; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=T,r0=1/2,ż0=ż∗

0 )

= 0.

The value of the derivative ∂ṙ(τ/4; r0, ż0, µ)/∂r0 evaluated at µ = 0, τ = T , r0 = 1/2,
and ż0 = ż∗0 can be obtained by evaluating at t = T/4 the corresponding solution of
the variational equations of the Kepler problem (9.2), with e = 0, along the solution
curve (r(t) = 1/2, ṙ(t) = 0). Thus, by Proposition 9.2, we get

∂ṙ(τ/4; r0, ż0, µ)

∂r0

∣∣∣∣
(µ=0τ=T,r0=1/2,ż0=ż∗

0 )

= − sin(T/4),

which is different from zero if and only if the period T is a nonmultiple of 4π.
It remains only to find the value of ∂ż(τ/4; r0, ż0, µ)/∂ż0 at µ = 0, τ = T ,

r0 = 1/2, and ż0 = ż∗0 . This value can be obtained by evaluating at t = T/4 the
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Fig. 10.1. The graphic of g(k).

corresponding solution of the variational equations of the circular Sitnikov problem
along the solution curve (z(t; 1/2, 0, 0, ż∗0 , 0), ż(t; 1/2, 0, 0, ż

∗
0 , 0)). The solution of those

variational equations is given by formula (B.12) of [8]. In particular, the derivative
∂ż(t; r0, ż0, µ)/∂ż0 evaluated at µ = 0, r0 = 1/2, and ż0 = ż∗0 is

(1− 2k2 sn 2ν)2

(2k2 − 1)2k′2
[
− k2 sn 2ν cn ν + dn 2ν cn ν − sn ν dn ν

(
k′2(k2 + 1)ν

− (2k2k′2 + 1)E(ν)− 3k2k′2Π(ν, 2k2) + 4k4k′2
sn ν cn ν dn ν

1− 2k2 sn 2ν

)
+ cn ν

(
k′2(k2 + 1)− (2k2k′2 + 1) dn 2ν − 3k2k′2

1− 2k2 sn 2ν
(10.3)

+ 4k4k′2
( cn 2ν dn 2ν − sn 2ν dn 2ν − k2 sn 2ν cn 2ν)

1− 2k2 sn 2ν

+ 16k6k′2
sn 2ν cn 2ν dn 2ν

(1− 2k2 sn 2ν)2

)]
,

where ν is a function of t via Lemma 7.2(1), k =
√
2 + h/2, and k′ =

√
1− k2.

By Lemmas 7.2(1) and 7.4, we have that ν(0) = 0 and ν(T/4) = K, respec-
tively. Then, by formula 122.02 of [4] we have that sn ν(T/4) = 1, cn ν(T/4) = 0,
dn ν(T/4) = k′, and by formula (A.5) of [8] we have that E(ν(T/4)) = E and
Π(ν(T/4), 2k2) = Π(2k2, k). Therefore,

∂ż(τ/4; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=T,r0=1/2,ż0=ż∗

0 )

= − 1

k′
g(k),

where

g(k) = k′2(k2 + 1)K − (2k2k′2 + 1)E − 3k2k′2Π(2k2, k).(10.4)

Since −2 < h < 0, we have that k ∈ (0,√2/2). We plot the function g(k) in the
range 0 < k <

√
2/2, obtaining Figure 10.1. Therefore g(k) is always different from

zero except when k = 0, but this case is not considered here because it corresponds
to the equilibrium point of the reduced circular Sitnikov problem.

In short, if the period T = T (h) is a nonmultiple of 4π, then determinant (10.2)
is different from zero. This proves the following theorem.
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1333

Theorem 10.1. For any T > π/
√
2, with T �= 4πn for all n ∈ N, the periodic

orbit of the reduced circular Sitnikov problem with period T can be continued to a
2-parameter family (on µ and τ) of doubly symmetric periodic orbits of the reduced
isosceles problem (3.1) with angular momentum c = 1/4, which have period τ for
(µ, τ) in a sufficiently small neighborhood of (0, T ) with µ � 0.

10.1. Remarks. We note that Theorem 10.1 also gives periodic orbits of the
reduced isosceles problem for µ = 0. One might think that this theorem could be
used to find new symmetric periodic orbits of the reduced elliptic Sitnikov problem.
But this is not the case because the symmetric periodic orbits for µ = 0 that we
obtain in this way are periodic orbits of the reduced circular Sitnikov problem, which
are already known. This follows from the fact that the functions r0(µ, τ) and ż0(µ, τ)
are unique and that ϕ1/4(t; r0 = 1/2, 0, 0, ż0 =

√
2h(τ) + 4, 0) is a periodic solution of

the reduced circular Sitnikov problem.
On the other hand, Theorem 10.1 does not allow us to continue the periodic orbits

of the reduced circular Sitnikov problem that have period T that is a multiple of 4π.
Later on, in section 12, we will see that these periodic solutions can be continued
in two steps to two different families of doubly symmetric periodic solutions of the
reduced isosceles problem (3.1) with angular momentum c = 1/4 and µ > 0 sufficiently
small, having period τ near T (see Theorem 12.8). The fact that the continuation is
to two families explains why we have not been able here to continue these periodic
orbits using only the implicit function theorem.

Often when we analyze a problem of continuation of periodic solutions we are
interested in families of periodic solutions with the same period or with the same
energy (these last families are called isoenergetic families). We could also consider
families of periodic solutions with a fixed initial condition. In order to obtain these
kinds of families in our problem we would fix one of the variables (it could be T ,

h̃, r0, or ż0) in system (10.1), and then we would continue, in function of µ, the
known periodic solutions of the reduced circular Sitnikov problem. We have done
that and seen that the periodic solutions of the reduced circular Sitnikov problem
with period T , nonmultiple of 4π, can be continued to a 1-parameter family (on
µ) of doubly symmetric periodic solutions of the reduced isosceles problem having
fixed period T , and another 1-parameter family having fixed initial condition ż0 = ż∗0 .
Clearly these two families are contained in the 2-parameter family of doubly symmetric
periodic orbits of the reduced isosceles problem obtained in Theorem 10.1. Finally,
the continuation fixing either the initial condition r0 or the energy h̃ is not possible
because the corresponding determinants vanish.

Theorem 10.1 is improved by the following result.
Theorem 10.2. For any interval [T1, T2] with T1 > π/

√
2 and such that 4πn /∈

[T1, T2] for all n ∈ N, there exist µ0 > 0 and two unique analytic functions r0(µ, τ)
and ż0(µ, τ), defined for all µ ∈ [0, µ0) and τ ∈ [T1, T2], such that ϕ1/4(t; r0(µ, τ), 0, 0,
ż0(µ, τ), µ) is a double symmetric periodic solution, with period τ , of the reduced
isosceles problem (3.1) with angular momentum c = 1/4. Moreover r0(0, τ) = 1/2
and ż0(0, τ) =

√
2h(τ) + 4, where h(τ) is the value of the energy of the periodic orbit

of the circular Sitnikov problem having period τ .
Proof. Fixed τ∗ ∈ [T1, T2], the implicit function theorem assures the existence

of two unique analytic functions r0(µ, τ) and ż0(µ, τ) for (µ, τ) in a sufficiently small
neighborhood of (0, τ∗). Due to the compactness of [T1, T2] and the uniqueness of
r0(µ, τ) and ż0(µ, τ), we can find µ0 > 0 such that, for 0 � µ < µ0, these functions
are defined for all τ∗ ∈ [T1, T2], which proves the result.
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1334 MONTSERRAT CORBERA AND JAUME LLIBRE

11. Continuation of symmetric periodic orbits from the reduced ellip-
tic Sitnikov problem to the reduced isosceles problem. In this section we
will continue the known symmetric periodic solutions of the reduced elliptic Sitnikov
problem with eccentricity e (meaning the symmetric periodic solutions given in sec-
tion 8) to symmetric periodic solutions of the reduced isosceles problem with c = ce
and µ > 0 sufficiently small. In particular we will prove the following result.

Theorem 11.1. Let γe0 be a symmetric periodic orbit of the reduced elliptic
Sitnikov problem with eccentricity e0 given by Theorems 8.2 or 8.3 that has period τ� =
2πp = qT for fixed values of p, q ∈ N coprime with p > q/(2

√
2). If the eccentricity

e0 is sufficiently small, then γe0 can be continued to a 2-parameter family (on µ and
τ) of symmetric periodic orbits of the reduced isosceles problem (3.1) with angular
momentum c =

√
1− e02/4 and µ � 0 that have period τ for (µ, τ) in a sufficiently

small neighborhood of (0, τ�). Moreover the continued periodic orbits satisfy the same
symmetry as the initial orbit γe0 .

Apart from the symmetric periodic orbits of the reduced elliptic Sitnikov problem
given by Theorems 8.2 and 8.3, we know the existence of infinitely many symmetric
periodic orbits of the reduced elliptic Sitnikov problem for all 0 < e < 1 (see Propo-
sitions 12 and 15 in [7]); unfortunately we do not know analytical expressions for
their initial conditions. Nevertheless we will give sufficient conditions in order to con-
tinue an arbitrary symmetric periodic orbit of the reduced elliptic Sitnikov problem to
symmetric periodic orbits of the reduced isosceles problem for µ > 0 sufficiently small.

We start analyzing the continuation of doubly symmetric periodic orbits of the
reduced elliptic Sitnikov problem, after which we will analyze the continuation of r-
and t-symmetric periodic orbits.

Choosing conveniently the origin of time, the symmetric periodic orbits of the
reduced elliptic Sitnikov problem can be seen as the orbits associated to symmetric
periodic solutions with initial conditions either ϕce(t; r0 = r�0 = (1±e)/2, ṙ0 = 0, z0 =
0, ż0 = ż�0 , µ = 0) or ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = z�0 , ż0 = 0, µ = 0). So,
we will study only the continuation of symmetric periodic solutions of these types.
Of course, if we continue different initial conditions defining the same periodic orbit,
then we will obtain the same periodic orbit of the reduced isosceles problem.

11.1. Continuation of doubly symmetric periodic solutions. As in section
10, by Proposition 5.3(1), the solution ϕce(t; r0, 0, 0, ż0, µ)=(r(t; r0, ż0, µ), ṙ(t; r0, ż0, µ),
z(t; r0, ż0, µ), ż(t; r0, ż0, µ)) is a doubly symmetric periodic solution of the reduced
isosceles problem (3.1) with c = ce having period τ if it satisfies

ṙ(τ/4; r0, ż0, µ) = 0, ż(τ/4; r0, ż0, µ) = 0,(11.1)

and ṙ, ż are not simultaneously zero for t ∈ (0, τ/4).
Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0) be a doubly

symmetric periodic solution of the reduced elliptic Sitnikov problem for a fixed 0 <
e < 1 and let τ� = 2πp, with p ∈ N even, be its period. This is equivalent to saying
that τ = τ�, r0 = r�0 , ż0 = ż�0 , and µ = 0 is a solution of system (11.1).

Applying the implicit function theorem to (11.1) in a neighborhood of the point
τ = τ�, r0 = r�0 , ż0 = ż�0 , and µ = 0, and choosing µ and τ as the independent
variables, if

det


∂ṙ(τ/4; r0, ż0, µ)

∂r0

∂ṙ(τ/4; r0, ż0, µ)

∂ż0

∂ż(τ/4; r0, ż0, µ)

∂r0

∂ż(τ/4; r0, ż0, µ)

∂ż0


|(µ=0,τ=τ�,r0=r�0 ,ż0=ż�

0 )

�= 0,D
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1335

then for each (µ, τ = τ − τ�) in a sufficiently small neighborhood Wd of (0, 0) with
µ � 0, we can find two unique analytic functions r0(µ, τ) = r�0+O(µ, τ) and ż0(µ, τ) =
ż�0 +O(µ, τ) such that ϕce

(t; r�0 +O(µ, τ), 0, 0, ż
�
0 +O(µ, τ), µ) is a doubly symmetric

periodic solution of period τ for the reduced isosceles problem (3.1) for c = ce and
µ � 0 small enough.

The derivatives that appear in this determinant are obtained by evaluating at time
t = τ�/4 the corresponding solution of the variational equations of the reduced re-
stricted isosceles problem (6.2) for c = ce along the solution curve ϕce

(t; r�0 , 0, 0, ż
�
0 , 0)

with r�0 = (1 ± e)/2. The solution of these variational equations has been studied in
section 9.1.

By (9.8), the derivative ∂ṙ(τ/4; r0, ż0, µ)/∂ż0 evaluated at µ = 0, τ = τ�, r0 = r�0 ,
and ż0 = ż�0 equals zero. The value of the derivative ∂ṙ(τ/4; r0, ż0, µ)/∂r0 evaluated
at µ = 0, τ = τ�, r0 = r�0 , and ż0 = ż�0 can be obtained by evaluating at t = T/4 the
corresponding solution of the variational equations of the Kepler problem (9.2) along
the solution curve (r(t; r�0 , ż

�
0 , 0), ṙ(t; r

�
0 , ż

�
0 , 0)).

If r�0 = (1−e)/2—that is, t = 0 corresponds to the minimum value of r(t; r�0 , ż�0 , 0)—
then from Kepler’s equation (9.18), u(τ�/4) = u(mπ) = mπ. Moreover, since p is
even, p = 2m for some m ∈ N. Therefore, from (9.19),

∂ṙ(τ/4; r0, ż0, µ)

∂r0

∣∣∣∣
(µ=0,τ=τ�,r0= 1−e

2 ,ż0=ż�
0 )

=
3e2mπ((−1)m − e)

(1− (−1)me)3(1− e)2
,(11.2)

which is different from zero because e �= 0 and e �= 1.
If r�0 = (1+e)/2—that is, t = 0 corresponds to the maximum value of r(t; r

�
0 , ż

�
0 , 0)—

then from Kepler’s equation (9.20), u(τ�/4) = u(mπ) = (m+ 1)π. Thus by (9.21),

∂ṙ(τ/4; r0, ż0, µ)

∂r0

∣∣∣∣
(µ=0,τ=τ�,r0= 1+e

2 ,ż0=ż�
0 )

=
3e2mπ(e− (−1)m+1)

(1− (−1)m+1e)3(1 + e)2
,(11.3)

which is also different from zero. In short, we have proved the following result.
Theorem 11.2. Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0)

be a doubly symmetric periodic solution of the reduced elliptic Sitnikov problem for a
fixed 0 < e < 1 and let τ� = 2πp with p ∈ N even be its period. If

∂ż(τ/4; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż0)

�= 0,(11.4)

then this solution can be analytically continued to a 2-parameter family (on µ and τ)
ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ) of doubly symmetric
periodic solutions of the reduced isosceles problem, with angular momentum c = ce
and µ � 0, that have period τ for (µ, τ = τ − τ�) ∈ Wd, with Wd a sufficiently small
neighborhood of (0, 0).

11.1.1. Application of Theorem 11.2. Now we apply Theorem 11.2 to con-
tinue the doubly symmetric periodic solutions of the reduced elliptic Sitnikov problem
given by Theorem 8.2. Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 =
ż∗0 +O(e), µ = 0), with ż∗0 = ±√

2h+ 4, be one of these periodic solutions for a fixed
e > 0 sufficiently small and fixed p, q ∈ N coprime with p even and p > q/(2

√
2). By

Theorem 11.2, this doubly symmetric periodic solution can be continued to doubly
symmetric periodic solutions of the reduced isosceles problem for µ > 0 if (11.4) holds.
The value of the derivative (11.4) is obtained from the solution, evaluated at t = τ�/4,
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1336 MONTSERRAT CORBERA AND JAUME LLIBRE

of the variational equations of the elliptic Sitnikov problem (9.3) along the solution
curve (z(t), ż(t)) = (z(t; r�0 , ż0 = ż�0 = ż∗0 + O(e), 0), ż(t; r�0 , ż0 = ż�0 = ż∗0 + O(e), 0)).
We note that if the eccentricity e is sufficiently small, then by the Poincaré expansion
theorem, the solution (z(t), ż(t)) may be expanded in power series of ż�0 − ż∗0 and
e. Since ż�0 − ż∗0 = O(e), we have that (z(t), ż(t)) = (z(0)(t) + O(e), ż(0)(t) + O(e)),
where (z(0)(t), ż(0)(t)) is the solution of the circular Sitnikov problem with initial con-
ditions z(0)(0) = 0 and ż(0)(0) = ż∗0 . So, the solution of the variational equations
of the elliptic Sitnikov problem along that solution curve (z(t), ż(t)) is given by the
solution of the variational equations of the reduced circular Sitnikov problem along
the solution curve (z(0)(t), ż(0)(t)) plus terms of at least order one in e (see section

9.3). Since ż∗0 = ±√
2h+ 4, the solution of these last variational equations is given

by formula (B.12) of [8].
We assume that e is small enough so that (9.23) is valid at least for 0 � t � τ�/4.

From formula (B.12) of [8] and (9.23), the derivative ∂ż(t; r0, ż0, µ)/∂ż0 evaluated
at µ = 0, r0 = r�0 , and ż0 = ż�0 is given by (10.3) plus terms of at least order one
in e. On the other hand, from Lemmas 7.2(1) and 7.4, we have that ν(0) = 0 and
ν(τ/4) = qK, respectively. We consider that q = 2l + 1 for some l ∈ N (we note that
q is odd because p is even and p and q are coprime). By formulas 122.02 and 122.04
of [4] we have that sn ν(τ/4) = (−1)l, cn ν(τ/4) = 0, dn ν(τ/4) = k′; moreover by
formula (A.5) of [8] we have that E(ν(τ/4)) = qE and Π(ν(τ/4), 2k2) = qΠ(2k2, k).
Hence

∂ż(τ/4; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż�

0 )

= − (−1)
lq

k′
g(k) +O(e),

where l ∈ N is such that q = 2l + 1, and g(k) is given by (10.4). Since g(k) is
always different from zero, if the eccentricity e is small enough, then the derivative
∂ż(τ/4; r0, ż0, µ)/∂ż0 evaluated at µ = 0, τ = τ�, r0 = r�0 , and ż0 = ż�0 is different
from zero. Thus we have the following result.

Corollary 11.3. For fixed e > 0 sufficiently small, let ϕce(t; r0 = r�0 = (1 ±
e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 = ±√

2h+ 4+O(e), µ = 0) be one of the doubly symmetric
periodic solutions of the reduced elliptic Sitnikov problem given by Theorem 8.2 that
has period τ� = 2πp = qT for given values of p, q ∈ N coprime with p even and
p > q/(2

√
2). Then this solution can be analytically continued to a 2-parameter family

(on µ and τ) ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ) of doubly
symmetric periodic solutions of the reduced isosceles problem, with angular momentum
c = ce and µ � 0, that have period τ for (µ, τ = τ − τ�) ∈Wd, with Wd a sufficiently
small neighborhood of (0, 0).

11.2. Continuation of r-symmetric periodic solutions. By Proposition 5.1,
ϕce(t; r0, 0, 0, ż0, µ) is an r-symmetric periodic solution of the reduced isosceles prob-
lem (3.1) with c = ce having period τ if it satisfies

ṙ(τ/2; r0, ż0, µ) = 0 , z(τ/2; r0, ż0, µ) = 0,(11.5)

and ṙ, z are not simultaneously zero for t ∈ (0, τ/2).
Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0) be an r-symmetric

periodic solution of the reduced elliptic Sitnikov problem for a fixed 0 < e < 1 and
let τ� = 2πp with p ∈ N be its period. Or, equivalently, let τ = τ�, r0 = r�0 , ż0 = ż�0 ,
and µ = 0 be a solution of system (11.5). Applying the implicit function theorem to
system (11.5) in a neighborhood of that solution, choosing µ and τ as the independent
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1337

variables, if

det


∂ṙ(τ/2; r0, ż0, µ)

∂r0

∂ṙ(τ/2; r0, ż0, µ)

∂ż0

∂z(τ/2; r0, ż0, µ)

∂r0

∂z(τ/2; r0, ż0, µ)

∂ż0


|(µ=0,τ=τ�,r0=r�0 ,ż0=ż0)

�= 0,

then for each (µ, τ = τ − τ�) in a sufficiently small neighborhood Wr of (0, 0) with
µ � 0, we can find two unique analytic functions r0(µ, τ) = r�0+O(µ, τ) and ż0(µ, τ) =
ż�0+O(µ, τ) such that ϕce

(t; r�0+O(µ, τ), 0, 0, ż
�
0+O(µ, τ), µ) is an r-symmetric periodic

solution of period τ for the reduced isosceles problem (3.1) for c = ce and µ � 0 small.
The derivatives that appear in this determinant are obtained by evaluating at time

t = τ�/2 the corresponding solution of the variational equations of the reduced re-
stricted isosceles problem (6.2) for c = ce along the solution curve ϕce(t; r

�
0 , 0, 0, ż

�
0 , 0).

Thus from (9.8),

∂ṙ(τ/2; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż�

0 )

= 0.(11.6)

On the other hand, if r�0 = (1 − e)/2, then from (9.18), u(τ�/2) = u(pπ) = pπ;
and if r�0 = (1+e)/2, then from (9.20), u(τ

�/2) = u(pπ) = (p+1)π. Therefore, taking
p instead of m in (11.2) and (11.3), we have that the derivative ∂ṙ(τ/2; r0, ż0, µ)/∂r0
evaluated at µ = 0, τ = τ�, ż0 = ż�0 , and r0 = (1− e)/2 (respectively, r0 = (1 + e)/2)
is given by

3e2pπ((−1)p − e)

(1− (−1)pe)3(1− e)2

(
respectively,

3e2pπ(e− (−1)p+1)

(1− (−1)p+1e)3(1 + e)2

)
,(11.7)

which is different from zero. In short, we have proved the following result.
Theorem 11.4. Let ϕce(t; r0 = r�0 = (1± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0) be

an r-symmetric periodic solution of the reduced elliptic Sitnikov problem for a fixed
0 < e < 1 and let τ� = 2πp with p ∈ N be its period. If

∂z(τ/2; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż�

0 )

�= 0,(11.8)

then this solution can be analytically continued to a 2-parameter family (on µ and τ)
ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ) of r-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce and µ � 0,
that have period τ for (µ, τ = τ − τ�) ∈Wr, with Wr a sufficiently small neighborhood
of (0, 0).

11.2.1. Application of Theorem 11.4. Now let ϕce(t; r0 = r�0 = (1 ± e)/2,
ṙ0 = 0, z0 = 0, ż0 = ż�0 = ±√

2h+ 4+O(e), µ = 0) be one of the r-symmetric periodic
solutions of the reduced elliptic Sitnikov problem given by Theorem 8.2 for fixed e > 0
small and τ� = 2πp = qT with p, q ∈ N coprime and p > q/(2

√
2). By Theorem 11.4,

the r-symmetric periodic solution ϕce(t; r
�
0 , 0, 0, ż

�
0 , 0) can be continued if (11.8) holds.

The value of the derivative (11.8) is obtained from the solution, evaluated at t = τ�/2,
of the variational equations of the elliptic Sitnikov problem (9.3) along the solution
curve (z(t), ż(t)) = (z(t; r�0 , ż0 = ż�0 = ż∗0 + O(e), 0), ż(t; r�0 , ż0 = ż�0 = ż∗0 + O(e), 0)).
We have seen that if e is sufficiently small, then the solution of those variational
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1338 MONTSERRAT CORBERA AND JAUME LLIBRE

equations is given by the solution of the variational equations of the reduced circular
Sitnikov problem along the solution curve (z(0)(t), ż(0)(t)) plus terms of at least order
one in e, where (z(0)(t), ż(0)(t)) is the solution of the circular Sitnikov problem with
initial conditions z(0)(0) = 0, ż(0)(0) = ż∗0 . Proceeding as in the continuation of
doubly symmetric periodic solutions (see section 11.1.1), we can see that

∂z(τ/2; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż�

0 )

=
(−1)qq√

2(2k2 − 1)2k′2 g(k) +O(e),

which is different from zero if the eccentricity e is small enough.
In short, if the eccentricity e is sufficiently small, then ϕce

(t; r�0 , 0, 0, ż
�
0 , 0) can be

continued to a family ϕce
(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ)

of r-symmetric periodic solutions of the reduced isosceles problem, with angular mo-
mentum c = ce and µ � 0, that have period τ for (µ, τ = τ − τ�) ∈Wr.

We note that if p is even, then ϕce(t; r
�
0 , 0, 0, ż

�
0 , 0) is a doubly symmetric periodic

solution. Thus, if the eccentricity e is sufficiently small, then it can also be continued
to a family ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ) of doubly
symmetric periodic solutions of the reduced isosceles problem, with c = ce and µ � 0,
that have period τ for (µ, τ) ∈ Wd (see Corollary 11.3). Due to the uniqueness of
the functions r0(µ, τ) and ż0(µ, τ) given by the implicit function theorem we have
that if p is even and (µ, τ) ∈ Wd ∩ Wr, then the r-symmetric periodic solutions
ϕce(t; r

�
0 +O(µ, τ), 0, 0, ż�0 +O(µ, τ), µ) are doubly symmetric periodic solutions.

If p is odd, then ϕce(t; r
�
0 , 0, 0, ż

�
0 , 0) is an r-symmetric periodic solution that is

not doubly symmetric because ṙ(τ�/4, r�0 , ż
�
0 , 0) �= 0. So, ṙ(τ/4, r�0 + O(µ, τ), ż�0 +

O(µ, τ), µ) �= 0 for (µ, τ = τ − τ�) in a sufficiently small neighborhood of (0, 0). Con-
sequently the r-symmetric periodic solutions ϕce(t; r

�
0 + O(µ, τ), 0, 0, ż�0 + O(µ, τ), µ)

are not doubly symmetric periodic solutions. In short, we have proved the following
result.

Theorem 11.5. For fixed e > 0 sufficiently small, let ϕce(t; r0 = r�0 = (1 ±
e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 = ±√

2h+ 4 + O(e), µ = 0) be one of the r-symmetric
periodic solutions of the reduced elliptic Sitnikov problem given by Theorem 8.2 that
has period τ� = 2πp = qT for given values of p, q ∈ N coprime and p > q/(2

√
2).

1. This solution can be continued to a 2-parameter family (on µ and τ) ϕce(t;
r0 = r�0+O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0+O(µ, τ), µ) of r-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce
and µ � 0, that have period τ for (µ, τ = τ − τ�) in a sufficiently small
neighborhood of (0, 0).

2. If p is odd, then the r-symmetric periodic solutions ϕce(t; r
�
0 + O(µ, τ), 0,

0, ż�0 + O(µ, τ), µ) are not doubly symmetric, whereas if p is even, they are
doubly symmetric.

11.3. Continuation of t-symmetric periodic solutions. By Proposition 5.2,
ϕce(t; r0, 0, z0, 0, µ) = (r(t; r0, z0, µ), ṙ(t; r0, z0, µ), z(t; r0, z0, µ), ż(t; r0, z0, µ)) is a t-
symmetric periodic solution of the reduced isosceles problem (3.1), with c = ce having
period τ , if it satisfies

ṙ(τ/2; r0, z0, µ) = 0, ż(τ/2; r0, z0, µ) = 0,(11.9)

and ṙ, ż are not simultaneously zero for t ∈ (0, τ/2).
Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = z�0 , ż0 = 0, µ = 0) be a t-symmetric

periodic solution of the reduced elliptic Sitnikov problem for a fixed 0 < e < 1 and let
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1339

τ� = 2πp with p ∈ N be its period. That is, let τ = τ�, r0 = r�0 , z0 = z�0 , and µ = 0 be
a solution of system (11.9). Applying the implicit function theorem to system (11.9)
in a neighborhood of that solution, choosing µ and τ as the independent variables, if

det


∂ṙ(τ/2; r0, z0, µ)

∂r0

∂ṙ(τ/2; r0, z0, µ)

∂z0

∂ż(τ/2; r0, z0, µ)

∂r0

∂ż(τ/2; r0, z0, µ)

∂z0


|(µ=0,τ=τ�,r0=r�0 ,z0=z�

0 )

�= 0,

then for each (µ, τ = τ − τ�) in a sufficiently small neighborhood Wt of (0, 0) with
µ � 0, we can find two unique analytic functions r0(µ, τ) = r�0+O(µ, τ) and z0(µ, τ) =
z�0+O(µ, τ) such that ϕce

(t; r�0+O(µ, τ), 0, z
�
0+O(µ, τ), 0, µ) is a t-symmetric periodic

solution of period τ for the reduced isosceles problem (3.1) for c = ce and µ �
0 small enough. The derivatives that appear in this determinant are obtained by
evaluating at time t = τ�/2 the corresponding solutions of the variational equations
of the reduced restricted isosceles problem (6.2) for c = ce along the solution curve
ϕce(t; r

�
0 , 0, z

�
0 , 0, 0). The solution of these variational equations was studied in section

9. Since the first equation of (6.2) does not depend on z and ż, r(t; r0, z0, 0) and
ṙ(t; r0, z0, 0) do not depend on the initial conditions z(0; r0, z0, 0) and ż(0; r0, z0, 0).
So, using the computations made in section 11.2 (see (11.6) and (11.7)) we can prove
the following result.

Theorem 11.6. Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = z�0 , ż0 = 0, µ = 0)
be a t-symmetric periodic solution of the reduced elliptic Sitnikov problem for a fixed
0 < e < 1 and let τ� = 2πp with p ∈ N be its period. If

∂ż(τ/2; r0, z0, µ)

∂z0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,z0=z�

0 )

�= 0,(11.10)

then this solution can be analytically continued to a 2-parameter family (on µ and τ)
ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = z�0 + O(µ, τ), ż0 = 0, µ) of t-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce and µ � 0,
that have period τ for (µ, τ = τ − τ�) ∈Wt, with Wt a sufficiently small neighborhood
of (0, 0).

11.3.1. Application of Theorem 11.6. Now we apply Theorem 11.6 to con-
tinue the t-symmetric periodic solutions of the reduced elliptic Sitnikov problem given
by Theorem 8.3. Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = z�0 = z∗0 + O(e), ż0 =

0, µ = 0), with z∗0 = ±
√

1
h2 − 1

4 , be one of these periodic solutions for a fixed e > 0
sufficiently small and fixed p, q ∈ N coprime with p > q/(2

√
2). The t-symmetric

periodic solution ϕce(t; r
�
0 , 0, z

�
0 , 0, 0) can be continued if (11.10) holds. Proceeding in

a similar way to that of sections 11.1 and 11.2, we can see that if the eccentricity e is
sufficiently small, then

∂ż(τ/2; r0, ż0, µ)

∂z0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,z0=z�

0 )

= (−1)q+14
√
2(1− 2k2)2q g(k) +O(e) �= 0.

In short, if the eccentricity e is sufficiently small, then ϕce(t; r
�
0 , 0, z

�
0 , 0, 0) can

be continued to a family ϕce(t; r0 = r�0 +O(µ, τ), ṙ0 = 0, z0 = z�0 +O(µ, τ), ż0 = 0, µ)
of t-symmetric periodic solutions of the reduced isosceles problem, with angular
momentum c = ce and µ � 0, that have period τ for (µ, τ = τ − τ�) ∈ Wt.
Moreover, due to the uniqueness of the functions r0(µ, τ) and z0(µ, τ) given by
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1340 MONTSERRAT CORBERA AND JAUME LLIBRE

the implicit function theorem we can see that the t-symmetric periodic solutions
ϕce(t; r

�
0 + O(µ, τ), 0, z�0 + O(µ, τ), 0, µ) are doubly symmetric when p is even, and

they are not doubly symmetric when p is odd (see the arguments of section 11.2.1).
Therefore we have proved the following result.

Theorem 11.7. For fixed e > 0 sufficiently small, let ϕce
(t; r0 = r�0 = (1 ±

e)/2, ṙ0 = 0, z0 = z�0 = z∗0 + O(e), ż0 = 0, µ = 0), with z∗0 = ±
√

1
h2 − 1

4 , be one of
the t-symmetric periodic solutions of the reduced elliptic Sitnikov problem given by
Theorem 8.3 that has period τ� = 2πp = qT for given values of p, q ∈ N coprime and
p > q/(2

√
2).

1. This solution can be continued to a 2-parameter family (on µ and τ) ϕce
(t;

r0 = r�0+O(µ, τ), ṙ0 = 0, z0 = z�0 +O(µ, τ), ż0 = 0, µ) of t-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce
and µ � 0, that have period τ for (µ, τ = τ − τ�) in a sufficiently small
neighborhood of (0, 0).

2. If p is odd, then the t-symmetric periodic solutions ϕce(t; r
�
0+O(µ, τ), 0, z

�
0 +

O(µ, τ), 0, µ) are not doubly symmetric, whereas if p is even, they are doubly
symmetric.

11.4. Remarks. In Theorems 11.5 and 11.7, we continued eight periodic solu-

tions of the reduced elliptic Sitnikov problem: ϕce(t; r0 = r�0 =
(1±e)

2 , ṙ0 = 0, z0 =

0, ż0 = ±√
2h+ 4+O(e), µ = 0) and ϕce(t; r0 = r�0 =

(1±e)
2 , ṙ0 = 0, z0 = ±

√
1
h2 − 1

4 +
O(e), ż0 = 0, µ = 0). But not all eight periodic solutions give different periodic or-
bits of the reduced elliptic Sitnikov problem (see Theorem 8.4). Since the reduced
isosceles problem is an autonomous system, if we continue different periodic solutions
that define the same periodic orbit, then we will obtain the same periodic orbit of
the reduced isosceles problem. Therefore, Corollary 11.3 and Theorems 11.5 and 11.7
prove Theorem 11.1.

We note that in order to continue the symmetric periodic solutions of the reduced
elliptic Sitnikov problem, we applied the implicit function theorem, choosing µ and τ
as the independent variables. As happened in the continuation of periodic solutions
from the reduced circular Sitnikov problem (see section 10), there are other possible
choices for the independent variables. These other possible choices are (µ, r0), (µ, ż0),

and (µ, h̃) (respectively, (µ, r0), (µ, z0), (µ, h̃)) when the starting initial condition

that we continue is r-symmetric (respectively, t-symmetric). Here h̃ is the energy of
the periodic solution. We have analyzed these choices for the independent variables,
but we have not obtained new periodic orbits. In particular, we have seen that the
determinant that we must evaluate when we use (µ, ż0) (respectively, (µ, z0)) as the
independent variables is more complicated than in the other cases because we do not
know an explicit expression of some of the derivatives.

In particular, we also have analyzed the continuation of the symmetric periodic
solutions of the reduced elliptic Sitnikov problem given by Theorems 8.2 and 8.3
to symmetric periodic solutions of the reduced isosceles problem by fixing either the
period, one of the initial conditions, or the energy. We have seen that if the eccentricity
e is sufficiently small, then these symmetric periodic solutions can be continued to
families of symmetric periodic solutions of the reduced isosceles problem for µ > 0
sufficiently small that have either the same period, the same initial condition r0, or
the same energy h̃ as the initial orbit. We have also evaluated numerically for some
periodic orbits the correspondent determinant when we continue by fixing the initial
condition ż0 (respectively, z0), and we have seen that it is different from zero.
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1341

We note that in order to apply successfully the implicit function theorem it is
very important to choose a good set of independent variables.

12. From reduced circular Sitnikov problem to reduced isosceles prob-
lem in two steps. In section 10 we have continued directly the periodic orbits of
the reduced circular Sitnikov problem with period T �= 4πn for all n ∈ N to doubly
symmetric periodic orbits of the reduced isosceles problem for µ > 0 sufficiently small
having period near T and fixed angular momentum c = 1/4. Now we continue, by
using two steps, the periodic orbits of the reduced circular Sitnikov problem with
rational period T = 2πp/q for all p, q ∈ N coprime and p > q/(2

√
2) to symmetric

periodic orbits of the reduced isosceles problem for µ > 0 sufficiently small having
period near 2πp and fixed angular momentum c = 1/4. First, we continue them to
periodic orbits of the reduced elliptic Sitnikov problem for sufficiently small values
of e, and then we continue the periodic orbits of the reduced elliptic Sitnikov prob-
lem to the reduced isosceles problem for µ > 0 sufficiently small, always having fixed
angular momentum c = 1/4. The main differences between direct continuation and
continuation in two steps are analyzed at the end of this section.

Lemma 12.1. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a periodic solution of the reduced
isosceles problem (3.1) with c = ce having initial conditions r(0) = r0, ṙ(0) = 0,
z(0) = z0, ż(0) = ż0 and period τ . If we set α = 1/(1 − e2), r̃(t) = αr(α3/2t),
˙̃r(t) = α−1/2ṙ(α3/2t), z̃(t) = αz(α3/2t), and ˙̃z(t) = α−1/2ż(α3/2t), then γ(t) =

(r̃(t), ˙̃r(t), z̃(t), ˙̃z(t)) is a periodic solution of the reduced isosceles problem (3.1) with

c = 1/4 having initial conditions r̃(0) = αr0, ˙̃r(0) = 0, z̃(0) = αz0, ˙̃z(0) = α−1/2ż0
and period τ̃ = α−3/2τ .

Proof. The proof is an immediate consequence of Proposition 3.1.
Remark 12.2. We note that the period τ̃ = τ̃(e) = τ(1 − e2)3/2 is a decreasing

function in (0, 1), so in this interval the function τ̃(e) has the inverse

e(τ̃) =

√
1−

(
τ̃

τ

)2/3

.

Therefore, the solution γ(t) = (r̃(t), ˙̃r(t), z̃(t), ˙̃z(t)) can be parameterized by the period
τ̃ instead of the eccentricity e.

Let γpq be the periodic orbit of the reduced circular Sitnikov problem with period
T = 2πp/q for given p, q ∈ N coprime with p > q/(2

√
2). Choosing conveniently

the origin of time, γpq can be thought of as the orbit associated to either the so-
lutions ϕ1/4

(
t; r0 = 1/2, ṙ0 = 0, z0 = 0, ż0 = ż∗0 = ±√

2h+ 4, µ = 0
)
or the solutions

ϕ1/4(t; r0 = 1/2, ṙ0 = 0, z0 = z∗0 = ±
√

1
h2 − 1

4 , ż0 = 0, µ = 0), where h is such that
T = T (h) = 2πp/q.

We start analyzing the continuation in two steps of the periodic solutions ϕ1/4(t;
1/2, 0, 0, ż∗0 = ±√

2h+ 4, 0
)
to r-symmetric periodic solutions of the reduced isosceles

problem with c = 1/4 and µ > 0 sufficiently small. Afterward we will analyze the
continuation in two steps to t-symmetric periodic solutions of the periodic solutions

ϕ1/4(t; 1/2, 0, z
∗
0 = ±

√
1
h2 − 1

4 , 0, 0). We note that it is not necessary to consider the
continuation in two steps of the above periodic solutions to doubly symmetric periodic
solutions, because it can be obtained from the continuation of either r- or t-symmetric
periodic solutions having period T = 2πp/q with p even.

By Theorem 8.2, each periodic solution ϕ1/4(t; 1/2, 0, 0, ż
∗
0 = ±√

2h+ 4, 0) can be
continued to two families ϕce(t; r0 = rP

0 = (1 − e)/2, ṙ0 = 0, z0 = 0, ż0 = żP
0 = ż∗0 +
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1342 MONTSERRAT CORBERA AND JAUME LLIBRE

O(e), µ = 0) and ϕce(t; r0 = rA
0 = (1+e)/2, ṙ0 = 0, z0 = 0, ż0 = żA

0 = ż∗0+O(e), µ = 0)
of r-symmetric periodic solutions of the reduced elliptic Sitnikov problem having
period τ� = 2πp = qT for e > 0 sufficiently small. Moreover these two families
are formed by doubly symmetric periodic solutions if p is even, and they are formed
by r-symmetric periodic solutions that are not doubly symmetric if p is odd. Then,
using Lemma 12.1, Theorem 8.2 can be stated as follows.

Theorem 12.3 (reformulation of Theorem 8.2). Let ϕ1/4 (t; r0 = 1/2, ṙ0 = 0,
z0 = 0, ż0 = ż∗0 = ±√

2h+ 4, µ = 0
)
be a periodic solution of the reduced circular Sit-

nikov problem with period T = 2πp/q for given p, q ∈ N coprime and p > q/(2
√
2).

We denote

r̃P
0 (e) =

rP
0

1− e2
=

1

2(1 + e)
, r̃A

0 (e) =
rA
0

1− e2
=

1

2(1− e)
,

˙̃z
P

0 (e) =
√
1− e2 żP

0 , ˙̃z
A

0 (e) =
√
1− e2 żA

0 .

1. The solution ϕ1/4 (t; 1/2, 0, 0, ż
∗
0 , 0) can be continued to two families ϕ1/4(t;

r0 = r̃P
0 (e), ṙ0 = 0, z0 = 0, ż0 =

˙̃z
P

0 (e), µ = 0) and ϕ1/4(t; r0 = r̃A
0 (e), ṙ0 = 0,

z0 = 0, ż0 = ˙̃z
A

0 (e), µ = 0) of r-symmetric periodic solutions of the reduced
elliptic restricted isosceles problem with angular momentum c = 1/4 having
period τ̃ = 2πp(1− e2)3/2 for e ∈ (0, e) with e sufficiently small.

2. If p is odd, the r-symmetric periodic solutions ϕ1/4(t; r̃
P, A

0 (e), 0, 0, ˙̃z
P, A

0 (e), 0)
are not doubly symmetric, whereas if p is even, then they are doubly sym-
metric.

Let ϕce(t; r0 = r�0 , ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0) be one of the r-symmetric
periodic solutions of the reduced elliptic Sitnikov problem given by Theorem 8.2 for
fixed values of p, q and e > 0 small. If e is sufficiently small, then from Theorem 11.5,
this r-symmetric periodic solution can be continued to a 2-parameter family (on µ
and τ) ϕce(t; r0 = r0(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż0(µ, τ), µ) of r-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce and µ �
0, that have period τ for (µ, τ) in a sufficiently small neighborhood W of (0, τ�).
Moreover r0(µ, τ) and ż0(µ, τ) are the two unique analytic functions defined in W
such that r0(0, τ

�) = r�0 and ż0(0, τ
�) = ż�0 . We note that, by Lemma 12.1,

ϕ1/4

(
t; r0 = r0 =

r0(µ, τ)

1− e2
, ṙ0 = 0, z0 = 0, ż0 = ż0 =

√
1− e2 ż0(µ, τ), µ

)
is an r-symmetric periodic solution of the reduced isosceles problem, with angular mo-
mentum c = 1/4 and µ � 0, that has period τ = τ(1− e2)3/2. In short, Theorem 11.5
can be stated as follows.

Theorem 12.4 (reformulation of Theorem 11.5). Let ϕ1/4(t; r0 = r̃ P, A

0 , ṙ0 = 0,

z0 = 0, ż0 = ˙̃z
P, A

0 , µ = 0) be one of the r-symmetric periodic solutions of the reduced
elliptic restricted isosceles problem given by Theorem 12.3 for fixed e > 0 sufficiently
small and p, q ∈ N coprime with p > q/(2

√
2).

1. This solution can be continued to a 2-parameter family (on µ and τ)
ϕ1/4(t; r0 = r0(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż0(µ, τ), µ

)
of r-symmetric periodic

solutions of the reduced isosceles problem, with angular momentum c = 1/4
and µ � 0, that have period τ for (µ, τ) in a sufficiently small neighborhood
W of

(
0, 2πp(1− e2)3/2

)
. Moreover r0(µ, τ) and ż0(µ, τ) are the two unique

analytic functions defined in W such that r0
(
0, 2πp(1− e2)3/2

)
= r̃ P, A

0 and

ż0

(
0, 2πp(1− e2)3/2

)
= ˙̃z

P, A

0 .
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1343

2. If p is odd, the r-symmetric periodic solutions ϕce(t; r0(µ, τ), 0, 0, ż0(µ, τ), µ)
are not doubly symmetric, whereas if p is even, they are doubly symmetric.

We note that using Remark 12.2, the solutions obtained from Theorems 12.3 and
12.4 can be parameterized by means of the period τ̃ and τ , respectively, instead of
the eccentricity.

Using the period instead of the eccentricity as a parameter, the r-symmetric peri-

odic solutions of the reduced restricted isosceles problem ϕ1/4(t; r̃
P, A

0 (e), 0, 0, ˙̃z
P, A

0 (e), 0)

given by Theorem 12.3 become ϕ1/4(t; r̂
P, A

0 (τ̃), 0, 0, ˙̂z
P, A

0 (τ̃), 0), where r̂ P, A

0 (τ̃) =

r̃ P, A

0 (e(τ̃)) and ˙̂z
P, A

0 (τ̃) = ˙̃z
P, A

0 (e(τ̃)), with

e(τ̃) =

√
1−

(
τ̃

2πp

)2/3

and τ̃ ∈ (τ̃1, τ̃2) =
(
τ�(1− e2)3/2, τ�

)
for e sufficiently small. On the other hand,

from Theorem 12.4, we have that, for a fixed value of τ̃∗ ∈ (τ̃1, τ̃2), we can find two
unique analytic functions r P, A

0 (µ, τ) and ż
P, A

0 (µ, τ) in such a way that ϕ1/4(t; r0 =

r P, A

0 (µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż
P, A

0 (µ, τ), µ) is an r-symmetric periodic solution of
the reduced isosceles problem, with angular momentum c = 1/4 and µ � 0, that
has period τ for (µ, τ) in a sufficiently small neighborhood W of (0, τ̃∗). Moreover
r P, A

0 (µ, τ) and ż
P, A

0 (µ, τ) are the two unique analytic functions defined in W such

that r P, A

0 (0, τ̃∗) = r̂ P, A

0 (τ̃∗) and ż
P, A

0 (0, τ̃∗) = ˙̂z
P, A

0 (τ̃∗). In particular, r P, A

0 (0, τ̃) =

r̂ P, A

0 (τ̃) and ż
P, A

0 (0, τ̃) = ˙̂z
P, A

0 (τ̃) for all (0, τ̃) ∈ W . Then using the compactness
argument of Theorem 10.2 and working again with the parameter e instead of τ̃ ,
Theorem 12.4 can be improved as follows.

Theorem 12.5. For fixed p, q ∈ N coprime with p > q/(2
√
2), for any interval

[e1, e2] with 0 < e1 < e2 < e and e sufficiently small, we can find µ0 > 0 and analytic
functions rP

0 (µ, e), ż
P
0 (µ, e), r

A
0 (µ, e), ż

A
0 (µ, e) defined for all µ ∈ [0, µ0) and e ∈

[e1, e2] such that ϕ1/4 (t; r
P
0 (µ, e), 0, 0, ż

P
0 (µ, e), µ) and ϕ1/4 (t; r

A
0 (µ, e), 0, 0, ż

A
0 (µ, e), µ)

are r-symmetric periodic solutions of the reduced isosceles problem (3.1), with angular
momentum c = 1/4, that have period τ = 2πp(1− e2)3/2. Moreover

rP

0 (0, e) =
1

2(1 + e)
, żP

0 (0, e) =
˙̃z
P

0 (e) , rA

0 (0, e) =
1

2(1− e)
, żA

0 (0, e) =
˙̃z
A

0 (e) ,

where the functions ˙̃z
P

0 (e) and ˙̃z
A

0 (e) are the ones given by Theorem 12.3.
Moreover if p is even, then the continued periodic solutions are doubly symmetric,

whereas if p is odd, then they are r- but not doubly symmetric.
In short, from Theorems 12.3 and 12.5, we have the following result.
Theorem 12.6. The two periodic solutions of the reduced circular Sitnikov prob-

lem ϕ1/4

(
t; 1/2, 0, 0,±√

2h+ 4, 0
)

having period T = 2πp/q for given p, q ∈ N co-

prime with p > q/(2
√
2) can be continued by two steps to two 2-parameter families

(on µ and e) ϕ1/4 (t; r
P
0 (µ, e), 0, 0, ż

P
0 (µ, e), µ) and ϕ1/4 (t; r

A
0 (µ, e), 0, 0, ż

A
0 (µ, e), µ) of

r-symmetric periodic solutions of the reduced isosceles problem (3.1), with angular
momentum c = 1/4 and µ � 0 sufficiently small, that have period τ = 2πp(1− e2)3/2

for e > 0 sufficiently small. Furthermore if p is even, then the continued periodic
solutions are doubly symmetric, whereas if p is odd, then they are r- but not doubly
symmetric.

Applying to the t-symmetric periodic solutions ϕ1/4(t; 1/2, 0, z
∗
0 = ±

√
1
h2 − 1

4 , 0, 0)
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1344 MONTSERRAT CORBERA AND JAUME LLIBRE

the arguments that we have used to continue the r-symmetric periodic solutions in
two steps, we obtain the following result.

Theorem 12.7. The two periodic solutions of the reduced circular Sitnikov prob-

lem ϕ1/4(t; 1/2, 0,±
√

1
h2 − 1

4 , 0, 0) having period T = 2πp/q for given p, q ∈ N co-

prime with p > q/(2
√
2) can be continued by two steps to two 2-parameter families

(on µ and e) ϕ1/4 (t; r
P
0 (µ, e), 0, z

P
0 (µ, e), 0, µ) and ϕ1/4 (t; r

A
0 (µ, e), 0, zA

0 (µ, e), 0, µ) of
t-symmetric periodic solutions of the reduced isosceles problem (3.1), with angular
momentum c = 1/4 and µ � 0 sufficiently small, that have period τ = 2πp(1− e2)3/2

for e > 0 sufficiently small. Furthermore if p is even, then the continued periodic
solutions are doubly symmetric, whereas if p is odd, then they are t-symmetric but not
doubly symmetric.

By Theorems 12.6 and 12.7 the periodic orbit of the reduced circular Sitnikov
problem with period T = 2πp/q for given p, q ∈ N coprime and p > q/(2

√
2) can

be continued in two steps to eight 2-parameter families (on µ and e) of symmetric
periodic orbits of the reduced isosceles problem (3.1) with angular momentum c = 1/4
and µ � 0 small. But not all eight families of symmetric periodic orbits are different.

Theorem 12.8. Let γpq be the periodic orbit of the reduced circular Sitnikov
problem with period T = 2πp/q for given p, q ∈ N coprime with p > q/(2

√
2).

1. If p is odd, then γpq can be continued by two steps to four 2-parameter families
(on µ and e) of symmetric periodic orbits of the reduced isosceles problem
(3.1), with angular momentum c = 1/4 and µ � 0 sufficiently small, that
have period τ = 2πp(1 − e2)3/2 with e > 0 sufficiently small. Moreover, two
of these families are formed by r-symmetric periodic orbits that are not doubly
symmetric, and the other two are formed by t-symmetric periodic orbits that
are not doubly symmetric.

2. If p is even, then γpq can be continued by two steps to two 2-parameter families
(on µ and e) of doubly symmetric periodic orbits of the reduced isosceles
problem (3.1), with angular momentum c = 1/4 and µ � 0 sufficiently small,
that have period τ = 2πp(1− e2)3/2 with e > 0 sufficiently small.

Proof. From Lemma 12.1, we can see easily that different periodic orbits of the
reduced isosceles problem with c = ce correspond to different periodic orbits of the
reduced isosceles problem with c = 1/4. Thus the proof follows immediately from
Theorems 8.4, 11.1, 12.6, and 12.7.

We remark that the periodic orbits γp1 of the reduced circular Sitnikov problem
with period T = 2πp for some even p ∈ N cannot be continued by direct continuation.
They can only be continued by using two steps. The periodic orbits γpq with q �= 1
and the ones with p odd and q = 1 can be continued in both ways, that is, using
direct continuation and using continuation in two steps. We note that if we use direct
continuation, then γpq can be continued to a family of doubly symmetric periodic
orbits with period near T = 2πp/q. On the other hand, using continuation in two
steps, γpq can be continued to two or four families of symmetric periodic orbits with
period near τ� = 2πp = qT (two families of doubly symmetric periodic orbits when p is
even, and two families of r-symmetric plus two families of t-symmetric periodic orbits
that are not doubly symmetric when p is odd). Therefore if q �= 1, then the periodic
orbits obtained from direct continuation and those obtained from continuation in two
steps are always different, because they have different periods. Moreover, when p
is odd, the orbits obtained from direct continuation are doubly symmetric, whereas
the ones obtained from continuation in two steps are r- and t-symmetric, but not
doubly symmetric. Therefore when p is odd and q = 1 the direct continuation and the
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PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1345

continuation in two steps also give different periodic orbits. Finally the periodic orbits
of the reduced circular Sitnikov problem with period T = 2πω, where ω > 1/(2

√
2)

is an irrational number, can be continued by direct continuation, but they cannot be
continued in two steps.

13. Summary. The main results about continuation of the periodic orbits of the
reduced circular Sitnikov problem to symmetric periodic orbits of the reduced isosceles
problem for µ > 0 sufficiently small—that is, Theorem 10.1 and Theorem 12.8—are
summarized in Theorem A of the introduction.

In Remark 12.2 we have seen that we can work with the parameter τ = 2πp f(e)
(the period) instead of the eccentricity e. Thus the 2-parameter families of periodic
orbits of the reduced isosceles problem obtained from continuation in two steps of
periodic orbits of the reduced circular Sitnikov problem with period T = 2πp/q for
p, q ∈ N coprime with p > q/(2

√
2) can be parameterized by means of µ and τ instead

of µ and e. This means that Theorem A of the introduction can be stated using µ
and τ as parameters instead of µ and e.

Next we give the extension of Theorem A to the full isosceles problem (see section
4 for more details about the relationship between the periodic orbits of the reduced
isosceles problem and the orbits of the full isosceles problem).

Let ΠT denote the two-dimensional invariant torus of the restricted isosceles prob-
lem that comes from a periodic orbit of the reduced circular Sitnikov problem with
period T . Then we have the following result.

Theorem 13.1. The torus of the circular restricted isosceles problem ΠT with
T > π/

√
2 can be continued to the following families of two-dimensional tori of the

isosceles problem with µ > 0 sufficiently small. These tori are filled with either periodic
or quasi-periodic orbits:

1. Case T = 2πω with ω > 1/(2
√
2) an irrational number.

(a) ΠT can be continued directly to one 2-parameter family (on µ and τ with
τ sufficiently close to T ) of two-dimensional tori.

2. Case T = 2πp/q for some p, q ∈ N coprime with p > q/(2
√
2).

(a) p odd:
i. ΠT can be continued directly to one 2-parameter family (on µ and
τ with τ sufficiently close to T ) of two-dimensional tori.

ii. ΠT can be continued by two steps to four 2-parameter families (on
µ and τ with τ sufficiently close to Tq) of two-dimensional tori.

(b) p even and q �= 1:
i. ΠT can be continued directly to one 2-parameter family (on µ and
τ with τ sufficiently close to T ) of two-dimensional tori.

ii. ΠT can be continued by two steps to two 2-parameter families (on µ
and τ with τ sufficiently close to Tq) of two-dimensional tori.

(c) p even and q = 1:
i. ΠT can be continued by two steps to two 2-parameter families (on µ

and τ with τ sufficiently close to Tq) of two-dimensional tori.
By Proposition 7.7, the tori ΠT are filled with periodic orbits when T = p2π/q

for some p, q ∈ N coprime with p > q/(2
√
2); and they are filled with quasi-periodic

orbits when T = 2πω with ω > 1/(2
√
2) an irrational number. So, in particular, we

have continued tori filled with quasi-periodic orbits. The tori of the isosceles problem
for µ > 0 that we have obtained are filled with either periodic or quasi-periodic orbits
of the isosceles problem.

Remember that the phase portrait of the isosceles problem on each angular mo-
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1346 MONTSERRAT CORBERA AND JAUME LLIBRE

mentum level c with c �= 0 is the same (see Proposition 3.1). Therefore we have
obtained invariant periodic and quasi-periodic two-dimensional tori on each angular
momentum level c �= 0.
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