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Abstract. Building on previous analyses carried out in [24, 27], we establish L1 ∩ H2 → Lp

nonlinear orbital stability, 1 ≤ p ≤ ∞, with sharp rates of decay, of large-amplitude Lax-type shock
profiles for a general class of relaxation systems that includes most models in common use, under
the necessary conditions of strong spectral stability, i.e., stable point spectrum of the linearized
operator about the wave, transversality of the profile, and hyperbolic stability of the associated ideal
shock. In particular, our results apply to standard moment closure systems, answering a question
left open in [24]. The argument combines the basic nonlinear stability argument introduced [24] with
an improved “Goodman-style” weighted energy estimate similar to but substantially more delicate
than that used in [27] to treat large-amplitude profiles of systems with real viscosity.
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1. Introduction. In [24], there was carried out a detailed study of linearized
and nonlinear stability of traveling front solutions, or shock profiles

(u, v)(x, t) = (ū, v̄)(x − st), lim
z→±∞

(ū, v̄) = (u±, v±) = (u±, v∗(u±)), (1.1)

of relaxation systems

{

ut + f(u, v)x = 0,
vt + g(u, v)x = q(u, v)

(1.2)

u, f ∈ IR
n, v, g, q ∈ IR

r, where

Re σ
(

qv(u, v∗(u))
)

< 0

along a smooth equilibrium manifold v = v∗(u) defined by q(u, v∗(u)) = 0.
The linearized results obtained in [24] are extremely general, and appear to be

optimal. However, the nonlinear results are restricted to arbitrary-amplitude profiles
of special, discrete kinetic models, defined as systems (1.2) for which f and g are linear,
and small-amplitude profiles of general, simultaneously symmetrizable models, defined
as systems (1.2) for which there exists a smooth, symmetric positive definite matrix
function A0 = A0(u, v) for which A0A and A0Q are symmetric, where A := (df t, dgt)t

and Q := (0, dqt)t.
The first result is quite satisfactory, and has important applications to the phys-

ically interesting class of systems obtained by discretization of kinetic models such
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as Boltzmann or Vlasov–Poisson equations. On the other hand, the equally impor-
tant class of systems obtained by moment closure approximation of kinetic models
is not contained in the class of discrete kinetic models, and so the question of large-
amplitude stability for these models was left open in [24]; indeed, as discussed in
Remark 1.16 of [24], it was not at all clear from the analysis of [24] whether this was
a technical artifact or represented a true qualitative difference in behavior between
these two types of approximation. Moreover, even the requirement of simultaneous
symmetrizability appears to be overly restrictive in the large-amplitude case. As de-
scribed in [33], many systems of physical interest are simultaneously symmetrizable
along the equilibrium manifold v = v∗(u), including (standard versions of) both dis-
crete and moment-closure approximations of kinetic models; however, so far as we can
see, simultaneous symmetrizability does not typically hold away from equilibrium, in
particular along a shock profile as assumed in [24].1 This distinction is unimportant
in the small-amplitude case, for which the argument of [24] goes through by conti-
nuity assuming only simultaneous symmetrizability at the endstates (u−, v∗(u−));2

however, it becomes significant in the large-amplitude case, for which profiles may
feature arbitrarily large excursions from equilibrium.

The difficulty in the analysis of the general case was control of higher-derivative
source terms arising in the nonlinear iteration through Taylor expansion of the variable
coefficient matrix A = (df t, dgt)t. Such terms do not arise in the case of discrete ki-
netic models, for which A is constant, and this made it possible to carry out the entire
nonlinear stability analysis using linearized (i.e., Green function) estimates alone. In
the general case, we found it necessary to augment these bounds with coupled energy
estimates in order to close the iteration, and these estimates, as implemented in [24]
used both global symmetrizability and the small-amplitude assumption in important
ways. In particular, these assumptions were used to guarantee that the perturbation
equations be locally dissipative everywhere along the shock profile, whereas, in the
present, large-amplitude case, the perturbation equations are in general dissipative
only near plus or minus spatial infinity.

Similar difficulties arose in the closely related study [25] of stability of shock
profiles for real viscosity models, initially limiting this analysis also to the small-
amplitude, globally symmetrizable case. Recently, however, these obstacles were
overcome and the corresponding restrictions removed in [27], by the introduction
of a modified energy estimate incorporating “Goodman-type” weighted norms in the
style of [12]. As discussed in [39, 40], these quantify the observation that transverse
convection relative to the shock profile already yields a complementary type of dissi-
pation near the inner shock layer, by rapidly sweeping signals to plus or minus spatial
infinity where they then decay under the effects of the local dissipativivity guaranteed
by (A1)–(A2).

In this paper, we show that a similar approach can be applied in the relaxation
case to yield a satisfactory nonlinear stability theory applying to large-amplitude pro-
files of the physically correct class of systems that are simultaneously symmetrizable
at equilibrium: indeed, to the considerably more general class of equations that was
considered in the linearized analysis of [24].

This brings the analysis of [24] to a satisfying conclusion, putting under a com-

1This corrects a misstatement in [24], Remark 1.15, where the calculations of [33] were misquoted
as asserting global simultaneous symmetrizability.

2Specifically, in the notation of Lemma 7.4, [24], the key property Re (kA − A0Q > 0 persists
under perturbation.
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mon framework most of the relaxation models commonly studied, and in particular
resolving in the negative the question posed in [24] whether there might be a true
qualitative difference in behavior between discrete and moment-closure approxima-
tions of kinetic models. We point out that our results yield new information even in
the case of (non-globally-symmetrizable) discrete kinetic models, since we require sig-
nificantly less regularity on the data (L1 ∩H2 vs. W 3,1 ∩W 3,∞). Also, the low norm
decay rates, Lp for 1 ≤ p < 2 are new for general models even in the small-amplitude
case.

A substantial new difficulty in the relaxation as compared to the real viscosity case
is that the hyperbolic characteristic speeds corresponding to eigenvalues of (df t, dgt)t

are by the subcharacteristic condition (a necessary condition for dissipativity condition
(A2); see [32, 24]) necessarily of both positive and negative sign, whereas in the case
of real viscosity hyperbolic modes were assumed to be all of one sign, i.e., strictly
upwind or strictly downwind. Since weights are chosen to decay exponentially in the
direction of propagation, this means that a single scalar weight no longer suffices in
the relaxation case, and the introduction of a matrix of distinct diagonal weights leads
to off-diagonal error terms that are grow exponentially in both the amplitude of the
shock and in an arbitrary constant C∗ determining the amount of dissipation on the
inner layer with respect to the chosen weight.

At first sight, it is hard to see how such an argument could ever close, since good
terms of order C∗ generate bad terms of exponential order in C∗. Remarkably, the
energy estimates can close by a refinement of the hyperbolic compensation argument
of [17, 30]: namely, the observation (Lemma 2.3 below) that the same “compensating
matrix” K used to comple the partial dissipation provided by the semi-parabolic
matrix B may be used at the same time to eliminate off-diagonal terms of essentially
arbitrary size. The details of this argument may be found in Sections 2–3.

We now describe our results in more detail. Of system (1.2), we assume the
following structural properties:

(A1) Symmetrizability of A(u, v) = (df t, dgt)t: there exists a C3 positive definite
matrix-valued function A0(u, v) such that A0A is symmetric.

(A2) Dissipativity at the equilibrium states (u±, v∗(u±)): for some θ > 0,

Re σ(iξA± + Q±) ≤
−θ|ξ|2

1 + |ξ|2
∀ ξ ∈ IR,

where A± := A(u±, v∗(u±)), Q± := Q(u±, v∗(u±)), and Q(u, v) := (0, dq(u, v))t.

Condition (A1) is connected with well-posedness of (1.2), while (A2) is con-
nected with time-asymptotic stability of equilibrium states (u±, v∗(u±)) [17]. As
discussed variously in [17, 35, 33, 5], sufficient conditions for (A2) are either simulta-
neous symmetrizability, A0Q symmetric, or else weak dissipativity, Q(A0)−1 ≤ 0 and
(Q(A0)−1)22 < 0, 3 together with genuine coupling:

No eigenvector of A± lies in the kernel of Q±. (1.3)

3That is, Q̃ := Q(A0)−1 = block-diag {0, q̃} with q̃ < 0, whence we may replace Q̃ with Re Q̃ and
proceed as in the simultaneously symmetrizable case, noting that ker A0Re Q̃ = ker A0Q̃ = (In−r , 0),

whence (1.3) is preserved. The example q̃ =

„

0 a

−a 1

«

, a 6= 0, shows that q̃ > 0 is necessary,

since Re σq̃ < 0 but Re q̃ = block-diag {0, q̃} is only semidefinite.
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Regarding the profile (1.1), we assume:

(H0) f , g, q ∈ C3.

(H1) The eigenvalues of A(x) := (df t, dgt)t(ū, v̄)(x) are (i) different from s and (ii)
of constant multiplicity.

(H2) (i) The eigenvalues a∗±
j of A∗

± := df∗(u±), f∗(u) := f(u, v∗(u)), are real and

different from s;4 moreover, (ii) when ordered with increasing size, they satisfy the
strict Lax characteristic conditions [19]

a∗−
p−1 < 0 < a∗−

p , a∗+
p < 0 < a∗+

p+1

for some 1 ≤ p ≤ n (the principal characteristic field of the shock).

(H3) Dynamical stability: the Liu-Majda determinant condition [21, 22, 23, 20]

∆ := det(r∗−1 , . . . , r∗−p−1, [u], r∗+p+1, r
∗+
n ) 6= 0 (1.4)

is satisfied, where r∗±j denote the eigenvectors of A∗
± associated with a∗±

j , and [u] :=
u+ − u− the jump in u across the shock.

(H4) Structural stability: the profile (ū, v̄)(·) is a transverse connection of the asso-
ciated traveling-wave ODE, in particular, therefore, locally unique up to translation.

(H5) Strong spectral stability: the point spectrum of the linearized operator L about
the wave is contained in {λ : Re λ < 0} ∪ {0}.

Condition (H0) gives the regularity needed both for our analysis here and in order
to apply the linearized bounds of [24]. Condition (H1)(i) is a standard assumption
[34, 38, 24] ensuring that the traveling-wave ordinary differential equation (ODE)
be of nondegenerate type [24]. It is not clearly necessary, however, and at least for
discrete kinetic models it can be relaxed, as we discuss in Section 4; indeed, in that
setting it is rather unnatural. Condition (H1)(ii) is a technical assumption that was
used in the pointwise Green function analysis of [24]; at the expense of some detail
in the pointwise description of linearized behavior, it may be removed altogether [39].
Constant multiplicity holds automatically for discrete kinetic models, but for moment
closure models may be difficult to verify. Together, (A1) and (H1)(ii) are equivalent
to semisimplicity plus constant multiplicity of σ(A). Condition (H2)(i) expresses
hyperbolicity and noncharacteristicity of the associated “equilibrium system”

ut + f∗(u)x = 0 (1.5)

4This differs from hypothesis (H2) of [24], in which the eigenvalues were also required to be
distinct. However, it was noted in Remark 1.12 of [24] that this requirement may be dropped when A∗

±
and Q± are simultaneously symmetrizable, with essentially no change in either results or notation;
the same argument shows that this requirement may likewise be dropped in the general case, at the

expense of further complications (specifically, the matrix-valued diffusion waves e
(x−a

∗±

j
)2(4πβ

∗±

j
t)−1

of the remark must be replaced by the fundamental solution of vt + a∗±
j vx = β∗±

j vxx, where β∗±
j :=

l∗±t
j B∗±r∗±j are no longer necessarily diagonal, and the matrix-valued error-functions appearing
in excited term E by its spatial integral; finally, though the precise form of scattering term S in
Proposition 1.10 [24] is no longer clear, it is easily verified that it satisfies pointwise bounds yielding
the same rates of Lq → Lp decay as needed for subsequent stability arguments).
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obtained from (1.2) by formal Chapman–Enskog expansion. at the endstates u−, u+

with respect to the corresponding ideal shock (u−, u+) of (1.5). Note that hyperbol-
icity of the equilibrium system is not required along the profile, thus allowing appli-
cations to interesting nonhyperbolic situations as discussed in [16, 1, 2]. Condition
(H2)(ii) restricts attention for simplicity to the standard case of a classical, Lax-type
shock (u−, u+) of (1.5); the treatment of nonclassical over- and under-compressive
shocks we leave for the future.5

Conditions (H3)–(H5) are together equivalent to the Evans function condition

(D) The Evans function D(·) associated with L has precisely one zero on {λ :
Re λ ≥ 0} (necessarily at λ = 0). 6

The generalized spectral stability condition (D) was shown in [24] to be necessary
and sufficient for linearized stability under assumptions (A1)–(A2) and (H0)–(H2); the
main point of this paper is to show that these conditions are sufficient also for nonlinear
stability. The conditions (H3) and (H4) correspond to the classical physical notions
of dynamical and structural stability (see, e.g. [3]), whereas (H5) encodes heretofor
neglected relaxation effects; for further discussion in the closely related viscous case,
see [38] and especially [27]. All three of conditions (H3)–(H5) hold automatically in
the small-amplitude case; see [21, 22, 23, 34, 24, 28], respectively.

Definition 1.1. For a profile Ū = (ū, v̄) that is (as in the Lax case) unique
up to translation, we define nonlinear orbital stability as convergence of U =
(u, v)(·, t) as t → ∞ to a translate Ū(· − δ(t)), where δ(·) is an appropriately cho-
sen function describing shock location, for any solution U of (1.2) with initial data
sufficiently close in some norm to the the original profile Ū .

Then, the main result of this paper is:

Theorem 1.2. Let Ū = (ū, v̄) be a profile (1.1) of a relaxation system (1.2),
under assumptions (A1)–(A2) and (H0)–(H5). Then, Ū is nonlinearly orbitally stable
from L1 ∩ H2 to Lp, for all p ≥ 2.

More precisely, for initial perturbations U0 := Ũ0 − Ū with |U0|
L1∩H2

sufficiently

small, the solution Ũ = (ũ, ṽ)(x, t) of (1.2) with initial data Ũ0 satisfies

|Ũ(x, t) − Ū(x − δ(t))|
Lp ≤ C|U0|

L1∩H2
(1 + t)−

1

2
(1− 1

p
) (1.6)

for all 1 ≤ p ≤ ∞, for some δ(t) satisfying

|δ̇(t)| ≤ C|U0|
L1∩H2

(1 + t)−
1

2 and |δ(t)| ≤ C|U0|
L1∩H2

.

Remark 1.3. Useful geometric necessary conditions for viscous stability have
been obtained in [36, 38, 11] in the simultaneously symmetrizable case (A3)(ii) using
the stability index of [10, 4]. Strengthened, signed versions ∆ > 0 (under appropriate
normalization) of the dynamical stability condition (1.4), these readily yield examples
of spectrally unstable large-amplitude profiles, similarly as in the strictly parabolic
case (see, e.g., [10, 7, 42, 38]). This shows that the stability conditions assumed in

5See [24] for a linearized analysis and [41, 38, 13] for related nonlinear analyses in the viscous or
viscous–dispersive case.

6For a precise definition of the Evans function, and a proof of the equivalence of (D) and (H3)–
(H5), see [24], or Appendix A2, [38].
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Theorem 1.2 are not vacuous in the large amplitude case. Moreover, as discussed in
[38], Section 6.2, the signed version of the Majda condition can serve as a physical
selection principle in situations for neither of the classical criteria of structural or
dynamical stability suffice. As discussed further in [38, 27], it is an extremely inter-
esting open problem which of the stability conditions (H3) and (H5) is in practice
most restrictive.

Similarly, as in the small-amplitude case, Theorem 1.2 is obtained by a nonlinear
iteration combining the linearized decay rates of [24] with an appropriate auxiliary
energy estimate controlling higher derivatives. Following [24], define the nonlinear
perturbation U = (u, v) by

U(x, t) := Ũ(x + δ(t), t) − Ū(x), (1.7)

where the “shock location” δ is to be determined later. Evidently, decay of U is
equivalent to nonlinear orbital stability as described in (1.6). Then, the key energy
estimate, and the main technical contribution of the paper, is as follows.

Proposition 1.4. Under the hypotheses of Theorem 1.2, let U0 ∈ H2, and
suppose that, for 0 ≤ t ≤ T , both the supremum of |δ̇| and the H1∩W 1,∞ norm of the
solution U = (u, v)t of (1.7) remain bounded by a sufficiently small constant ζ > 0.
Then, for all 0 ≤ t ≤ T and some θ > 0,

|U |2
H2

(t) ≤ Ce−θt|U0|
2

H2
+ C

∫ t

0

e−θ(t−s)
(

|U |2
L2

+ δ̇2
)

(s)ds. (1.8)

Inequality (1.8), expressing exponential damping of high frequencies, improves
the weaker bound

|U |2
H2

(t) +

∫ t

0

|Ux|
2

H1
(s)ds ≤ C(ζ2 + |U0|

2

H2
) + C

∫ t

0

(

|U |2
H1

+ δ̇2
)

(s)ds (1.9)

stated for the small-amplitude case in [24]. As discussed in [39, 40] in the context of
real viscosity systems, both bounds follow from the same string of energy estimates;
similar inequalities hold in the real viscosity case.

With estimate (1.9), Theorem 1.2 follows for high norms Lp, 2 ≤ p ≤ ∞, by
exactly the same argument used in [24] to treat the small-amplitude case; for, the
proof of (1.9) was the single place in [24] where the small-amplitude assumption was
actually used. See Section 7 of [24], or Section 4, [27] in the real viscosity case. For
completeness, we give in Section 4 a simplified version of this argument based on the
improved estimate (1.8) of Proposition 1.4, which suffices for low norms Lp, 1 ≤ p < 2,
as well.

Remark 1.5. We have here restricted for simplicity to the study of Lax-type
shocks. Nonclassical over- and undercompressive shocks may be treated similarly
under further restrictions on the initial data; see [14, 29] for analyses in the parabolic
(resp. hyperbolic–parabolic) case.

Plan of the paper. In Section 2, we the preliminary lemmas needed in the
analysis. In Section 3, we carry out the proof of Proposition 1.4 and in Section
4 the proof of Theorem 1.2. Finally, in Section 5, we discuss the complementary
characteristic case.
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2. Preliminaries. As in [27], our starting point consists in the following two
lemmas.

Lemma 2.1. [26] Under assumptions (A1)–(A2), (H0)–(H2), standing wave so-
lutions (1.1) satisfy

|(d/dx)kŪ − U±| ≤ C|Ūx| ≤ Ce−θ|x|, k = 0, . . . , 4, (2.1)

as x → ±∞, for some θ > 0, U± = (u±, v±) = (u±, v∗(u±)).

Proof. Equivalently, the standing-wave equations may be expressed as a nonde-
generate ODE with hyperbolic rest points; see the proof of Lemma 1.2, [24].

Lemma 2.2. [30] Let A and Q denote simultaneously symmetrizable matrices and
A0 their symmetrizer, with A0Q ≤ 0.

Then, genuine coupling (1.3) is equivalent to one of the following conditions:

(K0) There exists θ > 0 such that Reσ(iξA + Q) ≤
−θ|ξ|2

1 + |ξ|2
for all ξ ∈ IR;

(K1) There exists a smooth skew-symmetric matrix-valued function K(A, Q, A0)
such that Re

(

A0Q − KA
)

< 0;

(K2) block-diag LQR < 0, where L := Ot(A0)
1

2 and R := L−1 = (A0)−
1

2 O are ma-
trices of left and right eigenvectors of A block-diagonalizing LAR, with O orthonor-
mal. Here, block-diag M denotes the matrix formed from the diagonal blocks of M ,
with each blocks of dimension equal to the multiplicity of corresponding eigenvalues of
LAR.

Note that strictly dissipativity assumption (A2) correspond to condition (K0) at
the asymptotic states (u±, v∗(u±)) with respect to the matrices A± and Q±.

Proof. These and other useful equivalent formulations are established in [30].
The main implication for our purposes, (K2) ⇒ (K1), follows readily from Lemma
2.3, below, by first converting to the case of symmetric A, Q by the transformations
A → (A0)

1

2 AA0)−
1

2 , Q → (A0)
1

2 QA0)−
1

2 , from which the orginal result follows by

the fact that M > 0 ⇔ (A0)
1

2 M(A0)
1

2 > 0, then converting by an orthonormal
change of coordinates to the case that A is diagonal and Q symmetric. Variable
multiplicity eigenvalues may be handled by partition of unity/interpolation, noting
that Re (Q − KA) < 0 persists under perturbation.

Under the assumed symmetry of LQR, (K0) ⇒ (K2) follows by Taylor expansion
at infinity of the spectrum of the symbol iξA + Q, from which we may deduce

Re σ( block-diagLQR) < 0;

see, e.g., Appendix B of [24]. That (K1) ⇒ (K0) follows upon rearrangement of energy
estimate

〈(A0 + |ξ|2A0 − iξK)w, (λ + iξA + |ξ|2B)w〉 = 0.

Finally, (K2) ⇔ (1.3) is clear.

For our purposes, we shall require the following slight extension of Lemma 2.2,
whose proof gives at the same time an explicit description of K of which we shall later
make important use. We note that an equivalent version of this result was obtained
independently and previously to ours by Humpherys [15].
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Lemma 2.3. Let D be diagonal, with real entries appearing with prescribed multi-
plicity in order of increasing size, and let Q be arbitrary. Then, there exists a smooth
skew-symmetric matrix-valued function K(D, Q) such that

Re (Q − KD) = Re block-diag Q,

where block-diag Q denotes the block-diagonal part of Q, with blocks of dimension
equal to the multiplicity of the corresponding eigenvalues of D.

Proof. It is straightforward to check that the symmetric matrix Re KD = ( 1
2 )(KD−

DtK) may be prescribed arbitrarily on off-diagonal blocks, by setting Kij := (ai −
aj)

−1Mij , where Mij is the desired block, i 6= j. Choosing M = Re Q, we obtain
Re (Q − KD) = Re block-diag (Q) as claimed.

We shall also need the following two elementary results.

Lemma 2.4. Given (A2), there exist block-diagonalizing matrices L±, R±, LAR±

blockdiagonal, LR± = I, such that

block-diag LQR± < 0.

(Note: A and Q are not assumed simultaneously symmetrizable as in Lemma 2.2).

Proof. Again, Re σ( block-diag L̃QR̃±) < 0 follows from (A2) by Taylor expan-
sion at infinity of the spectrum of the symbol iξA± +Q±, for any block-diagonalizing
transformations L̃±, R̃±; see Appendix B, [24]. By a standard linear-algebraic lemma
(see, e.g., Proposition A.9, p. 361 of [31]), block-diagS−1L̃QR̃S± < 0, S± :=
block-diag{S1, . . . , Sk}± for some choice of nonsingular S±

j . Taking L± := S−1L̃±,

R± := R̃S±, we are done.

Lemma 2.5. There is a correspondence between symmetric positive definite sym-
metrizers A0, A0A symmetric, and diagonalizing transformations L, R, LAR diago-
nal, given by A0 = L∗L, or equivalently L = O∗(A0)

1

2 , where O is an orthonormal

matrix diagonalizing the symmetric matrix (A0)
1

2 A(A0)−
1

2 .
Moreover, the matrix O (or equivalently L) may be chosen with the same degree

of smoothness as A0, on any simply connected domain.

Proof. The first assertion follows by direct calculation. The second is clear in
the strictly hyperbolic case, for which the correspondence is also one-to-one; in the
general (constant-multiplicity) case, it follows by a standard lemma of Kato [18].

Remark 2.6. Lemma 2.5 hints at the strategy we shall follow in carrying out
energy estimates, which is to “effectively diagonalize” by the use of a symmetrizer.
That is, rather than working with LAR as we should like, we work with A0A =
L∗LA = L∗(LAR)L, thereby avoiding the problem that there may exist a nonlinear
change of coordinates with Jacobian L. Conjugation by L of course does not affect
the energy estimates.

Finally, for convenience of the reader, we recall the standard relations

〈W, SWx〉 = −
1

2
〈W, SxW 〉 (2.2)

and

1

2
〈Wx, KW 〉t = 〈Wx, KWt〉 +

1

2
〈Wx, KtW 〉 +

1

2
〈W, KxWt〉, (2.3)

valid, respectively, for symmetric S and skew-symmetric K.
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3. Energy estimates.. In this section, we carry out the main work of the paper,
establishing Proposition 1.4.

Perturbation equation. Define the nonlinear perturbation U(x, t) := Ũ(x+δ(t), t)−
Ū(x) as in (1.7) where δ(t) (estimating shock location) is to be determined later; for
definiteness, fix δ(0) = 0. Substituting (1.7) into (1.2), we obtain

Ũt + ÃŨx −

(

0
q

)

(Ũ) = δ̇Ũx,

where Ã := (df, dg)t(ũ, ṽ), and thereby

(Ũ − Ū)t + (ÃŨx − ĀŪx) −
(

(

0
q

)

(Ũ) −

(

0
q

)

(Ū)
)

= δ̇(t)Ũx,

where Ũ now denotes Ũ(x + δ(t), t) and Ū denotes Ū(x).
Expanding (ÃŨx − ĀŪx) using the quadratic Leibnitz relation

ÃŨx − ĀŪx = Ã(Ũx − Ūx) + (Ã − Ā)Ūx,

and Taylor expanding
(

(

0
q

)

(Ũ)−

(

0
q

)

(Ū)
)

about Ũ , we obtain the basic non-

linear perturbation equation

Ut − ÃUx − Q̃U = M1(U)Ūx + (0, Ir)
tM2(U) + δ̇(t)(Ūx + Ux), (3.1)

where Q̃ := (0, dq)t(ũ, ṽ) and

M1(U) = O(|U |) := Ã(x, t) − Ā(x),

M2(U) = O(|U |2) :=

(

0
q

)

(Ũ) −

(

0
q

)

(Ū) − Q̃(Ũ − Ū).

Weighting matrix. Let Ã0 := A0(Ũ) denote the symmetrizer of Ã guaranteed by

(A1), and factor Ã0Ã = (Ã0)
1

2 ÕD̃Õt(Ã0)
1

2 , or, equivalently,

Ã = (Ã0)−
1

2 ÕD̃Õt(Ã0)
1

2 , (3.2)

where Õ is orthogonal, Õt = Õ−1, and C3 as a function of (u, v) (see Lemma 2.5)
and D̃ = block-diag {ã1, . . . , ãl}, where ãj denote the eigenvalues of Ã, indexed in
increasing order

ã1 ≤ · · · ≤ ãk < 0 < ãk+1 ≤ · · · ≤ ãl.

Define the “Goodman-type” [12] weighting matrix α(x) := block-diag{α1, . . . , αl},
where αj > 0 are defined by ODE

αx = C∗sgnaj |Ūx|α, α(0) = 1,

C∗ > 0 a sufficiently large constant to be determined later. This definition, together
with |aj | > 0, (H2)(i), gives the key inequality

αxD̄ ≥ θ1C∗|Ūx|α, (3.3)
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where D̄ = block-diag{ā1, . . . , āl} and āj are the eigenvalues of Ā.
Setting

Ã0
α := (Ã0)

1

2 Õ α Õt(Ã0)
1

2 , (3.4)

we have by factorization (3.2) that

Ã0
αÃ = [(Ã0)

1

2 Õ α Õt(Ã0)
1

2 ]Ã = (Ã0)
1

2 Õ(αD̃)Õt(Ã0)
1

2 . (3.5)

Hence, Ã0
αÃ is symmetric and the symmetric positive definite matrix Ã0

α is also a
viable symmetrizer for Ã.

Moreover, setting L := Õt(Ã0)
1

2 and R := (Ã0)−
1

2 Õ, by Lemma 2.5 and constant
multiplicity of eigenvalues of A, we have the freedom to smoothly (C3) redefine L and
R so that they take on prescribed values at x → ±∞. Thus, by Lemma 2.4, we may
assume without loss of generality that

Re block-diag
(

αÕt(Ã0)
1

2 Q̃(Ã0)−
1

2 Õ
)

±
≤ −θ(C∗) < 0,

and thereby, appealing to (2.1), k = 0,

Re block-diag
(

αÕt(Ã0)
1

2 Q̃(Ã0)−
1

2 Õ
)

≤ −θ(C∗) + C(C∗)ζ + C|Ūx|α, (3.6)

where

Ã0
αQ̃ = (Ã0)

1

2 Õ
[

α Õt(Ã0)
1

2 Q̃(Ã0)−
1

2 Õ
]

Õt(Ã0)
1

2 ,

and the exponent θ now refers to the minimum of the constants used elsewhere in the
argument and that appearing in (2.1). The constants θ(C∗) and C(C∗) measure the
conditioning of matrices α and in fact decay (resp. grow) exponentially with respect
to C∗; however, this is unimportant for our argument.

Define

K1 := K
(

D̃, α Õt(Ã0)
1

2 Q̃(Ã0)−
1

2 Õ + N
)

,

where K(·) is as in Lemma 2.3, and N is an arbitrary matrix with |N |
C1

x,t

≤ C(C∗)

and vanishing on diagonal blocks, to be determined later. Moreover, let K̃α be the
skew-symmetric matrix obtained from K1 after conjugation by (Ã0)

1

2 Õ, i.e.

K̃α := (Ã0)
1

2 ÕK1Õ
t(Ã0)

1

2 .

For later use, note that, through smooth dependence on Ũ = Ū + U and N ,

|K̃α,x|, |K̃α,t| ≤ C(C∗). (3.7)

We have, therefore,

Re
(

− K̃αÃ + Ã0
αQ̃ + (Ã0)

1

2 ÕNÕt(Ã0)
1

2

)

= Re (Ã0)
1

2 Õ
(

− K1D̃ + α Õt(Ã0)
1

2 Q̃(Ã0)−
1

2 Õ + N
)

Õt(Ã0)
1

2

= Re (Ã0)
1

2 Õ block-diag
(

α Õt(Ã0)
1

2 Q̃(Ã0)−
1

2 Õ
)

Õt(Ã0)
1

2

≤ −θ(C∗) + C(C∗)ζ + C|Ūx| Ã0
α

(3.8)
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by (3.6) together with Lemma 2.3. By (3.3), we have also

(Ã0)
1

2 Õ(αxD̃)Õt(Ã0)
1

2 ≥ (Ã0)
1

2 Õ(αxD̄)Õt(Ã0)
1

2 − C(C∗) ζ

≥ θC∗|Ūx|Ã0
α − C(C∗) ζ,

(3.9)

for possibly still smaller θ > 0 (ζ as defined in the statement of Proposition 1.4).

Friedrichs-type estimate. As in [24], we first perform a standard “Friedrichs-type”
estimate for symmetric hyperbolic systems (see [8, 9]), now incorporating the weight
α.

Differentiating (3.1) twice with respect to x, we obtain

Uxxt − (ÃUx)xx − (Q̃U)xx = (M(U)Ūx)xx + (0, Ir)
tM2(U)xx + δ̇(t)(Ūxxx + Uxxx).

(3.10)
Taking the L2 inner product Ã0

αUxx against Uxxt, we get

1

2
〈Ã0

αUxx, Uxx〉t = 〈Ã0
αUxx, Uxxt〉 +

1

2
〈(Ã0

α)tUxx, Uxx〉 (3.11)

where Ã0
α is defined in (3.4).

The second term can be easily bounded: indeed, using (3.1),

|(Ã0
α)t|L∞ =

∣

∣

∣

∣

dA0
α

dŨ

∣

∣

∣

∣

∣

∣

∣
Ũt

∣

∣

∣
=

∣

∣

∣

∣

dA0
α

dŨ

∣

∣

∣

∣

|Ut| ≤ C(C∗)
[

|U |
W1,∞

+ |δ̇(t)|(|Ūx|L∞ + |Ux|L∞ )
]

,

hence

1

2
〈(Ã0

α)tUxx, Uxx〉 ≤ C(C∗) ζ |Uxx|
2

L2
(3.12)

(ζ as defined in the statement of Proposition 1.4).
Let us consider the first term on the righthand side of (3.11)

〈Ã0
αUxx, Uxxt〉 = 〈Ã0

αUxx, (ÃUx)xx〉 + 〈Ã0
αUxx, (Q̃U)xx〉

+〈Ã0
αUxx, (M1(U)Ūx)xx〉 + 〈Ã0

αUxx, (0, Ir)
tM2(U)xx〉

+δ̇(t) 〈Ã0
αUxx, Ūxxx + Uxxx〉.

(3.13)

Differentiating the first of the terms in (3.13), we get

〈Ã0
αUxx, (ÃUx)xx〉 = 〈Ã0

αUxx, ÃxxUx〉+ 2〈Ã0
αUxx, ÃxUxx〉+ 〈Ã0

αUxx, ÃUxxx〉. (3.14)

Since

Ãx =
dÃ

dŨ
(Ūx + Ux),

Ãxx =
d2Ã

dŨ2
(Ūx Ūx + Ūx Ux + Ux Ūx + Ux Ux) +

dÃ

dŨ
(Ūxx + Uxx),
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the first two terms of (3.14) are bounded by

〈Ã0
αUxx, ÃxxUx〉 + 2〈Ã0

αUxx, ÃxUxx〉 ≤ C(C∗) (ζ + ζ̄) |Uxx|2
L2

+C(C∗, ζ̄) |Ux|2
L2

+〈Ã0
αUxx,

dÃ

dŨ
Ūx Uxx〉;

(3.15)

here, we have used Young’s inequality to bound 〈Ux , Uxx〉 with ζ̄ |Uxx|2
L2

+ C|Ux|2
L2

with ζ̄ > 0 chosen such that ζ � ζ̄ � 1.

Using the symmetry of Ã0
α and (2.2) with S = Ã0

αÃ, we find that the last term
of (3.14) takes the form

〈Ã0
αUxx, ÃUxxx〉 = 〈Uxx, Ã0

αÃ Uxxx〉 = −
1

2
〈Uxx, (Ã0

αÃ)xUxx〉. (3.16)

Recalling (3.5), we have

(Ã0
αÃ)x =

d (Ã0
αÃ)

dŨ
(Ūx + Ux) + (Ã0)

1

2 Õ (αxD̃) Õt(Ã0)
1

2

where, with slight abuse of notation,

d (Ã0
αÃ)

dŨ
W =

d ((Ã0)
1

2 Õ)

dŨ
W α D̃ Õt(Ã0)

1

2 +(Ã0)
1

2 Õ α
d (D̃ Õt(Ã0)

1

2 )

dŨ
W. (3.17)

Hence, we get

〈Ã0
αUxx, ÃUxxx〉 ≤ − 1

2 〈Uxx, (Ã0)
1

2 Õ (αxD̃) Õt(Ã0)
1

2 Uxx〉

+C(C∗) ζ |Uxx|2
L2

− 1
2 〈Uxx,

d (Ã0
αÃ)

dŨ
Ūx Uxx〉.

(3.18)

Summarizing, the first term on the righthand side of (3.13) can be estimated by

〈Ã0
αUxx, (ÃUx)xx〉 ≤ C(C∗) (ζ + ζ̄) |Uxx|2

L2
+ C(C∗, ζ̄) |Ux|2

L2

+〈Ã0
αUxx,

dÃ

dŨ
Ūx Uxx〉 −

1

2
〈Uxx, (Ã0)

1

2 Õ (αxD̃) Õt(Ã0)
1

2 Uxx〉

− 1
2 〈Uxx,

d (Ã0
αÃ)

dŨ
Ūx Uxx〉.

(3.19)

The second term in (3.13) can be dealt with similarly: since

Q̃x =
dQ̃

dŨ
(Ūx +Ux), Q̃xx =

d2Q̃

dŨ2
(Ūx Ūx+Ūx Ux+Ux Ūx+Ux Ux)+

dQ̃

dŨ
(Ūxx +Uxx),

we have

〈Ã0
αUxx, (Q̃U)xx〉 = 〈Ã0

αUxx, Q̃xxU〉 + 2〈Ã0
αUxx, Q̃xUx〉 + 〈Ã0

αUxx, Q̃Uxx〉

≤ C(C∗) (ζ + ζ̄) |Uxx|2
L2

+ C(C∗, ζ̄) |U |2
H1

+ 〈Ã0
αUxx, Q̃Uxx〉,

(3.20)
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with ζ̄ as in the previous case.
The third term in (3.13) can be estimated by

〈Ã0
αUxx, (M1(U)Ūx)xx〉 ≤ C(C∗) ζ̄ |Uxx|2

L2
+ C(C∗, ζ̄) |U |2

H1

+〈Ã0
αUxx,

dM1

dU
Uxx Ūx〉.

(3.21)

The fourth term in (3.13) is easier: since

M2(U)xx =
d2M2

dU2
Ux Ux +

dM2

dU
Uxx,

we have (recall that M2(U) = O(|U |2))

〈Ã0
αUxx, (0, Ir)

t M2(U)xx〉 ≤ C(C∗) ζ̄ |Uxx|
2

L2
+ C(C∗, ζ̄) |Ux|

2

L2
. (3.22)

Finally, the last term in (3.13): δ̇(t) 〈Ã0
αUxx, Ūxxx + Uxxx〉. Since

δ̇(t) 〈Ã0
αUxx, Ūxxx〉 ≤ C(C∗)|δ̇(t)| |Uxx|

L2
≤ C(C∗) ζ̄ |Uxx|

2

L2
+ C(C∗, ζ̄)|δ̇(t)|2

and, using (2.2) with S = Ã0
α,

δ̇(t) 〈Ã0
αUxx, Uxxx〉 = −

1

2
δ̇(t) 〈Uxx, (Ã0

α)xUxx〉 ≤ C(C∗) ζ |Uxx|
2

L2
,

we have

δ̇(t) 〈Ã0
αUxx, Ūxxx + Uxxx〉 ≤ C(C∗) ζ |Uxx|

2

L2
+ C(C∗)|δ̇(t)|. (3.23)

Collecting (3.12), (3.19), (3.20), (3.21), (3.22) and (3.23), we get

1
2 〈Ã

0
αUxx, Uxx〉t ≤ − 1

2 〈Uxx, (Ã0)
1

2 Õ (αxD̃) Õt(Ã0)
1

2 Uxx〉 + 〈Uxx, Ã0
αQ̃Uxx〉

− 1
2 〈Uxx,

d (Ã0
αÃ)

dŨ
Ūx Uxx〉 + 〈Uxx, Ã0

α

(

dÃ

dŨ
Ūx Uxx +

dM1

dU
Uxx Ūx

)

〉

+C(C∗) (ζ + ζ̄) |Uxx|2
L2

+ C(C∗, ζ̄)
(

|U |2
H1

+ |δ̇(t)|2
)

.

(3.24)

Let us consider the term in (3.24) containing
d (Ã0

αÃ)

dŨ
. By (3.17),

〈Uxx,
d (Ã0

αÃ)

dŨ
Ūx Uxx〉 = 〈Uxx,

d ((Ã0)
1

2 Õ)

dŨ
Ūx α D̃ Õt(Ã0)

1

2 Uxx〉

+〈Uxx, (Ã0)
1

2 Õ α
d (D̃ Õt(Ã0)

1

2 )

dŨ
Ūx Uxx〉

= 〈Uxx, (Ã0)
1

2 Õ P1 α Õt(Ã0)
1

2 Uxx〉 + 〈Uxx, (Ã0)
1

2 Õ α P2 Õt(Ã0)
1

2 Uxx〉,

where

P1 = Õt (Ã0)−
1

2

d ((Ã0)
1

2 Õ)

dŨ
Ūx D̃ and P2 =

d (D̃ Õt(Ã0)
1

2 )

dŨ
Ūx (Ã0)−

1

2 Õ.
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Similarly,

〈Uxx, Ã0
α

(

dÃ

dŨ
Ūx Uxx +

dM1

dU
Uxx Ūx

)

〉 = 〈Uxx, (Ã0)
1

2 Õ α P3Õ
t(Ã0)

1

2 Uxx〉,

where

P3 = Õt(Ã0)
1

2

(

dÃ

dŨ
+

dM1

dU

)

Ūx.

The terms

−
1

2
〈Uxx, (Ã0)

1

2 Õ P1 α Õt(Ã0)
1

2 Uxx〉 + 〈Uxx, (Ã0)
1

2 Õ α

(

P3 −
1

2
P2

)

Õt(Ã0)
1

2 Uxx〉

can be rewritten as the sum of two terms, one taking in account “off-block-diagonal”
parts (meaning off-block-diagonal after conjugation by (Ã0)

1

2 Õ) and the other taking
in account “block-diagonal” parts. We denote the first one as

〈Uxx, (Ã0)
1

2 ÕNÕt(Ã0)
1

2 Uxx〉,

where |N |C1(x,t ≤ C(C∗) indeed holds, since N by definition is of form J(Ũ , α, Ūx)

with J(·) smooth, and |Ũ |C1(x,t) ≤ Cζ, |α|C1(x,t) ≤ C∗ sup |α| ≤ C(C∗). The “block-

diagonal” parts (meaning block-diagonal after conjugation by (Ã0)
1

2 Õ) of these error
terms may be estimated by C 〈Uxx, |Ūx| Ã0

α Uxx〉 for some constant C > 0 (indepen-
dent on α, C∗).

Hence, we get the final form of the Friedrichs–type estimate:

1
2 〈Ã

0
αUxx, Uxx〉t ≤ − 1

2 〈Uxx, (Ã0)
1

2 Õ (αxD̃) Õt(Ã0)
1

2 Uxx〉 + 〈Uxx, Ã0
αQ̃Uxx〉

+〈Uxx, (Ã0)
1

2 ÕNÕt(Ã0)
1

2 Uxx〉 + C 〈Uxx, |Ūx| Ã0
αUxx〉

+C(C∗) (ζ + ζ̄) |Uxx|2
L2

+ C(C∗, ζ̄)
(

|U |2
H1

+ |δ̇(t)|2
)

.

(3.25)

Remark 3.1. The treatment of error term N , above, we regard as the most
delicate and novel aspect of our argument. Without complete cancellation of off-
diagonal terms, we see no way that such a “Goodman-type” estimate can close, due
to exponential growth in C∗ of sup |α|.

Kawashima-type estimate. Next, we perform a “Kawashima-type” estimate of the
type formalized in [17]. Applying (2.3) to W = Ux and K = K̃α,

1

2
〈Uxx, K̃αUx〉t = 〈Uxx, K̃αUxt〉 +

1

2
〈Uxx, (K̃α)tUx〉 +

1

2
〈Ux, (K̃α)xUxt〉, (3.26)

Thanks to (3.7) and to Young’s inequality, the second term is easily bounded by

1

2
〈Uxx, (K̃α)tUx〉 ≤ C ζ̄ |Uxx|

2

L2
+ C(ζ̄ , C∗) |Ux|

2

L2
. (3.27)

with ζ̄ as in previously chosen.
Differentiating with respect to x equation (3.1), we obtain

Uxt + (ÃUx)x − (Q̃U)x = (M1(U)Ūx)x + (0, Ir)
tM2(U)x + δ̇(t)(Ūxx + Uxx), (3.28)
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hence (twice) the last term in (3.26) can be rewritten as

〈Ux, (K̃α)xUxt〉 = −〈Ux, (K̃α)x
dÃ

dŨ
(Ūx + Ux) Ux〉 − 〈Ux, (K̃α)xÃUxx〉

+〈Ux, (K̃α)x
dQ̃

dŨ
(Ūx + Ux) Ux〉 + 〈Ux, (K̃α)xQ̃Ux〉

+〈Ux, (K̃α)x
dM1

dU
Ux Ūx〉 + 〈Ux, (K̃α)xM1(U)Ūxx〉

+〈Ux, (K̃α)x(0, Ir)
t dM2

dU
Ux〉 + δ̇(t)〈Ux, (K̃α)x(Ūxx + Uxx)〉,

All of the terms not containing Uxx can be estimated by C(C∗)(|U |2
H1

+ |δ̇(t)|2) (using

once more (3.7)). For the remaining terms,

−〈Ux, (K̃α)xÃUxx〉 + δ̇(t)〈Ux, (K̃α)x Uxx〉 ≤ C ζ̄ |Uxx|
2
L2 + C(C∗, ζ̄) |Ux|

2

L2
.

Hence,

1

2
〈Ux, (K̃α)xUxt〉 ≤ C ζ̄ |Uxx|

2
L2 + C(C∗, ζ̄)(|U |2

H1
+ |δ̇(t)|2). (3.29)

Inserting (3.28), the first term on the righthand side of (3.26) becomes

〈Uxx, K̃αUxt〉 = −〈Uxx, K̃α
dÃ

dŨ
(Ūx + Ux) Ux〉 − 〈Uxx, K̃α ÃUxx〉

+〈Uxx, K̃α
dQ̃

dŨ
(Ūx + Ux) Ux〉 + 〈Uxx, K̃α Q̃Ux〉

+〈Uxx, K̃α
dM1

dU
Ux Ūx〉 + 〈Uxx, K̃α M1(U)Ūxx〉

+〈Uxx, K̃α (0, Ir)
t dM2

dU
Ux〉 + δ̇(t)〈Uxx, (K̃α)x(Ūxx + Uxx)〉.

The terms containing at least one of Ux, U, δ̇ can be estimated (applying Young’s
inequality) by C(ζ̄ + ζ)|Uxx|2

L2
+ C(ζ̄ , C∗)(|U |2

H1
+ |δ̇(t)|2); hence,

〈Uxx, K̃αUxt〉 ≤ −〈Uxx, K̃α ÃUxx〉 + C(ζ̄ + ζ)|Uxx|2
L2

+C(ζ̄, C∗)(|U |2
H1

+ |δ̇(t)|2).
(3.30)

Finally, (3.26), (3.27), (3.29) and (3.30) give

1
2 〈Uxx, K̃αUx〉t ≤ −〈Uxx, K̃α ÃUxx〉 + C(ζ̄ + ζ)|Uxx|

2
L2

+C(C∗, ζ̄)(|U |2
H1

+ |δ̇(t)|2).
(3.31)



16 C. MASCIA AND K. ZUMBRUN

Adding (3.25) and (3.31), we obtain

1
2

(

〈Ã0
αUxx, Uxx〉t + 〈Uxx, K̃αUx〉

)

t
≤ − 1

2 〈Uxx, (Ã0)
1

2 Õ (αxD̃) Õt(Ã0)
1

2 Uxx〉

+C 〈Uxx, |Ūx| Ã0
αUxx〉 + 〈Uxx,

(

−K̃α Ã + Ã0
αQ̃ + (Ã0)

1

2 ÕNÕt(Ã0)
1

2

)

Uxx〉

+C(C∗) (ζ + ζ̄) |Uxx|2
L2

+ C(C∗, ζ̄)
(

|U |2
H1

+ |δ̇(t)|2
)

.

(3.32)
Recalling (3.8) and (3.9), we obtain, finally,

(〈Ã0Uxx, Uxx〉 + 〈Uxx, K̃αUx〉)t ≤ − (θ C∗ − C) 〈Uxx, |Ūx| Ã0
α Uxx〉

+
(

−θ(C∗) + C(C∗)(ζ + ζ̄)
)

|Uxx|2
L2

+ C(ζ̄ , C∗)(|U |2
H1

+ |δ̇(t)|2)

≤ − 1
2θ(C∗)|Uxx|2

L2
+ C(ζ̄ , C∗)(|U |2

H1
+ |δ̇(t)|2),

(3.33)

provided that C∗ is taken sufficiently large and ζ̄ , ζ sufficiently small that C ≤ θC∗

and −θ(C∗) + C(C∗)(ζ + ζ̄) ≤ −θ(C∗)/2.
Given M > 0, let us set

E(U) := 〈Ã0Uxx, Uxx〉 + 〈Uxx, K̃αUx〉 + M |U |2
L2

. (3.34)

Since, for U ∈ H2, |Ux|
L2

can be bounded by C
(

|U |
L2

+ |Uxx|
L2

)

for some C > 0,
then the functional defined in (3.34) is equivalent to |U |2

H2
if M is large enough.

Moreover, from (3.1) it follows that

d|U |2
L2

dt
≤ C(|U |2

H1
+ |δ̇(t)|2).

Therefore,

dE

dt
≤ −

1

2
θ(C∗) |Uxx|

2

L2
+ C(|U |2

H1
+ |δ̇(t)|2),

for some C > 0. Passing through Fourier transform, it is easy to see that, for U ∈ H2

there holds

|Ux|
2

L2
≤ C|U |2

L2
+

1

C
|Uxx|

2

L2
∀C > 0. (3.35)

Hence, using E ≥ C|Uxx|2
L2

and choosing C big enough in (3.35), we get

dE

dt
≤ −θ E + C(|U |2

L2
+ |δ̇(t)|2),

for some C, θ > 0. Multiplying by eθt and integrating in time from 0 to t, we get (1.8)
and the proof of Proposition 1.4 is complete.

Remark 3.2. The energy estimate (1.9) can be deduced from (3.33) as follows.
Integrating (3.33) from 0 to t yields

(〈Ã0
αUxx, Uxx〉 + 〈Uxx, K̃αUx〉)

∣

∣

∣

t

0
+ θ(C∗)

∫ t

0

|Uxx|
2

L2
(s) ds

≤ C(C∗, ζ̄)

∫ t

0

(|U |2
H1

+ |δ̇|2)(s) ds.
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Rearranging, using positive definiteness of Ã0
α, using Young’s inequality to bound

〈Uxx, KαUx〉(t) ≤ ζ̄|Uxx|
2

L2
(t) + Cζ̄−1|Ux|

2

L2
(t) ≤ ζ̄|Uxx|

2

L2
(t) + Cζ̄−1ζ2,

and recalling, by assumption, that (〈Ã0
αUx, Ux〉 + 〈Ux, K̃αU〉)(0) ≤ Cζ2, we obtain

(1.9) as claimed.

4. Nonlinear stability. We now establish Theorem 1.2 on nonlinear stability.

Linearized estimates. Linearizing (1.2) about the stationary solution (ū, v̄), we
obtain the linearized equations

Ut = LU := −(AU)x + QU, (4.1)

where

A :=

(

df
dg

)

(ū, v̄), Q :=

(

0
dq(ū, v̄)

)

and U :=

(

u
v

)

(u ∈ IR
n, v ∈ IR

r).

Define the associated Green distribution G(x, t; y) by

(∂t −L)G(x, t; y) = δ(y,0)(x, t).

We have the following bounds established in Proposition 1.11 and Lemmas 7.1–7.5 of
[24]. (See also “notes” below (7.22) of [24], which is used in the short-time estimate
for |ey(·, t)|

Lp .)
Proposition 4.1 ([24]). Assuming (A1)–(A2) and (H0)–(H5), the Green dis-

tribution G may be decomposed as

G = E + G̃ + H, (4.2)

where E(x, t; y) = e(y, t) Ūx(x), with

|ey(·, t)|
Lp ≤ Ct

1

2 (1 + t)−
1

2
(1− 1

p
)− 1

2 , |et(·, t)|Lp ≤ Ct−
1

2
(1− 1

p
),

|ety(·, t)|Lp ≤ Ct−
1

2
(1− 1

p
)− 1

2 ,

∣

∣

∣

∣

∫

IR

G̃(·, t; y) f(y) dy

∣

∣

∣

∣

Lp

≤ C(1 + t)−
1

2
(1− 1

r
)|f |

Lq ,

∣

∣

∣

∣

∫

IR

G̃(·, t; y) (0, Ir)
t f(y) dy

∣

∣

∣

∣

Lp

≤ C(1 + t)−
1

2
(1− 1

r
)− 1

2 |f |
Lq ,

∣

∣

∣

∣

∫

IR

G̃y(·, t; y) f(y) dy

∣

∣

∣

∣

Lp

≤ C(1 + t)−
1

2
(1− 1

r
)− 1

2 |f |
Lq + Ce−ηt|f |

Lp ,

and
∣

∣

∣

∣

∫

IR

H(·, t; y) f(y) dy

∣

∣

∣

∣

Lp

≤ Ce−ηt|f |
Lp ,
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for all t ≥ 0, some C, η > 0, for any 1 ≤ r ≤ p and f ∈ Lq (resp. Lp), where
1/r + 1/q = 1 + 1/p.

Here, the “excited” component E accounts for contributions in the direction of
the translational zero eigenfunction Ūx, while the “hyperbolic” component H accounts
for propagation of signals along along hyperbolic characteristics, its time-exponential
damping a consequence of the genuine coupling condition (1.3). The reduced Green
distribution G̃, accounting for long-time behavior in the far fields, is approximately a
sum of Gaussian signals scattered by the shock layer. For further discussion, see [24].

Proof of Theorem 1.2. We first treat the case p ≥ 2, afterward extending to p ≤ 2
bya bootstrap argument.

Lp stability, 2 ≤ p ≤ ∞. Define the nonlinear perturbation

U(x, t) :=

(

u
v

)

(x + δ(t), t) −

(

ū
v̄

)

(x) = Ũ(x + δ(t), t) − Ū(x),

where δ(t) (estimating shock location) is to be determined later; for definiteness, fix
δ(0) = 0. Then,

Ut −LU = N1(U)x + (0, Ir)
tN2(U) + δ̇(t)(Ūx + Ux),

where

Nj(U, U) = O(|U |2) and Nj(U, U)x = O(|U ||Ux|)

so long as |U | remains bounded. By Duhamel’s principle, and the fact that
∫

IR

G(x, t; y)Ūx(y)dy = eLtŪx(x) = Ūx(x),

we have

U(x, t) =

∫

IR

G(x, t; y)U0(y) dy −

∫ t

0

∫

IR

Gy(x, t − s; y)(N1(U) + δ̇U)(y, s) dy ds

+

∫ t

0

∫

IR

G(x, t − s; y)(0, Ir)
tN2(U)(y, s) dy ds + δ(t)Ūx.

Defining the instantaneous shock location

δ(t) = −

∫

IR

e(y, t)U0(y) dy +

∫ t

0

∫

IR

ey(y, t − s)(N1(U) + δ̇U)(y, s) dy ds, (4.3)

where E, e are defined as in Proposition 4.1 and recalling decomposition (4.2), we
thus obtain the reduced equations:

U(x, t) =

∫

IR

(H + G̃)(x, t; y)U0(y) dy

+

∫ t

0

∫

IR

H(x, t − s; y)(N1(U)x + (0, Ir)
tN2(U) + δ̇Ux)(y, s) dy ds

−

∫ t

0

∫

IR

G̃y(x, t − s; y)(N1(U) + δ̇U)(y, s) dy ds

+

∫ t

0

∫

IR

G̃(x, t − s; y)(0, Ir)
tN2(U) (y, s) dy ds,

(4.4)
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and, differentiating (4.3) with respect to t, and using |ey(·, s)|L1 → 0 as t → 0,

δ̇(t) = −

∫

IR

et(y, t)U0(y) dy +

∫ t

0

∫

IR

eyt(y, t − s)(N1(U) + δ̇U)(y, s) dy ds. (4.5)

Define

ζ(t) := sup
0≤s≤t, 2≤p≤∞

[

|U(·, s)|
Lp (1 + s)

1

2
(1− 1

p
) + |δ̇(s)|(1 + s)

1

2 + |δ(s)|
]

. (4.6)

We shall establish:

Claim. For all t ≥ 0 for which a solution exists with ζ uniformly bounded by
some fixed, sufficiently small constant, there holds

ζ(t) ≤ C2(|U0|
L1∩H2

+ ζ(t)2).

From this result, it follows by continuous induction that, provided |U0|
L1∩H2

< 1/4C2
2 ,

there holds

ζ(t) ≤ 2 C2|U0|
L1∩H2

(4.7)

for all t ≥ 0 such that ζ remains small. For, by standard short-time theory/local well-
posedness in H2, and the standard principle of continuation, there exists a solution
U(·, t) ∈ H2 on the open time-interval for which |U |H2 remains bounded, and on this
interval ζ is well-defined and continuous. Now, let [0, T ) be the maximal interval on
which |U |

H2
remains strictly bounded by some fixed, sufficiently small constant δ > 0.

By Proposition 1.4, and the one-dimensional Sobolev bound |U |
W1,∞

≤ C|U |
H2

, we
have

|U(t)|2
H2

≤ C|U(0)|2
H2

e−θt + C

∫ t

0

e−θ2(t−τ)(|U |2
L2

+ |δ̇|2)(τ) dτ

≤ C2

(

|U(0)|2
H2

+ ζ(t)2
)

(1 + t)−
1

2 ,

(4.8)

and so the solution continues so long as ζ remains small, with bound (4.7), at once
yielding existence and the claimed sharp Lp ∩ H2 bounds, 2 ≤ p ≤ ∞.

Thus, it remains only to establish the claim above.

Proof of Claim. We must show that each of the quantities |U |
Lp (1 + s)

1

2
(1− 1

p
),

|δ̇|(1 + s)
1

2 , and |δ| is separately bounded by

C(|U0|
L1∩H2

+ ζ(t)2),

for some C > 0, all 0 ≤ s ≤ t, so long as ζ remains sufficiently small. By (4.4)–(4.5),
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we have

∣

∣U
∣

∣

Lp
(t) ≤

∣

∣

∣

∣

∫

IR

(H + G̃)(x, t; y)U0(y) dy

∣

∣

∣

∣

Lp

+

∣

∣

∣

∣

∫ t

0

∫

IR

H(x, t − s; y) N1(U)y(y, s) dy ds

∣

∣

∣

∣

Lp

+

∣

∣

∣

∣

∫ t

0

∫

IR

H(x, t − s; y) (0, Ir)
tN2(U)(y, s) dy ds

∣

∣

∣

∣

Lp

+

∣

∣

∣

∣

∫ t

0

∫

IR

H(x, t − s; y) δ̇ Ux(y, s) dy ds

∣

∣

∣

∣

Lp

+

∣

∣

∣

∣

∫ t

0

∫

IR

G̃y(x, t − s; y) N1(U)(y, s) dy ds

∣

∣

∣

∣

Lp

+

∣

∣

∣

∣

∫ t

0

∫

IR

G̃(x, t − s; y) (0, Ir)
tN2(U)(y, s) dy ds

∣

∣

∣

∣

Lp

+

∣

∣

∣

∣

∫ t

0

∫

IR

G̃y(x, t − s; y) δ̇ U(y, s)dy ds

∣

∣

∣

∣

Lp

=:Ia + Ib + Ic + Id + Ie + If + Ig ,

(4.9)

|δ̇|(t) ≤

∣

∣

∣

∣

∫

IR

et(y, t) U0(y) dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

∫

IR

eyt(y, t − s)δ̇U(y, s) dy ds

∣

∣

∣

∣

=: IIa + IIb. (4.10)

and

|δ|(t) ≤

∣

∣

∣

∣

∫

IR

e(y, t)U0(y)dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

∫

IR

ey(y, t − s)δ̇ U(y, s) dy ds

∣

∣

∣

∣

=: IIIa + IIIb. (4.11)

We estimate each term in turn, following the approach of [37, 24, 25, 27]. Applying
the bounds of Proposition 4.1, we find that the linear term Ia satisfies

Ia ≤ |U |
Lp

(t)

∣

∣

∣

∣

∫

IR

H U0 dy

∣

∣

∣

∣

Lp

+

∣

∣

∣

∣

∫

IR

G̃ U0 dy

∣

∣

∣

∣

Lp

≤ Ce−θt|U0|Lp + C(1 + t)−
1

4 |U0|
L1

≤ C|U0|
L1∩H2

(1 + t)−
1

4 .

(4.12)

Likewise, applying the bounds of Proposition 4.1 together with definition (4.6) and
energy estimate (4.8), we have:

Ib =

∣

∣

∣

∣

∫ t

0

∫

IR

H N1(U)y dy ds

∣

∣

∣

∣

Lp

≤ C

∫ t

0

e−η(t−s)|U |
L∞ |Ux|Lp (s) ds

≤ C

∫ t

0

e−η(t−s)|U |
L∞ |U |

H2
(s) ds ≤ Cζ(t)2

∫ t

0

e−η(t−s)(1 + s)−
3

4 ds

≤ Cζ(t)2(1 + t)−
3

4 ,

(4.13)

Ic =

∣

∣

∣

∣

∫ t

0

∫

IR

H (0, Ir)
tN2(U) dy ds

∣

∣

∣

∣

Lp

≤ C

∫ t

0

e−η(t−s)|U |
L∞ |U |

Lp (s) ds

≤ Cζ(t)2
∫ t

0

e−η(t−s)(1 + s)−
3

4 ds ≤ Cζ(t)2(1 + t)−
3

4 ,

(4.14)
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Id =

∣

∣

∣

∣

∫ t

0

∫

IR

H δ̇ Ux dy ds

∣

∣

∣

∣

Lp

≤ C

∫ t

0

e−η(t−s)|δ̇||Ux|Lp (s) ds

≤ Cζ(t)2
∫ t

0

e−η(t−s)(1 + s)−
3

4 ds ≤ Cζ(t)2(1 + t)−
3

4

(4.15)

(Proposition 4.1, 2 ≤ p = q ≤ ∞, r = 1) and

Ie =

∣

∣

∣

∣

∫ t

0

∫

IR

G̃y N1(U) dy ds

∣

∣

∣

∣

Lp

≤ C

∫ t

0

(

1 + (t − s)
)− 1

2
(1− 1

p
)− 1

4 |U |
L∞ |U |

L2
(s) ds

≤ Cζ(t)2
∫ t

0

(

1 + (t − s)
)− 1

2
(1− 1

p
)− 1

4 (1 + s)−
3

4 ds ≤ Cζ(t)2(1 + t)−
1

2
(1− 1

p
),

(4.16)

If =

∣

∣

∣

∣

∫ t

0

∫

IR

G̃ (0, Ir)
tN2(U) dy ds

∣

∣

∣

∣

Lp

≤ C

∫ t

0

(

1 + (t − s)
)− 1

2
(1− 1

p
)− 1

4 |U |
L∞ |U |

L2
(s) ds

≤ Cζ(t)2
∫ t

0

(

1 + (t − s)
)− 1

2
(1− 1

p
)− 1

4 (1 + s)−
3

4 ds ≤ Cζ(t)2(1 + t)−
1

2
(1− 1

p
),

(4.17)

Ig =

∣

∣

∣

∣

∫ t

0

∫

IR

G̃y δ̇ U dy ds

∣

∣

∣

∣

Lp

≤ C

∫ t

0

(

1 + (t − s)
)− 1

2
(1− 1

p
)− 1

4 |δ̇||U |
L2

(s) ds

≤ Cζ(t)2
∫ t

0

(

1 + (t − s)
)− 1

2
(1− 1

p
)− 1

4 (1 + s)−
3

4 ds ≤ Cζ(t)2(1 + t)−
1

2
(1− 1

p
),

(4.18)

(Proposition 4.1, 2 ≤ p ≤ ∞, q = 2). Summing bounds (4.12)–(4.18), we obtain the
desired bound on |U |

Lp .
Similarly, applying the bounds of Proposition 4.1 together with definition (4.6),

we find that

IIa =

∣

∣

∣

∣

∫

IR

et U0 dy

∣

∣

∣

∣

≤ |et(y, t)|
L∞ (t)|U0|

L1
≤ C|U0|

L1
(1 + t)−

1

2 (4.19)

and

IIb =

∣

∣

∣

∣

∫ t

0

∫

IR

eyt δ̇U dy ds

∣

∣

∣

∣

≤

∫ t

0

|eyt|
L2

(t − s)|δ̇||U |
L2

(s) ds

≤ Cζ(t)2
∫ t

0

(t − s)−3/4(1 + s)−
3

4 ds ≤ Cζ(t)2(1 + t)−
1

2 ,

(4.20)

while

IIIa =

∣

∣

∣

∣

∫

IR

e U0 dy

∣

∣

∣

∣

≤ |e(y, t)|
L∞ (t)|U0|

L1
≤ C|U0|

L1
(4.21)

and

IIIb =

∣

∣

∣

∣

∫ t

0

∫

IR

ey δ̇U dy ds

∣

∣

∣

∣

≤

∫ t

0

|ey|
L2

(t − s)|δ̇||U |
L2

(s) ds

≤ Cζ(t)2
∫ t

0

(t − s)−
1

4 (1 + s)−
3

4 ds ≤ Cζ(t)2.

(4.22)



22 C. MASCIA AND K. ZUMBRUN

Summing (4.19)–(4.20) and (4.21)–(4.22), we obtain the desired bounds on δ̇ and δ.

This completes the proof of the claim, giving the result for 2 ≤ p ≤ ∞.

Lp stability, 1 ≤ p ≤ 2. The source term δ̇ Ux appearing in the reduced equations
is convenient for high norm estimates Lp, p ≥ 2, but (since it would lead to a source
term involving higher derivative factor |Ux|Lp not controlled by energy estimates) not
for low norm estimates Lp, 1 ≤ p < 2. To treat low norms, we redefine

U := Ũ(x, t) − Ū(x − δ(t))

following [40], which has the effect of replacing δ̇ Ux in the reduced equations with
“centering errors”

S1(δ, δ̇, U)x +

(

0
Ir

)

S2(δ) := −
(

(A(Ū (x − δ) − A(Ū(x))U + δ̇(Ū(x − δ) − Ū(x)
)

x

+ δ(Q(Ū(x − δ) − Q(Ū(x))U

satisfying

|S1(δ, δ̇, U)(y, s)| ≤ |δ|(|U | + |δ̇|)e−θ|y|,

|S1(δ, δ̇, U)x(y, s)| ≤ |δ|(|U | + |δ̇| + |Ux|)e
−θ|y|,

|S2(δ)(y, s)| ≤ |δ||U |e−θ|y|,

and therefore

|S1|
L1

≤ (|U |
L∞ + |δ̇|) ≤ C(1 + t)−

1

2 |U0|
L1∩H2

,

|(S1)x|
L1

≤ (|U |
L∞ + |U |

H1
+ |δ̇|) ≤ C(1 + t)−

1

4 |U0|
L1∩H2

,

and

|S2|
L1

≤ |U |
L∞ |δ| ≤ C(1 + t)−

1

2 |U0|
L1∩H2

by the previously-obtained L∞ and H1 estimates, which are unaffected by a spatial
shift. Likewise,

|N1(U)|
W1,1

, |N2(U)|
L1

≤ |U |2
H1

≤ C(1 + t)−
1

2 |U0|
L1∩H2

.

Thus, expressing U by Duhamel’s formula similarly as in (4.9)–(4.11) and estimating
nonlinear terms using the bounds of Proposition 4.1 with p = 1, q = 1, we readily
obtain the sharp L1 decay estimate

|U |
L1

≤ C|U0|
L1∩H2

and, by interpolation with the previously obtained L2 bound, the sharp Lp estimate,

1 ≤ p ≤ 2 of |U |
Lp ≤ C(1 + t)

1

2
(1− 1

p
)|U0|

L1∩H2
as claimed. We omit the details, which

are entirely similar to those already carried out.
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5. The characteristic case. Finally, we briefly discuss the uniformly charac-
teristic case in which (H1)(i) is violated for a shock profile of a discrete kinetic model.
This cannot occur for the simplest examples of the Broadwell or Jin–Xin models, for
the reason that it would violate the subcharacteristic condition

aj < a∗±
j < aj+r, (5.1)

which is in turn necessary for strict dissipativity, (A2); see, e.g., [33, 24, 26]. Indeed,
this holds in general for models with the property that r consecutive characteristics
take on only two values (r = 2 for Broadwell; r = n/2 for Jin–Xin, but the total
number of characteristic values is 2); for, the subcharacteristic condition (5.1) then
implies that a∗±

p lie between the neighboring characteristic values ap and ap+r, whence,
by the Lax condition a∗−

p > s > a∗+
p , the speed s does as well.

This is clearly an accident of low dimension, however, and for general models there
is no physical reason that (H1)(i) should be satisfied. Indeed, though it is evidently
satisfied generically, there is ample reason to discard this hypothesis. For, discretizing
the Boltzmann equations

ft + ξfx = Q(ξ, f), ξ ∈ IR
1,

by velocity ξ, where ξ denotes velocity, f(ξ, x) the probability distribution of speeds
at spatial location x, and Q(ξ, f) a collision term (local in x but nonlocal in ξ), we find
as the velocity mesh goes to zero that (H1)(i) is more and more poorly satisfied, so
that uniformity of our estimates (or even the ball for which small-amplitude profiles
are guaranteed to exist) is lost.

This is hardly the main difficulty in proceeding to the Boltzmann limit, which is
rather the reverse problem of unboundedness of the multiplication operator f → ξf
(in our notation, blowup of the spectrum of A), and the associated lack of spectral
gap between zero and the essential spectrum of the operator A−1Q appearing in the
travelling-wave and eigenvalue ODE; see, e.g., [6]. Nonetheless, it is an issue that
arises and should be addressed.

Fortunately, there is a simple fix, at least for discrete kinetic models. Namely,
in case characteristics aj , . . . , ak coincide with shock speed s, we may substitute for
(H1)(i) the more general hypotheses

Re
(

Lj · · · Lk

)

dQ







Rj

...
Rk






≤ −θ < 0 (5.2)

for some fixed left and right zero eigenbases Li and Ri, and

ker Ã ∩ ker dq = ∅, (5.3)

where without loss of generality A is taken to be diagonal, Ã := A − s = dF − s.
This holds necessarily at x = ±∞ for some choice of diagonalizing transformation, by
strict dissipativity, (A2), (recall that Re σ( block-diag L̃QR̃±) < 0 follows from (A2)
by Taylor expansion at infinity of the spectrum of the symbol iξA± + Q±; likewise,
(A2) implies genuine coupling, (1.3), of which (5.3) is a weakened form), hence is
always satisfied in the small-amplitude case. Whether or not it holds globally for
physically interesting examples we do not know.

Review of the argument of Section 3 shows that auxiliary energy estimate (1.9)
goes through under this hypothesis with constant weights αj = αj+1 = · · · = αk ≡ 1
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in the zero-speed modes, since there are no error terms in these modes to be overcome
and there is a uniformly good contribution by (5.2). Likewise, review of the arguments
of [24] shows that the results obtained there carry though as well, with appropriate
modification of the proofs. Namely, (5.2) and (5.3) together imply that















df
dQj

...
dQk

dg2















, g =:

(

g1

g2

)

, g1 ∈ IR
k−j+1,

is full rank under some choice of coordinate system, whence we can again rewrite
both traveling-wave and eigenvalue/resolvent equations as nondegenerate first-order
systems and proceed as before. We omit the details as aside from our main purpose.

Note, in particular, that we obtain small-amplitude existence for fixed speed s
by a minor adjustment of the argument of [24] (namely, fixing the speed and letting
endstates vary), without any assumption on the base state other than simplicity of the
principal eigenvalue and strong dissipativity; this generalizes earlier results of [34, 24].

For aj , . . . , ak close to s, we may recover our previous results with uniform esti-
mates by a singular perturbation version of the same argument. It would be interesting
to extend this approach to more general relaxation models for which the speeds ai

are not constant, in particular the case for which they are sometimes but not always
characteristic.
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