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Abstract

We study nonlinear n-term approximation in Lp(R2) (0 < p ≤ ∞) from hierarchical
sequences of stable local bases consisting of differentiable (i.e., Cr with r ≥ 1) piece-
wise polynomials (splines). We construct such sequences of bases over multilevel nested
triangulations of R2, which allow arbitrarily sharp angles. To quantize nonlinear n-
term spline approximation, we introduce and explore a collection of smoothness spaces
(B-spaces). We utilize the B-spaces to prove companion Jackson and Bernstein esti-
mates and then characterize the rates of approximation by interpolation. Even when
applied on uniform triangulations with well-known families of basis functions such as
box splines, these results give a more complete characterization of the approximation
rates than the existing ones involving Besov spaces. Our results can easily be extended
to properly defined multilevel triangulations in Rd, d > 2.

1 Introduction

Nonlinear approximation of functions in dimensions d > 1 is a challenging area, especially if
one moves away from tensor product type approaches in order to more adequately approxi-
mate functions with singularities along curves and with other anisotropies. One of the most
natural tools for approximation is piecewise polynomials over triangulations, and a funda-
mental problem is to characterize the rate of nonlinear approximation in Lp (0 < p ≤ ∞) in
terms of properly defined global smoothness conditions. This problem is disheartening if one
allows the nonlinear approximation to be from any piecewise polynomial over an arbitrary
triangulation. The difficulty stems from the highly nonlinear nature of piecewise polynomials
in dimensions d > 1. For instance, if s1 and s2 are two piecewise polynomials over n triangles
in R2 each, then s1 + s2 is in general a piecewise polynomial over many more than n (even
> n2) pieces. Therefore, the well-known recipe of proving Jackson and Bernstein estimates
and then applying interpolation is useless.

The problem becomes even harder when differentiable piecewise polynomials are needed,
which, for instance, is the case for numerous practical applications of surface modeling and
for the conforming finite element methods for higher order PDEs. Moreover, there is an
intrinsic demand for differentiability of the approximating tools from the point of view of the
nonlinear approximation theory itself. Indeed, this property, together with local reproduction
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of higher degree polynomials, is crucial for the ability to represent higher order smoothness
spaces, such as classical Sobolev or Besov spaces in regular settings (see Theorem 2.15).
The desirable differentiability of the approximating piecewise polynomials, however, leads to
additional difficulties because of the complicated structure of spaces of multivariate splines.
For example, the dimension is not known and stable local bases are impossible in general
already for the space of all piecewise polynomials of degree < k and smoothness r ≥ 1 with
respect to a finite triangulation of a polygonal domain in R2 if k ≤ 3r + 2 [10].

A reasonable alternative to “spline approximation with free triangulations” is to consider
nonlinear n-term approximation from hierarchical sequences of spline bases over multilevel
nested triangulations of Rd. (For the sake of simplicity, we shall restrict ourselves in this
article to the case d = 2.) To explain this concept more precisely, consider a sequence
(Tm)m∈Z of partitions of R2 into triangles with disjoint interiors such that each level Tm is
a refinement of the previous one Tm−1. Let T :=

⋃
m∈Z Tm. We impose certain mild (and

natural) conditions on the triangulations which prevent them from deterioration but still
allow the triangles to change in size, shape, and orientation quickly when moving around at
a given level or through the levels. In particular, triangles with arbitrarily sharp angles may
occur at any location. We denote by Sk,r(Tm) the set of all r-times differentiable piecewise
polynomials with respect to Tm of degree < k. Given a ladder of spaces

· · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ · · · , Sm ⊂ Sk,r(Tm), (1.1)

and bases Φm of Sm, m ∈ Z, we set Φ := ΦT :=
⋃

m∈Z Φm. Using the standard wavelet
terminology, we can describe such a nested sequence of spaces with bases as “spline mul-
tiresolution” (or “multiresolution analysis”).

Consider now the problem for nonlinear (n-term) approximation from the set Σn of all
piecewise polynomials of the form s =

∑n
j=1 cjϕj, where ϕj ∈ Φ may come from different lev-

els and locations. Once a particular multilevel triangulation has been selected, the variety of
piecewise polynomial approximations significantly reduces. However, a great deal of flexibil-
ity is retained, and the problem remains highly nonlinear. For instance, thin and elongated
basis functions are allowed. On the other hand, the advantages of multilevel approximation
methods can be exploited in full.

Our program consists of the following basic steps:

1. We construct hierarchical sequences of bases (Φm)m∈Z on multilevel triangulations sat-
isfying certain requirements of local regularity allowing anisotropically shaped triangles.

2. To quantify the approximation process, we introduce and develop a family (library) of
smoothness spaces Bα

τ (ΦT ) depending on ΦT and as a consequence on the triangulation
T . We call them B-spaces since they have some resemblance to Besov spaces. So, the
idea is to measure the smoothness of the functions using a family of space scales Bα

τ (ΦT )
(which vary with ΦT ) instead of a single scale of smoothness spaces like the scale of
Besov spaces.

3. We develop a coherent theory of nonlinear n-term approximation from ΦT based on
the idea of proving Jackson and Bernstein estimates and interpolation.
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4. We utilize this theory in the development of algorithms for nonlinear piecewise poly-
nomial (spline) approximation which capture the rate of the best approximation.

The logic of the resulting approximation scheme is the following: Suppose {ΦT }T is a
collection of multilevel sequences of (spline) bases as above.

(i) For a given function f , find the “right” triangulation T := Tf such that f exhibits
the most smoothness (sparsity of its representation) when measured via the scale Bα(ΦT ).

(ii) Find an optimal or near optimal representation of f using ΦT . (Note that ΦT is
redundant, i.e., linearly dependent.)

(iii) Using this representation, run an algorithm for n-term Lp-approximation which
achieves the rate of the best n-term approximation.

Naturally, the first step presents the most challenging problem in this scheme. We do
not have a completely satisfactory algorithm for this step. (Note that this problem has a
complete and efficient solution in the simpler case of nonlinear approximation from piecewise
polynomials over dyadic partitions, see [54].) As it will be shown in this article, the other
steps are now well understood and have complete solutions.

The above program has been suggested in [38] and implemented in [38, 39] in the cases
of approximation from discontinuous piecewise polynomials and continuous piecewise linear
functions (r = −1, k ≥ 1, and r = 0, k = 2, where r = −1 corresponds to the discontinuous
case). The simplest example of a hierarchical family of continuous basis functions is the set
of all Courant elements generated by a multilevel nested triangulation T , that is, the set of
all piecewise linear and continuous functions ΦT = {ϕθ} supported on the cells {θ} (each θ
is the union of all triangles of a particular level Tm attached to a vertex), see [38].

In the present article, we develop the theory of nonlinear n-term approximation for basis
families consisting of differentiable piecewise polynomials (r ≥ 1). The construction of
such basis functions suitable for application is hampered by the fact that both the classical
differentiable finite elements [14] and the earlier polynomial spline basis constructions on
arbitrary triangulations [1, 8, 16, 17, 18, 35, 36, 44, 48, 57] are difficult to use for our
purposes, see Remark 4.12 and the discussion in §5.3. The stable local spline bases of [27]
can in principle be used in two variables. However, all other arguments of our article are
basically “dimension independent”, and we refrain here from treating the case d > 2 only
for the sake of simplicity and clarity. Therefore, we build upon the nodal spline bases of
[22], which is the only known approach that produces stable local bases for nested spline
spaces on general triangulations in all dimensions. However, these bases are stable only for
triangulations satisfying (in R2) the minimal angle condition. We extend the construction
of [22] to a wider class of strong locally regular triangulations, see §2 for a definition. Note
that the new basis functions are invariant under affine transforms (see Remark 4.9). In the
case r = 0 our construction reduces to the classical continuous Lagrange finite elements and
is valid for any locally regular triangulation, see Remark 4.13.

A focal point of our development is the characterization of nonlinear n-term approxi-
mation from families of differentiable spline basis functions, including the development of
B-spaces, proof of Jackson and Bernstein estimates, and characterization of the approxima-
tion spaces by interpolation (see §2–§3). In [39], there are three algorithms developed for
nonlinear n-term approximation in Lp (0 < p ≤ ∞) from Courant elements. These can be
immediately implemented for n-term approximation from differentiable spline bases, and it
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can be shown similarly as in [39] that they achieve the rate of the best approximation. We
do not pursue this goal here.

The B-spaces from the present article can be viewed as a generalization of the “ap-
proximation spaces” from §3.4 of [51] (see also the references therein). More precisely, in
the specific setting of “quasi-uniform partitions” and the basis functions used in [51], our
B-spaces coincide with the approximation spaces of [51].

The theory of nonlinear n-term approximation from box splines (on uniform triangula-
tions) has been developed in [29] (p < ∞) and [30] (p = ∞) (for nonlinear spline approxi-
mation in dimension d = 1, see [53]). In these articles, direct, inverse, and characterization
theorems have been proved utilizing certain Besov spaces. Even in this case, our results
which utilize B-spaces (in place of Besov spaces) are more complete since they character-
ize nonlinear n-term box spline approximation for all rates of approximation while in the
above-mentioned articles the rate is restricted by the Besov smoothness of the box splines.

There is an apparent connection between our developments here and multilevel finite
element methods for PDEs, see, e.g., [51]. Therefore, it seems an interesting task to de-
velop finite element algorithms for solving PDEs which achieve the rate of the best n-term
approximation of the solution.

The outline of the article is the following. In §2, we introduce and develop the B-
spaces needed for the characterization of nonlinear approximation for any family of basis
functions with certain properties. In §3, we develop the general theory of nonlinear n-
term approximation from piecewise polynomials, where the global smoothness of functions
is measured by means of our B-spaces. In §4, we construct hierarchical sequences of bases
consisting of differentiable piecewise polynomials. In §5, we review a number of alternative
constructions fitting into our scheme, based on box splines and some other spline bases on
special triangulations. The final §6 is an appendix containing some of the proofs.

Throughout the article, we use the following notation: Lloc
∞ (R2) := C(R2) and L∞(R2) :=

C0(R2) := {f ∈ C(R2) : limx→∞ f(x) = 0}, Lloc
q := Lloc

q (R2), 0 < q ≤ ∞, C := C(R2),
‖ · ‖q := ‖ · ‖Lq(R2), 0 < q ≤ ∞; Πk denotes the set of all algebraic polynomials in two
variables of total degree < k. For any Ω ⊂ R2, 1Ω denotes the characteristic function of Ω
and |Ω| denotes the Lebesgue measure of Ω. Positive constants are denoted by c, c1, . . . (they
may vary at every occurrence), α ≈ β means c1α ≤ β ≤ c2α, and α := β or β =: α stands
for “α is by definition equal to β”.

2 B-spaces generated by spline multiresolution

In the present section, we introduce and explore the smoothness spaces we need for the char-
acterization of nonlinear n-term spline approximation generated by families of differentiable
basis functions over multilevel nested triangulations.

2.1 Triangulations

In our development, we utilize three types of multilevel nested triangulations. We shall
call each of them simply a triangulation, although such a triangulation does not form a

4



single partition of R2 but rather an infinite nested family of partitions (each of them is a
triangulation of R2 in the more commonly used sense).

Let T =
⋃

m∈Z Tm be a set of closed triangles in R2 with levels Tm, m ∈ Z. Denote by
Vm the set of all vertices (nodal points) of triangles from Tm and set V :=

⋃
m∈Z Vm. We say

that T is a triangulation of R2 if the following conditions are fulfilled:

(a) Every level Tm is a set of triangles with disjoint interiors which cover R2: R2 =⋃
4∈Tm

4.

(b) The levels (Tm)m∈Z of T are nested, i.e., Tm+1 is a refinement of Tm obtained by splitting
each 4 ∈ Tm into subtriangles with disjoint interiors called children of 4.

(c) Each triangle 4 ∈ Tm has at least two and at most M0 children in Tm+1, where M0 ≥ 2
is a constant independent of m.

(d) No hanging vertices condition: No vertex of any triangle 4 ∈ Tm lies in the interior of
an edge of another triangle from Tm.

(e) The valence Nv of each vertex v ∈ Vm (the number of triangles 4 ∈ Tm which share v
as a vertex) is ≤ N0, where N0 is a constant.

(f) For any compact K ⊂ R2 and any fixed m ∈ Z, there is a finite collection of triangles
from Tm which cover K.

Note that any two triangles in T either have disjoint interiors or one of them contains the
other. In particular, 4′ ∈ Tm+1 is a child of 4 ∈ Tm (m ∈ Z) if and only if 4′ ⊂ 4. If 4
and 4′ are two different triangles in T and 4′ ⊂ 4, then we say that 4 is an ancestor of
4′, while 4′ is a descendant of 4.

Locally regular triangulations. We call a triangulation T =
⋃

m∈Z Tm a locally regular
triangulation of R2, or briefly an LR-triangulation, if T satisfies the following additional
conditions:

(g) There exists a constant 1/2 ≤ ρ < 1 such that for each 4 ∈ T and any child 4′ ∈ T
of 4,

(1− ρ)|4| ≤ |4′| ≤ ρ|4|. (2.1)

(h1) There exists a constant 0 < δ1 ≤ 1 independent of m such that for any 4′,4′′ ∈ Tm

(m ∈ Z) with a common edge,

δ1 ≤ |4′|/|4′′| ≤ δ−1
1 . (2.2)

By (e), it follows that for any 4′,4′′ ∈ Tm with at least one common vertex, (2.2) holds

with δ1 replaced by δ
N0/2
1 .

Strong locally regular triangulations. We call a triangulation T =
⋃

m∈Z Tm a strong
locally regular triangulation of R2 or briefly an SLR-triangulation, if T satisfies (2.1) and the
following condition that replaces (2.2):
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(h2) There exists a constant 0 < δ2 ≤ 1/2 such that for any 4′,4′′ ∈ Tm (m ∈ Z) sharing
an edge,

|conv (4′ ∪4′′)|/|4′| ≤ δ−1
2 , (2.3)

where conv (G) denotes the convex hull of G ⊂ R2.

Obviously, (2.3) implies (2.2) with δ1 = δ2. Therefore, each SLR-triangulation is an LR-
triangulation.

Regular triangulations. By definition, a triangulation T =
⋃

m∈Z Tm is called a regular
triangulation if T satisfies the following condition:

(h3) There exists a constant β = β(T ) > 0 such that the minimal angle of each triangle
4 ∈ T is ≥ β.

Next, we make a few remarks which will help understand better the nature of the trian-
gulations that we utilize.

(i) For each of the three types of triangulations there is a number of constants that
are assumed fixed. In what follows we refer to them as parameters. Thus the parameters
of an SLR-triangulation are M0, N0, ρ, and δ2. Notice that because of (2.1), we can set
M0 := 1/(1 − ρ) and remove M0 from the list of parameters. However, this would tend to
obscure the actual role of ρ and M0.

(ii) It is a key observation that the collection of all SLR-triangulations with given (fixed)
parameters is invariant under affine transforms. The same is true for LR-triangulations.

(iii) It is easy to see that (2.3) is equivalent to the following condition introduced in [38]:
Affine transform angle condition: There exists a constant β = β(T ), 0 < β ≤ π/3, such

that if 40 ∈ Tm, m ∈ Z, and A : R2 → R2 is an affine transform that maps 40 one-to-one
onto an equilateral reference triangle, then for every 4 ∈ Tm which has at least one common
vertex with 40, we have

min angle (A(4)) ≥ β, (2.4)

where A(4) is the image of 4 by the affine transform A.
The equivalence of the two conditions follows easily from the obvious but important fact

that both conditions are invariant under affine transforms.
Note that we prefer to use (2.3) rather than (2.4) in the definition of SLR-triangulations

in this article since the constant δ2 appears naturally when estimating norms of the basis
functions constructed in §4 (see (4.8)) and also (2.3) is easier to verify in practical situations.

(iv) As we have already mentioned, every SLR-triangulation is an LR-triangulation but
the converse statement is not true. Also, every regular triangulation is an SLR-triangulation
but not the other way around. Counterexamples are given in [38].

(v) The maximal angle (MA) condition

π −max angle (4) ≥ β > 0, 4 ∈ T , (2.5)

known from the finite element method [2] is totally different from our conditions of regular-
ity. It is easy to see that there are SLR-triangulations that do not satisfy MA, and there
are triangulations that satisfy MA and fail to be locally regular. As we shall see below
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(Example 4.7), our construction of stable differentiable basis functions does not extend to
triangulations satisfying the MA condition but failing to be SLR.

(vi) The rate of change of the size of the elements (|4|, min angle (4), and diam(4)) of a
triangle 4 ∈ T as 4 moves away from a fixed triangle 4� ∈ T for different types of triangu-
lations T is explored in [38]. We shall briefly discuss this issue for SLR-triangulations which
are the most important type of triangulations for the present article. An SLR-triangulation
T may have an equilateral (or close to such) triangle 4� at any level Tm with descendants
41 ⊃ 42 ⊃ · · · such that min angle (4j) → 0 as j →∞, and also a sequence (4′

j)
∞
j=0 ⊂ Tm

with 4′
0 = 4 and 4′

j ∩ 4′
j+1 6= ∅ (j = 0, 1, . . .) such that min angle (4′

j) → 0. Conditions
(2.1) and (2.3) suggest geometric rates of change of |4|, min angle (4), and diam(4) as
4 ∈ Tm moves away from a fixed 4� ∈ Tm. In fact, the rate of change is a power of the
minimal number of edges connecting 4 and 4�, see [38].

(vii) We shall need to know what happens with the levels Tm of a triangulation T as
m → −∞. By Lemma 2.1 from [38], for each LR-triangulation T there exists a finite cover
T−∞ of R2 such that either T−∞ = {R2} or T−∞ = (4j

∞)N∞
j=1, N∞ ≤ N0, where each 4j

∞ is
an infinite triangle, i.e., the set of all points on and between two rays which are not collinear
and have a common beginning. Moreover, in the second case, the infinite triangles (4j

∞)N∞
j=1

have a single common vertex and disjoint interiors, and also each triangle 4 ∈ T and all its
ancestors are contained in an infinite triangle 4j

∞ ∈ T−∞.
For more details about multilevel triangulations, see [38].

Some additional notation and preliminaries. We denote by [v1, v2] the interval (straight
line segment) with endpoints v1, v2 and by |e| the length of e = [v1, v2]. Furthermore, we
let [v1, v2, v3] denote the triangle with vertices v1, v2, v3, and let |4| denote the area of
4 = [v1, v2, v3]. Throughout the article, we assume that the vertices v1, v2, v3 of any triangle
[v1, v2, v3] are ordered counterclockwise.

For a triangle 4 ∈ Tm (m ∈ Z), we define level(4) := m.
For any vertex v ∈ Vm, we let star (v) = star 1(v) denote the star of v, i.e., the union of

all triangles 4 ∈ Tm attached to v. Moreover, for each ` ≥ 2, we denote by star `(v) the
union of star `−1(v) and the stars of the vertices of star `−1(v). (Note that star `(v) depends
also on the level m, but we do not indicate this in the notation since it is always clear from
the context what level is meant.) We also set

Ω`
4 := ∪{star `(v) : v ∈ Vm, 4 ⊂ star `(v)}, 4 ∈ Tm. (2.6)

It is easy to check that Ω`
4 := ∪{star 2`−1(v) : v is a vertex of 4}, 4 ∈ Tm.

It is readily seen that there exists a constant c? = c?(N0, `) ≤ N `
0 such that

#{4 ∈ Tm : 4 ⊂ star `(v)} ≤ c?, v ∈ Vm, (2.7)

and hence there exists a constant c?? = c??(N0, `) ≤ 3c?(N0, 2`− 1)− 5 ≤ 3N2`−1
0 such that

#{4 ∈ Tm : 4 ⊂ Ω`
4′} ≤ c??, 4′ ∈ Tm. (2.8)

We denote by Em the set of all edges of triangles of Tm and set E :=
⋃

m∈Z Em. We let
star(e) denote the union of the two triangles attached to e ∈ Em.
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For future use, we state the following inequality:∑
4∈T ,4⊃4′

(|4′|/|4|)γ ≤
∞∑

j=0

ρjγ = c(ρ, γ) < ∞, 4′ ∈ T , γ > 0, (2.9)

which is immediate from the properties of LR-triangulations (|4′| ≤ ρ|4| if 4′ is a child of
4).

2.2 Basis functions: The general setting

Let T =
⋃

m∈Z Tm be a locally regular (or better) triangulation. For m ∈ Z, r ≥ 0, and
k ≥ 1, we denote by Sk,r

m = Sk,r(Tm) the set of all r times differentiable piecewise polynomial
functions of degree < k over Tm, i.e., s ∈ Sk,r

m if and only if s ∈ Cr(R2) and s =
∑

4∈Tm
14·P4

with P4 ∈ Πk. Naturally, Sk,−1
m will denote the set of all piecewise polynomials of degree

< k over Tm which are, in general, discontinuous across the edges from Em.
We assume that for each m ∈ Z there is a subspace Sm of Sk,r

m (r ≥ 0, k ≥ 2) and a
family Φm = {ϕθ : θ ∈ Θm} ⊂ Sm of basis functions satisfying the following conditions:

1. Πk̃ ⊂ Sm for some 1 ≤ k̃ ≤ k (k̃ independent of m).

2. Sm ⊂ Sm+1 (m ∈ Z).

3. For any s ∈ Sm there exists a unique sequence of real coefficients a(s) = (aθ(s))θ∈Θm

such that
s =

∑
θ∈Θm

aθ(s)ϕθ.

(Thus, Φm is a basis for Sm and (aθ(·))θ∈Θm are the dual functionals.)

4. For each θ ∈ Θm there is a vertex v = vθ ∈ Vm such that

supp ϕθ ⊂ star `(v) =: Eθ, (2.10)

‖ϕθ‖L∞(R2) = ‖ϕθ‖L∞(Eθ) ≤ M1, (2.11)

|aθ(s)| ≤ M2‖s‖L∞(Eθ), s ∈ Sm, (2.12)

where ` ≥ 1 and M1, M2 are positive constants, all independent of θ and m.

Let
Φ :=

⋃
m∈Z

Φm and Θ :=
⋃
m∈Z

Θm.

We shall refer to r, k, k̃, `, M1, and M2 as parameters of Φ.
A simple example of a family of basis functions satisfying the above conditions is the set

of well-known Courant elements (continuous piecewise linear basis functions, r = 0, k = 2)
associated with T (see [38]). Concrete constructions of differentiable basis functions (r ≥ 1)
will be discussed below in Sections 4–5.

Although Θ and Θm (m ∈ Z) are simply index sets, in the case of Courant elements,
Θ can be identified as the set of all cells (supports of basis functions). As we shall see in
Sections 4–5, in general, several basis functions of Φm may have the same support. However,
the supports of only ≤ constant of them may overlap:
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Lemma 2.1. There is a constant L depending only on k, `, and N0 such that for any 4 ∈ Tm

(m ∈ Z),
#{θ ∈ Θm : Eθ ⊃ 4} ≤ L, (2.13)

where Eθ is defined in (2.10).

Proof. We have by (2.10) and (2.8)

#{θ ∈ Θm : 4 ⊂ Eθ} ≤ dimSk,r
m |Ω`

4
≤ dimSk,−1(Tm)|Ω`

4

=

(
k + 1

2

)
#{4′ ∈ Tm : 4′ ⊂ Ω`

4}

≤
(

k + 1

2

)
c??.

We shall frequently use the equivalence of different norms of polynomials as stated in the
following lemma (see also [38]).

Lemma 2.2. Let P ∈ Πk, k ≥ 1, and 0 < p, q ≤ ∞.
(a) For any triangle 4 ⊂ R2, ‖P‖Lp(4) ≈ |4|1/p−1/q‖P‖Lq(4) with constants of equiva-

lence depending only on p, q, and k.
(b) If 4 and 4′ are two triangles such that 4′ ⊂ 4 and |4| ≤ c1|4′|, then ‖P‖Lp(4) ≤

c‖P‖Lp(4′) with c = c(p, k, c1).
(c) If 4′ and 4 are two triangles such that 4′ ⊂ 4 and |4′| ≤ c2|4| with 0 < c2 < 1,

then ‖P‖Lp(4) ≤ c‖P‖Lp(4\4′) ≈ |4|1/p−1/q‖P‖Lq(4\4′) with constants depending only on p,
q, k, and c2.

By (2.2) and (2.7), |Eθ| ≈ |4| if 4 ⊂ Eθ, 4 ∈ Tm, and θ ∈ Θm. Using this and
Lemma 2.2, we obtain that, for 0 < p, q ≤ ∞,

‖s‖Lp(Eθ) ≈ |Eθ|1/p−1/q‖s‖Lq(Eθ), s ∈ Sm, θ ∈ Θm, (2.14)

where the constants of equivalence depend on p, q, k, and δ1. In particular, we shall need
(2.14) with s = ϕθ, when it takes the form ‖ϕθ‖p ≈ |Eθ|1/p−1/q‖ϕθ‖q, in view of (2.10).

Lemma 2.3. The bases Φm are Lq-stable for all 0 < q ≤ ∞. That is, if g :=
∑

θ∈Θm
bθϕθ,

where (bθ)θ∈Θm is an arbitrary sequence of real numbers, then

‖g‖q ≈
( ∑

θ∈Θm

‖bθϕθ‖q
q

)1/q

.

Moreover, for any γ ∈ R and 0 < τ ≤ ∞,( ∑
4∈Tm

(|4|γ‖g‖Lq(4))
τ
)1/τ

≈
( ∑

θ∈Θm

(|Eθ|γ‖bθϕθ‖q)
τ
)1/τ

(2.15)

where the constants of equivalence are independent of m and g. In the case q = ∞ (or
τ = ∞) the `q-norm (`τ -norm) above is replaced by the sup-norm as usual.
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Proof. We have to prove only (2.15), since the first statement of the lemma then follows
with γ = 0 and τ = q. For each 4 ∈ Tm, we have by (2.10),

‖g‖Lq(4) = ‖
∑

θ∈Θm, Eθ⊃4

bθϕθ‖q ≤ c
∑

θ∈Θm, Eθ⊃4

‖bθϕθ‖q.

Therefore, by Lemma 2.1 and (2.7),∑
4∈Tm

(|4|γ‖g‖Lq(4))
τ ≤ c

∑
4∈Tm

∑
θ∈Θm, Eθ⊃4

(|Eθ|γ‖bθϕθ‖q)
τ

≤ c
∑

θ∈Θm

(|Eθ|γ‖bθϕθ‖q)
τ .

In the other direction, since Φ is a basis of Sm and g ∈ Sm, we have bθ = aθ(g), θ ∈ Θm,
and hence, by (2.12), (2.14), and (2.11),

‖bθϕθ‖q = ‖aθ(g)ϕθ‖q ≤ c‖g‖L∞(Eθ)‖ϕθ‖q ≤ c‖g‖L∞(Eθ)|Eθ|1/q

≤ c‖g‖Lq(Eθ) ≤ c
∑

4∈Tm,4⊂Eθ

‖g‖Lq(4).

Since |Eθ| ≈ |4| if 4 ∈ Tm and 4 ⊂ Eθ, we have, by (2.7) and Lemma 2.1,∑
θ∈Θm

(|Eθ|γ‖bθϕθ‖q)
τ ≤ c

∑
θ∈Θm

∑
4∈Tm,4⊂Eθ

(|4|γ‖g‖Lq(4))
τ

≤ c
∑
4∈Tm

(|4|γ‖g‖Lq(4))
τ .

Local polynomial approximation is an important tool in spline approximation. For a
function f ∈ Lq(G), G ⊂ R2, we denote by Ek(f, G)q the error of the best Lq-approximation
to f on G from Πk and by ωk(f, G)q the kth local modulus of smoothness of f on G:

Ek(f, G)q := inf
P∈Πk

‖f − P‖Lq(G), ωk(f, G)q := sup
h∈R2

‖∆k
h(f, ·)‖Lq(G).

Whitney’s theorem gives an important relation between these two quantities: If f ∈ Lq(G),
0 < q ≤ ∞, where G = 4 is an arbitrary triangle or G = Ω4 with 4 ∈ T , T an SLR-
triangulation, then

Ek(f, G)q ≤ cωk(f, G)q, (2.16)

where c = c(q, k) if G = 4 and c = c(q, k, δ2) if G = Ω4 (δ2 is from (2.3)). For a proof of
this estimate, see, e.g., the appendix of [38]. Note that this estimate holds for much more
general regions G, but then the constant c = c(G) may become hard to control.

For 0 < q ≤ ∞ and a triangle 4, we let P4,q : Lq(4) → Πk be a projector such that

‖f − P4,q(f)‖Lq(4) ≤ cEk(f,4)q for f ∈ Lq(4). (2.17)

Note that P4,q can be realized as a linear projector if q ≥ 1. For instance, one can utilize
the averaged Taylor polynomial. Namely, suppose 40 is an equilateral reference triangle
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and A is an affine transform mapping 4 onto 40. Let now P (g) ∈ Πk be the averaged
Taylor polynomial of the function g := f ◦ A−1 (the composition of f with A−1) over the
disc B inscribed in 40 (see, e.g., §4.1 of [12]). Clearly, P : Lq(B) → Πk is a linear operator,
‖P (g)‖Lq(B) ≤ c‖g‖Lq(B) (q ≥ 1), and P is a projector, i.e., P (Q) = Q for Q ∈ Πk. From
these properties of P , it follows that for an arbitrary Q ∈ Πk,

‖g − P (g)‖Lq(40) ≤ ‖g −Q‖Lq(40) + ‖Q− P (g)‖Lq(40)

≤ ‖g −Q‖Lq(40) + c‖P (g −Q)‖Lq(B) ≤ c‖g −Q‖Lq(40)

which implies ‖g − P (g)‖Lq(40) ≤ cEk(g,40)q. Substituting back, one easily obtains ‖f −
(P ◦ A)(f)‖Lq(4) ≤ cEk(f,4)q. Finally, we set P4,q := P ◦ A, which is the desired linear
projector of Lq(4) into Πk.

Note that P4,q cannot be realized as a linear operator if 0 < q < 1 (otherwise, we would
be able to construct a nonzero bounded linear functional on Lq).

We define a linear operator Qm : Sk,−1(Tm) → Sm as follows. For each θ ∈ Θm, let
λθ : Sk,−1(Tm)|Eθ

→ R be a linear functional such that

λθ(s|Eθ
) = aθ(s), s ∈ Sm, and

|λθ(f)| ≤ M2‖f‖L∞(Eθ), f ∈ Sk,−1(Tm)|Eθ
.

Such linear functional always exists by the Hahn-Banach theorem. We set

Qm(s) :=
∑

θ∈Θm

λθ(s|Eθ
)ϕθ, s ∈ Sk,−1(Tm). (2.18)

Clearly, Qm(s) = s if s ∈ Sm, and thus Qm is a linear projector of Sk,−1(Tm) into Sm.

Lemma 2.4. For any s ∈ Sk,−1(Tm), 0 < q ≤ ∞, and 4 ∈ Tm,

‖Qm(s)‖Lq(4) ≤ c‖s‖Lq(Ω`
4), (2.19)

with a constant c independent of m, 4, and s.

Proof. By Lemma 2.2 and (2.14), we have

‖ϕθ‖Lq(4) ≤ c1|4|1/q‖ϕθ‖L∞(4) ≤ c1M1|4|1/q,

‖s‖L∞(Eθ) ≤ c2|4|−1/q‖s‖Lq(Eθ),

where c1 and c2 depend only on q and k. Therefore,

‖Qm(s)‖Lq(4) =
∥∥∥ ∑

θ∈Θm
4⊂Eθ

λθ(s|Eθ
)ϕθ

∥∥∥
Lq(4)

≤ c
∑

θ∈Θm
4⊂Eθ

|λθ(s|Eθ
)| ‖ϕθ‖Lq(4)

≤ c
∑

θ∈Θm
4⊂Eθ

‖s‖L∞(Eθ)|4|1/q ≤ c
∑

θ∈Θm
4⊂Eθ

‖s‖Lq(Eθ) ≤ c‖s‖Lq(Ω`
4).
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We now extend Qm to Lloc
q (R2), 0 < q ≤ ∞. Let P4,q : Lq(4) → Πk be a projector

satisfying (2.17) (linear if q ≥ 1). We define

pm,q(f) :=
∑
4∈Tm

14 · P4,q(f) for f ∈ Lloc
q , (2.20)

which is a projector of Lloc
q into Sk,−1

m .
We put

Qm,q(f) := Qm(pm,q(f)) for f ∈ Lloc
q , (2.21)

which is evidently a projector of Lloc
q into Sm (linear if q ≥ 1 and all P4,q are linear).

We next show that Qm,q provides a good local Lq-approximation from Sm. We let S4(f)q

denote the error of Lq(Ω
`
4)-approximation from Sm, i.e.,

S4(f)q := inf
s∈Sm

‖f − s‖Lq(Ω`
4), 4 ∈ Tm. (2.22)

Thus, S4(f)q is the error of approximation to f from restrictions to Ω`
4 of functions from

Sm, which is not necessarily the same as the approximation by all r times differentiable
piecewise polynomials of degree < k defined only on Ω`

4, even if Sm coincides with Sk,r
m .

However, since Πk̃ ⊂ Sm, S4(f)q does not exceed the error of Lq(Ω
`
4)-approximation to f

from polynomials of degree < k̃.

Lemma 2.5. If f ∈ Lloc
q (R2), 0 < q ≤ ∞ (f ∈ C if q = ∞), then

‖f −Qm,q(f)‖Lq(4) ≤ cS4(f)q, 4 ∈ Tm (m ∈ Z),

with c independent of f , m, and 4.

Proof. Let s4 ∈ Sm be such that ‖f − s4‖Lq(Ω`
4) ≤ c S4(f)q. Using the properties of Qm

(see Lemma 2.4), we find

‖f −Qm,q(f)‖Lq(4) = ‖f −Qm(pm,q(f))‖Lq(4)

≤ c‖f − s4‖Lq(4) + c‖s4 −Qm(pm,q(f))‖Lq(4)

≤ cS4(f)q + c‖Qm(s4 − pm,q(f))‖Lq(4)

≤ cS4(f)q + c‖s4 − pm,q(f)‖Lq(Ω`
4)

≤ cS4(f)q + c‖f − s4‖Lq(Ω`
4) + c‖f − pm,q(f)‖Lq(Ω`

4)

≤ cS4(f)q.

Lemma 2.6. (a) If f ∈ Lloc
q (R2), 0 < q ≤ ∞, then for every compact K ⊂ R2,

‖f −Qm,q(f)‖Lq(K) → 0 as m →∞. (2.23)

(b) If f ∈ Lq(R2), 0 < q ≤ ∞, then

‖f −Qm,q(f)‖Lq(R2) → 0 as m →∞. (2.24)

For the proof of this lemma, we need the following result:
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Lemma 2.7. If T is an LR-triangulation, then for each triangle 4� ∈ T

max{diam(4) : 4 ∈ Tm,4 ⊂ 4�} → 0 as m →∞. (2.25)

Proof. Let m0 := level(4�). We set dm := max{diam(4) : 4 ∈ Tm,4 ⊂ 4�}. Since
(dm)∞m=m0

is non-increasing, it suffices to show the existence of a subsequence tending to
zero. Let e be an edge of a triangle 4 ∈ Tm, 4 ⊂ 4�. If it is also an edge of a child of 4,
then the valence of at least one of the two endpoints of e will increase by one at level m + 1.
(Recall that there are always at least two children, so that a child and a parent cannot be the
same triangle.) Therefore, e will be subdivided at least once after at most S := 2(N0−3)+1
steps of refinement. By (2.1), it readily follows that any edge e′ obtained by subdividing e
satisfies |e′| ≤ ρ|e| ≤ ρdm.

We call an edge of a descendant of 4� a cutting edge for 4� if one of its endpoints
is a vertex of 4� and the other lies in the interior of the opposite edge of 4�. Since all
cutting edges must emanate from the same vertex of 4�, there are totally no more than
M := N0 − 3 such edges for 4�. Therefore, no new cutting edges for 4� will be created at
levels m > m0 + M . (It is easy to see that as soon as no new cutting edges are created at a
level m, they cannot be created on any further level.) Using this and the above observation,
we conclude that there will be no cutting edges at levels m > m0 + M + S since they all
will be subdivided. Therefore, each edge e inside 4� at these levels is either a proper part
of an edge of 4� or has both of its endpoints in the interiors of two different edges of 4�, or
it has at least one endpoint in the interior of 4�. In all cases, condition (2.1) ensures that
|e| ≤ ρdm0 , which implies dm1 ≤ ρdm0 , where m1 = m0 + M + S + 1. It is clear now that
there is an increasing sequence {mk}∞k=1 such that

dmk
≤ ρkdm0 → 0 as k →∞,

which completes the proof.

Proof of Lemma 2.6. (a) By condition (f) on triangulations, it suffices to prove the lemma
for K = 4�, an arbitrary triangle from T . By Lemma 2.7,

max{diam(Ω`
4) : 4 ∈ Tm,4 ⊂ Ω`

4�} → 0 as m →∞. (2.26)

Case 1: q < ∞. Fix ε > 0. In view of (2.26), there exists a piecewise constant function
Sε of the form

Sε =
∑

4∈Tmε ,4⊂Ω`
4�

c414, mε ≥ level(4�),

such that
‖f − Sε‖Lq(Ω`

4� ) < ε (2.27)

(choose first g ∈ C(Ω`
4�) so that ‖f − g‖Lq(Ω`

4� ) < ε/2 and then choose Sε so that ‖g −
Sε‖L∞(Ω`

4� ) < ε
2
|Ω`

4�|−1/q). Then Qm,q(Sε) = Qm(Sε).

We have, for m ≥ mε,

‖f −Qm,q(f)‖Lq(4�) ≤ c‖f − Sε‖Lq(4�) + c‖Sε −Qm,q(Sε)‖Lq(4�)

+ c‖Qm(Sε − pm,q(f))‖Lq(4�). (2.28)
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For the third term above, we have

‖Qm(Sε − pm,q(f))‖Lq(4�) ≤ c‖Sε − pm,q(f)‖Lq(Ω`
4� )

≤ c‖f − Sε‖Lq(Ω`
4� ) + c‖f − pm,q(f)‖Lq(Ω`

4� )

≤ c‖f − Sε‖Lq(Ω`
4� ) ≤ cε, (2.29)

where we used Lemma 2.4 and that ‖f − pm,q(f)‖Lq(Ω`
4� ) ≤ c‖f − Sε‖Lq(Ω`

4� ) (m ≥ mε), by

(2.17).
It remains to show that ‖Sε − Qm,q(Sε)‖Lq(4�) ≤ cε for sufficiently large m. Denote

by G the union of the edges of all triangles 4 ∈ Tmε such that 4 ⊂ 4�, and by Gδ :=
{x ∈ R2 : dist(x, G) ≤ δ} the δ-neighborhood of G. Clearly, there exists δ > 0 such that
‖Sε‖Lq(Gδ) < ε.

By (2.26), there exists m1 ≥ mε such that diam(Ω`
4) < δ for all triangles 4 ∈ Tm

(m ≥ m1) such that 4 ⊂ 4� and Ω`
4 ∩ G 6= ∅. Since Π1 ⊂ Sm, Qm(Sε)|4 = Sε|4 if

Sε|Ω`
4

= constant. Using this, we obtain by Lemma 2.5

‖Sε −Qm,q(Sε)‖Lq(4�) ≤ c
( ∑
4∈Tm, Ω`

4∩G6=∅

S4(Sε)
q
q

)1/q

≤ c‖Sε‖Lq(Gδ) ≤ cε.

We substitute this estimate together with (2.27) and (2.29) in (2.28) to obtain

‖f −Qm,q(f)‖Lq(4�) ≤ cε for m ≥ m1.

This implies (2.23) if q < ∞.
Case 2: q = ∞. We have, by Lemma 2.5 and the fact that Π1 ⊂ Sm,

‖f −Qm,q(f)‖L∞(4�) ≤ c max
4∈Tm,4⊂4�

inf
C∈Π1

‖f − C‖L∞(Ω`
4).

Now the result follows, using (2.26) and the fact that f is uniformly continuous on Ω`
4� .

Part (b) of the lemma is immediate from part (a).

We denote S−∞ :=
⋂

m∈Z Sm. As we already mentioned, there are only two possibilities

for T−∞: T−∞ = {R2} or T−∞ = (4j
∞)N∞

j=1, N∞ ≤ N0, where {4j
∞} are infinite triangles with

disjoint interiors and a common vertex which cover R2. If T−∞ = {R2}, then obviously R2

is the union of a sequence of nested triangles and hence each s ∈ S−∞ is a polynomial of
degree < k on R2. Therefore, if T−∞ = {R2}, then S−∞ a subspace of Πk.

Suppose T−∞ = (4j
∞)N∞

j=1 and s ∈ S−∞. Then each triangle 4j
∞ can be represented as

the union of a sequence of nested triangles and hence s is a polynomial of degree < k on 4j
∞.

Therefore, in this case, s ∈ S−∞ implies s ∈ Cr(R2) and s|4j
∞

= Pj|4j
∞

for some Pj ∈ Πk,
j = 1, . . . , N∞.

Furthermore, if s ∈ S−∞ and |{x ∈ R2 : |s(x)| > t}| < ∞ for some t > 0, then s = const.
In particular, if s ∈ S−∞ ∩ Lp (p < ∞), then s ≡ 0.
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2.3 Definition of B-spaces. Equivalent norms. Interpolation.

Suppose T is an LR(or better)-triangulation and Φ = ΦT is a family of differentiable piece-
wise polynomial basis functions over T as described in §2.1–2.2. For the characterization
of nonlinear n-term Lp-approximation from Φ, we need the B-spaces Bα

τ (Φ) which we shall
introduce and explore in this subsection. In fact, the spaces Bα

τ (Φ) depend only on the un-
derlying ladder of spaces · · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ · · · associated with the bases (Φm)m∈Z, but
as it will be shown below these spaces have atomic representations using Φ, which justifies
our notation.

We shall need the B-spaces Bα
τ (Φ) in two cases: (a) 0 < p < ∞ and α > 0, or (b) p = ∞

and α ≥ 1 (see Remark 2.14). In both cases, we define τ from the identity 1/τ = α + 1/p
(1/∞ := 0).

Definition of Bα
τ (Φ) via local approximation. We define the B-space Bα

τ (Φ) as the set
of all functions f ∈ Lτ (R2) such that

‖f‖Bα
τ (Φ) :=

( ∑
4∈T

(|4|−αS4(f)τ )
τ
)1/τ

< ∞, (2.30)

where S4(f)τ is the error of Lτ -approximation of f on Ω`
4 from Sm if 4 ∈ Tm (see (2.22)).

It is readily seen that Bα
τ (Φ) is a linear space, ‖cf‖Bα

τ
= |c|‖f‖Bα

τ
and ‖f + g‖λ

Bα
τ
≤

‖f‖λ
Bα

τ
+ ‖g‖λ

Bα
τ
, with λ := min{τ, 1}. Clearly, see Theorem 2.8, if ‖f‖Bα

τ
= 0, then f = 0

a.e. Therefore, ‖ · ‖Bα
τ

is a norm if τ ≥ 1 and a quasi-norm if τ < 1.

We next define other equivalent norms in Bα
τ (Φ). We define

NΦ,S,η(f) :=
( ∑
4∈T

(|4|1/p−1/ηS4(f)η)
τ
)1/τ

, (2.31)

where we have taken into account that 1/τ := α + 1/p. Thus, NΦ,S,τ (f) = ‖f‖Bα
τ (Φ). More-

over, we shall show that NΦ,S,η(f) ≈ ‖f‖Bα
τ (Φ) if 0 < η < p (see Theorem 2.10).

Definition of norms in Bα
τ (Φ) via basis functions (atomic decomposition). For

f ∈ Lτ (R2), we define

NΦ(f) := inf
f=

∑
θ∈Θ cθϕθ

( ∑
θ∈Θ

(|Eθ|−α‖cθϕθ‖τ )
τ
)1/τ

, (2.32)

where the infimum is over all representations of f in the form f =
∑

θ∈Θ cθϕθ in Lτ . (Note
that the existence of such representations for each f ∈ Lτ follows by Lemma 2.6.) By
Theorem 2.9, ∑

θ∈Θ

(|Eθ|−α‖cθϕθ‖τ )
τ < ∞ implies

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥

p
< ∞,

and hence
∑

θ∈Θ cθϕθ(x) converges absolutely a.e. Therefore, the specific type of convergence
that we use in the definition of NΦ(f) above is not essential. Using (2.14), we have

NΦ(f) ≈ inf
f=

∑
θ∈Θ cθϕθ

( ∑
θ∈Θ

(|Eθ|1/p−1/η‖cθϕθ‖η)
τ
)1/τ
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≈ inf
f=

∑
θ∈Θ cθϕθ

( ∑
θ∈Θ

‖cθϕθ‖τ
p

)1/τ

. (2.33)

Definition of norms in Bα
τ (Φ) via projections. For f ∈ Lloc

η , we set

qm,η(f) := Qm,η(f)−Qm−1,η(f) ∈ Sm, (2.34)

where Qm,η is from (2.21), and let (bθ,η(f))θ∈Θm be defined by the identity

qm,η(f) =
∑

θ∈Θm

bθ,η(f)ϕθ , i.e., bθ,η(f) := aθ(qm,η(f)), θ ∈ Θm. (2.35)

We define

NΦ,Q,τ (f) :=
( ∑

θ∈Θ

(|Eθ|−α‖bθ,τ (f)ϕθ‖τ )
τ
)1/τ

(2.36)

and, more generally (see (2.31)),

NΦ,Q,η(f) :=
( ∑

θ∈Θ

(|Eθ|1/p−1/η‖bθ,η(f)ϕθ‖η)
τ
)1/τ

, 0 < η < p. (2.37)

By Lemmas 2.2–2.3, it follows that

NΦ,Q,η(f) ≈
( ∑

m∈Z

∑
∆∈Tm

(|∆|1/p−1/η‖qm,η(f)‖Lη(∆))
τ
)1/τ

(2.38)

and, for 0 < µ ≤ ∞,

NΦ,Q,η(f) ≈
( ∑

θ∈Θ

(|Eθ|1/p−1/µ‖bθ,η(f)ϕθ‖µ)τ
)1/τ

≈
( ∑

θ∈Θ

‖bθ,η(f)ϕθ‖τ
p

)1/τ

. (2.39)

We shall show (see Theorem 2.10 below) that all of the above norms are equivalent. To
this end, we need the following embedding theorem.

Theorem 2.8. If f ∈ Lτ (R2) and NΦ,Q,η(f) < ∞, 0 < η < p, then

f =
∑
m∈Z

qm,η(f) =
∑
θ∈Θ

bθ,η(f)ϕθ (2.40)

with the series converging absolutely a.e. and on Lp, and

‖f‖p ≤ c
∥∥∥ ∑

m∈Z

|qm,η(f)(·)|
∥∥∥

p
≤ c

∥∥∥∑
θ∈Θ

|bθ,η(f)ϕθ(·)|
∥∥∥

p
≤ cNΦ,Q,η(f) (2.41)

with c independent of f .

The proof of Theorem 2.8 hinges on the following more general embedding theorem,
which is a special case of Theorem 2.5 from [54].
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Theorem 2.9. If 0 < τ < p < ∞, or p = ∞ and 0 < τ ≤ 1, then for any sequence of real
numbers (cθ)θ∈Θ we have ∥∥∥∑

θ∈Θ

|cθϕθ(·)|
∥∥∥

p
≤ c

( ∑
θ∈Θ

‖cθϕθ‖τ
p

)1/τ

, (2.42)

with c independent of (cθ)θ∈Θ.

For completeness, we give the simple proof of this theorem in the appendix (§6).

Proof of Theorem 2.8. We introduce the following abbreviated notation: Qm := Qm,η(f),
qm := qm,η(f), bθ := bθ,η(f), and N(f) := NΦ,Q,η(f). By (2.35), (2.39), and Theorem 2.9, we
have ∥∥∥ ∑

m∈Z

|qm(·)|
∥∥∥

p
≤ c

∥∥∥∑
θ∈Θ

|bθϕθ(·)|
∥∥∥

p
≤ cN(f) < ∞, (2.43)

and hence
∑

m∈Z |qm(x)| < ∞ a.e. On the other hand, by Lemma 2.6, we have ‖f −
Qm‖Lη(∆) → 0 as m →∞ for each 4 ∈ T . The above two facts imply

f −Q0 =
∞∑

m=1

qm absolutely a.e. on R2. (2.44)

We use Lemmas 2.1 and 2.2 to obtain, for 4 ∈ Tm (m ∈ Z),

‖qm‖L∞(4) ≤ c|4|−
1
p‖qm‖Lp(4) ≤ c|4|−

1
p

∑
θ∈Θm, Eθ⊃4

‖bθϕθ‖p ≤ c|4|−
1
p N(f).

Therefore, for a fixed 4′ ∈ Tν (ν ∈ Z),

ν∑
m=−∞

‖qm‖L∞(4′) ≤ cN(f)
∑

4∈T ,4⊃4′

|4|−1/p

= cN(f)|4′|−1/p
∑

4∈T ,4⊃4′

(|4′|/|4|)1/p (2.45)

≤ c|4′|−1/pN(f) < ∞,

where we used (2.9). We set

s∞ := Q0 −
0∑

m=−∞

qm pointwise in R2. (2.46)

From (2.45), it follows that s∞ is well defined and the series in (2.46) converges uniformly
on every compact in R2. Evidently, (2.46) yields s∞ = Qν −

∑ν
m=−∞ qm for each ν ∈ Z.

Fix n ∈ Z. Using Theorem 2.9, we obtain, for ν ≤ n,

inf
s∈Sn

‖s∞ − s‖p ≤ ‖s∞ −Qν‖p =
∥∥∥ ν∑

m=−∞

qm

∥∥∥
p

≤ c
( ∑

θ∈
⋃ν

m=−∞Θm

‖bθϕθ‖τ
p

)1/τ

→ 0 as ν → −∞,
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where we used that (
∑

θ∈Θ ‖bθϕθ‖τ
p)

1/τ ≈ N(f) < ∞. Therefore, s∞ ∈ Sn for every n ∈ Z
and hence s∞ ∈

⋂
n∈Z Sn = S−∞.

Identities (2.44) and (2.46) yield

f − s∞ =
∑
m∈Z

qm,η(f) =
∑
θ∈Θ

bθ,η(f)ϕθ absolutely a.e. (2.47)

and hence, using (2.43),

‖f − s∞‖p ≤ c
∥∥∥ ∑

m∈Z

|qm,η(f)(·)|
∥∥∥

p
≤ c

∥∥∥∑
θ∈Θ

|bθ,η(f)ϕθ(·)|
∥∥∥

p
≤ cNΦ,Q,η(f) < ∞. (2.48)

Since f ∈ Lτ and f − s∞ ∈ Lp, it readily follows that, for t > 0,

|{x : |s∞(x)| > t}| ≤ |{x : |f(x)| > t/2}|+ |{x : |f(x)− s∞(x)| > t/2}|
≤ (t/2)−τ‖f‖τ

τ + (t/2)−p‖f − s∞‖p
p < ∞,

which implies s∞ ≡ 0 (see the end of §2.2). From this, (2.47), and (2.48), we infer (2.40)
and (2.41). The proof is complete.

Theorem 2.10. The norms ‖ ·‖Bα
τ (Φ), NΦ,S,η(·) (0 < η < p), NΦ(·), and NΦ,Q,η(·) (0 < η <

p), defined in (2.30)–(2.32) and (2.37), are equivalent with constants of equivalence depending
only on p, α, η, and the parameters of T and Φ.

Proof. Theorem 2.8 readily implies

NΦ(f) ≤ NΦ,Q,η(f), 0 < η < p, (2.49)

if NΦ,Q,η(f) < ∞.
Suppose NΦ,S,η(f) < ∞. For each 4 ∈ Tm (m ∈ Z), we have, by (2.34) and Lemma 2.5,

‖qm,η(f)‖Lη(4) ≤ c‖f −Qm,η‖Lη(4) + c‖f −Qm−1,η‖Lη(4) ≤ cS4(f)η + cS4�(f)η,

where 4� ⊃ 4, 4� ∈ Tm−1, is the only parent of 4. These estimates readily imply

NΦ,Q,η(f) ≤ NΦ,S,η(f), 0 < η < p. (2.50)

It remains to prove that

NΦ,S,η(f) ≤ NΦ(f), 0 < η < p, (2.51)

provided NΦ(f) < ∞. Evidently, (2.49)–(2.51) imply the desired equivalence of norms.
Notice first that, by Hölder’s inequality, NΦ,S,µ(f) ≤ NΦ,S,η(f) if 0 < µ ≤ η, and hence

it suffices to prove (2.51) only for τ < η < p.
Suppose f ∈ Lτ and 0 < NΦ(f) < ∞. Then it follows by the definition of NΦ(f) that

there exists a sequence (cθ)θ∈Θ such that

f =
∑
θ∈Θ

cθϕθ in Lτ (2.52)
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and
( ∑

θ∈Θ(|Eθ|−α‖cθϕθ‖τ )
τ
)1/τ

≤ 2NΦ(f). Theorem 2.9 implies that in (2.52) we have

absolute convergence a.e. We next estimate

NΦ,S,η(f) :=
( ∑
4∈T

[|4|1/p−1/ηS4(f)η]
τ
)1/τ

, (2.53)

using that S4(g)η = 0 if g ∈ Sm and 4 ∈ Tm, and S4(g)η ≤ ‖g‖Lη(Ω`
4), in general. We

denote fj :=
∑

θ∈Θj
cθϕθ. Fix 4′ ∈ T and assume that 4′ ∈ Tm (m ∈ Z). We have, using

Theorem 2.9 (τ < η < ∞) and (2.14),

S4′(f)τ
η = S4′

( ∞∑
j=m+1

fj

)τ

η
≤

∥∥∥ ∞∑
j=m+1

fj

∥∥∥τ

Lη(Ω`
4′ )

≤
∥∥∥ ∞∑

j=m+1

∑
θ∈Θj , Eθ⊂Ω2`

4′

cθϕθ

∥∥∥τ

Lη(Ω`
4′ )

≤ c
∑

θ∈Θ, Eθ⊂Ω2`
4′

‖cθϕθ‖τ
η

≤ c
∑

θ∈Θ, Eθ⊂Ω2`
4′

|Eθ|τ(1/η−1/τ)‖cθϕθ‖τ
τ .

Substituting this in (2.53), we obtain

NΦ,S,η(f)τ ≤ c
∑
4′∈T

|4′|τ(1/p−1/η)
∑

θ∈Θ, Eθ⊂Ω2`
4′

|Eθ|τ(1/η−1/τ)‖cθϕθ‖τ
τ

= c
∑
4′∈T

∑
θ∈Θ, Eθ⊂Ω2`

4′

(|Eθ|/|4′|)τ(1/η−1/p)(|Eθ|−α‖cθϕθ‖τ )
τ

≤ c
∑
θ∈Θ

(|Eθ|−α‖cθϕθ‖τ )
τ

∑
4′∈T , Ω2`

4′⊃Eθ

(|Eθ|/|4′|)τ(1/η−1/p),

where we once switched the order of summation. By (2.1)–(2.2),

#{4′ ∈ Tν : Ω2`
4′ ⊃ Eθ} ≤ c(N0, `), ν ∈ Z, θ ∈ Θ,

and |Eθ| ≤ cρj|4′| if Eθ ⊂ Ω2`
4′ with 4′ ∈ Tm and θ ∈ Θm+j (m ∈ Z, j ≥ 0). Using these,

we obtain ∑
4′∈T , Ω2`

4′⊃Eθ

(|Eθ|/|4′|)τ(1/η−1/p) ≤ c

∞∑
j=0

ρjτ(1/η−1/p) ≤ c < ∞.

Therefore, NΦ,S,η(f)τ ≤ c
∑

θ∈Θ(|Eθ|−α‖cθϕθ‖τ )
τ ≤ cNΦ(f)τ which yields (2.51).

The following embedding result is quite obvious.

Theorem 2.11. For 0 < α0 < α1 and τj := (αj + 1/p)−1, j = 0, 1, we have the continuous
embedding

Bα1
τ1

(Φ) ⊂ Bα0
τ0

(Φ), (2.54)

i.e., if f ∈ Bα1
τ1

(Φ), then f ∈ Bα0
τ0

(Φ) and ‖f‖B
α0
τ0

(Φ) ≤ c‖f‖B
α1
τ1

(Φ).
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Proof. By Theorem 2.8, if f ∈ Bα1
τ1

(Φ), then f ∈ Lτ1 ∩ Lp ⊂ Lτ0 . Fix 0 < η < p. Then by
(2.39), we have

‖f‖
B

αj
τj

(Φ)
≈

( ∑
θ∈Θ

‖bθ,η(f)ϕθ‖τj
p

)1/τj

, j = 0, 1,

and the theorem follows since τ1 < τ0.

Interpolation of B-spaces. We first recall some basic definitions from the real interpola-
tion method. We refer the reader to [3] and [4] as general references for interpolation theory.
For a pair of quasi-normed spaces X0, X1, embedded in a Hausdorff space, the space X0 +X1

is defined as the collection of all functions f that can be represented as f0 + f1 with f0 ∈ X0

and f1 ∈ X1. The quasi-norm in X0 + X1 is defined by

‖f‖X0+X1 := inf
f=f0+f1

‖f0‖X0 + ‖f1‖X1 .

Peetre’s K-functional is defined for each f ∈ X0 + X1 and t > 0 by

K(f, t) := K(f, t; X0, X1) := inf
f=f0+f1

‖f0‖X0 + t‖f1‖X1 . (2.55)

The real interpolation space (X0, X1)λ,q with 0 < λ < 1 and 0 < q ≤ ∞ is defined as the set
of all f ∈ X0 + X1 such that

‖f‖(X0,X1)λ,q
:= ‖f‖X0+X1 +

(∫ ∞

0

(t−λK(f, t))q dt

t

)1/q

< ∞

with the Lq-norm replaced by the sup-norm if q = ∞.
It is easily seen that if X1 ⊂ X0 (X1 continuously embedded in X0), then K(f, t) ≈ ‖f‖X0

for f ∈ X0 and t ≥ 1 and, consequently,

‖f‖(X0,X1)λ,q
≈ ‖f‖X0 +

( ∞∑
ν=0

[2νλK(f, 2−ν)]q
)1/q

. (2.56)

Theorem 2.12. Suppose 0 < p < ∞ and α0, α1 > 0 or p = ∞ and α0, α1 ≥ 1. Let
τj := (αj + 1/p)−1, j = 0, 1. Then

(Bα0
τ0

(Φ), Bα1
τ1

(Φ))λ,τ = Bα
τ (Φ) (2.57)

with equivalent norms, provided α = (1− λ)α0 + λα1 with 0 < λ < 1 and τ := (α + 1/p)−1.

Proof. We shall use some ideas from [32]. We may assume that α0 < α1. We denote briefly
Bα := Bα

τ (Φ) and Bαj := B
αj
τj (Φ), j = 0, 1. Furthermore, we denote by `q the space of all

sequences a = (aθ)θ∈Θ of real numbers such that

‖a‖`q :=
( ∑

θ∈Θ

|aθ|q
)1/q

< ∞.

We shall utilize the following well-known interpolation result (see, e.g., [3]):

(`τ0 , `τ1)λ,τ = `τ , where 1
τ

= 1−λ
τ0

+ λ
τ1

with 0 < λ < 1. (2.58)
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We fix 0 < η < p. Then we normalize the basis functions from Φ in Lp, that is, ‖ϕθ‖p = 1
(we use the same notation for the normalized basis functions). We also renormalize the dual
functionals λθ in the definition of Qm in (2.18) accordingly.

We denote by b(f) = (bθ(f))θ∈Θ the sequence of numbers defined by (see (2.34)–(2.35))

qm,η(f) =:
∑

θ∈Θm

bθ(f)ϕθ, m ∈ Z (‖ϕθ‖p = 1).

By Theorem 2.8, Theorem 2.10, and (2.39), if f ∈ Bαj (j = 0, 1), then

f
Lp
=

∑
θ∈Θ

bθ(f)ϕθ and ‖f‖Bαj ≈ ‖b(f)‖`τj
, (2.59)

and similarly for f ∈ Bα.
The theorem will follow by (2.58) and the following lemma.

Lemma 2.13. For f ∈ Bα0 + Bα1 = Bα0 (α0 < α1), we have

K(f, t; Bα0 , Bα1) ≈ K(b(f), t; `τ0 , `τ1), t > 0. (2.60)

Proof. We first prove that

K(f, t; Bα0 , Bα1) ≤ cK(b(f), t; `τ0 , `τ1), t > 0. (2.61)

Indeed, let a = (aθ)θ∈Θ ∈ `τ1 . Then a ∈ `τ0 (τ0 > τ1) and since b(f) ∈ `τ0 (f ∈ Bα0), we

have b(f) − a ∈ `τ0 . We define g
Lp

:=
∑

θ∈Θ aθϕθ. Then by Theorem 2.9, g is well defined,
and hence

f − g
Lp
=

∑
θ∈Θ

(bθ(f)− aθ)ϕθ.

By (2.33) and Theorem 2.10, we infer

‖g‖Bα1 ≤ c‖a‖`τ1
and ‖f − g‖Bα0 ≤ c‖b(f)− a‖`τ0

.

Since a ∈ `τ1 is arbitrary, the last two estimates give (2.61).
We next prove that

K(b(f), t; `τ0 , `τ1) ≤ cK(f, t; Bα0 , Bα1), t > 0. (2.62)

Suppose g ∈ Bα1 . Then by Theorem 2.11, g ∈ Bα0 (α0 < α1), and hence f − g ∈ Bα0 . We
shall show that there exists a sequence b(g) = (bθ(g))θ∈Θ ∈ `τ1 such that

g
Lp
=

∑
θ∈Θ

bθ(g)ϕθ with ‖g‖Bα1 ≈ ‖b(f)‖`τ1
(2.63)

and

f − g
Lp
=

∑
θ∈Θ

(bθ(f)− bθ(g))ϕθ with ‖f − g‖Bα0 ≈ ‖b(f)− b(g)‖`τ0
. (2.64)
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Clearly, estimate (2.62) follows by (2.63)–(2.64).
Notice that if η ≥ 1, then b(·) can be realized as a linear operator, and hence b(f − g) =

b(f)− b(g). Therefore, (2.63)–(2.64) are immediate from g ∈ Bα1 and f − g ∈ Bα0 .
Suppose η < 1. For 4 ∈ T , we let P4(f) := P4,η(f) ∈ Πk be the polynomial from the

definition of pm,η(f) in (2.20) (P4(f) is not unique). Thus P4(f) ∈ Πk is such that

‖f − P4(f)‖Lη(4) ≤ cEk(f,4)η. (2.65)

We shall next show that for each 4 ∈ T there exists a polynomial P4(g) ∈ Πk such that

‖g − P4(g)‖Lη(4) ≤ cEk(g,4)η (2.66)

and
‖f − g − (P4(f)− P4(g))‖Lη(4) ≤ cEk(f − g,4)η. (2.67)

We consider two cases.
Case 1: E(f − g) ≤ E(g), where E(·) := Ek(·,4)η. Let R ∈ Πk be such that

‖f − g −R‖ = E(f − g), where ‖ · ‖ := ‖ · ‖Lη(4). (2.68)

We define P4(g) := P4(f)−R ∈ Πk. Then (2.67) holds, by (2.68). We use (2.65) and (2.68)
to obtain

‖g − P4(g)‖ ≤ c‖f − P4(f)‖+ c‖f − g −R‖ ≤ cE(f) + cE(f − g)

≤ cE(f − g) + cE(g) + cE(f − g) ≤ cE(g)

which gives (2.66).
Case 2: E(g) < E(f − g). This time we choose P4(g) ∈ Πk so that ‖g−P4(g)‖ = E(g).

Similarly as above, one can show that

‖f − g − (P4(f)− P4(g))‖ ≤ cE(f − g).

Thus the existence of P4(g) ∈ Πk satisfying (2.66) and (2.67) is established.
Using the polynomials P4(g) from above, we define, for m ∈ Z,

pm,η(g) :=
∑
4∈Tm

14 · P4(g) and pm,η(f − g) :=
∑
4∈Tm

14 · (P4(f)− P4(g)).

Furthermore, as in (2.21) and (2.34), we define

Qm,η(g) := Qm(pm,η(g)) and qm,η(g) := Qm,η(g)−Qm−1,η(g).

We define Qm,η(f − g) and qm,η(f − g) in the same way. Finally, we define b(g) = (bθ(g))θ∈Θ

and b(f − g) = (bθ(f − g))θ∈Θ from

qm,η(g) =:
∑

θ∈Θm

bθ(g)ϕθ and qm,η(f − g) =:
∑

θ∈Θm

bθ(f − g)ϕθ, m ∈ Z.

Evidently, pm,η(f − g) = pm,η(f)− pm,η(g) and since Qm is a linear operator, it follows that
b(f − g) = b(f)−b(g). From this and the fact that P4(g) satisfies (2.66) and (2.67), using
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Theorem 2.8, Theorem 2.10, and (2.39), we obtain that b(g) satisfies (2.63) and (2.64), and
hence (2.62) holds. This completes the proof of the lemma.

By Lemma 2.13, (2.58), and (2.59) (with αj replaced by α), we obtain

‖f‖(Bα0 ,Bα1 )λ,τ
≈ ‖b(f)‖(`τ0 ,`τ1 )λ,τ

≈ ‖b(f)‖`τ ≈ ‖f‖Bα .

Thus the proof of Theorem 2.12 is complete.

Several remarks are in order.

Remark 2.14. (a) If p = ∞, then the B-space Bα
τ (Φ) (τ := 1/α) is useful for our goals only

if α ≥ 1. The reason for this is that Bα
τ (Φ) is not embedded in C if α < 1. Indeed, consider

the function f :=
∑∞

j=1 j−1ϕθj
where θj ∈ Θmj

, m1 < m2 < · · ·, and {ϕθj
} are Courant

(or other) elements which overlap so that ‖f‖∞ ≈
∑∞

j=1 j−1 = ∞. On the other hand (see

(2.33)) |f |Bα
τ (Φ) ≤ c(

∑∞
j=1 j−τ )1/τ < ∞, since τ := 1/α > 1.

(b) We introduced the B-norms NΦ,S,η(·) and NΦ,Q,η(·) with 0 < η < p (see (2.31) and
(2.37)) for the following reason. As we shall see in §3, normally α > 1, and hence τ < 1,
which compels us to work in Lτ with τ < 1 that is not a very friendly space. At the same
time, if p > 1 we can choose 1 ≤ η < p and work in Lη instead.

(c) We also want to explain why we introduce the B-spaces over locally regular (or
better) triangulations but not over more general ones. The reason is that if we relax the
main conditions (2.1)–(2.2) in the definition of LR-triangulations, then we can hardly work
with the B-spaces. In particular, the equivalence of the norms (see Theorem 2.10) fails to
exist, which makes it impossible to prove all the results from §3.

General B-spaces. Given an LR(or better)-triangulation T and a family of basis functions
Φ = ΦT over T as in §2.2, we define the more general B-space Bα

pq(Φ) = Bα
pq(S), α > 0,

0 < p, q ≤ ∞, as the set of all f ∈ Lp(R2) such that

‖f‖Bα
pq(Φ) := ‖f‖p +

(∑
m∈Z

[
2mα

( ∑
4∈T , 2−m≤|4|<2−m+1

S4(f)p
p

)1/p]q)1/q

< ∞,

with the `q-norm replaced by the sup-norm if q = ∞, where S4(f)p is as above (see (2.22)).
Evidently, Bα

p (Φ) = Bα
pp(Φ). In going further, the norms in Bα

τ (Φ) from (2.31), (2.32), and
(2.37) can be generalized accordingly. In the present article, we do not explore the B-spaces
in such generality because the space scale Bα

τ (Φ) is sufficient for our goal of characterizing
the approximation rates of nonlinear n-term approximation from differentiable piecewise
polynomials.

Fat B-spaces: The link to Besov spaces. Suppose T is an arbitrary SLR-triangulation
of R2. The fat B-space Bαk

τ (T ) with k ≥ 1 and α, τ as in the definition of Bα
τ (T ) (§2.3) is

defined (see [38]) as the set of all functions f ∈ Lτ (R2) such that

‖f‖Bαk
τ (T ) :=

( ∑
4∈T

[|4|−αEk(f, Ω4)τ ]
τ
)1/τ

≈
( ∑
4∈T

[|4|−αωk(f, Ω4)τ ]
τ
)1/τ

< ∞,
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where Ek(f, Ω4)τ is the error of Lτ -approximation to f on Ω4 := Ω1
4 from Πk and ωk(f, Ω4)τ

is the local Lτ -modulus of smoothness of f on Ω4. (Recall that Ek(f, Ω4)τ ≈ ωk(f, Ω4)τ by
Whitney’s theorem (2.16), since T is an SLR-triangulation.) Furthermore, other equivalent
norms in Bαk

τ (T ) as well as more general fat B-spaces Bαk
pq (T ) can be defined as in [38].

Suppose that Φ = ΦT is a hierarchical family of basis functions over T as described in
§2.2. Assuming Πk ⊂ Sm ⊂ Sk,r

m (T ) for all m ∈ Z (that is, k̃ = k in the notation of §2.2),
we have for f ∈ Lτ and ∆ ∈ Tm,

Ek(f, Ω`
∆)τ ≤ c

∑
∆′∈Tm, ∆′⊂Ω`

∆

Ek(f, Ω∆′)τ , which implies ‖f‖Bα
τ (ΦT ) ≤ c‖f‖Bαk

τ (T ).

Therefore, the space Bαk
τ (T ) is a good candidate to replace Bα

τ (Φ) in nonlinear spline approx-
imation, but this is only possible if 0 < α < α0 for some α0 < ∞, which we do not compute
here. The problem with the space Bαk

τ (T ) is that ‖ϕθ‖Bαk
τ (T ) < ∞ only for 0 < α < α0. (See

Theorem 2.15 in the case of regular triangulations.) Therefore, the basic norm equivalence
results (Theorem 2.10) hold only for a restricted range of α. Thus, Bαk

τ (T ) is simply not
the “right” space for the specific problem at hand if α ≥ α0. It is too “fat”. However, the
spaces Bαk

τ (T ) are still noteworthy since they are less sensitive to small perturbations of the
triangulation T and are technically easier. We believe that a situation will present itself
when they will be the “right” spaces.

Comparison between regular B-spaces and Besov spaces. We begin by recalling the
definition of the classical Besov space by moduli of smoothness. So, the space Bs

q(Lp) :=
Bs

q(Lp(R2)), s > 0, 1 ≤ p, q ≤ ∞, is defined as the set of all functions f ∈ Lp(R2) such that

‖f‖Bs
q(Lp) :=

(∫ ∞

0

(t−sωk(f, t)p)
q dt

t

)1/q

< ∞ (2.69)

(‖f‖p is usually added to the right-hand side above), where k := [s] + 1 and ωk(f, t)p is
the k-th modulus of smoothness of f in Lp(R2), i.e., ωk(f, t)p := sup|h|≤t ‖∆k

h(f, ·)‖p. It is
well-known that whenever 1 ≤ p ≤ ∞, if in (2.69) k is replaced by any other k > s, then
the resulting space would be the same with an equivalent norm. However, the situation is
totally different when p < 1 and this is a reason for introducing k as a parameter of the
Besov spaces in the following.

As elsewhere, let us assume that 0 < p < ∞ and α > 0 or p = ∞ and α ≥ 1, and in
both cases 1/τ := α + 1/p. Let k ≥ 1. We define the space B2α,k

τ (Lτ ) as the Besov space
B2α

τ (Lτ ) (see (2.69)), where k and α are independent of each other. These are the spaces
that naturally occur in nonlinear spline approximation (see [53]).

Suppose that T ∗ is a regular triangulation of R2 (see §2.1). Then as shown in [38],
Bαk

τ (T ∗) = B2α,k
τ (Lτ ) with equivalent norms. (Notice that the smoothness parameters of

B-spaces and Besov spaces are normalized differently, α corresponds to 2α.)
Let us now assume that ΦT ∗ = {ϕθ} is a family of basis functions over T ∗ as in §2.2 such

that Πk ⊂ Sm ⊂ Sk,r
m (m ∈ Z), where r ≥ 0 and k > r. As we mentioned above, the fat

B-space Bαk
τ (T ∗) and hence the Besov space B2α,k

τ (Lτ ) is a good candidate to replace the
B-space Bα

τ (ΦT ∗) in nonlinear n-term approximation from ΦT ∗ . We next spell out the exact
conditions for equivalence of the corresponding norms.
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Theorem 2.15. Under the above assumptions, if 0 < α < r + 1 + 1/p, then

B2α,k
τ (Lτ ) = Bα

τ (ΦT ∗) (2.70)

with equivalent norms. Furthermore, if a single basis function ϕθ ∈ ΦT ∗ does not belong to
Cr+1, then the equivalence is no longer true when α ≥ r + 1 + 1/p. More precisely, for such
ϕθ and α, ‖ϕθ‖B2α,k

τ (Lτ ) = ∞ while ‖ϕθ‖Bα
τ (ΦT ∗ ) ≈ ‖ϕθ‖p.

Proof. As we mentioned before, ‖f‖Bα
τ (ΦT ∗ ) ≤ c‖f‖Bαk

τ (T ∗) for f ∈ Bαk
τ (T ∗), and also we

have ‖f‖Bαk
τ (T ∗) ≈ ‖f‖B2α,k

τ (Lτ ), exactly as in Theorem 2.25 from [38]. Therefore,

‖f‖Bα
τ (ΦT ∗ ) ≤ c‖f‖B2α,k

τ (Lτ ) for f ∈ B2α,k
τ (Lτ ).

The proof of the reverse estimate follows in the footsteps of the proof of Theorem 2.28
from [38] and we shall indicate only the differences. Using the conditions on ΦT ∗ and the fact
that T ∗ is regular, one can show by straightforward calculations that, for each θ ∈ Θ(T ∗),

ωk(ϕθ, t)
τ
τ ≤

{
c|Eθ|

1
2
(1−(r+1)τ) · t1+(r+1)τ if 0 < t < |Eθ|1/2,

c|Eθ| if t ≥ |Eθ|1/2.
(2.71)

Moreover, both sides of (2.71) are equivalent if ϕθ does not belong to Cr+1. In going further,
one uses (2.71) exactly as in [38] to complete the proof of the theorem.

Remark 2.16. An interesting situation occurs when p = ∞ and r = 0. Then there is no α
for which (2.70) holds. This is the case when ΦT ∗ is the set of all Courant elements generated
by T ∗ (a regular triangulation).

Comparison between different B-spaces and Besov spaces. Suppose ΦT is a family of
basis functions associated with an SLR-triangulation T which allows arbitrarily sharp angles.
Then some extremely “skinny” basis functions ϕθ ∈ ΦT (with elongated level curves) will
occur. It is easily seen that such functions have huge Besov norms (see [38]) compared to their
Lp-norms as well as their B(ΦT )-norms (see Theorem 3.2 below) for any smoothness α > 0.
Therefore, the B-spaces for such a triangulation are essentially different from Besov spaces.
The situation is quite similar when comparing two B-spaces over different triangulations.
Therefore, the B-spaces change substantially with the triangulations, thus making the search
for the “right” triangulation mentioned in the introduction a meaningful task. In contrast
to this, the standard Besov spaces can be used only to characterize the approximation power
of piecewise polynomials over regular triangulations.

B-spaces over compact domains. B-spaces can be introduced on an arbitrary compact
polygonal domain E ⊂ R2. A substantial difference would be in assuming that each tri-
angulation T of E is of the form T =

⋃∞
m=0 Tm, where T0 is an initial level (triangulation

of E) and T1, T2, . . . are consecutive refinements of T0. This approach is important for the
applications (see [39]).

B-spaces in dimensions d > 2. Multilevel triangulations and B-spaces can be introduced
in much the same way in dimensions d > 2. Of course, then the triangles should be replaced
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by simplices, thus making some geometric argumentation of this section essentially more
involved. In particular, the property (e) of a multilevel triangulation should be extended
to all faces of the simplices in Tm, thus saying that there are at most N0 simplices in Tm

attached to a particular face. The “no hanging vertices” condition (d) should be replaced by
the condition that each facet of a simplex in Tm is a common facet of exactly two simplices
in Tm. The minimal angle condition appearing in the definition of regular triangulations and
in (2.4) should be replaced by the shape regularity condition that postulates the existence of
an upper bound on the ratio of the diameter of a simplex and the diameter of the inscribed
sphere. In conditions (2.1)–(2.3) the area should be replaced by the d-dimensional volume.

B-spaces in dimension d = 1. B-spaces can be introduced in the univariate case, but
none will give anything new and hence they are not needed. The key fact is that, in the
univariate case, the Bernstein inequality involving Besov spaces holds with no restrictions
on the smoothness parameter α < ∞ (see [53]).

In a nut shell, the essence of the spaces we considered in this section is the following.
The Besov spaces are based on local polynomial approximation over regular multilevel tri-
angulations, which is explicitly shown in [38]. When the regular triangulations are replaced
by SLR-triangulations, then the Besov spaces become fat B-spaces, which further evolve to
B-spaces when the local polynomial approximation is replaced by local spline approximation.

The B-spaces are closely related to certain anisotropic maximal functions, nonclassical
differentiability, and other problems, which are beyond the scope of this article.

3 Nonlinear n-term spline approximation

In this section, we assume that T is a locally regular (or better) triangulation of R2. Also,
we assume that Φ = ΦT is a hierarchical family of basis functions over T (see §2.2). Notice
that Φ is not a basis; Φ is redundant. We consider nonlinear n-term approximation from
Φ in Lp(R2) (0 < p ≤ ∞), where we identify L∞(R2) as C0(R2). We let Σn(Φ) denote the
nonlinear set consisting of all splines s of the form

s =
∑
θ∈M

aθϕθ,

where M⊂ Θ(T ), #M≤ n, and M may vary with s. We denote by σn(f, Φ)p the error of
Lp-approximation to f ∈ Lp(R2) from Σn(Φ):

σn(f, Φ)p := inf
s∈Σn(Φ)

‖f − s‖p.

Our goal is to characterize the approximation spaces generated by nonlinear n-term ap-
proximation from Φ. To this end we next prove a pair of companion Jackson and Bernstein
estimates. We shall utilize the B-spaces Bα

τ (Φ) introduced in §2. We assume that 0 < p < ∞
and α > 0, or p = ∞ and α ≥ 1. In both cases, 1/τ := α + 1/p (1/∞ := 0).

Theorem 3.1. [Jackson estimate] If f ∈ Bα
τ (Φ), then

σn(f, Φ)p ≤ cn−α‖f‖Bα
τ (Φ) (3.1)

with c independent of f and n.
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In the case 0 < p < ∞, this theorem follows by the general Theorem 3.4 from [38], in
view of the results of § 2. For completeness, we shall give its short proof in the appendix.
The proof when p = ∞ can be carried out as the proof of Theorem 4.1 from [39] but is a
little longer and we shall skip it.

Theorem 3.2. [Bernstein estimate] If s ∈ Σn(Φ), then

‖s‖Bα
τ (Φ) ≤ cnα‖s‖p (3.2)

with c independent of s and n.

The proof of this (vital for our development) theorem utilizes the ideas of the proofs of
Theorem 3.6 from [38] (0 < p < ∞) and Theorem 4.2 from [39] (p = ∞) but is not identical
to them. We shall give it in the appendix.

For a fixed T and Φ := ΦT , we set K(f, t) := K(f, t; Lp, B
α
τ (Φ)) (Lp := C0 if p = ∞), see

(2.55). The Jackson and Bernstein estimates from Theorems 3.1 and 3.2 imply in a standard
way (see, e.g., [55]) the following direct and inverse estimates: For any α > 0, if f ∈ Lp,
then

σn(f, Φ)p ≤ cK(f, n−α) (3.3)

and

K(f, n−α) ≤ cn−α
(
‖f‖p +

[ n∑
ν=1

1

ν
(νασν(f, Φ)p)

µ
]1/µ)

, (3.4)

where µ := min{p, 1} and c is independent of f and n.
An immediate consequence of (3.3) and (3.4) is that σn(f, Φ)p = O(n−γ), 0 < γ < α, if

and only if K(f, n−α) = O(n−γ). More generally, these estimates enable us to characterize
the approximation spaces generated by nonlinear n-term approximation from Φ. We define
the approximation space Aγ

q := Aγ
q (Φ, Lp), α > 0, 0 < q ≤ ∞, as the set of all functions

f ∈ Lp such that

‖f‖Aγ
q

:= ‖f‖p +
( ∞∑

n=1

(nγσn(f, Φ)p)
q 1

n

)1/q

< ∞

with the `q-norm replaced by the sup-norm if q = ∞ as usual.
The direct and inverse estimates (3.3)–(3.4) readily imply (see, e.g., [55]) the following

characterization of the approximation spaces:

Theorem 3.3. If 0 < γ < α and 0 < q ≤ ∞, then

Aγ
q (Φ, Lp) = (Lp, B

α
τ (Φ)) γ

α
,q

with equivalent norms.

In one specific case the interpolation spaces can be identified as B-spaces.

Theorem 3.4. Suppose 0 < p < ∞ and α > 0 or p = ∞ and α > 1, and let τ := (α+1/p)−1.
Then

Aα
τ (Φ, Lp) = Bα

τ (Φ) (3.5)

with equivalent norms.
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The following interpolation result is immediate from Theorems 3.3 and 3.4.

Corollary 3.5. Suppose p, α, and τ =: τ(α) are as in the hypothesis of Theorem 3.4, and
let β > α and τ(β) := (β + 1/p)−1. Then

(Lp, B
β
τ(β)(Φ))α

β
,τ(α) = Bα

τ(α)(Φ) (3.6)

with equivalent norms.

Proof of Theorem 3.4. We shall employ the idea of the proof of Theorem 3.3 in [30].
We shall use abbreviated notation: Aα

q := Aα
q (Φ, Lp), Bα

τ := Bα
τ (Φ), and the alike. For any

β > 0, we denote τ(β) := (β + 1/p)−1.
We first prove the following continuous embedding:

Aβ
µ ⊂ Bβ

τ(β) with µ := min{τ(β), 1}. (3.7)

Indeed, suppose f ∈ Aβ
µ and let sm ∈ Σm be such that

‖f − sm‖p ≤ 2σm(f)p. (3.8)

Since σm(f)p → 0, we have f = s1 +
∑∞

ν=1(s2ν − s2ν−1) in Lp (uniformly if p = ∞), and
hence (µ ≤ 1)

‖f‖µ

Bβ
τ(β)

≤ ‖s1‖µ

Bβ
τ(β)

+
∞∑

ν=1

‖s2ν − s2ν−1‖µ

Bβ
τ(β)

. (3.9)

We apply the Bernstein estimate from Theorem 3.2 to s2ν − s2ν−1 ∈ Σ2ν+1 and use (3.8) to
obtain

‖s2ν − s2ν−1‖Bβ
τ(β)

≤ c2νβ‖s2ν − s2ν−1‖p ≤ c2νβ(σ2ν (f)p + σ2ν−1(f)p)

and similarly ‖s1‖Bβ
τ(β)

≤ c(‖f‖p + σ1(f)p). Using these in (3.9) implies

‖f‖µ

Bβ
τ(β)

≤ c‖f‖µ
p + c

∞∑
ν=1

(2νβσ2ν (f)p)
µ ≤ c‖f‖µ

Aβ
µ
,

which is (3.7).
Second, the Jackson estimate from Theorem 3.1 gives the continuous embedding

Bβ
τ(β) ⊂ Aβ

∞. (3.10)

A third important ingredient in this proof is the fact that the approximation spaces Aα
q

are invariant under interpolation (see [31, 52]): If α0, α1 > 0 and 0 < q1, q2, q ≤ ∞, then

(Aα0
q0

, Aα1
q1

)λ,q = Aα
q , where α = (1− λ)α0 + λα1 with 0 < λ < 1. (3.11)

Now we choose α0 and α1 so that 0 < α0 < α < α1 (α0 := 1 if p = ∞). Also, we
select 0 < λ < 1 so that α = (1 − λ)α0 + λα1. Furthermore, we set τj := (αj + 1/p)−1 and
µj := min{τj, 1}, j = 0, 1. By Theorem 2.12, we have

(Bα0
τ0

, Bα1
τ1

)λ,τ = Bα
τ .
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We use this, (3.7), (3.10), and (3.11) to obtain the following continuous embeddings:

Aα
τ = (Aα0

µ0
, Aα1

µ1
)λ,τ ⊂ Bα

τ = (Bα0
τ0

, Bα1
τ1

)λ,τ ⊂ (Aα0
∞ , Aα1

∞ )λ,τ = Aα
τ ,

which give (3.5).

Algorithms. In [39], there are three algorithms developed for n-term Courant element
approximation in Lp (0 < p ≤ ∞). These algorithms can be immediately adapted to non-
linear n-term approximation from any family of differentiable spline basis functions ΦT on
a compact polygonal domain E ⊂ R2. It is an integral part of our program that using
the machinery of the B-spaces, Jackson and Bernstein estimates, interpolation, etc. devel-
oped in this article, we can prove that these algorithms achieve the rate of the best n-term
approximation. This aspect of our theory will not be elaborated on here (see [39]).

Approximation from the libraries {ΦT }T . An important element of our concept for
nonlinear spline approximation is the introduction of another level of nonlinearity by allowing
the triangulation T to vary. For a given SRL(or LR)-triangulation T , let ΦT be a family of
spline basis functions like the ones considered in §2.2. Now without changing the nature of
the basis elements from ΦT , we let T vary and obtain a collection (library) of basis families
{ΦT }T . We denote

σn(f)p := inf
T

σn(f, ΦT )p,

where the infimum is taken over all SLR-triangulations T with fixed parameters and we also
assume that the parameters of ΦT are fixed. The following theorem is immediate from the
Jackson estimate in Theorem 3.1. We shall assume again that 0 < p < ∞ and α > 0, or
p = ∞ and α ≥ 1, and in both cases, 1/τ := α + 1/p.

Theorem 3.6. If infT ‖f‖Bα
τ (ΦT ) < ∞, then

σn(f)p ≤ cn−α inf
T
‖f‖Bα

τ (ΦT )

with c depending only on p, α, and the parameters of T and ΦT .

The ultimate open problem here is to characterize the approximation spaces generated
by {σn(f)p} for a given library of basis functions {ΦT }T .

Global smoothness of functions: How to measure it? Here we come to one of the fun-
damental questions in approximation theory (and not only there) of how the global smooth-
ness of the functions should be measured.

In the case of nonlinear n-term Lp-approximation from a single basis family ΦT , a function
f should be considered of smoothness α > 0 if ‖f‖Bα

τ (ΦT ) < ∞. Then the rate of n-
term Lp-approximation of f from ΦT is O(n−α) (roughly). If we consider nonlinear n-term
approximation from a given library of basis families {ΦT }T (T is allowed to vary), then a
function f should naturally be considered of smoothness α > 0 if infT ‖f‖Bα

τ (ΦT ) < ∞, which
means that there exists a triangulation T := Tf such that ‖f‖Bα

τ (ΦT ) < ∞. Then the rate
of n-term Lp-approximation of f from the library {ΦT }T is O(n−α). It is crystal clear to us
that no single (super) space can do the job in this case. It is an open problem to develop an
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algorithm for finding, for a given function f , an optimal (or near optimal) triangulation, i.e.,
a triangulation Tf for which f exhibits maximal (near maximal) smoothness, using the space
scale Bα

τ (ΦTf
). It is also an open problem whether, for a given function f ∈ Lp, there exists

a single triangulation Tf such that, for all n ≥ 1, the n-term Lp-approximation of f from
the library {ΦT }T can be realized by n-term approximation from ΦTf

and, consequently,
characterized by the B-spaces Bα

τ (ΦTf
) via interpolation.

Another important related issue for discussion is the smoothness of the approximating
tool ΦT := {ϕθ} (T fixed). Clearly, in nonlinear approximation, there is no saturation,
which means that the corresponding approximation spaces Aγ

q are nontrivial for all 0 < γ <
∞. Therefore, the smoothness spaces to be used should naturally be designed so that the
functions {ϕθ} are infinitely smooth with respect to these spaces. This has been one of
the guiding principles to us in constructing the B-spaces. Thus each basis function ϕθ ∈ Φ
is infinitely smooth with respect to the scale of B-spaces Bα

τ (Φ), which is reflected in the
fact that ‖ϕθ‖Bα

τ (Φ) ≤ c‖ϕθ‖p for 0 < α < ∞ (see Theorem 3.2). This makes it possible
that in our direct, inverse, and characterization theorems we impose no restrictions on the
rate of approximation α < ∞ (see Theorems 3.1–3.4). Also, this explains the complete
success of Besov spaces in univariate nonlinear spline approximation (see [53]) and why Besov
spaces are not quite suitable in dimensions d > 1. The latter remark needs a few words of
explanation: First, by allowing triangulations with arbitrarily sharp angles, we allow very
“skinny” basis functions with huge Besov norms compared to their Lp-norms (see [38]), which
precludes the use of Besov spaces in such situations. Second, even when working on regular
triangulations, the use of Besov spaces is restricted by the Besov smoothness (regularity) of
the basis functions (see Theorem 2.15), while B-spaces impose no restrictions on the rates
of approximation.

Spline wavelets (prewavelets) and frames. In the case of uniform triangulations, spline
wavelets play an essential role in practical algorithms. It would be desirable to have com-
pactly supported wavelet (prewavelet) bases or frames generated by (differentiable) spline
basis families ΦT over LR- or SLR-triangulations T . To our knowledge there are no con-
structions of this type available, as for now. Moreover, there is some evidence that such
constructions would be too complicated and impractical for general triangulations. However,
continuous spline prewavelets on regular triangulations with uniform dyadic refinements are
available from [21, 34, 58]. (See also [47].) Evidently, nonlinear n-term approximation from
compactly supported spline wavelets or frames, generated by Courant elements or a smoother
spline basis family ΦT , cannot give a better rate of convergence than nonlinear n-term ap-
proximation from ΦT . We hope that efficient algorithms for n-term approximation from
such families may provide a substitute for wavelet methods in situations where the latter are
difficult to apply and, in particular, for approximation in L∞.

Adaptive tree approximation. This is a method for nonlinear approximation from piece-
wise polynomials on (single level) triangular partitions, which has been developed recently
in [5, 7]. In [5], algorithms are developed which achieve the rate of the best adaptive tree
approximation, while in [7] the rates of approximation are related to the smoothness of
the functions in terms of Besov spaces. There are substantial distinctions between this ap-
proach and the one in the present article. Namely, the approximation schemes from [5, 7]
use “single level” piecewise polynomials on triangulations which satisfy the minimal angle
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condition, while here we use multilevel (multiscale) piecewise polynomial bases over triangu-
lations which allow arbitrarily sharp angles. Therefore, the notion of “best approximation”
in [5, 7] is quite different from the one used here. Substantial progress has been made in [6]
in applying the adaptive tree approximation method for numerical (finite element) solution
of PDEs.

4 Construction of differentiable basis functions

In this section, we give, for any SLR-triangulation, a construction of differentiable spline
basis in Sk,r

m , r ≥ 1, k > 4r + 1, satisfying the conditions from §2.2. In general, we follow
the scheme of [22], however, appropriate modifications in the construction and in the proofs
have to be made since we do not assume that the triangulation is regular. In particular,
we replace the standard normal derivatives to the edges by derivatives in affine invariant
directions, see the definition of Dµ(e,4) below. Since our construction is also applicable to
non-nested triangulations (see Remark 4.8), we formulate the results here for a fixed level Tm

assuming only conditions (a), (d)–(f), and (2.3) of §2.1 and making sure that the constants
in (2.11) and (2.12) depend only on k, r,N0, and δ2.

Nodal functionals. As before, let Vm and Em be the sets of all vertices and all edges
of Tm, respectively. We shall describe the basis functions for Sm = Sk,r(Tm), k > 4r + 1,
with the aid of the so-called nodal functionals defined on Sk,r(Tm). These are certain linear
functionals involving the values of the splines and their derivatives at specific points in R2.
The functional corresponding to the simple evaluation of the splines at ξ ∈ R2 will be denoted
by δξ.

Of particular interest as evaluation points are the vertices v ∈ Vm, where we also need the
derivative evaluation functionals of type δvD

α
e with e being any edge in Em emanating from

v, and δvD
α
e1

Dβ
e2

, where e1, e2 are adjacent edges emanating from v. Here Dα
[v,ṽ]s denotes the

derivative of s of order α in the direction of the interval [v, ṽ], weighted with the length of
[v, ṽ], namely,

Dα
[v,ṽ]s :=

(
(ṽx − vx)Dx + (ṽy − vy)Dy

)α

s,

v = (vx, vy), ṽ = (ṽx, ṽy).

Note that, due to this weighting, the corresponding Markov inequality reads as follows:

‖Dα
[v,ṽ]p‖L∞[v,ṽ] ≤ c‖p‖L∞[v,ṽ], p ∈ Πk, (4.1)

where c depends only on k and α.
Let 41,42 ∈ Tm share an edge e. Since every s ∈ Sk,r(Tm) is continuous, the two

polynomial patches s|41 and s|42 coincide along e. Therefore, δvD
α
e s may be computed for

any α = 0, 1, . . . as either δvD
α
e (s|41) or δvD

α
e (s|42) with the same result. Similarly, let

e1, e2 ∈ Em be two edges of a triangle 4 ∈ Tm with a common vertex v. Then δvD
α
e1

Dβ
e2

s
denotes the mixed derivative of s at v in the directions of e1 and e2 away from v. If α+β ≤ r,
this derivative is uniquely defined. If α + β > r, the result may depend on the choice of the
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polynomial patch of s attached to v. We follow the convention to always take δvD
α
e1

Dβ
e2

s :=
δvD

α
e1

Dβ
e2

(s|4), where 4 is the above triangle formed by e1, e2.
We shall also need functionals evaluating at some points on any edge e the derivatives

of the spline in an affine invariant direction not parallel to e. Let e = [v1, v2] ∈ Em, and
let 4e = [v1, v2, v3] ∈ Tm be a triangle attached to e. Denote by µ(e,4) the median of 4
connecting the middle point (v1 + v2)/2 of e with the third vertex v3 of 4. For any point
ξ ∈ e, δξDµ(e,4) will denote the derivative at ξ in the direction pointing into the half-plane
containing 4 parallel to µ(e,4), weighted with the length of µ(e,4). For each edge e ∈ Em,
we choose one of the two triangles attached to e and denote it by 4e. (Note that this
selection of 4e is not unique but as will be seen it will cause no problems for the basis
construction.)

Remark 4.1. For later references, we note here that any nodal functional η : Sk,r(Tm) → R
of the above type can be extended to a linear functional η̃ : Sk,−1(Tm) → R such that
η̃(s) = η(s) as long as s ∈ Sk,r(Tm). Indeed, if the definition of η involves δξ for some
point ξ ∈ ∪e∈Eme, then we choose one of the triangles 4 ∈ Tm containing ξ and use the
corresponding value of s|4 or its derivatives at ξ to define η̃(s) for any s ∈ Sk,−1(Tm). The
only restriction on the choice of 4 is that it must be consistent with the above rules for
δvD

α
e , δvD

α
e1

Dβ
e2

and δξDµ(e,4). Clearly, the extension of this type is not unique. Moreover,
convex combinations of evaluations of the restrictions of s to different triangles can also be
used.

Characterization of differentiability. Let L be a straight line dividing R2 into two
half-planes H, H̃. Given p, p̃ ∈ Πk, we define a piecewise polynomial function s by setting
s|H = p, s|H̃ = p̃. To check whether s is differentiable across L, we choose two points u, v on
L, as well as two points w, w̃ in the interiors of H and H̃, respectively. We set 4 := [u, v, w],
4̃ := [u, v, w̃], e := [u, v], µ := [u, w], µ̃ := [u, w̃], θ := ∠eµ, θ̃ := ∠µ̃e. The proof of the
following lemma can be found in [17, 25].

Lemma 4.2. Let 0 ≤ r < k. Then s ∈ Cr(R2) if and only if

δuD
α
µ̃Dq−α

e p̃ =
α∑

β=0

(−1)β
(

α
β

)
sinα−β(θ + θ̃)

(
|e| sin θ̃
|µ|

)β(
|e| sin θ
|µ̃|

)−α

δuD
β
µDq−β

e p (4.2)

for all α = 0, . . . , r and q = α, . . . , k − 1.

It is readily seen that (4.2) can be reformulated as follows:

δuD
α
µ̃Dq−α

e p̃ =
α∑

β=0

(−1)β
(

α
β

)(
σ|4∗|

)α−β |4̃|β
|4|α δuD

β
µDq−β

e p, (4.3)

where σ := sgn sin(θ + θ̃) and 4∗ := [u, w, w̃]. (This identity simplifies in an obvious way
when |4∗| = 0).

See [22] for a discussion of the relationship between these nodal conditions of differentia-
bility and the well-known Bernstein-Bézier conditions.
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Construction of basis splines. Consider the following set Nm of nodal functionals on
Sk,r(Tm),

Nm :=
( ⋃

v∈Vm

N v
m

)
∪

( ⋃
e∈Em

N e
m

)
∪

( ⋃
4∈Tm

N4
m

)
, (4.4)

where for each 4 = [v1, v2, v3] ∈ Tm,

N4
m := {η4ξ := δξ : ξ ∈ Ξ4},

Ξ4 :=
{i1v1 + i2v2 + i3v3

k − 1
: i1 + i2 + i3 = k − 1, i1, i2, i3 > r

}
⊂ 4,

for each edge e = [v1, v2] ∈ Em,

N e
m := {ηe

q,ξ := δξD
q
µ(e,4e)

: q = 0, . . . , r, ξ ∈ Ξe,q},

Ξe,q :=
{i1v1 + i2v2

k − q − 1
: i1 + i2 = k − q − 1, i1, i2 > 2r − q

}
⊂ e,

and for each vertex v ∈ Vm,

N v
m :=

2r⋃
q=0

N v,q
m ,

with N v,q
m , q = 0, . . . , 2r, being defined as follows. Let 4[i] = [v, vi, vi+1], i = 1, . . . , Nv, be

the triangles in Tm attached to v in counterclockwise order, vNv+` = v`, and let ei = [v, vi].
We set

N v,0
m := {ηv,0 := δv},

N v,q
m := {ηv,q

i,α := δvD
q−α
ei

Dα
ei+1

: i = 1, . . . , Nv, α = 0, . . . , q − 1}, q ≥ 1.

Note that N4
m or N e

m might be empty for some combinations of r, k, e.g., N4
m = N e

m = ∅
if r = 0, k = 2, or N4

m = ∅ if r = 1, k = 6. This, however, does not cause any problem for
the construction below.

In view of (4.2), the functionals in N v,q
m are not linearly independent on Sk,r(Tm) if q ≥ 1.

Namely, the following conditions hold for all s ∈ Sk,r(Tm), v ∈ Vm, q = 1, . . . , 2r:

ηv,q
i,α(s)−

α∑
β=0

(−1)β
(

α
β

)
sinα−β(θi−1 + θi)

(
|ei| sin θi

|ei−1|

)β(
|ei| sin θi−1

|ei+1|

)−α

ηv,q
i−1,q−β(s) = 0,

α = 1, . . . , min{r, q}, i = 1, . . . , Nv,

(4.5)

where θi := ∠eiei+1, ηv,q
i,q := ηv,q

i+1,0.

The following key lemma is instrumental in constructing the basis functions.

Lemma 4.3. There is a unique spline s ∈ Sk,r(Tm) such that

η4ξ (s) = a4ξ , ξ ∈ Ξ4, 4 ∈ Tm,

ηe
q,ξ(s) = ae

q,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ∈ Em,

ηv,0(s) = av,0, v ∈ Vm,

ηv,q
i,α(s) = av,q

i,α, i = 1, . . . , Nv, α = 0, . . . , q − 1, q = 1, . . . , 2r, v ∈ Vm,

(4.6)
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for any given a4ξ , ae
q,ξ, a

v,0 ∈ R and any av,q
i,α ∈ R satisfying

av,q
i,α −

α∑
β=0

(−1)β
(

α
β

)
sinα−β(θi−1 + θi)

(
|ei| sin θi

|ei−1|

)β(
|ei| sin θi−1

|ei+1|

)−α

av,q
i−1,q−β = 0,

α = 1, . . . , min{r, q}, i = 1, . . . , Nv.

(4.7)

Moreover, for each 4 ∈ Tm,

‖s|4‖L∞(4) ≤ c δ−2r
2 max

η∈Nm(4)
|η(s)|, (4.8)

where c is a constant depending only on k, and

Nm(4) :=
( ⋃

v∈Vm∩4

N v
m

)
∪

( ⋃
e∈Em
e⊂4

N e
m

)
∪N4

m .

Proof. We first determine s|e for each e = [v1, v2] ∈ Em using the fact that s|e, as a univariate
function on the interval e, is a polynomial se,0 of degree at most k − 1. Therefore, se,0 is
uniquely determined by the following k Hermite interpolation conditions:

δv1se,0 = av1,0, δv2se,0 = av2,0,

δv1D
γ
e se,0 = av1,γ

i,0 , δv2D
γ
e se,0 = av2,γ

j,0 , γ = 1, . . . , 2r,

δξse,0 = ae
0,ξ, ξ ∈ Ξe,0,

(4.9)

where we assume that e is the i-th edge emanating from v1 and the jth edge emanating from
v2.

We next determine se,q := (Dq
µ(e,4e)

s)|e, q = 1, . . . , r. Let 4e = [v1, v2, v3]. Then

Dq
µ(e,4e)

= (D[v1,v3] − 1
2
D[v1,v2])

q. Therefore, for γ = 0, . . . , 2r − q,

δv1D
γ
e se,q =

q∑
`=0

(−1)`2−`δv1D
γ+`
ei

Dq−`
ei+1

s =

q∑
`=0

(−1)`2−`ηv1,q+γ
i,q−` (s).

Similarly, since Dq
µ(e,4e)

= (D[v2,v3] − 1
2
D[v2,v1])

q, we have for γ = 0, . . . , 2r − q,

δv2D
γ
e se,q =

q∑
`=0

(−1)`2−`δv2D
γ+`
ej

Dq−`
ej−1

s

=

q−1∑
`=0

(−1)`2−`ηv2,q+γ
j−1,γ+`(s) + (−1)q2−qηv2,q+γ

j,0 (s).

In addition, we have for each ξ ∈ Ξe,q,

δξse,q = δξD
q
µ(e,4e)

s = ηe
q,ξ(s).
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Thus, for each q = 1, . . . , r, the univariate polynomial se,q of degree k − 1 − q is uniquely
determined by the k − q Hermite interpolation conditions

δv1D
γ
e se,q =

q∑
`=0

(−1)`2−`av1,q+γ
i,q−` , γ = 0, . . . , 2r − q,

δv2D
γ
e se,q =

q−1∑
`=0

(−1)`2−`av2,q+γ
j−1,γ+` + (−1)q2−qav2,q+γ

j,0 , γ = 0, . . . , 2r − q,

δξse,q = ae
q,ξ, ξ ∈ Ξe,q.

(4.10)

Let 4̃ = [v1, v2, ṽ3] ∈ Tm be the second triangle attached to e. We set

ãe
0,ξ := ae

0,ξ, ξ ∈ Ξe,0,

ãe
q,ξ :=

q∑
`=0

(−1)`

(
q

`

)
(2σ|4∗|)q−`|4̃|`|4e|−q δξD

q−`
e se,`,

ξ ∈ Ξe,q, q = 1, . . . , r,

where 4∗ := [v̄, v3, ṽ3], v̄ = (v1 + v2)/2, and σ := sgn sin(v̂3v̄v2 + ̂̃v3v̄v2), where ûvw denotes
the angle determined by u, v, w with vertex at v. (It may happen that |4∗| = 0.) Since
4∗ ⊂ conv (4e ∪ 4̃), we have

|4∗|q−`|4̃|`|4e|−q ≤ δ−q+`
2 |4̃|q|4e|−q ≤ δ−2q+`

2 . (4.11)

We now construct each polynomial patch s|4, 4 ∈ Tm, of the spline s as the unique solution
of the following interpolation problem:

δξ(s|4) = a4ξ , ξ ∈ Ξ4,

δξD
q
µ(e,4)(s|4) = ae

q,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ⊂ 4 if 4e = 4,

δξD
q
µ(e,4)(s|4) = ãe

q,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ⊂ 4 if 4e 6= 4,

δv(s|4) = av,0, v ∈ 4,

δvD
q−α
ei

Dα
ei+1

(s|4) = av,q
i,α, α = 0, . . . , q, q = 1, . . . , 2r, v ∈ 4,

(i is such that ei, ei+1 ⊂ 4).

(4.12)

Since (4.12) is a standard finite element interpolation scheme for bivariate polynomials of
degree k−1 (see, e.g., [57] or Lemma 3.7 in [25]), the polynomial s|4 is uniquely determined.

We now show that the piecewise polynomial s constructed in this way lies in the space
Sk,r(Tm), i.e., it is r times differentiable. To this end we consider any edge e = [v1, v2] ∈ Em.
As before, let 4e = [v1, v2, v3] and let 4̃ = [v2, v1, ṽ3] be the second triangle attached to e,
and we again assume that e is the ith edge e1,i emanating from v1 and at the same time the
jth edge e2,j emanating from v2. Then we have

e1,i−1 = [v1, ṽ3], e1,i = [v1, v2], e1,i+1 = [v1, v3],

e2,j−1 = [v2, v3], e2,j = [v2, v1], e2,j+1 = [v2, ṽ3].

35



Obviously, for each q = 0, . . . , r, Dq
µ(e,4e)

(s|4e)|e = se,q satisfies the interpolation conditions

(4.9) if q = 0 or (4.10) if q > 0. We set

ŝe,q := Dq

µ(e,4̃)
(s|4e)|e.

The desired differentiability of s will follow if we show that

ŝe,q = s̃e,q := Dq

µ(e,4̃)
(s|4̃)|e, q = 0, . . . , r. (4.13)

By (4.12) we have

δv1(s|4e) = δv1(s|4̃) = av1,0,

δv1D
q−α
e1,i

Dα
e1,i+1

(s|4e) = av1,q
i,α , α = 0, . . . , q − 1, q = 1, . . . , 2r,

δv1D
q−α
e1,i−1

Dα
e1,i

(s|4̃) = av1,q
i−1,α, α = 0, . . . , q − 1, q = 1, . . . , 2r,

which in view of (4.7) imply

δv1D
q−α
e1,i

Dα
e1,i+1

(s|4e) = δv1D
q−α
e1,i

Dα
e1,i+1

(s|4̃),

α = 0, . . . , min{r, q}, q = 0, . . . , 2r,

and hence
δv1D

γ
e (ŝe,q − s̃e,q) = 0, γ = 0, . . . , 2r − q, q = 0, . . . , r.

Similarly, we get

δv2D
γ
e (ŝe,q − s̃e,q) = 0, γ = 0, . . . , 2r − q, q = 0, . . . , r.

In addition, a simple calculation relying on (4.3) shows that

δξŝe,q = ãe
q,ξ, ξ ∈ Ξe,q, q = 0, . . . , r,

so that by (4.12),
δξ(ŝe,q − s̃e,q) = 0, ξ ∈ Ξe,q, q = 0, . . . , r.

Since ŝe,q − s̃e,q satisfies homogeneous interpolation conditions of a well-posed Hermite
scheme, (4.13) follows.

The uniqueness of s is clear from the above proof, since s = 0 if the numbers in the
right-hand side of (4.6) are all zeros.

It remains to prove (4.8). Since se,q satisfies the interpolation conditions (4.9) if q = 0 or
(4.10) if q > 0,

‖se,q‖L∞(e) ≤ c max{η(s) : η ∈ N v1
m ∪N v2

m ∪N e
m}, q = 0, . . . , r,

where c depends only on k. In view of (4.11) and Markov inequality (4.1), we have

|ãe
q,ξ| ≤ c δ−2q

2 ‖se,q‖L∞(e), q = 0, . . . , r,

and (4.8) follows by the properties of the interpolation problem (4.12), see Lemma 3.9 in
[25].
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For each v ∈ Vm and q = 1, . . . , 2r, we denote by Rv,q
m the (min{r, q}Nv × qNv)-matrix of

differentiability conditions (4.5). Let the vectors

av,q,j, j = 1, . . . , ρv,q := qNv − rank(Rv,q
m ),

form an orthonormal basis for the null space of Rv,q
m ,

null(Rv,q
m ) := {a ∈ RqNv : Rv,q

m a = 0}.

For convenience, we shall use the double indices introduced in the definition of N v,q
m also for

the components of av,q,j:

av,q,j
i,α , i = 1, . . . , Nv, α = 0, . . . , q − 1. (4.14)

We set

ηv,q,j :=
Nv∑
i=1

q−1∑
α=0

av,q,j
i,α ηv,q

i,α , j = 1, . . . , ρv,q, (4.15)

Ñ v,q
m := {ηv,q,j : j = 1, . . . , ρv,q}, q = 1, . . . , 2r,

Ñ v
m := N v,0

m ∪
2r⋃

q=1

Ñ v,q
m , v ∈ Vm,

Ñm :=
( ⋃

v∈Vm

Ñ v
m

)
∪

( ⋃
e∈Em

N e
m

)
∪

( ⋃
4∈Tm

N4
m

)
,

and define the set
Φm = {ϕη : η ∈ Ñm}

of the basis functions for Sk,r(Tm) by the duality condition,

µ(ϕη) =

{
1 if µ = η,

0 if µ ∈ Ñm \ {η}. (4.16)

To see that the above definition is correct we have to check that for each η ∈ Ñm there
exists a unique ϕη satisfying (4.16). This follows by Lemma 4.3. Indeed, since the vectors
av,q,j are orthonormal, we have

ηv,q
i,α =

ρv,q∑
j=1

av,q,j
i,α ηv,q,j, i = 1, . . . , Nv, α = 0, . . . , q − 1.

Therefore, for a fixed η, the numbers

av,q
i,α := ηv,q

i,α(ϕη), i = 1, . . . , Nv, α = 0, . . . , q − 1,

satisfy (4.7), which ensures the applicability of Lemma 4.3.
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Properties of basis splines. It follows by Lemma 4.3 that every spline s ∈ Sk,r(Tm) is
uniquely determined by the sequence (η(s))η∈Ñm

, i.e., s has a unique representation

s =
∑

η∈Ñm

aηϕη, aη = η(s) ∈ R.

Furthermore, (4.8) immediately implies

supp ϕη ⊆


star(v) if η ∈ Ñ v

m for a vertex v ∈ Vm,

star(e) if η ∈ N e
m for an edge e ∈ Em,

4 if η ∈ N4
m for a triangle 4 ∈ Tm,

(4.17)

‖ϕη‖L∞(R2) ≤ c δ−2r
2 . (4.18)

By using Markov inequality it is easy to show that

|η(s)| ≤ c̃


‖s‖L∞(star (v)) if η ∈ Ñ v

m for a vertex v ∈ Vm,

‖s‖L∞(star (e)) if η ∈ N e
m for an edge e ∈ Em,

‖s‖L∞(4) if η ∈ N4
m for a triangle 4 ∈ Tm,

(4.19)

with c̃ a constant depending only on k, r and N0.
Thus, we showed that the basis Φm = {ϕη : η ∈ Ñm} satisfies all requirements of §2.2

with Sm = Sk,r(Tm) and k̃ = k. (Obviously, Πk ⊂ Sm and Sk,r(Tm) ⊂ Sk,r(Tm+1) if Tm+1 is
a refinement of Tm.) More precisely, we have the following result.

Theorem 4.4. Let r ≥ 0, k > 4r + 1. Suppose that Tm satisfies (a), (d)–(f), and (2.3) of
§2.1. Then the basis functions ϕη ∈ Sk,r(Tm) (η ∈ Ñm) constructed above have the following
properties:

(a) For any s ∈ Sk,r(Tm) there exists a unique sequence of real coefficients (aη)η∈Ñm
such

that
s =

∑
η∈Ñm

aηϕη,

with aη = η(s), η ∈ Ñm.

(b) For each η ∈ Ñm there is a vertex v = vη ∈ Vm such that

supp ϕη ⊂ star (v) =: Eη,

‖ϕη‖L∞(R2) = ‖ϕη‖L∞(Eη) ≤ M1,

|η(s)| ≤ M2‖s‖L∞(Eη), s ∈ Sk,r(Tm),

where M1, M2 are positive constants depending only on k, r, δ2, and N0.

In particular, by the proof of Lemma 2.3, we have the following stability property of Φm.
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Theorem 4.5. The basis Φm is Lp-stable for all 0 < p ≤ ∞, i.e., for any sequence (aη)η∈Ñm
,∥∥∥ ∑

η∈Ñm

aηϕη

∥∥∥
Lp(R2)

≈
( ∑

η∈Ñm

‖aηϕη‖p
Lp(R2)

)1/p

,

where the constants of equivalence depend only on p, k, r, δ2, and N0. In the case p = ∞ the
`p-norm in the right-hand side is replaced by the sup-norm.

The linear functionals λη : Sk,−1(Tm) ∩ L∞(Eη) → R, η ∈ Ñm, with properties

λη(s|Eη) = η(s), s ∈ Sk,r(Tm),

|λη(f)| ≤ M2‖f‖L∞(Eη), f ∈ Sk,−1(Tm)|Eη ∩ L∞(Eη),

needed in the definition of the projector Qm (see (2.18)) can now be defined in a constructive
manner. Indeed, we first extend each functional η ∈ Nm to a functional η̃ defined on
Sk,−1(Tm), according to Remark 4.1, and then set

λη := η̃ if η ∈
( ⋃

e∈Em

N e
m

)
∪

( ⋃
4∈Tm

N4
m

)
and

λη :=
Nv∑
i=1

q−1∑
α=0

av,q,j
i,α η̃v,q

i,α if ηv,q,j =
Nv∑
i=1

q−1∑
α=0

av,q,j
i,α ηv,q

i,α ∈
⋃

v∈Vm

Ñ v
m.

By (2.22), Qm can be extended to the operator Qm,p : Lloc
p → Sk,r(Tm) whose local

approximation power is described in the following theorem (see Lemma 2.5).

Theorem 4.6. Suppose f ∈ Lloc
p , 0 < p ≤ ∞ (f ∈ C if p = ∞). Then

‖f −Qm,p(f)‖Lp(4) ≤ cS4(f)p ≤ cEk(f, Ω4)p, 4 ∈ Tm,

where Ω4 := Ω1
4 is the union of all triangles in Tm that have a common vertex with 4, and

the constant c depends only on p, k, r, δ2, and N0.

To show that the assumption that the triangulations Tm satisfy (2.3) cannot be omitted,
we consider the following example.

Example 4.7. Suppose Tm has an edge e = [v, u] with two triangles 4 = 4e = [v, u, w] and
4̃ = [v, u, w̃] attached to e, such that u = v+(2−Mα, 0), w = v+(−α, α), w̃ = v+(−α,−α),
where the positive numbers M, α depend on m. Evidently, |conv (4e∪4̃)|/|4e| = 2(2M +1),
and (2.3) will be violated if M grows unboundedly with m, while the maximal angle of the
two triangles is 3π/4, thus allowing the maximal angle condition (2.5) to hold. Note that
such configurations of triangles are possible for a sequence of levels of an LR-triangulation T
with the corresponding M ’s tending to infinity, see §2.1 of [38]. Choosing k = 6 and r = 1,
we consider the basis functions ϕη ∈ S6,1(Tm), η ∈ Ñm, constructed according to the above
algorithm. We next show that the basis Φm = {ϕη : η ∈ Ñm} is instable, i.e., Theorem 4.5
does not hold for it. (Therefore, neither Φm, nor a renorming of it satisfies the requirements
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of Section 2.2.) More precisely, we show that the constant function 1R2(x) ≡ 1, x ∈ R2, does
not have an L∞-stable expansion with respect to Φm. We have

‖1R2‖L∞(R2) = 1, 1R2 =
∑

η∈Ñm

η(1R2)ϕη.

Now choose η = ηv,0 = δv ∈ N v,0
m . Since η(1R2) = 1, the instability of Φm will follow if we

show that ‖ϕη‖L∞(R2) is unbounded as M →∞. By (4.12),

δξD
1
µ(e,4̃)

(ϕη|4̃) = ãe
1,ξ

= −2 |4
∗|

|4e|δξD
1
ese,0 − |4̃|

|4e|δξse,1,

where ξ = (v+u)/2, 4∗ = [ξ, w, w̃], se,0 = ϕη|e, se,1 = (D1
µ(e,4e)

ϕη)|e. Obviously, |4̃|/|4e| =
1, and

|4∗|/|4e| =
(
|conv (4e ∪ 4̃)| − |4e|+|4̃|

2

)
/|4e| = 2M+1 + 1.

The univariate polynomial se,0 of degree 5 is determined by the Hermite interpolation con-
ditions (4.9) that take in our case the form

δvse,0 = 1, δuse,0 = δuD
1
ese,0 = δuD

2
ese,0 = δvD

1
ese,0 = δvD

2
ese,0 = 0.

An elementary computation shows that δξD
1
ese,0 = −15/8. By (4.10), we immediately get

δξse,1 = ae
1,ξ = ηe

1,ξ(ϕη) = 0. Thus,

δξD
1
µ(e,4̃)

(ϕη|4̃) =
15

4
(2M+1 + 1) →∞ as M →∞.

In view of Markov inequality, ‖ϕη‖L∞(R2) ≥ c|δξD
1
µ(e,4̃)

(ϕη|4̃)|, and we get the desired un-

boundedness of ‖ϕη‖L∞(R2) for sufficiently large M .

Remark 4.8. It is clear that Theorems 4.4–4.6 are valid for any sequence of levels Tm

satisfying the hypotheses of Theorem 4.4, i.e., nestedness and other additional assumptions
on {Tm} stated in § 2.1 are not needed for these results.

Remark 4.9. It is an important property of the basis functions ϕη constructed above that
they are invariant under affine transforms. More precisely, let Tm satisfy the hypotheses
of Theorem 4.4, and let A : R2 → R2 be an affine transform. We set A(Tm) = {A(4) :
4 ∈ Tm}, and Aη(s) := δA(v)D

α
A(e1)D

β
A(e2)s for each nodal functional η of the form η(s) =

δvD
α
e1

Dβ
e2

s, and extend the operator A linearly to the linear combinations of the nodal
functionals such as those occurring in (4.15). Then, clearly, the sets of nodal functionals
Nm and NA

m defined by (4.4) for Tm and A(Tm), respectively, satisfy NA
m = {Aη : η ∈ Nm}.

(We used here, in particular, the fact that µ(A(e), A(4e)) = A(µ(e,4e)).) Moreover, since
the matrices Rv,q

m of the differentiability conditions (4.5) are affine invariant (see (4.3)),
we also have ÑA

m = {Aη : η ∈ Ñm} for the appropriate sets Ñm, ÑA
m defined as in the

construction above, provided we choose the same orthonormal vectors (4.14) in both cases.
Let now Φm = {ϕη : η ∈ Ñm} ⊂ Sk,r(Tm) and ΦA

m = {ϕAη : η ∈ Ñm} ⊂ Sk,r(A(Tm)) be
the spline bases dual to Ñm and ÑA

m , respectively. Since ϕη(A·), η ∈ Ñm, obviously satisfy
the same duality relations, we conclude that ϕAη = ϕη(A·), η ∈ Ñm, which is the desired
affine invariance.
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Remark 4.10. Our construction is extendable to the spaces Sk,r(Tm), k > r2d + 1, in
dimensions d > 2. To this end the algorithm given in [22] should be extended to SLR-
triangulations in Rd. In particular, the orthogonal directions of derivatives used in [22]
should be replaced by appropriate affine invariant directions.

Remark 4.11. If the triangulation covers only a compact domain E, then usual modifica-
tions of basis functions corresponding to boundary edges or vertices (see [22, 23]) lead to the
desired stable local bases.

Remark 4.12. In this section, we extended to the setting of SLR-triangulations the bivari-
ate version of nodal stable local basis construction of [22, 23], which was originally designed
for regular triangulations. The scheme from [27] can be used as an alternative means of
constructing stable local bases for Sk,r(Tm), k > 3r + 2, in dimension d = 2. Such a devel-
opment would take advantage of the affine invariance of the Bernstein-Bézier representation
of piecewise polynomials. We elected to utilize the scheme from [22] instead, since it is
available for any number of variables and allows an effective numerical implementation as
shown (for r = 1, 2, d = 2) in [23]. Also, we want to pay heed to two more spline basis
constructions (for regular triangulations in dimension d = 2) that allow the same kind of
extension to SLR triangulations: (a) stable local bases for Sk,1(Tm), k > 5, constructed
in [26]; (b) locally stable bases on nested triangulations (k > 4r + 1) [24]. Note that the
stable local bases for superspline subspaces of Sk,r(Tm) [16, 17, 44, 57] cannot be used since
these spaces are not nested for nested triangulations, while the earlier local spline bases for
Sk,r(Tm) [1, 8, 18, 35, 36, 48] are known to be unstable for certain triangulations.

Remark 4.13. It is easy to see that, in the case r = 0, the above basis reduces to the classical
Lagrange finite element basis for Sk,0(Tm), k > 1. Since δ2 disappears from (4.8) when r = 0,
Theorems 4.4–4.6 hold for locally regular triangulations, i.e., the SLR assumption (2.3) is not
needed in this case. (Note that δ2 and N0 completely disappear from Theorem 4.4, and δ2 is
replaced by δ1 in Theorems 4.5–4.6.) For r = 0, k = 2, we get the Courant elements, and the
only essential difference to the construction from [38] is that we rely here on the extensions
of linear functionals described in Remark 4.1 rather than on the explicit quasi-interpolant
for continuous piecewise linear functions adopted in [38]. Both approaches obviously lead to
the same B-spaces.

5 Spline bases on special triangulations

There are several constructions of differentiable spline bases fitting into our scheme that
are only available for specific multilevel triangulations. Since these triangulations have a
special structure or even are uniform, the corresponding libraries {ΦT } of bases are not
as rich as the one of the previous section associated with arbitrary SLR-triangulations.
Moreover, the necessity to maintain the structure of the triangulation highly reduces the
variety of refinement methods that can be used (whereas, e.g., local refinement by bisection
can be used with bases on arbitrary triangulations.) On the other hand, bases on special
triangulations usually allow a smaller degree of piecewise polynomials for a given order of
differentiability as well as a simpler and more efficient practical implementation.
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In this section, we review some known constructions of this type. (Note that only box
splines are available for more than two variables.)

5.1 Box splines

As usual, we consider only splines of two variables. Let Ξ = [ξ1 · · · ξn] be a full rank 2 × n
matrix with columns ξi in Z2 \ 0. The box spline MΞ : R2 → R2 associated with Ξ is defined
by its Fourier transform

M̂Ξ(u) =
n∏

ν=1

1− e−iξνu

iξνu
, u ∈ R2,

where ξνu denotes the inner product of the two vectors.
We now review the basic properties of box splines (see [9]), in order to verify the require-

ments of § 2.2. It is well-known that MΞ has a compact support,

supp MΞ =
{ n∑

ν=1

tνξν : 0 ≤ tν ≤ 1
}

. (5.1)

The box spline basis functions at the mth level are defined by

ϕm,j = MΞ(2m · −j), j ∈ Z2.

We set
Φm = {ϕm,j : j ∈ Z2}, m ∈ Z,

and
Sm =

{ ∑
j∈Z2

am,jϕm,j : am,j ∈ R
}

, m ∈ Z,

where the series converges everywhere since for every x ∈ R2 and m ∈ Z only a finite number
of ϕm,j(x) (j ∈ Z2) are nonzero. Clearly, any affine change of variables Q : R2 → R2 gives
rise to basis functions ϕm,j(Qx) that satisfy the conditions of § 2.2 if and only if the ϕm,j do.
Therefore, we do not distinguish between constructions that can be transformed into each
other by such a method.

Since
M̂Ξ(2u)

M̂Ξ(u)
=

n∏
ν=1

1 + e−iξνu

2
,

MΞ is a finite linear combination of MΞ(2 · −j), j ∈ Z2, which implies that

Sm ⊂ Sm+1, m ∈ Z.

Let
r(Ξ) := max{r : any 2× (n− r) submatrix of Ξ has rank 2} − 1

and
k(Ξ) := n− 1.
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The elements of Sm are r(Ξ) times differentiable piecewise polynomials of degree k(Ξ) − 1
with respect to the rectilinear partition T Ξ

m of R2 determined by the straight lines

Hν + 2−mj, j ∈ Z2, ν = 1, . . . , n,

where
Hν := {tξν : t ∈ R}.

Thus,
Sm ⊂ Sk(Ξ),r(Ξ)(T Ξ

m ).

Moreover,
Πk̃(Ξ) ⊂ Sm, m ∈ Z,

and Πk̃(Ξ)+1 6⊂ Sm, where

k̃(Ξ) = r(Ξ) + 2.

It is well-known that the translates of a box spline are not always linearly independent.
In fact, Φm is a basis for Sm (m ∈ Z) if and only if the matrix Ξ is unimodular, i.e., each
nonsingular 2 × 2 submatrix of Ξ has determinant ±1. This condition implies substantial
restrictions on Ξ. Namely, up to an affine change of variables, Ξ must have the form

Ξ = [e1 · · · e1︸ ︷︷ ︸
n1

e2 · · · e2︸ ︷︷ ︸
n2

e3 · · · e3︸ ︷︷ ︸
n3

],

where e1 =
[

1
0

]
, e2 =

[
0
1

]
, e3 =

[
1
1

]
, n1, n2 ≥ 1, n3 ≥ 0, and n1 + n2 + n3 = n. It is easy to

see that
r(Ξ) = n−max{n1, n2, n3} − 2

and that T Ξ
m is either a tensor product mesh if n3 = 0 or a three-directional mesh T (1)

m defined
by the straight lines x1 = 2−mj, x2 = 2−mj, x1 − x2 = 2−mj (j ∈ Z2) in R2 if n3 ≥ 1. Since
only the latter case leads to a multilevel triangulation, we assume that n3 ≥ 1.

It remains to verify (2.10)–(2.12). By (5.1), the support of MΞ is the hexagon with
vertices (0, 0), (n1, 0), (0, n2), (n1 + n3, n3), (n3, n2 + n3), (n1 + n3, n2 + n3), which implies
(2.10) with ` ≤ bn/2c. Obviously, (2.11) is valid with M1 = ‖MΞ‖L∞ . Finally, it is easy
to show (2.12) by using the constructions of dual functionals λj : S0 → R (j ∈ Z2), with
λj(ϕ0,k) = δj,k, given, e.g., in [19, 37, 41].

Let us mention the following two cases that are perhaps most relevant in applications:

(a) n1 = n2 = 2, n3 = 1, Sm ⊂ S4,1(T (1)
m ), k̃ = 3,

(b) n1 = n2 = n3 = 2, Sm ⊂ S5,2(T (1)
m ), k̃ = 4.

5.2 Other spline bases on uniform triangulations

There are some other spline basis constructions for the three-directional mesh T (1)
m , see, e.g.,

[15, 56]. However, to our knowledge, none of them simultaneously satisfies the requirements
of nestedness of the spaces, stability, and locality of the basis functions. The situation is
better for the four-directional mesh T (2)

m obtained from T (1)
m by adding the straight lines
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x1 + x2 = 2−mj (j ∈ Z2). Since T (2)
m is a special case of a so-called FVS-triangulation (see

Section 5.3), finite element bases for S4,1(T (2)
m ) are available and satisfy the conditions of

Section 2.2. Some recent alternative constructions of stable local bases for S4,1(T (2)
m ) can be

found in [13, 28, 42, 49]. Moreover, a stable local basis for S7,2(T (2)
m ) is also constructed in

[28]. Finally, we want to mention the stable local basis from [33] for C1 quadratic splines with
respect to a sequence of triangulation levels that can be called the six-directional meshes.

5.3 Refinable composite finite elements

Multilevel and hierarchical bases play an important role in the modern theory and practice
of numerical methods for PDEs, see, e.g., [51]. Classical smooth finite elements [14] give rise
to stable local spline bases on triangulations satisfying the minimal angle condition. (Note
that it should be possible to replace this condition of regularity with SLR.) However, there
are difficulties in using them to build nested spline spaces on multilevel triangulations, see
[11, 20]. Although the “polynomial” finite elements (e.g., Argyris element) are available for
arbitrary triangulations, they lead to superspline spaces [57] that lack nestedness for nested
triangulations (levels in the terminology of our § 2). In contrast to them, “composite”
finite elements require a special structure of the levels Tm, e.g., a Clough-Tocher or Powell-
Sabin split, which is not always compatible with nested refinements with other desirable
properties like boundedness of the valence of the vertices. In fact, we are aware of only two
cases when composite finite elements are refinable, i.e., provide stable local bases for certain
multilevel triangulations. First, this is true for the triangulations obtained by the Powell-
Sabin 12-split, see [50] for the relevant construction of stable local bases for C1 quadratics
and cubics. The other case is that of FVS-triangulations obtained from arbitrary srictly
convex quadrangulations by adding two diagonals of each quadrilateral, see, e.g., [20, 43].
Here, a well-known composite finite element due to Fraeijs de Veubeke and Sander gives
rise to a stable local basis for C1 cubics, while for higher orders of differentiability only
non-nested superspline-type constructions are known [40, 45, 46].

6 Appendix

Proof of Theorem 2.9. Denote briefly N := (
∑

θ∈Θ ‖cθϕθ‖τ
p)

1/τ .
Case 1: 0 < p ≤ 1. Since τ < p ≤ 1, we have∥∥∥∑

θ∈Θ

|cθϕθ(·)|
∥∥∥

p
≤

( ∑
θ∈Θ

‖cθϕθ‖p
p

)1/p

≤
( ∑

θ∈Θ

‖cθϕθ‖τ
p

)1/τ

.

Case 2: p = ∞. Since τ = 1/α ≤ 1, then (2.42) is obvious.
Case 3: 1 < p < ∞. We need the following lemma:

Lemma 6.1. Let g :=
∑

θ∈M |cθϕθ|, where #M < ∞ and ‖cθϕθ‖p ≤ L for θ ∈M. Then

‖g‖p ≤ cL(#M)1/p

with c independent of M and (cθ)θ∈M.
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Proof. Using the properties of Φ, we have (recall that supp ϕθ ⊂ Eθ := star `(vθ) and
‖ϕθ‖∞ ≈ |Eθ|−1/p‖ϕθ‖p by (2.14))

‖g‖p ≤
∥∥∥ ∑

θ∈M

‖cθϕθ‖∞ · 1Eθ
(·)

∥∥∥
p
≤ cL

∥∥∥ ∑
θ∈M

|Eθ|−1/p · 1Eθ
(·)

∥∥∥
p
.

We define E :=
⋃

θ∈M Eθ and E(x) := min{|Eθ| : θ ∈ M and Eθ 3 x} for x ∈ E. By the
properties of the LR-triangulations, it follows that∑

θ∈M

|Eθ|−1/p · 1Eθ
(x) ≤ cE(x)−1/p

1E(x), x ∈ R2.

On the other hand,

E(x)−1 = max
θ∈M, Eθ3x

|Eθ|−1 ≤
∑
θ∈M

|Eθ|−1
1Eθ

(x).

Therefore,

‖g‖p ≤ cL‖E(·)−1/p‖Lp = cL
( ∫

E

E(x)−1 dx
)1/p

≤ cL
( ∑

θ∈M

|Eθ|−1

∫
R2

1Eθ
(x) dx

)1/p

= cL(#M)1/p.

We define
Fµ := {θ : 2−µN ≤ ‖cθϕθ‖p < 2−µ+1N},

where N := (
∑

θ∈Θ ‖cθϕθ‖τ
p)

1/τ . Then⋃
ν≤µ

Fν = {θ : ‖cθϕθ‖p ≥ 2−µN}

and hence
#Fµ ≤

∑
ν≤µ

#Fν = #
( ⋃

ν≤µ

Fν

)
≤ 2µτ . (6.1)

We set Fµ :=
∑

θ∈Fµ
|cθϕθ|. Using Lemma 6.1 and (6.1), we obtain

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥

p
≤

∥∥∥ ∞∑
µ=0

Fµ(·)
∥∥∥

p
≤

∞∑
µ=0

‖Fµ‖p ≤ c
∞∑

µ=0

2−µN(#Fµ)1/p

≤ cN
∞∑

µ=0

2−µ(1−τ/p) ≤ cN
∞∑

µ=0

2−µτα ≤ cN.

This completes the proof of Theorem 2.9.

Proof of Theorem 3.1 (Case 0 < p < ∞). Suppose f ∈ Bα
τ (Φ), where α > 0,

1/τ = α+1/p, 0 < p < ∞. By (2.40), f can be represented in the form f =
∑

θ∈Θ bθϕθ with
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the series converging absolutely a.e. in R2 and in Lp. We denote briefly N(f) := NΦ,Q,τ (f) :=
(
∑

θ∈Θ ‖bθϕθ‖τ
p)

1/τ ≈ ‖f‖Bα
τ (Φ).

Suppose that (bθj
ϕθj

)∞j=1 is a rearrangement of the sequence (bθϕθ)θ∈Θ such that ‖bθ1ϕθ1‖p ≥
‖bθ2ϕθ2‖p ≥ · · ·. Set sn :=

∑n
j=1 bθj

ϕθj
, sn ∈ Σn(Φ).

Case 1: 0 < p ≤ 1. To estimate ‖f − sn‖p we shall use the following simple inequality
[38]: If x1 ≥ x2 ≥ · · · ≥ 0 and 0 < τ < p, then( ∞∑

j=n+1

xp
j

)1/p

≤ n1/p−1/τ
( ∞∑

j=1

xτ
j

)1/τ

. (6.2)

We use Theorem 2.9 and apply (6.2) with xj := ‖bθj
ϕθj

‖p to obtain

‖f − sn‖p ≤
∥∥∥ ∞∑

j=n+1

|bθj
ϕθj

|
∥∥∥

p
≤

( ∞∑
j=n+1

‖bθj
ϕθj

‖p
p

)1/p

≤ n1/p−1/τ
( ∞∑

j=1

‖bθj
ϕθj

‖τ
p

)1/τ

= n−αN(f),

which proves Theorem 3.1 in Case 1.
Case 2: 1 < p < ∞. We proceed quite similarly as in the proof of Theorem 2.9. We set

Fµ := {θ : 2−µN(f) ≤ ‖bθϕθ‖p < 2−µ+1N(f)} and Fµ :=
∑

θ∈Fµ
|bθϕθ|.

Fix m ≥ 1 and set M := d2mτe. As in the proof of Theorem 2.9 (see (6.1)), #Fm ≤∑
ν≤m #Fν ≤ 2mτ ≤ M. Using Lemma 6.1, we obtain

‖f − sM‖p ≤
∥∥∥ ∞∑

µ=m+1

Fµ

∥∥∥
p
≤

∞∑
µ=m+1

‖Fµ‖p

≤ c
∞∑

µ=m+1

2−µN(f)(#Fµ)1/p ≤ cN(f)
∞∑

µ=m+1

2−µ(1−τ/p)

≤ cN(f)2−m(1−τ/p) ≤ cM−1/τ+1/pN(f) = cM−αN(f).

This estimate readily implies (3.1).

Proof of Theorem 3.2. Step 1. With this step we lay some groundwork that is needed for
the proof of the Bernstein inequality. Let T be an arbitrary LR-triangulation and suppose
Λ is a finite subset of T . The set Λ generates a certain tree structure that we want to bring
up in what follows.

We say that 4 ∈ T is a branching triangle if at least two children of 4 have descendants
in Λ. Let Λ̃ denote the extension of Λ obtained by adding all branching triangles and all
children of branching triangles if they are not already in Λ. By considering the tree of the
ancestors of all triangles in Λ, it is not difficult to see that the total number of branching
triangles does not exceed #Λ− 1. Since the number of children of a triangle is bounded by
M0, we conclude that #Λ̃ ≤ c #Λ.

Furthermore, for a later use in Step 3, we call 4 ∈ T \ Λ̃ a chain triangle if at least
one of its descendants belongs to Λ. The set of all chain triangles will be denoted by Γ. By
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construction, for each 4 ∈ Γ there is a unique largest triangle 4̃ ∈ Λ̃ contained in 4. We
set K4 := 4 \ 4̃ and µ4 := m − m̃, where 4 ∈ Tm and 4̃ ∈ Tm̃. We denote by Γ̃ the
set of all 4 ∈ Γ for which there is a 4′ ∈ Λ̃ containing 4. It is easy to see that Γ̃ is the
disjoint union of finite chains, i.e., sets λ of the form λ = {41, . . . ,4ν} ⊂ Γ̃ (ν ≥ 1), where
4′′

λ ⊃ 41 ⊃ · · · ⊃ 4ν ⊃ 4′
λ for some 4′

λ,4′′
λ ∈ Λ̃, and 41 is a child of 4′′

λ, 4j is a child of
4j−1, ν = 2, . . . , ν, and 4′

λ is a child of 4ν . Similarly, Γ \ Γ̃ is the disjoint union of infinite
chains λ = {. . . ,4−2,4−1} ⊂ Γ, where · · · ⊃ 4−2 ⊃ 4−1 ⊃ 4′

λ for some 4′
λ ∈ Λ̃, and 4j

is a child of 4j−1, ν = −1,−2, . . ., and 4′
λ is a child of 4−1. We let L and L∞ denote the

sets of all finite, respectively, infinite chains in Γ. Clearly, #L ≤ #Λ̃ and #L∞ ≤ #Λ̃.

Step 2. For the proof of the theorem in the case 0 < p < ∞, we need the following
lemma.

Lemma 6.2. Suppose s =
∑

4∈Λ 14 · P4, where P4 ∈ Πk (k ≥ 1), Λ ⊂ T with T an
LR-triangulation, and #Λ < ∞. Then( ∑

4∈Λ

|4|−ατ‖s‖τ
Lτ (4)

)1/τ

≤ c(#Λ)α‖s‖p

with c independent of s and Λ.

Proof. We adopt all necessary notation from Step 1 above with Λ from the hypotheses of
the lemma. Since #Λ̃ ≤ c #Λ and s =

∑
4∈Λ̃ 14 ·P4, where P4 = 0 for 4 ∈ Λ̃ \Λ, we may

assume without loss of generality that Λ̃ = Λ, i.e., the branching triangles and their children
are contained in Λ.

Let 41, . . . ,4m be all non-branching triangles in Λ. It is not difficult to see that for each
of them there are only two possibilities: either 4i does not contain any other 4 ∈ Λ (in
which case we call 4i a final triangle) or there is a unique largest triangle 4̃i ∈ Λ strictly
contained in 4i. We define the rings Ki := 4i \ 4̃i, i = 1, . . . ,m, where 4̃i := ∅ for a
final triangle 4i. Obviously, Ki have pairwise disjoint interiors, and s|Ki

= Pi|Ki
for some

Pi ∈ Πk, i = 1, . . . ,m. Since all children of branching triangles are in Λ, we have for each
4 ∈ Λ,

4 =
m⋃

i=1
4i⊂4

Ki and s|4 =
m∑

i=1
4i⊂4

1Ki
· Pi.

Therefore, ∑
4∈Λ

|4|−ατ‖s‖τ
Lτ (4) =

∑
4∈Λ

|4|−ατ

m∑
i=1

4i⊂4

‖s‖τ
Lτ (Ki)

=
m∑

i=1

‖s‖τ
Lτ (Ki)

∑
4∈Λ,4⊃4i

|4|−ατ

=
m∑

i=1

‖s‖τ
Lτ (Ki)

|4i|−ατ
∑

4∈Λ,4⊃4i

(|4i|/|4|)ατ

≤ c

m∑
i=1

‖s‖τ
Lτ (Ki)

|4i|−ατ ,
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where we once switched the order of summation and used (2.9). Since |4̃i| ≤ ρ|4i|, we have
by Lemma 2.2,

‖Pi‖Lτ (Ki) ≈ |Ki|1/τ−1/p‖Pi‖Lp(Ki) ≈ |4i|α‖Pi‖Lp(Ki),

which implies ‖s‖τ
Lτ (Ki)

|4i|−ατ ≈ ‖s‖τ
Lp(Ki)

, i = 1, . . . ,m. Now by Hölder’s inequality,

m∑
i=1

‖s‖τ
Lp(Ki)

≤
( m∑

i=1

‖s‖p
Lp(Ki)

)τ/p

m1−τ/p ≤ (#Λ)ατ‖s‖τ
p,

and the proof is complete.

Step 3. Let s ∈ Σn(Φ) and suppose that s =:
∑

θ∈M cθϕθ, where M ⊂ Θ(T ) and
#M ≤ n. Let Λ be the set of all triangles 4 ∈ T which are involved in all Eθ := supp ϕθ,
θ ∈ M. Then s =

∑
4∈Λ s4, where s4 =: 14 · P4, P4 ∈ Πk. Evidently, by (2.7), #Λ ≤

c?(N0, `) #M≤ cn.
We first extend Λ to Λ̃ as in Step 1 above and introduce some auxiliary sets of triangles

needed for the forthcoming arguments. We set

Λ̃∗m := {4 ∈ Tm : Ω`
4 ⊃ 4′ for some 4′ ∈ Λ̃ ∩ Tm},

Λ̃∗∗m := {4 ∈ Tm : Ω2`
4 ⊃ 4′ for some 4′ ∈ Λ̃ ∩ Tm}, m ∈ Z,

and also
Λ̃∗ :=

⋃
m∈Z

Λ̃∗m, Λ̃∗∗ :=
⋃
m∈Z

Λ̃∗∗m .

Note that 4,4′ ∈ Tm and 4′ ⊂ Ω`
4 imply 4 ⊂ Ω`

4′ , and hence

Λ̃∗m = {4 ∈ Tm : 4 ⊂ Ω`
4′ for some 4′ ∈ Λ̃ ∩ Tm}.

Therefore, by (2.8), #Λ̃∗m ≤ c??(N0, `) #(Λ̃ ∩ Tm), and it follows that #Λ̃∗ ≤ cn. Similarly,
#Λ̃∗∗ ≤ c??(N0, 2`)(#Λ̃) ≤ cn. It is clear that Λ̃ ⊂ Λ̃∗ ⊂ Λ̃∗∗.

We now proceed to estimate |s|τBα
τ (T ) :=

∑
4∈T |4|−ατS4(s)τ

τ . Let

sm :=
∑
µ≤m

∑
θ∈M∩Θµ

cθϕθ, m ∈ Z.

Then sm ∈ Sm and hence S4(s)τ = S4(s − sm)τ if 4 ∈ Tm. For each 4 ∈ T , we shall use
one of the following two obvious bounds for S4(s)τ :

S4(s)τ ≤ ‖s‖Lτ (Ω`
4), (6.3)

S4(s)τ ≤ ‖s− sm‖Lτ (Ω`
4), 4 ∈ Tm. (6.4)

Namely, (6.3) will be applied to the triangles 4 in the set Λ̃∗ ⊂ T defined above, while (6.4)
will be used for all remaining triangles in T .

For the next estimates, we shall consider separately the cases 0 < p < ∞ and p = ∞.
Case 1: 0 < p < ∞. We consider two possibilities for each 4 ∈ T : 4 ∈ Λ̃∗ or4 ∈ T \Λ̃∗.
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(a) If 4 ∈ Λ̃∗m, then for each 4′ ∈ Tm such that 4′ ⊂ Ω`
4, we have 4′ ∈ Λ̃∗∗m and, in view

of (2.2), |4′| ≤ c|4|. Hence, by (6.3),∑
4∈Λ̃∗m

|4|−ατS4(s)τ
τ ≤

∑
4∈Λ̃∗m

|4|−ατ
∑

4′∈Λ̃∗∗m ,4′⊂Ω`
4

‖s‖τ
Lτ (4′)

≤ c
∑
4∈Λ̃∗m

∑
4′∈Λ̃∗∗m ,4′⊂Ω`

4

|4′|−ατ‖s‖τ
Lτ (4′)

= c
∑

4′∈Λ̃∗∗m

∑
4∈Λ̃∗m, Ω`

4⊃4′

|4′|−ατ‖s‖τ
Lτ (4′)

≤ c
∑

4′∈Λ̃∗∗m

|4′|−ατ‖s‖τ
Lτ (4′),

where we have switched the order of summation and taken into account the fact that #{4 ∈
Λ̃∗m : Ω`

4 ⊃ 4′} = #{4 ∈ Λ̃∗m : 4 ⊂ Ω`
4′} ≤ c??(N0, `), by (2.8). It follows that∑

4∈Λ̃∗

|4|−ατS4(s)τ
τ ≤ c

∑
4∈Λ̃∗∗

|4|−ατ‖s‖τ
Lτ (4)

≤ c(#Λ̃∗∗)ατ‖s‖τ
p ≤ cnατ‖s‖τ

p, (6.5)

where we applied Lemma 6.2 to s with Λ replaced by Λ̃∗∗, which is obviously legitimate since
Λ̃∗∗ ⊃ Λ.

(b) Now suppose 4 ∈ Tm\Λ̃∗m. Then Ω`
4 =

⋃n4
j=14j for some 4j ∈ Tm\Λ̃, j = 1, . . . , n4,

with n4 ≤ c?? ≤ 3N2`−1
0 (see (2.8)). We have, using (6.4),

S4(s)τ
τ = S4(s− sm)τ

τ ≤
n4∑
j=1

‖s− sm‖τ
Lτ (4j)

. (6.6)

If 4j /∈ Γ, then it has no descendants in Λ, and hence s|4j
= sm|4j

, and

‖s− sm‖Lτ (4j) = 0, 4j /∈ Γ. (6.7)

Suppose 4j ∈ Γ, i.e., it is a chain triangle. Let 4̃j be the unique largest triangle of Λ̃
contained in 4j, and let K4j

= 4j \4̃j and µ4j
= m−m̃ be defined as in Step 1. It is clear

that in this case s|K4j
= sm|K4j

= 1K4j
· P4j

and sm|4j
= 14j

· P4j
for some P4j

∈ Πk.

Therefore,
‖s− sm‖τ

Lτ (4j)
= ‖s− sm‖τ

Lτ (4̃j)
≤ c‖s‖τ

Lτ (4̃j)
+ c‖P4j

‖τ
Lτ (4̃j)

.

If 4j ∈ Γ \ Γ̃, then clearly sm|4j
= 0, and we have

‖s− sm‖Lτ (4j) = ‖s‖Lτ (4̃j)
, 4j ∈ Γ \ Γ̃. (6.8)

Assume that 4j ∈ Γ̃. By Lemma 2.2,

‖P4j
‖τ

Lτ (4̃j)
≤ |4̃j|‖P4j

‖τ
L∞(4j)

≤ c|4̃j|‖P4j
‖τ

L∞(K4j
)

≤ c|4̃j||K4j
|−τ/p‖P4j

‖τ
Lp(K4j

) ≤ c|4̃j||4j|ατ−1‖s‖τ
Lp(K4j

).
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By (2.1), |4̃j| ≤ ρµ4j |4j|, and we arrive at the inequality

‖s− sm‖τ
Lτ (4j)

≤ c‖s‖τ
Lτ (4̃j)

+ cρµ4j |4j|ατ‖s‖τ
Lp(K4j

), 4j ∈ Γ̃. (6.9)

From (6.6)–(6.9) and (2.2), we obtain∑
4∈T \Λ̃∗

|4|−ατS4(s)τ
τ =

∑
m∈Z

∑
4∈Tm\Λ̃∗m

|4|−ατS4(s)τ
τ

≤ c
∑
4∈Γ

|4|−ατ‖s‖τ
Lτ (4̃)

+ c
∑
4∈Γ̃

ρµ4‖s‖τ
Lp(K4)

=: Σ1 + Σ2.

Trivially,

‖s‖Lτ (4̃) ≤
∑

4′∈Λ̃,4′⊂4

‖s‖Lτ (4′), 4 ∈ Γ.

Switching the order of summation, we find

Σ1 ≤ c
∑
4′∈Λ̃

‖s‖τ
Lτ (4′)

∑
4∈Γ,4⊃4′

|4|−ατ

≤ c
∑
4′∈Λ̃

‖s‖τ
Lτ (4′)|4′|−ατ

∑
4∈Γ,4⊃4′

(|4′|/|4|)ατ (6.10)

≤ c
∑
4′∈Λ̃

|4′|−ατ‖s‖τ
Lτ (4′) ≤ c(#Λ̃)ατ‖s‖τ

p,

where we also used (2.9) and applied Lemma 6.2 to s with Λ replaced by Λ̃.
To estimate Σ2 we shall use the representation of Γ̃ as a disjoint union of chains: Γ̃ =⋃

λ∈L λ. Let λ ∈ L and suppose λ = {41, . . . ,4ν}, where 4′′
λ ⊃ 41 ⊃ · · · ⊃ 4ν ⊃ 4′

λ with

4′
λ,4′′

λ ∈ Λ̃. Then µ4i
≥ ν − i + 1. Therefore,

∑
4∈λ

ρµ4‖s‖τ
Lp(K4) ≤ ‖s‖τ

Lp(4′′
λ\4

′
λ)

ν∑
j=1

ρν−j+1 ≤ c‖s‖τ
Lp(Kλ),

where Kλ := 4′′
λ \ 4′

λ. It is easy to see that the sets Kλ, λ ∈ L, have pairwise disjoint
interiors. Summing over all λ ∈ L, we obtain by Hölder’s inequality

Σ2 ≤ c
∑
λ∈L

‖s‖τ
Lp(Kλ) ≤ c

( ∑
λ∈L

‖s‖p
Lp(Kλ)

)τ/p

(#L)1−τ/p ≤ c(#Λ̃)ατ‖s‖τ
p.

From this estimate and (6.10), we find∑
4∈T \Λ̃∗

|4|−ατS4(s)τ
τ ≤ c(#Λ̃)ατ‖s‖τ

p ≤ cnατ‖s‖τ
p.

Combining this with (6.5) gives ‖s‖τ
Bα

τ (Φ) ≤ cnατ‖s‖τ
p, i.e., (3.2) holds.
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Case 2: p = ∞. The proof in this case is easier. We consider as before two possibilities
for each 4 ∈ T : 4 ∈ Λ̃∗ or 4 ∈ T \ Λ̃∗.

(a) For 4 ∈ Λ̃∗, we obtain by (2.2)

|4|−1S4(s)τ
τ ≤ |4|−1‖s‖τ

Lτ (Ω`
4) ≤ |4|−1|Ω`

4|‖s‖τ
∞ ≤ c‖s‖τ

∞.

Therefore, ∑
4∈Λ̃∗

|4|−1S4(s)τ
τ ≤ c‖s‖τ

∞(#Λ̃∗) ≤ cn‖s‖τ
∞. (6.11)

(b) Let 4 ∈ Tm \ Λ̃∗m. Then Ω`
4 =:

⋃n4
j=14j for some 4j ∈ Tm \ Λ̃, j = 1, . . . , n4, with

n4 ≤ c?? < 3N2`−1
0 (see (2.8)). We have (see (6.4))

S4(s)τ
τ = S4(s− sm)τ

τ ≤
n4∑
j=1

‖s− sm‖τ
Lτ (4j)

.

As in Case 1, if 4j /∈ Γ, then ‖s − sm‖Lτ (4j) = 0, and if 4j ∈ Γ, then s|K4j
= sm|K4j

=

1K4j
· P4j

and sm|4j
= 14j

· P4j
for some P4j

∈ Πk. Therefore,

‖s− sm‖τ
Lτ (4j)

= ‖s− sm‖τ
Lτ (4̃j)

≤ c|4̃j|(‖s‖τ
∞ + ‖P4j

‖τ
L∞(4̃j)

) ≤ c|4̃j|‖s‖τ
∞,

where we used the inequalities ‖P4j
‖L∞(4̃j)

≤ ‖P4j
‖L∞(4j) ≤ c‖P4j

‖L∞(K4j)
≤ c‖s‖∞ (see

Lemma 2.2). From the above, we infer by (2.2)

|4|−1S4(s)τ
τ ≤ c‖s‖τ

∞

∑
1≤j≤n4,4j∈Γ∩Tm

|4̃j|/|4j|,

and hence, using (2.2) and the fact that each 4′ ∈ Γ ∩ Tm can belong to ≤ c?? sets Ω`
4, we

obtain ∑
4∈Tm\Λ̃∗m

|4|−1S4(s)τ
τ ≤ c‖s‖τ

∞

∑
4∈Γ∩Tm

|4̃|/|4|

≤ c‖s‖τ
∞

∑
4∈Γ∩Tm

ρµ4 .

Summing over m ∈ Z, we find∑
4∈T \Λ̃∗

|4|−1S4(s)τ
τ ≤ c‖s‖τ

∞

∑
4∈Γ

ρµ4 ≤ c‖s‖τ
∞ (#L+ #L∞) ≤ cn‖s‖τ

∞.

We couple this with (6.11) to obtain ‖s‖τ
Bα

τ (T ) ≤ cn‖s‖τ
∞, which is (3.2).
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