
A uniform analysis of non-symmetric and coercive linear

operators

Giancarlo Sangalli
Istituto di Matematica Applicata e Tecnologie Informatiche del C.N.R.

Via Ferrata 1, 27100 Pavia, Italy
sangalli@imati.cnr.it

Abstract

In this work, we show how to construct, by means of the function space interpolation
theory, a natural norm ||| · ||| for a generic linear coercive and non-symmetric operator L. The
natural norm |||·||| allows for continuity and inf-sup conditions which holds independently of L.
Particularly we will consider the convection-diffusion-reaction operator, for which we obtain
continuity and inf-sup conditions that are uniform with respect to the operator coefficients.
In this case, our results give some insight for the analysis of the singular perturbed behavior
of the operator, occurring when the diffusivity coefficient is small. Furthermore, our analysis
is preliminary to applying some recent numerical methodologies (such as least-squares and
adaptive wavelet methods) to this class of operators, and more generally to analyzing any
numerical method within the classical framework [1].

1 Introduction

Consider the convection-diffusion-reaction linear operator

w 7→ Lw := −κ∆w + β · ∇w + ρw, (1)

where the argument w is a function on the domain Ω ⊂ Rn, κ is a constant positive diffusion
coefficient, β : Ω → Rn is a velocity field and ρ : Ω → R is a reaction coefficient. Under suitable
assumptions on the coefficients, e.g., ρ − 1/2 divβ ≥ 0, the operator L is an isomorphism from
V := H1

0 (Ω) into V
∗ := H−1(Ω). In fact, given a source term f ∈ V ∗, the boundary value problem

{
Lu = f in Ω

u = 0 on ∂Ω,
(2)

admits a unique solution u ∈ V . Nevertheless, the norm of L, as linear operator from H 1
0 (Ω) into

H−1(Ω),

‖L‖H1
0 (Ω)→H−1(Ω) := sup

w∈H1
0 (Ω)

‖Lw‖H−1(Ω)

‖w‖H1
0 (Ω)

= sup
w∈H1

0 (Ω)

sup
v∈H1

0 (Ω)

〈Lw, v〉

‖w‖H1
0 (Ω)
‖v‖H1

0 (Ω)

,
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and the norm of its inverse L−1

‖L−1‖H−1(Ω)→H1
0 (Ω)

:= sup
w∈H1

0 (Ω)

‖w‖H1
0 (Ω)

‖Lw‖H−1(Ω)

=

(
inf

w∈H1
0 (Ω)

sup
v∈H1

0 (Ω)

〈Lw, v〉

‖w‖H1
0 (Ω)
‖v‖H1

0 (Ω)

)−1

depend on the coefficients κ, β and ρ.
Our analysis encompasses any linear and coercive operator L, of which (1) is a model case.

Given such an operator L, we construct a norm ||| · ||| on its domain V , such that the continuity

sup
w∈V

sup
v∈V

〈Lw, v〉

|||w||||||v|||
≤ Cc < +∞ (3)

and the inf-sup condition

inf
w∈V

sup
v∈V

〈Lw, v〉

|||w||||||v|||
≥ Cis > 0 (4)

hold true with constants Cc and Cis independent of L. Therefore, for the example (1), Cc and Cis
will be independent of the coefficients κ, β and ρ.

If L were symmetric, besides coercive, then conditions (3)–(4) would hold true for the so-called

energy norm, i.e. by setting |||w||| := 〈Lw,w〉1/2, with Cc = Cis = 1. Our aim is to extend this
trivial result to the non-symmetric case, obtaining a suitable ||| · ||| by means of the function space
interpolation.

The norm ||| · |||, for which (3)–(4) hold true, depends on L and gives the natural topology for
L. For the example (1)–(2), given a source term f and a perturbed source term f + δf , denoted
by u and u+ δu the solutions of Lu = f and L(u+ δu) = f + δf , respectively, one easily gets from
(3)–(4)

|||δu|||

|||u|||
≤
Cc
Cis

|||δf |||∗
|||f |||∗

,

i.e., the relative perturbation of the solution of (2) is uniformly bounded by the relative pertur-
bation of the source term, ||| · |||∗ being the dual of norm of ||| · |||. This is the proper framework
to understand the behavior of (1)–(2) for small values of the diffusivity κ, when the higher order
term −κ∆ acts as a singular perturbation on the lower order term β · ∇+ ρ Id.

Conditions (3)–(4) is also the proper framework for using some recent numerical methodologies
for solving (1)–(2). Particularly, we are thinking to the least-squares formulations in the context
of finite element methods [6] or in the context of wavelet methods [12], and to adaptive wavelet
methods [11] (see also [2, 5, 10]).

More generally, (3)–(4) are the starting point for the classical analysis of numerical methods
devoted to (1)–(2). When the continuity and inf-sup conditions are known for an operator L, then
ideal numerical methods should preserve them at the discrete level. This happens, for example,
with symmetric and coercive operators (see [9]) or with some indefinite problems (like in mixed
formulations, see [7]), and it is in general the key property for the classical error theory (see,
e.g., [1]). Even though there are very effective numerical methods for solving (1)–(2), as the
Streamline-Upwind Petrov-Galerkin (SUPG) finite element method (see [8] and [16]), the error
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analysis of them typically do not follow the classical argument mentioned above and it is not
completely satisfactory (see [17]). Then we hope this paper could give some insights for a deeper
theoretical understanding of numerical methods devoted to (1)–(2) (we refer to [17, §4], [18] and [3,
§2.1] for a further discussion on the topic).

This work is an extension of our previous analysis proposed in [17], where the convection-
diffusion operator, without the reaction term, is considered. Different estimates for (1)–(2) have
been obtained by other authors: see for example the analysis by Bertoluzza, Canuto and Tabacco
in [4, §2.1], or the paper by Dörfler [13]. The peculiarity of our paper is that both conditions
(3)–(4) are obtained for (1)–(2).

The outline of the paper is as follows: in §2 we present our methodology for obtaining (3)–(4)
in the case of a generic non-symmetric and coercive operator L; then we apply the theory first, in
§3, to the very simple one-dimensional (n = 1) convection-diffusion-reaction model problem, and
then, in §4, to the multi-dimensional (n > 1) case, and discuss the results.

2 The abstract framework

In this section, we present our idea for obtaining uniform continuity and inf-sup conditions (3)–(4).
Let V be a Hilbert space, and let V ∗ be its dual. In the present section we consider a generic

coercive isomorphism L : V → V ∗ and the associated bilinear form

a(w, v) := V ∗〈Lw, v〉V , ∀w, v ∈ V ; (5)

The abstract variational problem which correspond to (2) is:

find u ∈ V such that a(u, v) = V ∗〈f, v〉V , ∀v ∈ V. (6)

We also assume that ‖ · ‖V , the norm of V , is the energy norm for L, i.e.

a(w,w) = ‖w‖2V , ∀w ∈ V. (7)

We split L = Lsym+Lskew, and introduce the bilinear forms asym(·, ·) and askew(·, ·) on V ×V such
that

V ∗〈Lsymw, v〉V := asym(w, v) :=
1

2
(a(w, v) + a(v, w)) , ∀w, v ∈ V,

V ∗〈Lskeww, v〉V := askew(w, v) :=
1

2
(a(w, v)− a(v, w)) , ∀w, v ∈ V ;

(8)

in other words Lsym is the symmetric part of L (i.e., asym(w, v) = asym(v, w), ∀w, v ∈ V ), and we
have

asym(w,w) = ‖w‖
2
V , ∀w ∈ V,

asym(w, v) ≤ ‖w‖V ‖v‖V , ∀w, v ∈ V,
(9)

while Lskew is the skew-symmetric part of L (i.e., askew(w, v) = −askew(v, w), ∀w, v ∈ V ).
Finally, we define

‖w‖2A0
:= ‖w‖2V , ∀w ∈ V,

‖w‖2A1
:= ‖w‖2V + ‖Lskeww‖

2
V ∗ , ∀w ∈ V,

(10)
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where

‖Lskeww‖V ∗ = sup
v∈V

askew(w, v)

‖v‖V
;

we also set A0 = A1 = V from the algebraic standpoint; in other words A0 and A1 are the same
space with the same topology, but the two norms ‖ · ‖A0

and ‖ · ‖A1
are different (even though

equivalent, up to constants depending on L).
The following lemma states two basic estimates; we explicitly compute the constants appearing

into the estimates to put in light their independence of L.

Lemma 1. Under the hypotheses above, we have

a(w, v) ≤ 21/2‖w‖Ai
‖v‖A1−i

, ∀w, v ∈ V, (11)

sup
v∈V

a(w, v)

‖v‖A1−i

≥ 5−1/2‖w‖Ai
, ∀w ∈ V, (12)

for i = 0 or i = 1.

Proof. Let v and w be two generic elements of V .
By using the Cauchy-Schwartz inequality we easily get

a(w, v) = asym(w, v) + askew(w, v)

≤ ‖w‖V ‖v‖V + ‖Lskeww‖V ∗‖v‖V

≤ 21/2‖w‖A1
‖v‖A0

;

similarly, since askew(w, v) = −askew(v, w), we also get a(w, v) ≤ 21/2‖w‖A0
‖v‖A1

, then (11) follows.
Recalling (7) and (9), we have

‖w‖V ≤ sup
v∈V

a(w, v)

‖v‖V
, (13)

and

sup
v∈V

asym(w, v)

‖v‖V
≤ sup

v∈V

a(w, v)

‖v‖V
. (14)

Then, we get:

‖Lskeww‖V ∗ = sup
v∈V

askew(w, v)

‖v‖V

≤ sup
v∈V

a(w, v)

‖v‖V
+ sup

v∈V

asym(w, v)

‖v‖V

≤ 2 sup
v∈V

a(w, v)

‖v‖V
,

(15)

and, collecting (13) and (15), we get

‖w‖A1
≤ 51/2sup

v∈V

a(w, v)

‖v‖A0

, (16)
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which is (12) for i = 1.We are left to show that

‖w‖A0
≤ 51/2sup

v∈V

a(w, v)

‖v‖A1

; (17)

for that purpose, we make use of a duality argument. Reasoning as for (16) we obtain

‖w̃‖A1
≤ 51/2sup

v∈V

a(v, w̃)

‖v‖A0

, (18)

for any w̃ ∈ V . Given a generic w ∈ V , we associate to it w̃ ∈ V such that a(v, w̃) = asym(v, w),
∀v ∈ V ; thanks to (18) we have

‖w̃‖A1
≤ 51/2sup

v∈V

a(v, w̃)

‖v‖A0

= 51/2sup
v∈V

asym(v, w)

‖v‖A0

= 51/2‖w‖A0
,

whence

‖w‖2A0
= asym(w,w) = a(w, w̃)

≤ sup
v∈V

a(w, v)

‖v‖A1

· ‖w̃‖A1

≤ 51/2sup
v∈V

a(w, v)

‖v‖A1

· ‖w‖A0
,

which completes the proof.

From Lemma 1 we can obtain a family of intermediate estimates by means of the function spaces
interpolation. We follow the notation and the definitions of [19]; for the reader’s convenience, we
recall the fundamental definition of interpolated norm, according to the so-called K-method : given
0 < θ < 1 and 1 ≤ p ≤ +∞ we define

‖w‖(A0,A1)θ,p :=


∫ +∞

0

inf
w0∈A0,w1∈A1,

w0+w1=w

(
t−θ‖w0‖A0

+ t1−θ‖w1‖A1

)p dt
t




1
p

.
(19)

Generally (A0, A1)θ,p is the space of functions w ∈ A0 + A1 such that ‖w‖(A0,A1)θ,p < +∞. In our
particular case, A0 and A1 are the same space from the algebraic standpoint (A0 ≡ A1 ≡ V ), and
‖ · ‖(A0,A1)θ,p simply is a new norm on V .

Lemma 2. Given θ, p and p′ such that 0 < θ < 1, 1 ≤ p ≤ +∞, and 1/p + 1/p′ = 1, under the
hypotheses above, we have

a(w, v) ≤ 21/2‖w‖(A0,A1)θ,p‖v‖(A0,A1)1−θ,p′
, ∀w, v ∈ V, (20)

sup
v∈V

a(w, v)

‖v‖(A0,A1)1−θ,p′

≥ 5−1/2‖w‖(A0,A1)θ,p , ∀w ∈ V. (21)
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Proof. Typically interpolation theorems are stated in terms of linear operators instead of bilinear
forms. Then it is more convenient to rephrase (11) as

‖Lw‖A∗
1
≤ 21/2 ‖w‖A0

,

‖Lw‖A∗
0
≤ 21/2 ‖w‖A1

,
(22)

and (12) as
‖w‖A0

≤ 51/2 ‖Lw‖A∗
1
,

‖w‖A1
≤ 51/2 ‖Lw‖A∗

0
,

(23)

for all w ∈ V .
From (22) and thanks to Theorem [19, §1.3.3] and [19, §1.11.2], we get (20). Proceeding

similarly for L−1, from (23) we obtain

‖L−1φ‖(A0,A1)∗1−θ,p′
≤ 51/2 ‖φ‖(A0,A1)θ,p ,

for any φ ∈ V ∗, that gives (21).

Thanks to (9), Lsym is an isomorphism from V into V ∗ ≡ Lsym(V ); henceforth, we also assume
that Lskew is injective. Then we introduce the two Hilbert spaces C0 and C1:

C0 := Lskew(V ), with ‖φ‖C0
:= ‖L−1

skewφ‖V

C1 := Lsym(V ), with ‖φ‖C1
:= ‖L−1

symφ‖V = ‖φ‖V ∗ .
(24)

In the next lemma we analyze the structure of ‖ · ‖(A0,A1)θ,p .

Lemma 3. Given θ, p and p′ such that 0 < θ < 1, 1 ≤ p ≤ +∞, and 1/p + 1/p′ = 1, under the
hypotheses above, we have

1/10 ‖w‖2(A0,A1)θ,p
≤ ‖w‖2V + ‖Lskeww‖

2
(C0,C1)θ,p

≤ 2‖w‖2(A0,A1)θ,p
, ∀w ∈ V. (25)

Proof. Since ‖w‖V ≤ ‖w‖Ai
with i = 0, 1, then ‖w‖V ≤ ‖w‖(A0,A1)θ,p follows by a straightforward

application of the interpolation theorem (e.g., [19, §1.3.3]). We also have

‖Lskeww‖C0
≤ ‖w‖A0

,

‖Lskeww‖C1
≤ ‖w‖A1

,

which gives ‖Lskeww‖(C0,C1)θ,p ≤ C‖w‖(A0,A1)θ,p , whence ‖w‖
2
V + ‖Lskeww‖

2
(C0,C1)θ,p

≤ 2‖w‖2(A0,A1)θ,p
.

In order to complete the proof, we directly deal with the definition of interpolated norm (19).
For any t > 0 consider the two splitting

w = w̃0(t) + w̃1(t), with w̃i(t) ∈ V, i = 1, 2,

w = ŵ0(t) + ŵ1(t), with ŵi(t) ∈ V, i = 1, 2;
(26)

then define w0(t) ∈ V and w1(t) ∈ V such that Lwi(t) = Lsymw̃i(t) + Lskewŵi(t), i.e.,

a(wi(t), v) = asym(w̃i(t), v) + askew(ŵi(t), v), ∀v ∈ V, i = 0, 1, (27)
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whence w = w0(t) + w1(t), ∀t > 0.
Thanks to (12) and to the properties of asym(·, ·) and askew(·, ·) we have

‖w0(t)‖A0
≤ 51/2 sup

v∈V

a(w0(t), v)

‖v‖A1

≤ 51/2
(
sup
v∈V

asym(w̃0(t), v)− askew(v, ŵ0(t))

‖v‖A1

)

≤ 51/2
(
sup
v∈V

asym(w̃0(t), v)

‖v‖V
+ sup

v∈V

askew(v, ŵ0(t))

‖Lskewv‖V ∗

)

≤ 51/2 (‖w̃0(t)‖V + ‖ŵ0(t)‖V ) .

(28)

In a similar way, we have

‖w1(t)‖A1
≤ 51/2 sup

v∈V

a(w1(t), v)

‖v‖A0

≤ 51/2
(
sup
v∈V

asym(w̃1(t), v) + askew(ŵ1(t), v)

‖v‖A0

)

≤ 51/2
(
sup
v∈V

asym(w̃1(t), v)

‖v‖V
+ sup

v∈V

askew(ŵ1(t), v)

‖v‖V

)

≤ 51/2 (‖w̃1(t)‖V + ‖Lskewŵ1(t)‖V ∗) .

(29)

From (19), by the triangle inequality and using (28)–(29), we have

‖w‖(A0,A1)θ,p ≤

[∫ +∞

0

(
t−θ‖w0(t)‖A0

+ t1−θ‖w1(t)‖A1

)p dt
t

]1/p

≤ 51/2

[∫ +∞

0

(
t−θ‖w̃0(t)‖V + t−θ‖ŵ0(t)‖V

+ t1−θ‖w̃1(t)‖V + t1−θ‖Lskewŵ1(t)‖V ∗

)pdt
t

]1/p

≤ 51/2
[∫ +∞

0

(
t−θ‖w̃0(t)‖V + t1−θ‖w̃1(t)‖V

)p dt
t

]1/p

+

[∫ +∞

0

(
t−θ‖Lskewŵ0(t)‖C0

+ t1−θ‖Lskewŵ1(t)‖C1

)p dt
t

]1/p
;

finally, taking the infimum over all w̃0 ∈ V , w̃1 = w− w̃0 ∈ V , ŵ0 ∈ V and ŵ1 = w− ŵ0 ∈ V , and
using [19, 1.3.3.(f)], we finally get ‖w‖(A0,A1)θ,p ≤ 51/2

(
‖w‖V + ‖Lskeww‖(C0,C1)θ,p

)
, completing the

proof of (25).

When p = p′ = 2 and θ = 1− θ = 1/2, Lemma 2 gives the continuity and inf-sup conditions for
L, as stated in the introduction, where ||| · ||| = ‖ · ‖(A0,A1)1/2,2 ; in particular, under the hypotheses
of Lemma 3, we have the following obvious corollary.
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Corollary 1. Under the assumption of Lemma 3 and setting

||| · ||| :=
(
‖ · ‖2V + ‖Lskew · ‖

2
(C0,C1)1/2,2

)1/2
, (30)

we have the continuity and inf-sup conditions (3)–(4) for L, with constants Cc and Cis independent
of L.

Actually Lemma 2 establishes a family of continuity and inf-sup conditions for L (for different
values of θ and p) with different norms on the trial space (i.e., ‖ · ‖(A0,A1)θ,p) and on the test
space (i.e., ‖ · ‖(A0,A1)1−θ,p′

); on the other hand from the numerical standpoint (3)–(4) are mainly
interesting, as discussed in [17, §4].

3 The convection-diffusion-reaction operator

We now apply the results of the previous section to the convection-diffusion-reaction operator. In
Lemma 1–3 we have explicitly computed the constants involved into the estimates, in order to
emphasize that the estimates do not depend on L; henceforth, for the sake of simplicity, we will
use generic constants denoted by C, C1, C2, which are independent on the operator coefficients κ,
β and ρ and on the domain Ω.

3.1 The one-dimensional case

We start with the analysis of the very simple one-dimensional operator, with constant coefficients
κ > 0 and ρ ≥ 0, and unitary velocity. Then, for this subsection only, we will consider a special
case of (1) , which is

w 7→ Lw := −κw′′ + w′ + ρw, (31)

where the argument w is a function on the interval Ω = [0, 1].
We consider first, and with particular emphasis, the ordinary differential equation with homo-

geneous Dirichlet boundary conditions (2). The variational formulation (6) reads

find u ∈ V such that a(u, v) =

∫ 1

0

fv,∀v ∈ V,

where
V = H1

0 (0, 1) with ‖ · ‖
2
V = κ| · |2H1 + ρ‖ · ‖2L2 ,

a(w, v) = κ

∫ 1

0

w′v′ +

∫ 1

0

w′v + ρ

∫ 1

0

wv.
(32)

Then Lsymw = −κw′′+ρw, Lskeww = w′, asym(w, v) = κ
∫ 1
0
w′v′+ρ

∫ 1
0
wv and askew(w, v) =

∫ 1
0
w′v.

Finally C0 = L20(0, 1) and C1 = H−1(0, 1) from the algebraic standpoint, where L20 is the subspace
of L2 of zero mean value functions, and its natural norm is ‖ · ‖L2

0
:= ‖ · ‖L2 , while H−1 is

the dual of H1
0 , endowed with the dual norm ‖ · ‖H−1 = supv∈H1

0 (0,1)
〈·, v〉 /|v|H1(we recall that
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| · |H1 :=
[∫ 1
0
(w′)2

]1/2
is a norm on H1

0 ). It is easy to see that L20 is a dense subspace of H−1. From

Corollary 1 we immediately have the following result.

Theorem 1. For the case (31)–(32), uniform continuity and inf-sup conditions (3)–(4) hold true
with respect to the norm

w 7→ |||w||| =
(
κ|w|2H1 + ‖w′‖2(C0,C1)1/2,2

+ ρ‖w‖2L2

)1/2
. (33)

Now we focus our attention on ||| · ||| in (33), in order to better understand its structure. Roughly
speaking, the term ‖w′‖(C0,C1)1/2,2 is related to the skew-symmetric part of L, which is the first
order derivative. Then we expect w 7→ ‖w′‖(C0,C1)1/2,2 to act as a 1/2-order norm uniformly on
the operator coefficients κ and ρ. That is in fact stated in the next theorem: we show that
‖w′‖(C0,C1)1/2,2 stays between the H1/2-seminorm and H

1/2
00 -norm, where H1/2 := (L2, H1)1/2,2 and

H
1/2
00 := (L2, H1

0 )1/2,2 are the two usual Hilbert spaces of order 1/2, endowed with the usual norms
given by interpolation (see [15]), and |w|H1/2 is the seminorm ‖w − Π0w‖H1/2 , Π0· denoting the
mean value of its argument.

Theorem 2. For the case (31)–(32), we have

C1|w|H1/2 ≤ ‖w′‖(C0,C1)1/2,2 ≤ C2‖w‖H1/2
00

, ∀w ∈ V (34)

Proof. When ρ = 0, (34) follows from (48); we assume henceforth ρ > 0.
We consider first the left inequality in (34), i.e.

C|w|H1/2 ≤ ‖w′‖(C0,C1)1/2,2 , ∀w ∈ V. (35)

It is easy to see that ‖z′‖L2 ' ‖z‖H1 and ‖z′‖H−1 ' ‖z‖L2 , for any z ∈ H1 ∩ L20; then, thanks
to Theorem [19, §1.3.3], [19, §1.11.2] and [19, §1.17.1], the first order derivative is a topological
isomorphism from H1/2 ∩ L20 into (H−1, L2)1/2,2, which means

|w|H1/2 = ‖w − Π0w‖H1/2 ' ‖w′‖(H−1,L2)1/2,2 . (36)

We introduce now the new space C̃0: from the algebraic standpoint we set C̃0 := L2, and we define

‖ · ‖C̃0
:=
(
κ‖ · ‖2L2 + ρ‖ · ‖2H−1

)1/2
. Our next step is to show that

‖φ‖(H−1,L2)1/2,2 ≤ C‖φ‖(C̃0,C1)1/2,2
, ∀φ ∈ L2 (37)

For that purpose we split a generic φ ∈ L2 into

φ = φhigh + φlow, (38)

where φhigh, φlow ∈ L
2 are, roughly speaking, the high frequency part and the low frequency part

of φ, respectively, in such a way that

κ1/2‖φhigh‖L2 + ρ1/2‖φlow‖H−1 ≤ C‖φ‖C̃0
(39)

κ−1/2‖φhigh‖H−1 + ρ−1/2‖φlow‖L2 ≤ C‖φ‖C1
. (40)
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For that purpose, we introduce an auxiliary problem: let ψ ∈ H1
0 the solution of

Lsymψ = φ in (0, 1) (41)

and let φhigh := −κψ
′′ and φlow := ρψ.

Multiplying both members of the differential equation (41) by −ψ ′′, integrating over (0, 1) and
integrating by parts we get

κ‖ψ′′‖2L2 + ρ‖ψ′‖2L2 = −

∫ 1

0

φψ′′;

then, thanks to the Cauchy-Schwartz inequality, we have

‖φhigh‖L2 = ‖κψ′′‖L2 ≤ ‖φ‖L2 . (42)

Integrating (41) we have
−κψ′ + κψ′(0) + ρΨ = Φ,

where Ψ(x) =
∫ x

0
ψ(t) dt and analogously Φ(x) =

∫ x

0
φ(t) dt; after multiplying by Ψ − Π0Ψ both

members, integrating over (0, 1) and integrating by parts we obtain

κ‖ψ‖2L2 + ρ‖Ψ− Π0Ψ‖
2
L2 =

∫ 1

0

Φ(Ψ− Π0Ψ),

whence now
‖φlow‖H−1 = ρ‖Ψ− Π0Ψ‖L2 ≤ ‖Φ− Π0Φ‖L2 = ‖φ‖H−1 . (43)

Collecting (42)–(43) we obtain (39). From (41) it is also easy to obtain the estimate (κ‖ψ ′‖2L2 +
ρ‖ψ‖2L2)1/2 ≤ ‖φ‖V ∗ = ‖φ‖C1

, which gives (40) straightforwardly.
Consider now the linear operator φ 7→ (φhigh, φlow) from L2 into L2 × L2, with φhigh, φlow as

defined above: by interpolation from the two continuity estimates (39)–(40) we get

‖φhigh‖(L2,H−1)1/2,2 + ‖φlow‖(H−1,L2)1/2,2 ≤ C‖φ‖(C̃0,C1)1/2,2
, (44)

whence, by using the triangle inequality and since ‖·‖(L2,H−1)1/2,2 = ‖·‖(H−1,L2)1/2,2 , we obtain (37).
Finally (36) and (37) gives (35).

Now we consider the right equivalence in (34), which is

‖w′‖(C0,C1)1/2,2 ≤ C‖w‖H1/2
00

, ∀w ∈ V. (45)

Given w ∈ H1
0 it is easy to see that

‖w′‖C0
= ‖w‖V = ‖w‖C∗

1
,

and
‖w′‖C1

= ‖w′‖V ∗ ≤ ‖w‖C̃∗
0
,

10



whence (thanks to Theorem [19, §1.11.2])

‖w′‖(C0,C1)1/2,2 ≤ ‖w‖(C∗
1 ,C̃

∗
0 )1/2,2

= ‖w‖(C̃0,C1)∗1/2,2
. (46)

Moreover, passing to the duals in (37),still using Theorem [19, §1.11.2], we also have

‖w‖(C̃0,C1)∗1/2,2
≤ ‖w‖(H−1,L2)∗

1/2,2
= ‖w‖(H1,L2)1/2,2 = ‖w‖

(H
1/2
00 )

. (47)

Inequalities (46)–(47) give (45).

Remark 1. It is worth noting that Theorem 1–2 allow for ρ = 0 as well; in that case we have
‖w′‖(C0,C1)1/2,2 = ‖w′‖(H−1,L2

0)1/2,2
, since the coefficient κ easily cancel when interpolating. Let H1

#

be the subspace of H1 of functions w such that w(0) = w(1), endowed with the ‖·‖H1
#
:= ‖·‖H1, and

H
1/2
# := (L2, H1

#)1/2,2 endowed with the norm given by interpolation. Given z ∈ H1
# ∩ L

2
0, one has

‖z′‖L2
0
' ‖z‖H1

#
and ‖z′‖H−1 ' ‖z‖L2, whence (by using Theorem [19, §1.3.3], [19, §1.11.2] and [19,

§1.17.1]) ‖z′‖(H−1,L2
0)1/2,2

' ‖z‖(L2,H1
#
)1/2,2

and therefore ‖w′‖(H−1,L2
0)1/2,2

' ‖w − Π0w‖(L2,H1
#
)1/2,2

,

for any w ∈ H1
0 ; this means that we have the following characterization:

ρ = 0 ⇒ |w|
H

1/2
#

:= ‖w − Π0w‖(L2,H1
#
)1/2,2

= ‖w′‖(C0,C1)1/2,2 , ∀w ∈ V. (48)

We may also deal with different kind of boundary conditions; consider the example
{
Lu = f in (0, 1)

u(0) = u′(1) = 0,
(49)

where L is still formally given by (31). The variational formulation (6) now requires

V =
{
v ∈ H1(0, 1) such that v(0) = 0

}

a(w, v) = κ

∫ 1

0

w′v′ +

∫ 1

0

w′v + ρ

∫ 1

0

wv;

the key point is that the bilinear form a(·, ·) is coercive on V ; accordingly, we define ‖ · ‖V as

‖w‖2V := a(w,w) = κ|w|2H1 + ρ‖w‖2L2 +
1

2
w(1)2,

and we have now

asym(w, v) = κ

∫ 1

0

w′v′ + ρ

∫ 1

0

wv +
1

2
w(1)v(1),

askew(w, v) =

∫ 1

0

w′v −
1

2
w(1)v(1).

Then we can still make use of the theory of §2 and obtain uniform inf-sup and continuity conditions
from Corollary 1.
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When the bilinear form a(·, ·) is not coercive, then we can not use the results of §2. This is the
case of {

−κu′′ + u′ = f in (0, 1)

u′(0) = u(1) = 0,
(50)

i.e., when ρ = 0 and we prescribe Neumann boundary condition at the inflow x = 0; then
V = {v ∈ H1(0, 1) such that v(1) = 0} and

a(w,w) = κ|w|2H1 + ρ‖w‖2L2 −
1

2
w(1)2,

which is not positive in general, when κ and ρ are small enough. However, when f = 1 the solution
of (50) is u(x) = κ (exp(1/κ)− exp(x/κ)) + x− 1; for κ→ 0 we have ‖u‖L2 ≈ κ exp(1/κ), whence
we see that (50) is in fact not uniformly well posed with respect to κ.

3.2 The multi-dimensional case

In this section, we analyze the multi-dimensional convection-diffusion-reaction operator with Dirich-
let homogeneous boundary conditions (1)–(2), and the associated bilinear form

a(w, v) = κ

∫

Ω

∇w · ∇v +

∫

Ω

β · ∇w v +

∫

Ω

ρwv,

which is defined on H1
0 (Ω)×H1

0 (Ω) (see, e.g., [15]). Under the assumption

ρ−
1

2
div(β) ≥ 0 (51)

the bilinear form a(·, ·) is coercive, whence we set

V = H1
0 (Ω)

‖w‖2V = a(w,w) = κ|w|2H1 +

(
ρ−

1

2
div(β)

)
‖w‖2L2 .

(52)

The decomposition (8) gives

asym(w, v) = κ

∫

Ω

∇w · ∇v +

∫

Ω

(
ρ−

1

2
div(β)

)
wv,

askew(w, v) =

∫

Ω

β · ∇w v +
1

2

∫

Ω

div(β)wv;

(53)

For the sake of simplicity, we shall consider henceforth the case

div(β) = 0. (54)
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In order to apply Corollary 1 to this case, we need Lskew = β · ∇ to be injective on V : this is
assured, for example, by the assumption

there exists a smooth φ : Ω→ R such that ∇φ · β ≥ C > 0; (55)

we refer to [14] for further details. Definition (24) says that, from the algebraic standpoint, C0 is
the space of the streamline derivatives β · ∇w of functions w ∈ H1

0 , while C1 is H
−1. Corollary 1

gives then the following result

Theorem 3. For the case (52), (54)–(55), the uniform continuity and inf-sup conditions (3)–(4)
hold true with respect to the norm

w 7→ |||w||| =
(
κ|w|2H1 + ‖β · ∇w‖2(C0,C1)1/2,2

+ ρ‖w‖2L2

)1/2
. (56)

Roughly speaking, we expect ‖β · ∇w‖(C0,C1)1/2,2 to be of order 1/2 in the direction of β, and
of order 0 in the directions orthogonal to β (this can be more easily seen for the case ρ = 0), but
a rigorous analysis of the structure of ‖β · ∇w‖(C0,C1)1/2,2 is more difficult now than for the simpler
one-dimensional case considered in §3.1. The next result shows that ‖β · ∇w‖(C0,C1)1/2,1 has some
uniform bounds independent of κ and ρ (though the anisotropy is not investigated). Then we end
by a comparison between ‖β · ∇w‖(C0,C1)1/2,1 and ‖β · ∇w‖(C0,C1)1/2,2 .

Proposition 1. For the case (52), (54)–(55), we have:

Cp‖β‖
1/2
L∞diam(Ω)−1/2‖w‖L2 ≤ ‖β · ∇w‖(C0,C1)1/2,1 ≤ C‖β‖

1/2
L∞‖w‖(L2,H1

0 )1/2,1
, ∀w ∈ V, (57)

where the constant Cp of the Poincaré-like inequality depends on β/‖β‖L∞ and (the shape of) Ω.

Proof. Let η be the solution of β ·∇η = ‖β‖L∞ with η = 0 on ∂Ω− := {x ∈ ∂Ω|β(x) · n(x) < 0}, n
denoting the outward normal unit vector defined on ∂Ω; the existence of η is guaranteed by (55).
Given w ∈ H1

0 , integrating by parts, using the Cauchy-Schwartz inequality and (54) we have

‖β‖L∞‖w‖2L2 =

∫

Ω

β · ∇η w2

= −2

∫

Ω

ηw β · ∇w

≤ 2‖ηw‖V ‖β · ∇w‖V ∗ .

(58)

We have
‖ηw‖L2 ≤ ‖η‖L∞‖w‖L2 , (59)

and, using the classical Poincaré inequality, it is easy to get

|ηw|H1 ≤ C(‖η‖L∞ |w|H1 + ‖∇η‖(L∞)2‖w‖L2)

≤ C(‖η‖L∞ + diam(Ω)‖∇η‖(L∞)2)|w|H1 .
(60)

13



Moreover, thanks to (55), we have C̃p := diam(Ω)−1‖η‖L∞ + ‖∇η‖(L∞)2 < +∞ (e.g., see [14,

Theorem 3.2]), where C̃p depends on η, i.e. on β/‖β‖L∞ and on (the shape of) Ω. Then

‖ηw‖V ≤ CC̃pdiam(Ω)‖w‖V ; (61)

substituting back in (58),

‖β‖L∞‖w‖2L2 ≤ CC̃pdiam(Ω)‖w‖V ‖β · ∇w‖V ∗

= CC̃pdiam(Ω)‖β · ∇w‖C0
‖β · ∇w‖C1

,

and thanks to Theorem [19, §1.10.1] we obtain

Cp‖β‖
1/2
L∞diam(Ω)−1/2‖w‖L2 ≤ ‖β · ∇w‖(C0,C1)1/2,1 , ∀w ∈ V,

which is the left inequality of (57).
We have, thanks to Theorem [19, §1.3.3]

‖β · ∇w‖2(C0,C1)1/2,1
≤ ‖β · ∇w‖C0

‖β · ∇w‖C1

≤ κ1/2|w|H1‖β · ∇w‖V ∗

+ ρ1/2‖w‖L2‖β · ∇w‖V ∗ ,

(62)

and
‖β · ∇w‖V ∗ ≤ κ−1/2‖β · ∇w‖H−1 ≤ κ−1/2‖β‖L∞‖w‖L2 ,

‖β · ∇w‖V ∗ ≤ ρ−1/2‖β · ∇w‖L2 ≤ ρ−1/2‖β‖L∞ |w|H1 ;
(63)

from (62)–(63), we get
‖β · ∇w‖2(C0,C1)1/2,1

≤ 2‖β‖L∞ |w|H1‖w‖L2 ,

and Theorem [19, §1.10.1] yields

‖β · ∇w‖(C0,C1)1/2,1 ≤ C‖β‖
1/2
L∞‖w‖(L2,H1

0 )1/2,1
, ∀w ∈ V,

and concludes the proof of (57).

In the previous proposition, we have shown uniform bounds (with respect to the operator
coefficients) for ‖β · ∇w‖(C0,C1)1/2,1 ; as a general result of the interpolation theory (see, e.g., [19,
1.3.3.d]), we have

‖β · ∇w‖(C0,C1)1/2,2 ≤ C‖β · ∇w‖(C0,C1)1/2,1 , ∀w ∈ V, (64)

and similarly
‖w‖(A0,A1)1/2,2 ≤ C‖w‖(A0,A1)1/2,1 , ∀w ∈ V ; (65)

the converse inequality of (64), that is ‖β ·∇w‖(C0,C1)1/2,1 ≤ C‖β ·∇w‖(C0,C1)1/2,2 , does not hold true;
on the other hand the converse of (65) holds true, and it is, roughly speaking, almost uniform, in
the sense that the constant in it only depends on a logarithm of the coefficients, as stated in the
next proposition.
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Proposition 2. Consider the case (52), (54) and (55); let

α := max
{
κ1/2ρ1/2, κ diam(Ω)

}
/‖β‖L∞ . (66)

When α ≤ 1 we have

‖w‖(A0,A1)1/2,1 ≤
(
C − log1/2(α)

)
‖w‖(A0,A1)1/2,2 , ∀w ∈ V, (67)

while for α > 1 we have

‖w‖(A0,A1)1/2,1 ≤ C‖w‖(A0,A1)1/2,2 , ∀w ∈ V, (68)

Proof. We only consider here the case α ≤ 1, since when α > 1 we can set α := 1 instead of (66)
and follow the proof. First, recall that from the definition (10) we have

‖w‖A0
≤ ‖w‖A0

, ∀w ∈ V,

‖w‖A0
≤ ‖w‖A1

, ∀w ∈ V,
(69)

and, since (63) and the Poincaré inequality, we also have

‖w‖A1
≤ ‖w‖A1

, ∀w ∈ V,

α‖w‖A1
≤ C‖w‖A0

, ∀w ∈ V,
(70)

then, by interpolation, we get from (69)

‖w‖A0
≤ ‖w‖(A0,A1)1/2,2 , ∀w ∈ V, (71)

and from (70)
α1/2‖w‖A1

≤ C‖w‖(A0,A1)1/2,2 , ∀w ∈ V. (72)

By the definition (19) and by the triangle inequality we get

‖w‖(A0,A1)1/2,1 ≤

∫ +∞

0

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

) dt
t

≤

∫ α

0

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

) dt
t

+

∫ 1

α

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

) dt
t

+

∫ +∞

1

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

) dt
t

= I + II + III,
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for any w0(t) and w1(t) with w = w0(t) + w1(t), wi(t) ∈ V, i = 1, 2 and 0 < t < +∞. Taking
w0(t) = w and w1(t) = 0 for t ≥ 1, and using (71) we have

III ≤ ‖w‖A0

∫ ∞

1

t−3/2dt

≤ 2‖w‖A0

≤ 2‖w‖(A0,A1)1/2,2 .

In a very similar way, we deal with the first term, taking w1(t) = w and w0(t) = 0 for 0 < t < α;
thanks to (72) we obtain:

I ≤ ‖w‖A1

∫ α

0

t−1/2dt

≤ 2α1/2‖w‖A1

≤ C‖w‖(A0,A1)1/2,2 .

Thanks to the Cauchy-Schwartz inequality we have

∫ 1

α

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

) dt
t

≤

[∫ 1

α

dt

t

]1/2

·

[∫ 1

α

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

)2 dt
t

]1/2

≤ [− log(α)]1/2

·

[∫ 1

α

(
t−1/2‖w0(t)‖A0

+ t1/2‖w1(t)‖A1

)2 dt
t

]1/2

(73)

that holds true for any choice of w0(t) and w1(t) on α < t < 1; taking the infimum on w0, w1 we
obtain

II ≤ [− log(α)]1/2 ‖w‖(A0,A1)1/2,2 .

Finally, (67) follows from the previous estimates on I, II and III.

From Proposition 1–2 we easily derive the next almost uniform bounds (still, up to a log(α)1/2

factor, which is, roughly speaking, a weak loss of uniformity).

Corollary 2. For the case (52), (54)–(55), given α from (66), we have:

Cp min
{
1, | log(α)|−1/2

}
diam(Ω)−1/2‖β‖

1/2
L∞‖w‖L2 ≤ |||w|||, ∀w ∈ V, (74)

‖β · ∇w‖(C0,C1)1/2,2 ≤ C‖β‖
1/2
L∞‖w‖(L2,H1

0 )1/2,1
, ∀w ∈ V. (75)

where Cp depends on β/‖β‖L∞ and (the shape of) Ω.
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Though (74)–(75) are not sharp estimates as we got in §3.1 for the one-dimensional case, they
put in evidence the relationship between the norm |||·||| defined in (56), and the skew-symmetric part
Lskew = β · ∇ of (1). Recall that max{κ1/2diam(Ω)−1, ρ1/2}‖w‖L2 ≤ C‖w‖V ≤ C|||w|||, while (74)
states the bound on the L2-norm which is mainly due to ‖β · ∇w‖(C0,C1)1/2,2 . Then (74) becomes
relevant when κ and ρ are small.

References
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