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Abstract: In this paper, new models are derived for laser propagation
in a nonlinear medium. These models are intermediate between nonlinear
Maxwell systems and nonlinear Schrödinger equations and are exact in linear
cases. We prove rigorous error estimates for a generic class of systems. In the
last section, we perform numerical tests in order to investigate the numerical
effectivity of the bounds given by the theorem. We compare for a particular
nonlinear system the exact solutions and the approximate solutions given by
our new model. It is shown that the new models behave as predicted by the
theorem but are even better in some cases.

1 Introduction

1.1 Motivations

The aim of this paper is to propose new models for the simulation of the prop-
agation of laser pulses in a nonlinear medium. The wavelength associated to
a pulse is usually near the micrometer (10−6m) while the length of the pulse
can be of order 100 micrometers for ultrashort pulses (10−4m) or of the order
of the meter. We are concerned with propagation on distances of order of the
millimeter (for crystals) or of hundred of meters (for propagation in gas). From
the temporal point of view, the frequency of a pulse is 1015s−1, its duration can
be of the order of the picoseconds (10−12s) or of 10 nanoseconds (10−8s). The
duration of propagation can be 10−11s for crystals or 10−6s for gas. The width
of the beam can be of order of a fraction of millimeter to a few centimeters.
Therefore, one has to handle 3D processes involving several orders of magni-
tude. It is not possible to propose direct simulations for all these situations.
Usually, the so-called paraxial approximation or envelope approximation are
used. This approximation relies on the fact that the electric field has the form
of a plane wave multiplied by an envelope, namely ei(kz−ωt)E(t, x, y, z) where
t ≥ 0 is the time, (x, y, z) ∈ R3 are the spatial variables, k is the wave num-
ber and ω the frequency. With these notations, the slowly varying envelope
approximation can be expressed by the following set of inequalities:

|∂tE| << ω|E|, |∂xE| << k|E|, |∂yE| << k|E|, |∂zE| << k|E|.

Using these inequalities, one obtains approximate equations satisfied by E .
These equations can be nonlinear transport equations at the group velocity
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(for frequency doubling in the phase-matching case in a crystal) or nonlinear
Schrödinger equations (in a Kerr medium) or Schrödinger-Bloch equations (in
a gas) ... We refer to general textbook of physics ([8], [18] for instance) for a
precise physical description. Here, we will address cases where the validity of
the paraxial approximation is not so clear. Physically, this can occur when the
pulse goes through a diffraction web or when the pulse is ”chirped” in order
to have a large spectral width. We want to propose alternative intermediate
models that are more precise than the usual Schrödinger-like equation but
less expensive to compute numerically than the full Maxwell equations. These
intermediate models are obtained in the same spirit as the long wave systems
for water waves of [6] or [7]. For direct simulations on nonlinear Maxwell
systems, see [5] and references therein. See also [3] for cases with non planar
phases. In order to introduce our notations, let us recall that a standard model
for propagation of a beam in a Kerr medium is the Maxwell-Lorentz system
which has the non-dimensional form:

∂tB + curl E = 0,

∂tE − curl B = −∂tP,

∂2
t P −

1

ε2
(E − P ) =

1

ε
|P |2P,

(1.1)

where (E,B) is the electromagnetic field, P is the polarization. Introducing
Q = ε∂tP , this system becomes:

∂tB + curl E = 0,

∂tE − curl B = −Q
ε
,

∂tQ−
1

ε
(E − P ) = |P |2P,

∂tP −
1

ε
Q = 0.

(1.2)

For propagation in gas, one can use the two-level Maxwell-Bloch system:
∂tE − curl B + ∂tP = 0,

∂tB + curl E = 0,

P = Re(c1c
∗
2)u,

(1.3)

where c1 and c2 are the complex representations of the populations in each level
(c∗2 denotes the complex conjugate of c2) and u a fixed vector corresponding
to the direction of propagation. Level 1 corresponds to the fundamental state,
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while level 2 corresponds to the excited state. The evolution of c1 and c2 is
given by the following set of ordinary differential equations which is derived
from the Schrödinger equation of quantum mechanics [18]:

i∂tc1 = −E · uc2
ε

,

i∂tc2 =
1

ε
c2 −

E · uc1
ε

.

(1.4)

Introducing Λ = c1c
∗
2 and Ñ = |c1|2 − |c2|2 yields

∂tΛ =
iΛ

ε
− iE · uÑ

ε
,

∂tÑ = −2iE · u(Λ− Λ∗)

ε
.

(1.5)

Let P = Re(Λ), Q = Im(Λ) and Ñ = 1−N , we obtain

∂tP = −1

ε
Q,

∂tQ =
1

ε
P − E · u(1−N)

ε
,

∂tN = −4E · uQ
ε

.

(1.6)

Now we change all the unknows by a scaling factor
√
ε and we consider a

vectorial form of (1.6) without assuming that the electric filed is polarized
along the unit vector u: 

∂tB + curl E = 0,

∂tE − curl B =
Q

ε
,

∂tQ+
1

ε
(E − P ) = EN,

∂tP +
1

ε
Q = 0,

∂tN = −4E ·Q.

(1.7)

See [11] for a precise description of these models and the derivation of the non
dimensional forms. See also [10] for the use of Maxwell-Bloch in a gas. Since
the solutions are expected under the form of a plane wave multiplied by an
envelope, usually the initial data is taken as being equal to

(E,B, P,Q)(t = 0, X) = ei k·X
ε (E0, B0, P0, Q0)(X) + c.c.
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with X = (x, y, z) and k ∈ R3. The notation c.c. means ”complex conjugate
”. For (1.7), one has moreover to take N(t = 0, X) = 0 since at the state of
rest, all atoms are at level one and c1 = 1 and c2 = 0 which implies N = 0.
Therefore the difficulties concerning the presence of different length scales for
the propagation of the beam appears in (1.2) and (1.7) through the presence

of terms of size
1

ε
in the equations and also in the ei k·X

ε in the initial data.

These terms will create high frequencies (of order
1

ε
) in time. Moreover we will

need to characterize the solution on short time scale (O(1) ) or on long time

scale (O(
1

ε
)), that is on long or short distance. In order to give a synthetic

presentation of these phenomenas, we introduce the following general class of
systems (including (1.1) and (1.3)) that has been used in several works ([16],
[15], [14], [9] ...): (

∂t +
n∑

j=1

Aj∂xj
+
L0

ε

)
u = f(u), (1.8)

where matrices Aj are real symmetric, L0 is skew-symmetric, f is a smooth
nonlinear mapping and

u(t,X) : [0, T ]× Rn → Rp, X = (x1, · · · , xn).

For the sake of simplicity, in this paper we will restrict ourselves to the case
where f(u) is an homogeneous polynomial of degree q. Of course all of the
results can be extended to more general cases.

1.2 Some classical results of nonlinear geometrical op-
tics.

We recall some tools of geometrical optics (see [14] for a more complete de-
scription). First we seek for plane wave solutions to the linear part of (3.1)
that is

u = Fe
i(k·X−ωt)

ε , (1.9)

where F ∈ Cp is a constant and k = (k1, · · · , kn) ∈ Rn. Such a plane wave is
a solution to (

∂t +
n∑

j=1

Aj∂xj
+
L0

ε

)
u = 0, (1.10)

if and only if (
−iωId + i

n∑
j=1

Ajkj + L0

)
F = 0, (1.11)

where Id denotes the identity matrix.
System (1.11) has a nontrivial solution if and only if

det

(
−iωId + i

n∑
j=1

Ajkj + L0

)
= 0, (1.12)
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which is the dispersion relation. Note that matrix i
n∑

j=1

Ajkj + L0 is skew-

adjoint, therefore the solutions ω are real and the solutions iω are the eigenval-

ues of i
n∑

j=1

Ajkj +L0. Moreover the eigenspaces are orthogonal. We denote by

Π(ω, k) (or simply by Π(k) if no confusion is possible) the orthogonal projector

onto Ker

(
−iωId + i

n∑
j=1

Ajkj + L0

)
. We also give the following definition:

Definition 1.1 The characteristic variety CL of the operator L(∂t, ∂X) = ∂t +

A(∂X) + L0 := ∂t +
n∑

j=1

Aj∂xj
+ L0 is the set

CL = {(τ, ξ) ∈ R× Rn such that det(−iτId + iA(ξ) + L0) = 0} .

Now, coming back to the nonlinear system (1.8), one tries to solve(
∂t +

n∑
j=1

Aj∂xj
+
L0

ε

)
u = f(u).

For a given k ∈ Rn, we select a frequency ω. The way we solve this problem
is the following one. We look for u in the form

u(t,X) = U(
k ·X − ωt

ε
, t,X),

where θ 7→ U(θ, t,X) is 2π−periodic. Of course this is not enough in order to
define completely function U . We see that U satisfies the following singular
equation:(

∂t + A(∂X) +
1

ε
(−ω∂θ + A(k)∂θ + L0)

)
U = f(U), for all t ∈ [0, T ],

(1.13)

for all X ∈ Rn and for θ =
k ·X − ωt

ε
. At this stage, function U is not well

defined since it satisfies (1.13) only for θ =
k ·X − ωt

ε
. In order to give a

correct definition, we impose that U satisfies (1.13) for all t ∈ [0, T ], X ∈ RN

and for θ ∈ T where T denotes the usual one-dimensional torus. We make the
following generic hypothesis.
Hypothesis 1. (k, ω) is a regular point of CL (that is the multiplicity of the
eigenvalue λj(ξ) such that λj(k) = ω is constant in a neighborhood of ξ = k).
Hypothesis 2. (pk, pω) /∈ CL for all integer p ≤ q, where q is the degree of
the nonlinearity f .
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Note that hypothesis 2 is not necessary; we could replace it by the strong finite-
ness hypothesis as in [12]. One then can construct an approximate solution
for u as follows. Let U0 be the solution to ∂tU0 + ω′(k) · ∂XU0 = Π(k)C1

(
f(Π(k)U0e

iθ + c.c.)
)
,

U0(t = 0, X) = U0(X).
(1.14)

where Cq (F (θ)) denotes the qth Fourier coefficient of θ 7→ F (θ):

Cq (F (θ)) =
1

2π

∫ 2π

0

F (θ)eiqθdθ.

One then shows:

Theorem 1.1 Let u0 ∈ Hs(Rn) (s large enough) such that Π(k)u0 = u0.
There exists a unique U ε(θ, t,X) solution to the singular equation (1.13) such
that U ε(θ, 0, X) = (eiθu0 + c.c.) is defined on [0, T ] and∣∣U ε(θ, t,X)− (U0(t,X)eiθ + c.c.)

∣∣
L∞t (0,T ;Hs

θ,X)
≤ C0ε.

It follows that there exists a solution uε(t,X) to (1.8) such that uε(0, X) =(
e

ik·X
ε u0(X) + c.c.

)
and∣∣∣uε(t,X)− (U0(t,X)ei k·X−ωt

ε + c.c.)
∣∣∣
L∞([0,T ]×Rn)

≤ C0ε.

This regime is called geometrical optics. For solutions on long time scale of size

O(
1

ε
), diffractive effects are important and we have to give another expansion.

We look for a solution of (1.8) satisfying

u(t = 0, X) = ε1/(q−1)
(
e

ik·X
ε u0(X) + c.c.

)
.

Let us recall that q is the order of the nonlinearity. In order to explain briefly
why this scaling ε1/(q−1) is relevant, let us consider the ordinary differential
equation y′ = yq. An initial data of size ε1/(q−1) will lead to a solution of the
same size y(t) = ε1/(q−1)z(t). Then function z(t) satisfies

z′(t) = εq/(q−1)ε−1/(q−1)zq = εz(t)q

and z(t) is therefore defined on a time interval of size O(
1

ε
).

The solution u is sought in the form

u(t,X) = U
(
k ·X − ωt

ε
,X − ω′(k)t, εt

)
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where θ 7→ U(θ,X, τ) is defined on T×Rn× [0, T ]. This will lead to a solution

to (1.8) defined on [0,
T

ε
]. U then satisfies(

ε∂τ + (−ω′(k)∂X + A(∂X)) +
1

ε
(−ω∂θ + A(k)∂θ + L0)

)
U = f(U), (1.15)

with
U(θ, t = 0, X) = ε1/(q−1)

(
eiθu0(x) + c.c.

)
.

Let V0 be the solution to the following nonlinear Schrödinger equation:

∂τV0 + i
ω′′(k)

2
(∂X , ∂X)V0 = Π(k)C1

(
f(Π(k)V0e

iθ + c.c.)
)
, (1.16)

with V0(τ = 0, X) = u0(X).

Theorem 1.2 Let u0 ∈ Hs(Rn) (s large enough) such that Π(k)u0 = u0.
There exists a unique Vε(θ,X, τ) solution to the singular equation (1.15) such
that Vε(θ,X, 0) = ε1/(q−1)(eiθu0 + c.c.) defined on [0, T ] and∣∣∣∣ 1

ε1/(q−1)
Vε(θ,X, τ)− (V0(τ,X)eiθ + c.c.)

∣∣∣∣
L∞τ (0,T ;Hs

θ,X)

≤ C1ε.

As before, it follows that∣∣∣∣ 1

ε1/(q−1)
uε(t,X)− (V0(εt,X − ω′(k)t)ei k·X−ωt

ε + c.c.)

∣∣∣∣
L∞([0,T ]×Rn)

≤ Cε.

Of course, from the computational point of view, it is much easier to find low
frequency solutions to (1.14) or (1.16) on [0, T ]×Rn than oscillatory solutions

of (1.8) on [0,
T

ε
] × Rn. Indeed the frequencies in time and space that are

relevant for the solution of (1.8) are of size O(
1

ε
). Therefore, the time and

space steps used in any numerical method have to be small compared to ε.
This gives a number of points (in space) that has to be large compared to

O(
1

ε
) and a number of time steps large compared to O(

1

ε
). For (1.14) or

(1.16), the frequencies are O(1) and the time or space steps have only to be
small with respect to 1. Moreover, while (1.8) has to be solved in the diffractive

regime on long time intervals [0,
T

ε
], equation (1.16) has to be solved on [0, T ]

only, which decreases the number of time steps. This is why (1.14) or (1.16)
are used in practical applications [17].
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1.3 Limitations of the models.

In some applications (ultrashort pulses), one can have to handle cases where ε
is small, but not very small (ε ∼ 10−2). The error estimates given by the above
results are not very precise especially when the constants C0 and C1 (depending
at least of the Hs norm of the initial data) are large. These constants can be
large when the initial data has rapid variations and this is the case for short
pulses or for pulses with a quite large spectrum. This configuration arises when
the laser beam propagates through a diffraction web. We give a numerical
example below. Let us consider the simplified system:

∂t

(
u
v

)
+ ∂x

(
v
u

)
+

1

ε

(
−v
u

)
=

(
−(u2 + v2)v
(u2 + v2)u

)
, (1.17)

with (
u0

v0

)
= ε1/2ei kx

ε

(
1

−ik+1
iω

)
a(x) + c.c., x ∈ [0, 1],

where ω =
√

1 + k2. The function a(x) is given by

a(x) = e−75(x−1/2)2ei15 cos(15x).

We make a simulation as described in the last section with ε = 10−2 on
t ∈ [0, 50]. The solution to (1.17) at time t = 50 is given on figure 1 and
the solution given by the nonlinear Schrödinger equation (1.16) on figure 2.
They have nothing in common and the relative error in L2 norm is 1.4 as indi-
cated in section 3.3.2. For practical use, O. Morice [17] has already introduced
some modification of the linear Schrödinger equation in order to take into ac-
count higher-order diffraction effects. Other tentatives has been done by D.
Alterman and J. Rauch [1], Schäfer and Wayne [19] and [2] for ultra-short
pulses. In all these contributions, the authors obtain linear equation because
in a context of pulses with large spectrum, it can be shown that the nonlinear
effects are less important than usually see ([1] and [2]). Nevertheless, from
the physical point of view, it is impossible to neglect nonlinear effects. We
therefore need to construct new models that will be exact in the linear case,
but that take into account the nonlinear effects and that are not numerically
stiff.

This paper is organized as follows. In section 2, we introduce our new mod-
els and prove the main result. In section 3, we present some numerical results
in order to illustrate our error bounds and also to investigate the numerical
effectivity of our model.
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2 New intermediate models.

2.1 Formal obtaining of the models.

We restrict ourselves to geometrical optics regime. We go back to the sin-
gular equation (1.13). For ξ ∈ Rn, let us introduce the following spectral
decomposition of the matrix iA(ξ) + L0:

iA(ξ) + L0 =
m∑

j=1

iλj(ξ)Πj(ξ), (2.1)

where m denotes the number of distinct eigenvalues of iA(ξ) + L0. We have
implicitly used the following assumption:
Hypothesis 3. There exists m continuous functions ξ 7→ λj(ξ) defining a
global parametrization of the characteristic variety CL.
Of course the functions ξ 7→ Πj(ξ) are not necessary continuous at the points
ξ0 where there exists j1 and j2 such that λj1(ξ0) = λj2(ξ0). However, since
the projector Πj(ξ) are orthogonal projectors, the functions ξ 7→ Πj(ξ) are
bounded. Let us now fix a vector k ∈ Rn and take ω = λl0(k) one eigenvalue
of iA(ξ) + L0 for some l0 ∈ {1, · · · ,m}. In order to simplify the notations, we
take l0 = 1. (k, ω) will be the main frequencies of the solution described in the
introduction.
Hypothesis 4. There exists a neighborhood V of k such that for all ξ ∈ V
and for all integer j ≥ 2

λj(ξ) 6= λ1(ξ).

From now on, we use the usual notations Dθ =
∂θ

i
, DX =

∂X

i
. Then, equation

(1.13) reads:(
∂t +

1

ε
(−iωDθ + iA(kDθ + εDX) + L0)

)
U ε = f(U ε).

Using (2.1), we get(
∂t +

1

ε
(−iωDθ + iλj(kDθ + εDX))

)
Πj(kDθ + εDX)U ε

= Πj(kDθ + εDX)f(U ε), j = 1 to m.

(2.2)

The first model that we introduce relies on the following idea: we want to
obtain a model that is exact for the linear regime (f ≡ 0) and the best possible
for the nonlinear one. Moreover, one starts with initial data that are polarized
on the first eigenspace that is

Π1(kDθ + εDX)U ε(t = 0) = U ε(t = 0).

We now make the following hypothesis
Hypothesis 5. If m ∈ Z, j = 1 to m, then

λj(mk) = mω ⇒ j = 1 and m = ±1.
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One can modify the model obtained below if this assumption is not satisfied.
In fact a generalized assumption is the strong finiteness hypothesis introduced
in [12]:
Hypothesis 5’. The set {m ∈ Z such that there exists j satisfying λj(mk) =
mω } is finite.
However for the sake of simplicity, we will restrict in this work to Hypothesis 5.
Under the hypothesis 5, the spectrum of the solution will be mainly supported
by the first sheet of the characteristic variety. That is for all time, we will have
Π1(kDθ + εDX)U ε(t) ≈ U ε(t). We therefore introduce Vε the solution to(

∂t +
1

ε
(−iωDθ + iλ1(kDθ + εDX))

)
Π1(kDθ + εDX)Vε

= Π1(kDθ + εDX)f(Vε),

(2.3)

and
Πj(kDθ + εDX)Vε = 0 for j ≥ 2. (2.4)

We expect Vε to be a good approximation of U ε. For s ∈ R and T > 0 we
denote by XT = L∞(0, T ;Hs(Rn

X × Tθ)). Our first result reads as follows.

Theorem 2.1 Let us assume hypothesis 3, 4, 5 and let s >
n+ 1

2
, α > 0. Let

u0(X) ∈ Hσ(Rn) (for σ large enough) satisfying

Π1(k + εDX)u0(X) = u0(X).

Then there exists T > 0 (independent of ε) and U ε, Vε respectively solution to
(2.2) and (2.3)-(2.4) such that

U ε(t = 0) = Vε(t = 0) = εα(eiθu0 + c.c.).

Moreover
1

εα
|Π1(kDθ + εDX)(U ε − Vε)|XT

= O(ε2α(q−1)+1)

and
1

εα
|Πj(kDθ + εDX)U ε|XT

= O(εα(q−1)+1) for j ≥ 2.

Remark 2.1 The scalling εα allows us to see how the error estimate evolves
when the nonlinear effects decrease. Indeed, for large α, the nonlinear estimate
is better than for small α. The case α = ∞ correspond to the linear regime
and the solution is then exact.

Remark 2.2 As usual for the proofs using WKB-type method, we need a lot
of regularity on the approximate solution Vε. Therefore, we will impose the
initial data u0 to be more regular than the space in wich we want the error
estimates [14].
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Now, we can introduce a second model as follows. Thanks to hypothesis
5, we expect the Fourier coefficients of order different from ±1 of Vε to be
small. We therefore expect Vε ≈ Vε

1(t,X)eiθ + c.c.. We therefore introduce the
function Hε(t,X) solution to(

∂t +
1

ε
(−iω + iλ1(k + εDX))

)
Π1(k + εDX)Hε

= Π1(k + εDX)C1

(
f(Hεeiθ + c.c.)

) (2.5)

and we expect Hεeiθ + c.c. to be a good approximation of Vε and hence of U ε.
Our second result reads as follows.

Theorem 2.2 Under the same hypothesis than for theorem 2.1. There exists
T0 independent of ε such that T ≥ T0 > 0 and a unique solution Hε(t,X) ∈
L∞(0, T0;H

s
X(Rn)) to (2.5) satisfying Hε(0, X) = εαu0(x) and moreover

1

εα
|C1 (Vε)−Hε(t,X)|L∞(0,T0;Hs

X(Rn)) = O(ε2α(q−1)+1)

and
1

εα

∣∣Vε −
(
Hεeiθ + c.c.

)∣∣
XT

= O(εα(q−1)+1).

Remark 2.3 • The error estimate between Vε and Hεeiθ + c.c. is of the same
type than that between Vε and U ε.
• The equation satisfied by Hε is not stiff anymore since λ1(k) = ω.

2.2 Proofs of the theorems

We begin by the proof of theorem 2.1. One first has an obvious existence result
for (2.2) and (2.3).

Proposition 2.1 Let u0(X) ∈ Hσ(Rn) (for σ large enough) and s >
n+ 1

2
.

There exists T > 0 (independent of ε) such that there exists a unique solution
U ε to (2.2) and there exists a unique solution Vε to (2.3) satisfying

U ε ∈ C([0, T ];Hs(Rn
X × Tθ)), Vε ∈ C([0, T ];Hs(Rn

X × Tθ))

and
U ε(t = 0, θ,X) = Vε(t = 0, θ,X) = εα(eiθu0(X) + c.c.).

Moreover, there exists C independent of ε such that

1

εα
|U ε|XT

+
1

εα
|Vε|XT

≤ C.
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This proposition is obtained by usual energy estimates. It is of course not
sufficient in order to prove theorem 2.1. Let us introduce

Wε =
1

εα
(U ε − Vε) (2.6)

and we consider the following decomposition of Wε:

Wε := Π1(kDθ + εDX)Wε +
m∑

j=2

Πj(kDθ + εDX)Wε,

:= ε2α(q−1)+1a+
m∑

j=2

εα(q−1)+1bj.

(2.7)

In order to prove theorem 2.1, it is enough to show that the functions a and bj
are bounded in XT = L∞([0, T ];Hs(Rn

X×Tθ)). Let us now write the equations
satisfied respectively by a and bj. Let us form the difference of (2.3) from (2.2)
and then apply the projector Πj. Decomposition (2.1) yields (using the fact
that f is an homogeneous polynomial of degree q)(

∂t +
1

ε
(−iωDθ + iλ1(kDθ + εDX))

)
a =

1

εα(q−1)+1
Π1(kDθ + εDX)·

·

[
f

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

)
− f

(
1

εα
Vε

)]
,

(2.8)

and (
∂t +

1

ε
(−iωDθ + iλj(kDθ + εDX))

)
bj

=
1

ε
Πj(kDθ + εDX)

[
f

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

)]
,

(2.9)

for j = 2 to m. We start with equation (2.8). We first use Taylor’s formula in
the right-hand side of (2.8):

f

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

)
− f

(
1

εα
Vε

)
=

=

∫ 1

0

f ′

(
1

εα
Vε + ν

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj

))
·

·

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj

)
dν.
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f is an homogeneous polynomial of degree q since Hs is an algebra for s large
enough, hence this quantity can be estimated in Hs

θ,X norm by:

∆1(t) =

∣∣∣∣∣f(

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

)
− f

(
1

εα
Vε

)∣∣∣∣∣
Hs

,

≤ Cεα(q−1)+1

(
|V

ε

εα
|q−1
Hs + |a|q−1

Hs +
m∑

j=2

|bj|q−1
Hs

)
·

(
|a|Hs +

m∑
j=2

|bj|Hs

)
. (2.10)

We now use an integral formulation of (2.8):

a = e−
1
ε
(−iωDθ+iλ1(kDθ+εDX))ta(t = 0)

+

∫ t

0

1

εα(q−1)+1
e−

1
ε
(−iωDθ+iλ1(kDθ+εDX))(t−τ)Π1(kDθ + εDX)·

·

[
f

(
ε2α(q−1)+1a(τ) +

m∑
j=2

εα(q−1)+1bj(τ) +
1

εα
Vε(τ)

)
− f

(
1

εα
Vε(τ)

)]
dτ

and using (2.10)

|a|Hs(t) ≤ |a(0)|Hs+C

∫ t

0

(
|V

ε

εα
|q−1
Hs + |a|q−1

Hs +
m∑

j=2

|bj|q−1
Hs

)
·

(
|a|Hs +

m∑
j=2

|bj|Hs

)
dτ.

Using the fact that
1

εα
|Vε|Hs is bounded thanks to proposition 2.1 and that

a(t = 0) = 0, one gets

|a|Hs(t) ≤ C

∫ t

0

(
1 + |a|Hs +

m∑
j=2

|bj|Hs

)q

(τ)dτ. (2.11)

We now deal with equation (2.9). The main point is to recover one power of ε
with respect to the right hand side using the ”elliptic inversion” corresponding
to the operator −iωDθ + iλj(kDθ + εDX). We first rewrite equation (2.9) as
follows: (

∂t +
1

ε
(−iωDθ + iλj(kDθ + εDX))

)
bj

=
1

ε
Πj(kDθ + εDX)

[
f

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

)]
,

(2.12)
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we write the nonlinear term under the form

f

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj +
1

εα
Vε

)
− f

(
Vε

εα

)
+ f

(
Vε

εα

)
.

An integral formula for (2.12) gives:

bj =
1

ε

∫ t

0

e−
1
ε
(−iωDθ+iλj(kDθ+εDX))(t−τ)Πj(kDθ + εDX)

·

[
f

(
ε2α(q−1)+1a+

m∑
j=2

εα(q−1)+1bj +
Vε

εα

)
− f

(
Vε

εα

)]
(τ)dτ

+
1

ε

∫ t

0

e−
1
ε
(−iωDθ+iλj(kDθ+εDX))(t−τ)Πj(kDθ + εDX)f

(
Vε

εα

)
(τ)dτ,

:= cj + dj.

(2.13)

Obviously, one has in the same way that for the estimate of a:

|cj|Hs (t) ≤ C

∫ t

0

(
1 + |a|Hs +

m∑
j=2

|bj|Hs

)q

(τ)dτ. (2.14)

We still have to estimate the term dj. The idea is to perform the ellip-
tic inversion on the nonlinear term associated with Vε (that is f(Vε) which
is relatively well-known (at least asymptotically)). We introduce βj(D) =
−ωDθ + λj(kDθ + εDX) and the term dj can be therefore written:

dj =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
ε
βj(D)(t−τ)f

(
Vε

εα

)
(τ)dτ. (2.15)

In order to use the oscillatory behavior of the exponential, we split the function
Vε into a low-frequency and a high-frequency part

Vε = 1{
|DX |≤ 1√

ε

}Vε + 1{
|DX |> 1√

ε

}Vε,

:= Vε
1 + Vε

2 .

Again, we write dj as follows:

dj =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
ε
βj(D)(t−τ)

[
f

(
Vε(τ)

εα

)
− f

(
Vε

1(τ)

εα

)]
dτ,

+
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
ε
βj(D)(t−τ)f

(
Vε

1(τ)

εα

)
dτ,

:= ej + fj.
(2.16)
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We begin by estimating ej

ej =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
ε
βj(D)(t−τ)

∫ 1

0

f ′
(
Vε

1 + αVε
2

εα

)
· V

ε
2

εα
dαdτ,

and

|ej|Hs ≤
1

ε

∫ t

0

(∣∣∣∣Vε
1

εα

∣∣∣∣q−1

Hs

+

∣∣∣∣Vε
2

εα

∣∣∣∣q−1

Hs

)
|Vε

2 |Hs

εα
dτ.

Now since
|Vε

i |Hs

εα
≤ |Vε|Hs

εα

for i = 1, 2 and thanks to proposition 2.1,
|Vε|Hs

εα
is bounded, one has∣∣∣∣Vε

1

εα

∣∣∣∣q−1

Hs

+

∣∣∣∣Vε
2

εα

∣∣∣∣q−1

Hs

≤ C,

one gets:

|ej|Hs ≤
C

ε

∫ t

0

|Vε
2(τ)|Hs

εα
dτ.

Moreover, for all N ∈ N and for all s ∈ R∣∣∣∣Vε1{
|DX |> 1√

ε

}∣∣∣∣
Hs

≤ CεN |Vε|Hs+2N

and therefore
|ej|Hs(t) ≤ Ct. (2.17)

We now deal with the term fj

fj =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
ε
βj(D)(t−σ)f

(
Vε

1(σ)

εα

)
.

Now thanks to hypothesis 4, one can apply the following result of nonlinear ge-
ometrical optics (see [14]): there exists a regular function F (t,X) (independent
of ε) such that

Vε

εα
= F (t,X)eiθ + c.c.+O(ε),

the O(ε) being for example in L∞(0, T ;Hs
θ,X(Rn × T)) norm. Plugging this

expression into the expression of fj yields

fj =
1

ε

∫ t

0

Πj(kDθ + εDX)e−
i
ε
βj(D)(t−σ)f

(
1{

|DX |≤ 1√
ε

} (F (t,X)eiθ + c.c.
))

dσ

+tO(1) := hj +O(t).

Now, since f is an homogeneous polynomial of degree q,

f

(
1{

|DX |≤ 1√
ε

} (F (t,X)eiθ + c.c.
))
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has the form:

f

(
1{

|DX |≤ 1√
ε

} (F (t,X)eiθ + c.c.
))

=

q∑
β=−q

aε
β(t,X)eiβθ,

where aε
β(t,X) are regular functions, bounded independently of ε in spaces like

W k,∞(0, T ;Hs
X(Rn)) for k large enough. Moreover, since the aε

β are products
of components of 1{

|DX |≤ 1√
ε

}F and 1{
|DX |≤ 1√

ε

}F̄ , the support of the Fourier

transform of aε
β is included into

{
ξ/ |ξ| ≤ q√

ε

}
. Taking the Fourier trans-

form of hj with respect to θ and X (denoting by l ∈ Z and ξ ∈ Rn the dual
variables of θ and X) gives

ĥj(l, ξ, t) =
1

ε

∫ t

0

Πj(kl + εξ)e−
i
ε
[−lω+λj(kl+εξ)](t−τ)âε

l (τ, ξ)dτ, (2.18)

for l = −q to q. Now thanks to hypothesis 5, for all l, lω 6= λj(kl) since j > 1.

Moreover, since the support of ξ 7→ âε
l (s, ξ) is included in

{
ξ/ |ξ| ≤ q√

ε

}
, it

follows that there exists ε0 > 0 and δ > 0 such that ∀ε ≤ ε0, for all l = −q to

q, for all ξ ∈
{
ξ/ |ξ| ≤ q√

ε

}
,

|−lω + λj(kl + εξ)| ≥ δ. (2.19)

We perform an integration by part in time on (2.18) and get:

ĥj(l, ξ, t) =
1

ε

[
−iε

−lω + λj(kl + εξ)
e−

i
ε
[−lω+λj(kl+εξ)](t−τ)Πj(kj + εξ)âε

l (τ, ξ)

]t

0

+
1

ε

∫ t

0

iε

−lω + λj(kl + εξ)
e−

i
ε
[−lω+λj(kl+εξ)](t−τ)Πj(kj + εξ)∂sâ

ε
l (τ, ξ)dτ.

Therefore using (2.19)∣∣∣ĥj(l, ξ, t)
∣∣∣ ≤ 1

δ
(|âε

l (t, ξ)|+ |âε
l (0, ξ)|) +

1

δ

∫ t

0

|∂τ â
ε
l (τ, ξ)|dτ

for all l = −q to q. It follows that

|hj|Hs (t) ≤ C(1 + t) (2.20)

One deduces that
|fj|Hs(t) ≤ C(1 + t)

and with (2.16) and (2.17) we get

|dj|Hs(t) ≤ C(1 + t).
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Inequality (2.13) and estimate (2.14) give together with the above control of
dj:

|bj|Hs ≤ C

∫ t

0

(
1 + |a|Hs +

m∑
j=2

|bj|Hs

)q

(τ)dτ + C(1 + t). (2.21)

Now we recall the estimate (2.11) of a:

|a|Hs(t) ≤ C

∫ t

0

(
1 + |a|Hs +

m∑
j=2

|bj|Hs

)q

(τ)dτ.

Introducing y = 1 + |a|Hs +
m∑

j=2

|bj|Hs , one gets using (2.21)

y ≤ c

∫ t

0

yq(σ)dσ + C(1 + t),

which implies that there exists T0 > 0 and C0 > 0 such that y is defined on
[0, T0] and |y|L∞(0,T0) ≤ C0. This ends the proof of theorem 2.1.

2.3 Proof of theorem 2.2.

We will now compare the solution Vε given by (2.3)-(2.4) and Hε given by
(2.5). The proof is mainly the same than for the previous result, we only
sketch it. Introduce

Vε =
∑
β∈Z

Vε
β(t,X)eiβθ.

The equation satisfied by Vε
β is(

∂t +
1

ε
(−iωβ + iλ1(kβ + εDX))

)
Π1(kβ+εDX)Vε

β = Π1(kβ+εDX)Cβ (f(Vε)) .

Introduce Xε =
1

εα
[Vε

1 −Hε] where Hε is the solution to (2.5). The equation

satisfied by
Vε

β

εα
for β 6= 1 or −1 is(

∂t +
1

ε
(−iωβ + iλ1(kβ + εDX))

)
Π1(kβ+εDX)

Vε
β

εα
= Π1(kβ+εDX)εα(q−1)Cβf(

Vε
β

εα
).

An elliptic inversion on
Vε

β

εα
gives an estimate of

Vε
β

εα
of size εα(q−1)+1 for β 6= ±1.

Now the equation satisfied by Xε is(
∂t +

1

ε
(−iω + iλ1(k + εDX))

)
Π1(k + εDX)Xε

= Π1(k + εDX)εα(q−1)

[
C1

(
f(
Vε

β

εα
)

)
− C1

(
f(
Hεeiθ + c.c.

εα
)

)]
.

(2.22)
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Now write Vε = Vε
1e

iθ + c.c.+ Ṽε. Then the right-hand-side of (2.22) reads

C1

(
f(
Vε

β

εα
)

)
− C1

(
f(
Hεeiθ + c.c.

εα

)

= C1

(
f

(
Hεeiθ + c.c.

εα
+Xεeiθ + c.c.+

Ṽε

εα

)
− f

(
Hεeiθ + c.c.

εα

))
,

≈ C1

(
f ′
(
Hεeiθ + c.c.

εα

)[
Xεeiθ + c.c.+

Ṽε

εα

])
.

Integrating (2.22) in times gives

|Xε|Hs (t) ≤
∫ t

0

εα(q−1)C|Xε|Hs(σ)dσ +

∫ t

0

Cεα(q−1)

∣∣∣∣∣ Ṽε

εα

∣∣∣∣∣
Hs

dσ.

But
Ṽε

εα
= O(εα(q−1)+1). It follows that

|X|L∞(0,T ;Hs) = O(ε2α(q−1)+1)

which is the desired result.

2.4 Some extensions.

Note that if α = 0, that is for O(1) solutions the error estimate is the same
than for usual geometrical optics. The estimate is in fact better for α > 0.
Recall that εα is the size of the initial data and hence of the solution. But
if α > 0, then standard technics on (1.13) ensures existence for time of size

1

εα(q−1)
. The natural question is then to know if our estimates are valid on

such time interval. The answer is affirmative and one has

Theorem 2.3 Under the same hypothesis than for theorem 2.1, there exists
T1 > 0 and C1 > 0 (independent of ε) such that

1

εα
|Π1(kDθ + εDX) (U ε − Vε)|L∞(0,t;Hs

θ,X(T×Rn)) ≤ C1ε
α(q−1)+1

(
eC1εα(q−1)t − 1

)
and

1

εα
|Π1(kDθ + εDX)U ε|L∞(0,t;Hs

θ,X(T×Rn)) ≤ C1ε
α(q−1)+1t,

as long as t ≤ T1

εα(q−1)
. Moreover

1

εα
|C1 (Vε(t,X, θ))−Hε(t,X)|L∞(0,t;Hs

X(Rn)) ≤ C1ε
α(q−1)+1

(
eC1εα(q−1)

1 − 1
)

and

1

εα

∣∣Vε(t,X, θ)−
(
Hε(t,X)eiθ + c.c.

)∣∣
L∞(0,t;Hs

θ,X(T×Rn))
≤ C1ε

α(q−1)+1t,

as long t ≤ T1

εα(q−1)
.
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That means that our asymptotics are uniform on long time interval. See the
next section for numerical illustrations of these results.

Remark 2.4 Suppose that for all X ∈ Rn, f(X)·X = 0, then for any solution
Vε to (2.3) one has ∫

|Vε|2(t)dXdθ =

∫
|Vε|2(0)dXdθ

and for any solution Hε to (2.5)∫
|Hε|(t)dX =

∫
|Hε|(0)dX.

That means that if the initial model is conservative, then the asymptotic one
is conservative as well.

3 Some numerical results.

3.1 An example.

In this section, we want to compare numerically the solutions of the different
asymptotic regimes and we want to see to which extent the error estimates
that we have proved in the previous section are effective. We choose to make
the computations on a simplified system which is dispersive, nonlinear and
preserves the L2 norm. This system is:

∂tu+ ∂xv −
v

ε
= −(u2 + v2)v,

∂tv + ∂xu+
u

ε
= (u2 + v2)u.

(3.1)

The characteristic variety of this system is the set{
(ω, k) ∈ R2/ ω2 = 1 + k2

}
.

Hypothesis 3 and 4 are therefore satisfied. For hypothesis 5, suppose that
ω2 = 1 + k2 and that for m ∈ Z one has m2ω2 = 1 + m2k2. It then follows
that m = ±1 and hypothesis 5 is satisfied.
We now derive the asymptotic models corresponding to (3.1) in the geometrical
and diffractive regimes. We refer for example to [13] for the case of diffractive
optics.
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3.1.1 The geometrical optics regime.

One search an approximate solution in the form:(
u0(t, x)
v0(t, x)

)
ei kx−ωt

ε + c.c..

Then one obtains

u0 =
ik − 1

iω
v0 (3.2)

and

∂tu0 +
k

ω
∂xu0 =

4i

ω
|u0|2u0, for t ∈ [0, T0]. (3.3)

3.1.2 Diffractive optics.

One search an approximate solution in the form(
u1(t, x)
v1(t, x)

)
ei kx−ωt

ε + c.c.,

but on long time-scale with u1(0, x) = O(
√
ε), v1(0, x) = O(

√
ε). One gets

u1 =
ik − 1

iω
v1 (3.4)

and

∂tu1 +
k

ω
∂xu1 −

iε

ω3
∂2

xu1 =
4i

ω
|u1|2u1, for t ∈ [0,

T1

ε
]. (3.5)

3.1.3 The new model.

One search for a solution in the form(
u2(t, x)
v2(t, x)

)
ei kx−ωt

ε + c.c.

and one gets

u2 =
i(k + εDx)− 1

i
√

1 + (k + εDx)2
v2 (3.6)

and

∂t

(
u2

v2

)
+
i

ε

(√
1 + (k + εDx)2 −

√
1 + k2

)( u2

v2

)

=


1

2
i(k+εDx)−1

2i
√

1+(k+εDx)2

i(k+εDx)+1

2i
√

1+(k+εDx)2

1

2


 −2(|u2|2 + |v2|2)v2 − (u2

2 + v2
2)v̄2

−2(|u2|2 + |v2|2)u2 − (u2
2 + v2

2)ū2

 .

(3.7)
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Of course thanks to (3.6), we can restrict ourselves to the first equation of
(3.7) and setting

µε(Dx) =
i(k + εDx)− 1

i
√

1 + (k + εDx)2
,

one obtains

∂tu2 +
k∂x − iε∂2

x√
1 + (k + εDx)2 +

√
1 + k2

u2

= −(|u2|2 + |v2|2)v2 − 2(u2
2 + v2

2)v̄2

+µε(Dx)
[
(|u2|2 + |v2|2)u2 + 2(u2

2 + v2
2)ū2

]
(3.8)

with

v2 =
1

µε(Dx)
u2, (3.9)

which is the complete system.
Finally, the same system with the Kerr nonlinearity is used in practical appli-
cations in [17] and reads

∂tu3 +
k∂x − iε∂2

x√
1 + (k + εDx)2 +

√
1 + k2

u3 =
4i

ω
|u3|2u3. (3.10)

We will also compare our system with that one.

3.2 The numerical method.

We restrict ourself to the case x ∈ [0, 1] with periodic boundary conditions
and we use a spectral method in the space variable x. For time discretization,
we adopt a splitting technique.
• For system (3.1), suppose we have built an approximate solution (u(nδt), v(nδt))
at time nδt; one first integrates the linear part explicitly in Fourier variables
with initial data (u(nδt), v(nδt)) over one time step. This gives an indermedi-
ate value (ui, vi). Then one integrates the nonlinear part

∂t

(
u
v

)
=

(
−(|u|2 + |v|2)v
(|u|2 + |v|2)u

)
with initial value (ui, vi) explicitly over one time step. This gives (u((n +
1)δt), v((n+ 1)δt).
• For the geometrical optics equation (3.3) one has the exact solution

u0(t, x) = A(x− k

ω
t)e

4i
ω
|A(x− k

ω
t)|2t, (3.11)

where A(x) = u0(0, x).
• For the diffractive regime (3.5) we use the same strategy than for (3.1). We
omit the details since it is a standard procedure for the nonlinear Schrödinger
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equation (see [4] and reference therein for a more detailed study).
For the new model (3.8). Suppose that one has the Fourier transform of
u2(nδt): û2(nδt). One solves the linear part of (3.8):

∂tû2 +
ikξ + εξ2√

1 + (k + εξ)2 +
√

1 + k2
û2 = 0,

with initial value û2(nδt, ξ) on one time step. One gets an intermediate value
û2i. One then obtains an intermediate value of v̂2 called v̂2i using (3.9). We
then perform an inverse Fourier transform of û2i and v̂2i in order to obtain u2i

and v2i and then one construct the nonlinear terms

NL1 := −(|u2i|2 + |v2i|2)v2i − 2(u2
2i + v2

2i)v̄2i

and
NL2 := (|u2i|2 + |v2i|2)u2i + 2(u2

2i + v2
2i)ū2i.

Next we perform a Fourier transform of NL1 and NL2 and compute N̂L1 +
µε(ξ)N̂L2. The value of û2((n+1)δt) is obtained by the explicit Euler scheme

û2((n+ 1)δt) = û2i + δt
[
N̂L1 + µε(ξ)N̂L2

]
.

• For the modified system (3.10) the nonlinear step is explicit just like for (3.5)
or (3.1).

All these schemes are of order 1 in time.

3.3 Numerical results.

We have performed simulations with ε = 10−2 or ε = 10−3. All the results are
given in the case where the numerical solution has converged, that is a division
of the time step by 2 and a multiplication by 2 of the number of points for the
spatial discretization does not change the result. We use L2 norms in order to
compare the solutions. We take an initial value for u in the form

u(t = 0, x) = εα
(
ei kx

ε ϕ(x) + c.c.
)
,

for α ≥ 0. All the simulations are done with k = 2π and ω =
√

1 + (2π)2.
The initial value for v is obtained by using (3.9). That means that one takes:

ψ(x) =
1

µε(Dx)
ϕ(x) and

v(t = 0, x) = εα
(
ei kx

ε ψ(x) + c.c.
)
.

The initial data for u0, u1, u2 and u3 is of course ϕ(x). We call

egeo = max
t∈[0,T ]

∣∣∣u(t, ·)− εα(u0(t, ·)ei kx−ωt
ε + c.c.)

∣∣∣
2

|u(t, ·)|2
,
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that is the maximum of the error between the exact solution of (3.1) and the
approximate solution given by the geometrical optics approximation (3.3) on
the time intervale [0, T ]. Here |f |2 denotes the L2 norm on [0, 1] of the function
f . We also introduce

ediff = max
t∈[0,T ]

∣∣∣u(t, ·)− εα(u1(t, ·)ei kx−ωt
ε + c.c.)

∣∣∣
2

|u(t, ·)|2
,

that is the maximum of the error between the exact solution of (3.1) and the
approximate solution given by the diffractive optics approximation (3.5) on
the time intervale [0, T ] and

enew = max
t∈[0,T ]

∣∣∣u(t, ·)− εα(u2(t, ·)ei kx−ωt
ε + c.c.)

∣∣∣
2

|u(t, ·)|2
,

that is the maximum of the error between the exact solution of (3.1) and the
approximate solution given by the new model on the time intervale [0, T ] and

enewkerr = max
t∈[0,T ]

∣∣∣u(t, ·)− εα(u3(t, ·)ei kx−ωt
ε + c.c.)

∣∣∣
2

|u(t, ·)|2
,

that is the maximum of th error between the exact solution of (3.1) and the
approximate solution given by the new model with Kerr nonlinearity given by
(3.10) on the time intervale [0, T ]. We denote by N the number of Fourier
modes in space and Nt the number of time steps.

3.3.1 Time of order 1.

• Case 1. We begin with ϕ(x) = e−75(x− 1
2
)2ei10 cos(x) with α = 0 and we compute

for x ∈ [0, 1] and t ∈ [0, 1]. The errors at T = 1 are:

ε = 10−2 ε = 10−3

egeo 2 10−2 2.3 10−3

ediff 2 10−2 2.3 10−3

enew 1.9 10−2 2 10−3

enewkerr 2 10−2 2.3 10−3

For ε = 10−2, the convergence on the errors is reached with N = 1024 and
Nt = 1600. For ε = 10−3 the convergence is reached with N = 16384 and
Nt = 12800. For all cases, the error is of order ε as predicted by the theory.
The simplest model (geometrical optics) is precise enough.
• Case 2. We made a test for smaller solutions, namelly α = 1

2
. The error at

T = 1 are
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ε = 10−2 ε = 10−3

egeo 3.3 10−3 3.2 10−4

ediff 1.7 10−4 1.8 10−6

enew 1.6 10−4 1.9 10−6

enewker 1.9 10−4 2 10−6

For ε = 10−2, the convergence on the errors is reached with N = 1024 and
Nt = 1600. For ε = 10−3 the convergence is reached with N = 16384 and
Nt = 12800. Basically, the error for geometrical optics is the worst (of order
ε), however, it remains very satisfactory. The others are of order ε2 as predicted
by the theory.
• Case 3. For chirped initial data:

u(t = 0, x) = (e−75(x−1/2)2ei15cos(15x)ei kx
ε + c.c.),

x ∈ [0, 1]. Such kind of solution can occur after diffraction webs for example
or for laser with large spectrum. The errors at T = 1 are:

ε = 10−2 ε = 10−3

egeo 0.8 5.7 10−2

ediff 0.17 1.2 10−2

enew 0.023 1.9 10−3

enewkerr 0.21 1.4 10−2

For ε = 10−2, the convergence on the errors is reached with N = 1024 and
Nt = 1600. For ε = 10−3 the convergence is reached with N = 16384 and
Nt = 12800. For ε = 10−2, the error for the complete new model is 2.3%,
the other errors are above 15%. Such errors are not acceptable in practical
applications. As an illustration, one can find on figure 5 the modulus of the

amplitude (that is without the phase factor ei
(kx−ωt)

ε ) of the first component for
the three models : the new model, the geometrical optics and the diffractive
optics at the final time. As seen on the figure, the amplitude as well the
positions are false for the diffractive and geometrical optics regimes.
For ε = 10−3, the result given by Shrödinger equation and the new model with
the Kerr nonlinearity are correct. The geometrical optics give the worst error
and the complete new model the smallest one.

• Case 4. For smaller solutions: we made the same test but with α = 1
2
.

The errors are:

ε = 10−2 ε = 10−3

egeo 0.91 6.9 10−2

ediff 0.32 2.3 10−3

enew 1.7 10−4 1.7 10−6

enewkerr 2.1 10−3 1.5 10−5

For ε = 10−2, the convergence on the errors is reached with N = 1024 and
Nt = 1600. For ε = 10−3 the convergence is reached with N = 16384 and
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Nt = 12800. As in the previous case, geometrical optics and the Schrödinger
models give high errors for ε = 0.01. Both new models are correct however.
For ε = 10−3, the conclusions are the same than in the previous cases.

3.3.2 Diffractive time.

We now consider long time behavior : T = 50.
• Case 5. We begin by a regular initial data and we take ϕ(x) = e−75(x− 1

2
)2ei cos(x)

and α =
1

2
. One gets the following errors:

ε = 10−2 ε = 10−3

egeo 0.13 1.3 10−2

ediff 2.4 10−3 2 10−5

enew 1.7 10−4 3 10−6

enewkerr 5.6 10−3 5 10−5

For ε = 10−2, the convergence on the errors is reached with N = 2048 and
Nt = 80000. For ε = 10−3 the convergence is reached with N = 8192 and Nt =
320000. The geometrical optics gives of course a false result since diffractive
effects are important. The result given by the new models are better than that
of diffractive optics that is however perfectly correct. Any of the three models
can be used in practical applications.
• Case 6. For chirped initial data, we take

ϕ(x) = (e−75(x−1/2)2ei15cos(15x) + c.c.),

x ∈ [0, 1] and α =
1

2
for T = 50 :

ε = 10−2 ε = 10−3

egeo 1.5 1.6
ediff 1.4 0.11
enew 5 10−4 3 10−6

enewkerr 0.08 8 10−4

For ε = 10−2, the convergence on the errors is reached with N = 2048 and
Nt = 80000. For ε = 10−3 the convergence is reached with N = 8192 and
Nt = 320000. Only the complete new model gives an acceptable error. All
the others give bad result. The new model with Kerr nonlinearity gives a
satisfactory result for small ε but not for ε = 0.01. One can see the evolution

of the solution at time n
50

8
on figure 3, and on figure 4 the same but with the

solution given by the Schrödinger equation which is far away from the reality.

3.3.3 Conclusion

For small times, chirped initial data or not, the diffractive model is satisfac-
tory. For diffractive times and not chirped initial data, the diffractive model
is satisfactory. The geometrical optics regime (that is the explicit solution) is
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valid on short times.
For diffractive times with chirped initial data, the new model is very useful.
The new model with Kerr nonlinearity is intermediate in terms of quality. In
any case the solution given by the new system can not be distinguish from
the exact one and will be therefore very usefull in practical applications. We
postpone the application of this theory to physical cases with more numerical
test to further work.
The main problem of our theory is the boundary conditions. Clearly, because
of the pseudo-differential nature of the new model, it is not easy to take into
account non-periodic boundary conditions. One of the possibility in this di-
rection is to take one space variable as variable of evolution. This process is
under investigation.
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Figure 1: Real part of the first component of the solution of system (1.17)
with ε = 0.01 at time T = 50, with chirped initial data, case 6.
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Figure 2: Real part of the approximate solution of the first component of
system (1.17) with ε = 0.01 given by the nonlinear Schrödinger equation (3.5)
at time T = 50 , with chirped initial data, case 6
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Figure 3: Real part of the first component of the solution of system (3.1)

with ε = 0.01 at time t = n
50

8
for n = 0 · · · 8 with chirped initial data and

α = 1/2. First line, from left to right, n = 0, 1, 2, second line, from left to
right, n = 3, 4, 5, third line, from left to right, n = 6, 7, 8, case 6.
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Figure 4: Real part of the approximate solution of system (3.1) with ε = 0.01

at time t = n
50

8
for n = 0 · · · 8 with chirped initial data and α = 1/2 given

by diffractive optics approximation. First line, from left to right, n = 0, 1, 2,
second line, from left to right, n = 3, 4, 5, third line, from left to right, n =
6, 7, 8, case 6.
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Figure 5: Amplitude of the first component of the approximate solution of
(3.1) at the final time with chirped initial data, α = 0 given by the geometrical
optics, diffractive optics and new approximations, case 3.
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