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Abstract. We establish an optimal stability estimate for the determination of a finite number
of Lipschitz perfectly insulating cracks inside a planar conductor by performing two suitably chosen
electrostatic boundary measurements.
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1. Introduction. We study the inverse problem of determining a finite number
of unknown perfectly insulating cracks σj , j = 1, . . . , N , whose union is denoted
with Σ, inside a known, possibly inhomogeneous and anisotropic, planar conductor
Ω, whose known background conductivity is given by A, through voltage and current
electrostatic measurements at the boundary.

We prescribe two current densities ψ1, ψ2, and we measure on Γ0, a subarc of
the boundary of Ω, ∂Ω, the corresponding electrostatic potentials ui. We recall that
the electrostatic potential ui satisfies the following Neumann-type boundary value
problem:

⎧⎨
⎩

div(A∇ui) = 0 in Ω\Σ,
A∇ui · ν = 0 on either side of σj , j = 1, . . . , N,
A∇ui · ν = ψi on ∂Ω,

(1.1)

where ν denotes the unit normal, with the outward orientation when on ∂Ω.

If ψ1 and ψ2 are suitably chosen—for example, they can model a two-electrode
configuration where the positive electrode is kept fixed whereas the negative one is
moved in a different position as we change the current density from ψ1 to ψ2—then
the measurements ui|Γ0 , i = 1, 2, uniquely determine the unknown multiple crack Σ.

This inverse problem was introduced in [8], where the first uniqueness result in
two dimensions was proved. Since then, many results concerning uniqueness and
stability have been obtained; we refer to [5] and the references therein for a detailed
account of these issues in two and three dimensions.

We are interested in estimating the error, in the Hausdorff distance, on the de-
termination of Σ from an estimate of the error on the measurements ui|Γ0 . It has
already been proven that

(a) if the components of Σ are a priori known to be Lipschitz regular, then the
stability estimate is of log-log type (see [12, Theorem 4.1, part (I)]);

(b) if we a priori know either the coordinate system with respect to which the
components of Σ are Lipschitz regular, or that the components of Σ are C1,α
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regular, with 0 < α ≤ 1, then the stability estimate is of log type (see [12,
Theorem 4.1, parts (II) and (III)]).

These results were proved first in the case of a single crack. More precisely, part (a)
in [3] and part (b), at least for what concerns the C1,α case, in [11]. Their extension
to the case of multiple cracks is essentially based on arguments developed in [4] for
the treatment of the multiple cavities case.

The aim of the present paper is to fill the gap between cases (a) and (b). In fact,
we prove that, under the same assumptions as those of [12, Theorem 4.1, part (I)],
Lipschitz regularity is enough to obtain a stability estimate of log type. We remark
that single log estimates are usually obtained through a two-step procedure; see [1],
where this argument was developed for the first time. For example, the proof of
(b) relies on (a), as the first step, and, as the second step, on carefully studying
the relation between two unknown multiple cracks Σ and Σ′ (corresponding to two
different sets of measurements) if they are close enough in the Hausdorff distance, in
particular, on proving a uniform interior cone property for the open set Ω\(Σ ∪ Σ′).
However, if we consider case (a), it might happen that no kind of uniform interior
cone property holds for all the points of Σ∪Σ′, no matter how close the two multiple
cracks are in the Hausdorff distance. On the other hand, if we consider the proof of
[12, Theorem 4.1], it is clear that the arguments, at a given stage, in particular in the
proof of Proposition 4.9 in [12] (or of Proposition 5.1 in [3] for the case of a single
crack), are developed only locally in a suitable neighborhood of the point z where the
Hausdorff distance between Σ and Σ′ is reached. In this paper we establish that if Σ
and Σ′ are Lipschitz and close enough, then the points in Σ ∪ Σ′ belonging to such
a suitable neighborhood of the point z can be reached through a suitable sequence
of discs contained in Ω\(Σ ∪ Σ′); see Lemma 3.3. Such a condition, which allows us
to carry over the second step of the procedure, is similar to the so-called corkscrew
condition used in [9] to define nontangentially accessible domains.

We wish to emphasize that logarithmic stability estimates are optimal for this in-
verse problem. In fact, the abstract method developed in [6] from an idea of Mandache
[10] provides the instability character of the problem; see [7], an expanded version of
[6], for details.

Finally we wish to remark that, with a completely analogous procedure, we can
extend this stability result to the inverse problem of multiple cavities. That is, if we
perform two measurements of this kind, corresponding to prescribed current densities
ψ1 and ψ2 as above, then we can obtain a stability estimate of log type for the
determination of Lipschitz multiple cavities. We notice that we have uniqueness and
stability results for the determination of multiple cavities with a single measurement,
which can be of the most general type; see [3] and the references therein for the two-
dimensional case and [2] for the higher-dimensional one. However, in the planar case,
with a single measurement the stability estimate is of log-log type if the cavities are
assumed to be Lipschitz, and it is of log type if the cavities satisfy the conditions
described in case (b) above. Unfortunately, the technique used to prove the stability
results with a single measurement is quite different, even if it has many common
features with the one used for the inverse crack problem. In particular, in order to
exploit the fact that the defects Σ and Σ′ are the closures of open sets, we need to study
the stability of a Cauchy-type problem up to the whole boundary of Ω\(Σ∪Σ′); thus
we cannot restrict our analysis to a neighborhood of the point where the Hausdorff
distance is reached. This can be clearly observed once we notice that, locally, we are
not able to distinguish between a portion of a crack and a portion of the boundary of
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a cavity. Therefore the approach developed in this paper cannot be directly applied
to improve the stability with a single measurement. It remains an interesting open
problem to establish log-type estimates for the determination of Lipschitz multiple
cavities by a single measurement.

The plan of the paper is as follows. In section 2 we precisely state the stability
result Theorem 2.3 and make some preliminary considerations. In section 3 the proof
of Theorem 2.3 is developed.

2. Statement of the stability result. We begin with the definition of a quan-
titative notion of smoothness for open and closed curves in R

2. The following standard
notation will be used. For every z = x + iy ∈ C, x = �z and y = �z being the real
and imaginary parts of z, respectively, and for every r > 0, we denote with Br(z) the
open disc with center z and radius r. As usual, we shall identify complex numbers
z = x + iy ∈ C with points (x, y) ∈ R

2. We shall use the following notation for
complex derivatives:

fz = (fx + ify)/2, fz = (fx − ify)/2.

We denote by J =
[

0 −1
1 0

]
the counterclockwise rotation of 90◦ and by (·)T transpose.

Definition 2.1. Let γ ⊂ R
2 be a bounded, simple curve, either open or closed.

Then, with two fixed positive constants δ and M , we say that γ is Lipschitz with
constants δ, M if for every z ∈ γ there exists a coordinate system (x, y) with origin
in z such that with respect to these coordinates γ ∩ Bδ(z) is a Lipschitz graph with
constant M , that is, γ∩Bδ(z) = {y = φ(x) : a ≤ x ≤ b}∩Bδ(z), where φ is a Lipschitz
function on [−δ, δ] such that ‖φ‖C0,1[−δ,δ] ≤ M , a and b satisfy −δ ≤ a ≤ 0 ≤ b ≤ δ,
and at least one of them has modulus equal to δ.

Let Ω ⊂ R
2 be a bounded, simply connected domain. We say that σ ⊂ Ω is a

crack in Ω if it is a closed set in Ω, which can be represented as the image of a simple
open curve. We say that Σ ⊂ Ω is a multiple crack in Ω if it is the finite union of
pairwise disjoint cracks in Ω.

We suppose that the following assumptions on the data of the inverse problem and
the following a priori information on the unknown multiple crack present in Ω hold.
We wish to remark that these assumptions and a priori information are essentially
minimal and coincide with those used in previous papers, and we repeat them here
for the convenience of the reader.

Assumptions on the domain. Let Ω be a bounded, simply connected domain
in R

2. We assume that the diameter of Ω is bounded by a given positive constant
L and that its boundary ∂Ω is a simple closed curve which is Lipschitz with given
positive constants δ, M .

From these assumptions we may deduce the following properties of Ω. We may
find a constant L1 depending on δ, M , and L only such that

0 < δ ≤ length(∂Ω) ≤ L1.

Furthermore, there exists a constant M1, depending on δ, M , and L only, such that

length∂Ω(z0, z1) ≤ M1|z0 − z1| for any z0, z1 ∈ ∂Ω.(2.1)

Here length∂Ω(z0, z1) is the length of the smallest arc in ∂Ω connecting z0 to z1. More-
over the measure of Ω, |Ω|, is bounded from below and above by positive constants
depending on δ, M , and L only.
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Assumptions on the background conductivity. Let A = A(z), z ∈ Ω, be
a conductivity tensor with bounded measurable entries satisfying, for given positive
constants λ and Λ,

A(z)ξ · ξ ≥ λ|ξ|2 for every ξ ∈ R
2 and for a.e. z ∈ Ω,

|aij(z)| ≤ Λ for every i, j = 1, 2 and for a.e. z ∈ Ω.
(2.2)

Assumptions on the boundary data. Let γ0, γ1, γ2 be three fixed simple
arcs in ∂Ω, pairwise internally disjoint.

Given H > 0, let us fix three functions η0, η1, η2 ∈ L2(∂Ω) such that for every
i = 0, 1, 2

ηi ≥ 0 on ∂Ω, supp(ηi) ⊂ γi,∫
∂Ω

ηi = 1, ‖ηi‖L2(∂Ω) ≤ H.
(2.3)

Then we prescribe the current densities on the boundary ψ1, ψ2 to be given by

ψ1 = η0 − η1, ψ2 = η0 − η2.(2.4)

We have ∫
∂Ω

ψi = 0, ‖ψi‖L2(∂Ω) ≤ 2H for every i = 1, 2.(2.5)

We shall consider also the antiderivatives along ∂Ω of ψ1, ψ2,

Ψi(s) =

∫
ψi(s)ds, i = 1, 2,(2.6)

where the indefinite integral is taken, as usual, with respect to arclength on ∂Ω in
the counterclockwise direction. The functions Ψ1, Ψ2 are defined up to an additive
constant.

We remark that from the assumptions on Ω, through (2.1), we have that, for every
i = 1, 2, Ψi satisfies the following Hölder continuity property for any z0, z1 ∈ ∂Ω:

|Ψi(z0) − Ψi(z1)| ≤ 2H(length∂Ω(z0, z1))
1/2 ≤ H1|z0 − z1|1/2,(2.7)

where H1 = 2HM
1/2
1 , M1 as in (2.1).

Assumptions on the measurements. Let Γ0 ⊂ ∂Ω be a subarc whose length
is greater than or equal to δ.

A priori information on the multiple interior crack. We assume that an
admissible multiple crack Σ ⊂ Ω is the union of finitely many, pairwise disjoint cracks
σj , j = 1, . . . , N , N ≥ 1.

We suppose that each crack σj , j = 1, . . . , N , is Lipschitz with constants δ, M .
Moreover we suppose that

dist(Σ, ∂Ω) ≥ δ(2.8)

and that

dist(σj , σl) ≥ δ for any j �= l.(2.9)
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Let us make some remarks about the properties of the admissible multiple cracks.
First we notice that Σ is not empty and each component of Σ is a simple open curve
whose length is bounded from below and above by positive constants depending on
δ, M , and L only.

Let Σ and Σ′ =
⋃N ′

l=1 σ
′
l, N

′ ≥ 1, be two multiple interior cracks satisfying the
a priori information. Then the following lemma is easy to prove. We recall that we
denote the Hausdorff distance with dH and that throughout the paper we set

p = dH(Σ,Σ′).

Lemma 2.2. There exists a constant p0 > 0, depending on δ, M , and L only,
such that if p ≤ p0, then these two properties hold.

First, the number of connected components of Σ and Σ′ is the same, for instance,
equal to N , and, up to rearranging their order and swapping Σ with Σ′, we can assume
that

dH(σj , σ
′
j) ≤ dH(Σ,Σ′) for every j = 1, . . . , N(2.10)

and that there exists z′0 ∈ σ′
1 so that

dist(z′0, σ1) = dH(σ1, σ
′
1) = p.(2.11)

Furthermore, Σ ∪ Σ′ ⊂ ∂G, where G is the connected component of Ω\(Σ ∪ Σ′)
whose boundary contains ∂Ω.

For any i = 1, 2, let ui ∈ W 1,2(Ω\Σ) be the weak solution to (1.1). That is, we
understand that ui satisfies∫

Ω\Σ
A∇ui · ∇ϕ =

∫
∂Ω

ψiϕ for any ϕ ∈ W 1,2(Ω\Σ).

We remark that ui is unique up to additive constants. We denote by u′
i the solution

to (1.1) when Σ is replaced with Σ′.
The set of constants δ, M , L, λ, Λ, and H will be referred to as the a priori data.

We are now in position to state the main result.
Theorem 2.3. Under the previously stated assumptions, let ε > 0 be such that

max
i=1,2

‖ui − u′
i‖L∞(Γ0) ≤ ε.(2.12)

Then

dH(Σ,Σ′) ≤ ω(ε),(2.13)

where ω : (0,+∞) → (0,+∞) satisfies

ω(ε) ≤ K| log ε|−β for every ε, 0 < ε < 1/e,(2.14)

and K, β > 0 depend on the a priori data only.
We conclude this section by describing some properties of the solution to (1.1)

and its stream function, assuming that the hypotheses of Theorem 2.3 are satisfied.
For details and proofs we refer to [12, Chapter 4].

Let i = 1, 2 and let ui solve (1.1). Then there exists a global single-valued function
vi ∈ W 1,2(Ω\Σ) which satisfies

∇vi = JA∇ui almost everywhere in Ω\Σ.(2.15)
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Such a function is referred to as the stream function associated to ui. Moreover,
letting fi = ui + ivi, we have

(fi)z = µ1(fi)z + µ2(fi)z almost everywhere in Ω\Σ,(2.16)

where µ1 and µ2 are bounded, measurable, complex-valued coefficients which depend
on fi and satisfy

|µ1| + |µ2| ≤ k < 1 almost everywhere in Ω\Σ,(2.17)

where k is a constant depending on λ, Λ only.
Moreover, vi satisfies in the weak sense the following Dirichlet-type boundary

value problem:

⎧⎪⎪⎨
⎪⎪⎩

div(B∇vi) = 0 in Ω\Σ,
vi = dj on σj , j = 1, . . . , N,
vi = Ψi on ∂Ω,∫
γ
B∇vi · ν = 0 for any smooth Jordan curve γ ⊂ Ω\Σ,

(2.18)

where B = (detA)−1AT . We remark that the constants dj are unknown and depend
on i = 1, 2.

The weak formulation of (2.18) is the following. We want to find vi ∈ W 1,2(Ω)
such that vi is constant in the trace sense on any crack σj , its trace on ∂Ω equals Ψi,
and it satisfies∫

Ω\Σ
B∇vi · ∇ϕ = 0 for any ϕ ∈ W 1,2

0 (Ω) : ϕ = const. on any crack.

Let us finally remark that the stream function vi is unique up to additive constants.
For any i = 1, 2, the following Hölder estimates hold (see [12, Proposition 4.6]):

|vi(z1) − vi(z2)| ≤ C1|z1 − z2|α1 for every z1, z2 ∈ Ω,(2.19)

|ui(z1) − ui(z2)| ≤ C1(d̃(z1, z2))
α1 for every z1, z2 ∈ Ω̃.(2.20)

Here C1 and α1 > 0 depend on the a priori data only. We denote with Ω̃ the compact
manifold obtained by the appropriate gluing of Ω\Σ to the degenerate simple closed
curve σ̃j obtained by overlapping two copies of σj , j = 1, . . . , N , and with d̃ the

geodesic distance on Ω̃.
It is useful to stress the difference between the estimates (2.19), (2.20). In fact,

since vi is constant on each σj , it is expected that vi is continuous across each σj .
Instead ui may have different one-sided limits on σj . This is the main motivation for

the introduction of the metric d̃.
For any i = 1, 2, let v′i be the stream function associated to u′

i and f ′
i = u′

i + iv′i.
In what follows, we shall always normalize vi and v′i in such a way that vi = v′i on
∂Ω. Then we have that, for any i = 1, 2,

‖fi − f ′
i‖L∞(Γ0) ≤ ε,(2.21)

and, by (2.19), (2.20) and by assuming that ε ≤ 1/e,

‖fi − f ′
i‖L∞(Ω) ≤ C2,(2.22)
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where C2 depends on the a priori data only.
Furthermore (see [12, Proposition 4.11]),

|vi(z) − v′i(z)| ≤ η(ε) for any z ∈ Ω,(2.23)

where η is a positive function defined on (0,+∞) such that

η(ε) ≤ C3(log | log ε|)−α2 for every ε, 0 < ε < 1/e.(2.24)

Here C3 and α2 are positive constants depending on the a priori data only.

3. Proof of Theorem 2.3. We begin with the following two results.
Theorem 3.1. Theorem 2.3 holds true if we replace (2.14) with

ω(ε) ≤ K1(log | log(ε)|)−β1 for every ε, 0 < ε < 1/e,(3.1)

K1, β1 > 0 depending on the a priori data only.
Proposition 3.2. Suppose that the assumptions of Theorem 2.3, with the ex-

ception of (2.12), are satisfied. Let us further assume that p ≤ p0, and hence (2.10)
and (2.11) are satisfied.

If there exist positive constants c0 and η such that for every r, 0 ≤ r ≤ c0p, there
exists z′ ∈ σ′

1 ∩ ∂Br(z
′
0) such that

|vi(z′) − v′i(z
′)| ≤ η for any i = 1, 2,(3.2)

then we have

p ≤ K2η
β2 ,(3.3)

where K2 and β2 are positive constants depending on c0 and the a priori data only.
Theorem 3.1 is the first part of Theorem 4.1 in [12]. The proof of Proposition 3.2

follows exactly the same argument as that used to prove Proposition 4.9 in [12]. It
appears clear that our aim is to improve the estimate (2.23)–(2.24) at least for points
which are near to the point where the Hausdorff distance is reached.

The following geometric construction is crucial. Let us recall that G is the con-
nected component of Ω\(Σ ∪ Σ′) whose boundary contains ∂Ω and that whenever
p ≤ p0, we assume that the conclusions of Lemma 2.2 hold.

Lemma 3.3. Let Ω, Σ, and Σ′ be as in Theorem 2.3. Then there exist positive
constants p1, 0 < p1 ≤ p0, c0, δ0, C4, and C5, 0 < C5 < 1, depending on δ, M , and L
only, such that if p ≤ p1, then for every r, 0 ≤ r ≤ c0p, there exists z′ ∈ σ′

1 ∩ ∂Br(z
′
0)

satisfying the following condition
(a) there exists a sequence of discs Dn = Brn(zn) such that, for any n ∈ N,

Dn ∩Dn+1 �= ∅, 2Dn = B2rn(zn) ⊂ G,

|zn − z′| ≤ C4rn, rn+1 ≤ C5rn,
(3.4)

and, moreover,

dist(D1, ∂G) ≥ δ0.(3.5)

Let us remark that a point z ∈ Σ∪Σ′ satisfies condition (a) provided there exists
an open sector of a cone with vertex in z which is contained in G. In fact, in such a
case, we can construct the discs satisfying condition (a) as follows. We take discs Dn
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centered on the bisecting line of the sector so that 2Dn is contained in the sector and
Dn is tangent to Dn+1, which is obviously chosen to be closer to z; see [1] for details.
However, such a cone condition might not be satisfied if Σ and Σ′ are only Lipschitz
regular, even if they are very close in the Hausdorff distance; see Example 2.14 in [12].
Nevertheless, we show that, roughly speaking, in a neighborhood of the point where
the Hausdorff distance is reached, condition (a) is satisfied, even if we might still lack
the cone condition.

We begin with some preliminaries and by fixing some notation. Without loss of
generality, by (2.8) and (2.9), we can restrict ourselves to the case of single cracks, σ1

and σ′
1, and take as G the unbounded connected component of R

2\(σ1 ∪ σ′
1).

Let us assume that p ≤ min{p0, δ/4} and that z′0 ∈ σ′
1 satisfies dist(z′0, σ1) = p, as

in Lemma 2.2. Furthermore, let z0 ∈ σ1 be the point where this distance is reached,
that is, such that |z′0 − z0| = p.

Let us consider the coordinate system (x, y) with origin in z′0 such that with
respect to these coordinates σ1 ∩ Bδ(z0) is a Lipschitz graph with constant M and
z0 = (x0, y0) with x0 ≥ 0 and y0 ≤ 0. For any i = 1, 2, let zi = (xi, yi) ∈ ∂Bp(z

′
0) be

such that yi ≤ 0 and the tangent line to ∂Bp(z
′
0) at the point zi has slope (−1)iM .

Clearly we have x2 > 0, x1 = −x2, and y1 = y2.
With the notation Sr(θ1, θ2), where r > 0 and θ1 < θ2, we denote the open sector

of a cone so defined:

Sr(θ1, θ2) = {z = (x, y) : |z| < r and θ1 < arg z < θ2}.

We say that r is the radius and θ2 − θ1 is the amplitude of such a sector. Let θ,
0 < θ < π/2, be the angle between a line of slope M and the y-axis and let

S0 = Sδ/2(π/2 − θ, π/2 + θ).

The proof of Lemma 3.3 is rather technical. Before entering into details, let us
sketch its main features. Let us consider, for simplicity, the case in which x1 ≤ x0 ≤
x2. Let us consider the function

f(x) =

⎧⎨
⎩

−M(x− x1) + y1 if x ≤ x1,

−
√

1 − x2 if x1 ≤ x ≤ x2,
M(x− x2) + y2 if x ≥ x2.

We have that since σ1 ∩ Bδ(z0) is a Lipschitz graph with constant M , then σ1 must
be, locally, below the graph of f . In particular, S0(zi) = zi + S0, for any i = 0, 1, 2,
and S0(z

′
0) = z′0 + S0 do not contain points of σ1. Moreover, by construction, any

point z belonging to S0(z
′
0) has distance greater than p from the graph of f and,

consequently, also from σ1. Since p is the Hausdorff distance between σ1 and σ′
1, we

infer that S0(z
′
0) ∩ σ′

1 is empty.
We have shown that there exists an open sector of a cone with vertex in z′0 which

is contained in G, and thus condition (a) is satisfied for r = 0. For r > 0, we proceed
as follows. Let z ∈ σ′

1 ∩ ∂Br(z
′
0), and let us consider the two opposite sectors with

vertex in z which do not intersect σ′
1, which exist by the Lipschitz character of σ′

1.
Such sectors, at least for small r and near z, are contained in the epigraph of f , and
thus do not intersect σ1, too. Then the main idea is the following. We proceed from
z along the bisecting line of one of these two sectors until we meet the bisecting line
of one among the sectors S0(zi), i = 1, 2, or S0(z

′
0). Then we turn and continue along

this other bisecting line. This piecewise linear curve will be the direction along which
we approach z with the sequence of balls contained in G that provides condition (a).
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Proof of Lemma 3.3. Under the previous hypotheses and notation, we have two
cases: Either

(i) the tangent line to ∂Bp(z
′
0) at the point z0 has slope m less than or equal to M ;

or
(ii) the tangent line to ∂Bp(z

′
0) at the point z0 has slope m greater than M (including

the extreme case of a vertical tangent, when z0 = (p, 0)).

If (i) holds, that is, when x1 ≤ x0 ≤ x2, then S0(z
′
0) = z′0+S0 satisfies dist(S0(z

′
0),

σ1) ≥ p. Therefore, since p = dH(σ1 ∪ σ′
1), we have S0(z

′
0) ∩ (σ1 ∪ σ′

1) = ∅.
On the other hand, if (ii) holds, then we pick S̃0(z

′
0) as S̃0(z

′
0) = z′0 + S̃0 =

z′0 + Sδ/2(π/2, 3π/2 − θ), and we still have that S̃0(z
′
0) ∩ (σ1 ∪ σ′

1) = ∅. We wish to
remark that (ii) can hold only if z0 is an endpoint of σ1.

The construction of S0(z
′
0) or S̃0(z

′
0), respectively, already proves that the lemma

is true for r = 0, that is, for z′0.

We have that, with respect to a coordinate system which is rotated in the counter-
clockwise sense of an angle θ̃, 0 ≤ θ̃ < π, with respect to the system (x, y), σ′

1∩Bδ(z
′
0)

is a Lipschitz graph with constant M , which implies that for any z′ ∈ σ′
1∩Bp(z

′
0), the

sectors S′
0(z

′)± = z′±Sδ/2(π/2−θ+ θ̃, π/2+θ+ θ̃) do not intersect σ′
1. Furthermore,

S0(z
′) = z′ + S0 does not contain points of σ1.

If θ̃ ∈ [0, 15θ/8] ∪ [π − 15θ/8, π), then for any z′ ∈ σ′
1 ∩Bp(z

′
0), we have that the

intersection of S0(z
′) either with S′

0(z
′)+ or with S′

0(z
′)− contains a sector of a cone

of radius δ/2 and amplitude at least θ/8. Such a sector has empty intersection with
σ1 ∪ σ′

1; thus a uniform cone property holds and the lemma easily follows.

We now consider the case in which θ̃ ∈ (15θ/8, π−15θ/8). We restrict ourselves to
the case in which (i) holds; the case in which (ii) holds can be treated in a completely
analogous way.

Let us consider the ball Bδ/2(z
′
0). We have that Bδ/2(z

′
0)\(S′

0(z
′
0)

+ ∪ S′
0(z

′
0)

−)

consists of two closed sectors S̃+ and S̃−, where the first one is the only one whose
intersection with S0(z

′
0) is not empty. If we further subtract S0(z

′
0), then we obtain

at most three closed sectors, S̃−, Ŝ1, and Ŝ2, the last ones being contained in S̃+.
We order Ŝ1 and Ŝ2 in the counterclockwise direction; that is, we take Ŝ1 as the one
contained in {x ≥ 0} and Ŝ2 as the one contained in {x ≤ 0}, keeping in mind that
one or both of them can be empty or have an empty interior. We observe that at
most one between Ŝ1 and Ŝ2 contains points of σ′

1.

Assume that σ′
1 ∩ Ŝ1 is not empty. Then there exist constants c1, 0 < c1 < 1, and

c2 > 0, depending on δ and M only, such that for every z′ ∈ σ′
1 ∩ Ŝ1 ∩ Bc1p(z

′
0) we

have that S′
0(z

′)+ ∩S0(z
′
0) is not empty, S′

0(z
′)+ ∩S0(z

′
0) ⊂ z′0 + (Sδ/4(π/2− θ, π/2 +

θ)\Sc2|z′−z′
0|(π/2 − θ, π/2 + θ)), and the angle between the bisecting lines of S′

0(z
′)+

and S0(z
′
0) is greater than a positive constant depending on M only. Then we can

prove that for every z′ ∈ σ′
1 ∩ Ŝ1 ∩Bc1p(z

′
0), condition (a) holds. We take a sequence

of discs in S0(z
′
0), each one so that its center is on the bisecting line of S0(z

′
0), it is

tangential to the next one, and the disc with double radius and same center is still
contained in S0(z

′
0), till we reach the intersection of the bisecting lines of S′

0(z
′)+

and S0(z
′
0). From that point on, we continue the construction by taking discs, with

analogous properties as before, along the sector S′
0(z

′)+.

If σ′
1 ∩ Ŝ2 is not empty, then we can repeat the same reasoning using S′

0(z
′)−

instead of S′
0(z

′)+.

It might happen that σ′
1∩(Ŝ1∪ Ŝ2) is strictly contained in Bc1p(z

′
0), and therefore

the proof is not yet concluded. In this case, we can find positive constants p1, 0 <
p1 ≤ min{p0, δ/4}, c3, c4, and θ1, 0 < θ1 ≤ θ, depending on δ and M only, such that
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if p ≤ p1, then for any r, 0 < r ≤ c3p, there exists z′ ∈ σ′
1 ∩ S̃− such that |z′ − z′0| = r

and the following holds. Let S̃′
0(z

′)± be the sector with vertex in z′, radius δ/2, the
same bisecting line as S′

0(z
′)±, and amplitude 2θ1. Then either (i) S̃′

0(z
′)+ ∩ S0(z1)

is not empty, S̃′
0(z

′)+ ∩S0(z1) ⊂ z1 + (Sδ/4(π/2− θ, π/2 + θ)\Sc4p(π/2− θ, π/2 + θ)),

the angle between the bisecting lines of S̃′
0(z

′)+ and S0(z1) is greater than a positive
constant depending on M only, and S0(z1)\(z1 + Sc4p(π/2 − θ, π/2 + θ)) does not

contain points of σ′
1; or (ii) the same properties are satisfied by S̃′

0(z
′)− and S0(z2).

Then we repeat the construction used before using either the two sectors S̃′
0(z

′)+ and
S0(z1) or S̃′

0(z
′)− and S0(z2).

We can now conclude the proof of our stability result.
Proof of Theorem 2.3. By Theorem 3.1, we can assume without loss of generality

that p ≤ p1. Then, by Lemma 3.3, we can find c0, δ0, C4, and C5, 0 < C5 < 1,
depending on δ, M , and L only, such that for every r, 0 ≤ r ≤ c0p, there exists
z′ ∈ σ′

1 ∩ ∂Br(z
′
0) satisfying condition (a).

Then, for any i = 1, 2, and any of these z′ satisfying condition (a), we have

|vi(z′) − v′i(z
′)| ≤ C6| log ε|−α3 ,(3.6)

where C6 and α3 > 0 depend on the a priori data only.
In fact, let us fix i ∈ {1, 2} and let us call f = u+iv = ui−u′

i+i(vi−v′i). We have
that f is quasiregular inside Ω\(Σ ∪Σ′); that is, it satisfies a Beltrami-type equation
like (2.16)–(2.17).

Let Gδ0 be the set of points in G whose distance from Σ ∪ Σ′ is greater than or
equal to δ0. We assume, without loss of generality, that δ0 ≤ δ/4; thus a neighborhood
of ∂Ω in G is contained in Gδ0 .

Let Ω1 = Gδ0 ∪ (
⋃

n∈N
2Dn), with Dn as in condition (a) applied to z′. We have

that Ω1 is a domain contained in G such that ∂Ω ⊂ ∂Ω1.
Let us observe that for any r, 0 < r ≤ |z1 − z′|, with z1 the center of D1, there

exists wr ∈
⋃

n∈N
Dn such that |wr − z′| = r. Furthermore, we can take such a wr in

Dn, where n satisfies n < C7(1 + | log r|), with C7 depending on C4, C5, and L only.
Then (3.6) can be obtained as follows. By recalling (2.21) and (2.22), we can

estimate, in terms of ε, |f | inside Ω1 by using the method of harmonic measure,
which has been generalized to operators with nonconstant and anisotropic coefficients
in [3].

We can estimate |v(z′)| using the interior estimate of |f | at the point wr, 0 < r ≤
|z1 − z|, and (2.19). A precise estimate of |f(wr)| is obtained through a repeated use
of the Harnack inequality along the sequence of discs Dn. We refer to the proof of
Proposition 4.12 in [12] for details.

Then the conclusion follows immediately from (3.6) and Proposition 3.2.
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