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Abstract

We deal with the problem of determining an inclusion within an elec-

trical conductor from electrical boundary measurements. Under mild a

priori assumptions we establish an optimal stability estimate.

1 Introduction

In this paper we deal with an inverse boundary value problem which is a special
instance of the well-known Calderón’s inverse conductivity problem [C]. Given
a bounded domain Ω in R

n, n ≥ 2, with reasonably smooth boundary, an open
set D, compactly contained in Ω, and a constant k > 0, k 6= 1, consider, for any
f ∈ H1/2(∂Ω), the weak solution u ∈ H1(Ω) to the Dirichlet problem

div((1 + (k − 1)χD)∇u) = 0 in Ω,(1.1)

u = f on ∂Ω,(1.2)

where χD denotes the characteristic function of the set D. We will denote by
ΛD : H1/2(∂Ω) → H−1/2(∂Ω) the so called Dirichlet-to-Neumann map, that is
the operator which maps the Dirichlet data onto the corresponding Neumann
data ∂u

∂ν |∂Ω. The inverse problem that we examine here is to determine D when

ΛD is given.
In ’88 Isakov [I1] proved the uniqueness, the purpose of the present paper

is to prove a result of stability. In fact we prove that, under mild a priori
assumptions on the regularity and on the topology of D, there is a continuous
dependence ofD (in the Hausdorff metric) from ΛD with a modulus of continuity
of logarithmic type, see Theorem 2.2 below. Let us stress that, indeed, this rate
of continuity is the optimal one, as it was shown by examples in the recent paper
[DC-R] by the second author and Luca Rondi.

We wish to mention here a closely related, but different, problem which at-
tracted a lot of attention starting from the papers of Friedman [F] and Friedman
and Gustafsson [F-G]. That is the one of determining D when, instead of full
knowledge of the Dirichlet-to-Neumann map, only one, or few, pairs of Dirich-
let and Neumann data are available, see [A-I], [I2] for extended bibliographical
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accounts. Unfortunately, for such a problem, the uniqueness question, not to
mention stability, remains a largely open issue.

Let us illustrate briefly the main steps of our arguments. We must recall
that Isakov’s approach to uniqueness is essentially based on two arguments

a) the Runge approximation theorem,

b) the use of solutions with Green’s function type singularities.

Also here we shall use singular solutions, and indeed we shall need an accurate
study of their asymptotic behavior when the singularity gets close to the set of
discontinuity ∂D of the conductivity coefficient 1+(k−1)χD in (1.1), see Propo-
sition 3.2. On the other hand, it seems that Runge’s theorem, which is typically
based on nonconstructive arguments, (Lax, [L], Kohn and Vogelius [K-V]) is not
suited for stability estimates and therefore we introduced a different approach
based on quantitative estimates of unique continuation, see Proposition 3.3.

In Section 2 we formulate our main hypotheses and state the stability result,
Theorem 2.2. In Section 3 we prove Theorem 2.2 on the basis of some auxiliary
Propositions, whose proof is deferred to the following Section 4.

2 The main result

Let us introduce our regularity and topological assumptions on the conductor
Ω and on the unknown inclusion D. To this purpose we shall need the following
definitions. In places, we shall denote a point x ∈ R

n by x = (x′, xn) where
x′ ∈ R

n−1, xn ∈ R.

Definition 2.1. Let Ω be a bounded domain in R
n. Given α, 0 < α ≤ 1, we

shall say that a portion S of ∂Ω is of class C1,α with constants r, L > 0 if, for
any P ∈ S, there exists a rigid transformation of coordinates under which we
have P = 0 and

Ω ∩Br(0) = {x ∈ Br : xn > ϕ(x′)},
where ϕ is a C1,α function on Br(0) ⊂ R

n−1 satisfying ϕ(0) = |∇ϕ(0)| = 0 and
‖ϕ‖C1,α(Br(0)) ≤ Lr.

Definition 2.2. We shall say that a portion S of ∂Ω is of Lipschitz class with
constants r, L > 0 if for any P ∈ S, there exists a rigid transformation of
coordinates under which we have P = 0 and

Ω ∩Br(0) = {x ∈ Br : xn > ϕ(x′)},

where ϕ is a Lipschitz continuous function on Br(0) ⊂ R
n−1 satisfying ϕ(0) = 0

and ‖ϕ‖C0,1(Br(0)) ≤ Lr.

Remark 2.1. We have chosen to scale all norms in a such a way that they
are dimensionally equivalent to their argument. For instance, for any ϕ ∈
C1,α(Br(0)) we set

‖ϕ‖C1,α(Br(0)) = ‖ϕ‖L∞(Br(0)) + r‖∇ϕ‖L∞(Br(0)) + r1+α|∇ϕ|α,Br(0).

For given numbers r, M , δ̃, L > 0, 0 < α < 1, we shall assume
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(H1) the domain Ω satisfies the following conditions

(2.1) |Ω| ≤ Mrn,

where | · | denotes the Lebesgue measure of Ω,

(2.2) ∂Ω is of class C1,α with constants r, L,

(H2) the inclusion D satisfies the following conditions

(2.3) ΩrD is connected,

(2.4) dist(D, ∂Ω) ≥ δ̃,

(2.5) ∂D is of class C1,α with constants r, L.

In the sequel we shall refer to numbers k, n, r, M , δ̃, L, α as to the a priori
data. We shall denote byD1 andD2 two possible inclusions in Ω, both satisfying
the properties mentioned. We shall denote by ΛDi , i = 1, 2, the Dirichlet-to-
Neumann map ΛD when D = Di. We can now state the main theorem.

Theorem 2.2. Let Ω ⊂ R
n, n ≥ 2, satisfy (H1). Let k > 0, k 6= 1 be given.

Let D1 and D2 be two inclusions in Ω satisfying (H2). If, given ε > 0, we have

(2.6) ‖ΛD1 − ΛD2‖L(H1/2,H−1/2) ≤ ε,

then
dH(∂D1, ∂D2) ≤ ω(ε),

where ω is an increasing function on [0,+∞), which satisfies

ω(t) ≤ C| log t|−η, for every 0 < t < 1

and C, η, C > 0, 0 < η ≤ 1, are constants only depending on the a priori data.

Here dH denotes the Hausdorff distance between bounded closed sets of R
n

and ‖ · ‖L(H1/2H−1/2) denotes the operator norm on the space of bounded linear

operators between H1/2(∂Ω) and H−1/2(∂Ω).

Remark 2.3. It should be emphasized that in this statement the unknown in-
clusion may be disconnected.

Remark 2.4. Several variations of the above results could be devised with minor
adaptations on the arguments. Just to mention one, an analogous result would
be obtained if the Neumann-to-Dirichlet maps NDi are available instead of the
Dirichlet-to-Neumann maps ΛDi .
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3 Proof of Theorem 2.2

Before proving Theorem 2.2, we shall state some auxiliary Propositions, whose
proofs are collected in the next Section 4. Here and in the sequel we shall de-
note by G the connected component of Ωr (D1∪D2), whose boundary contains
∂Ω, ΩD = Ω r G, Ωr = {x ∈ CΩ : dist(x,Ω) ≤ r} and S2r = {x ∈ R

n : r ≤
dist(x,Ω) ≤ 2r}.
We introduce a variation of the Hausdorff distance which we call modified dis-
tance.

Definition 3.1. We shall call modified distance between D1 and D2 the number

(3.1) dµ(D1, D2) = max

{
sup

x∈∂D1∩∂ΩD

dist(x,D2), sup
x∈∂D2∩∂ΩD

dist(x,D1)

}
.

This notion is an adaptation of the one introduced in [A-B-R-V], which was also
called modified distance. In order to distinguish such two notions, we call dµ the
present one, whereas the one in [A-B-R-V] was denoted by dm. On the other
hand, we need to stress the common peculiarities: such modified distances do
not satisfy the axioms of a metric and in general do not dominate the Hausdorff
distance (see Section 3 in [A-B-R-V] for related arguments). The following
Proposition provides sufficient conditions under which dµ dominates dH. See
[A-B-R-V] Proposition 3.6 for a related statement.

Proposition 3.1. Let Ω be an open set in R
n satisfying (H1). Let D1, D2 be

two bounded open inclusions of Ω satisfying (H2). Then

(3.2) dH(∂D1, ∂D2) ≤ cdµ(D1, D2),

where c depends only on the a priori assumptions.

With no loss of generality, we can assume that there exists a point O of ∂D1 ∩
∂ΩD, where the maximum in the definition (3.1) is attained, that is

(3.3) dµ = dµ(D1, D2) = dist(O,D2).

As is well-known, the Dirichlet-to-Neumann map ΛD associated to problem
(1.1), (1.2) is defined by:

(3.4) < ΛDu, v >=

∫

Ω

(1 + (k − 1)χD)∇u · ∇v,

for every u ∈ H1(Ω) solution to (1.1) and for every v ∈ H1(Ω). Here < ·, · >
denotes the dual pairing betweenH−1/2(∂Ω) andH1/2(∂Ω). With a slight abuse
of notation we shall write

< g, f >=

∫

∂Ω

gf dσ,

for any f ∈ H1/2(∂Ω) and g ∈ H−1/2(∂Ω). Let ΓD(x, y) be the fundamental
solution for the operator div((1 + (k − 1)χD)∇·), thus

div((1 + (k − 1)χD)∇ΓD(·, y)) = −δ(· − y),(3.5)
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where y, w ∈ R
n, δ denotes the Dirac distribution . We shall denote by ΓD1 ,

ΓD2 such fundamental solutions when D = D1, D2 respectively. Recalling the
well-known identity
∫

Ω

(1+(k−1)χD1)∇u1·∇u2−
∫

Ω

(1+(k−1)χD2)∇u1·∇u2 =

∫

∂Ω

u1[ΛD1−ΛD2 ]u2,

which holds for every ui ∈ H1(Ω), i = 1, 2, solutions to (1.1) when D = Di

respectively (see [I2] formula (5.0.4), Section 5.0), we have

(3.6)

∫
Ω(1 + (k − 1)χD1)∇ΓD1(·, y) · ∇ΓD2(·, w)
−
∫
Ω(1 + (k − 1)χD2)∇ΓD1(·, y) · ∇ΓD2(·, w)

=
∫
∂Ω

ΓD1(·, y)[ΛD1 − ΛD2 ](ΓD2(·, w))dσ, ∀ y, w ∈ CΩ.
Let us define, for y, w ∈ G ∪ CΩ

SD1(y, w) = (k − 1)

∫

D1

∇ΓD1(·, y) · ∇ΓD2(·, w),(3.7)

SD2(y, w) = (k − 1)

∫

D2

∇ΓD1(·, y) · ∇ΓD2(·, w),(3.8)

f(y, w) = SD1(y, w)− SD2(y, w).(3.9)

Thus (3.6) can be rewritten as

(3.10) f(y, w) =

∫

∂Ω

ΓD1(·, y)[ΛD1 − ΛD2 ](ΓD2(·, w))dσ ∀ y, w ∈ CΩ.

From now on we shall consider the dimension n ≥ 3, since the case n = 2
can be treated similarly through minor adaptations regarding the fundamental
solutions. Up to a transformation of coordinates, we can assume that O, defined
in (3.3), is the origin of the coordinate system. Let ν(O) be the outer unit
normal vector to ∂ΩD in the origin O. Such a normal is indeed well-defined
since we are assuming that O realizes the modified distance between D1 and
D2, therefore, in a small neighborhood of O, ∂ΩD is made of a part of ∂D1,
which is known to be C1,α. We will rotate the coordinate system in such a way
that ν(O) = (0, . . . , 0,−1). Taking y = w = hν(O), with h > 0, we want to
evaluate f(y, y) and SD1(y, y) in term of h, for h small. Then, evaluating SD2 in
term of dµ, we will get the stability estimate for the modified distance and thus,
using Proposition 3.1, for the Hausdorff distance. An important ingredient for
evaluating f and SD1 is the behavior of the fundamental solution. We state
now a proposition that collects all the results on ΓDi , i = 1, 2, that we will
need throughout the paper. For x = (x′, xn), where x′ ∈ R

n−1 and xn ∈ R,
we set x⋆ = (x′,−xn). We shall denote with χ+ the characteristic function of
the half-space {xn > 0} and with Γ+ the fundamental solution of the operator
div((1+(k−1)χ+)∇·). If Γ is the standard fundamental solution of the Laplace
operator, we have that (see for instance [A-I-P], Theorem 4)

(3.11) Γ+(x, y) =






1
kΓ(x, y) +

k−1
k(k+1)Γ(x, y

⋆) for xn > 0, yn > 0,

2
k+1Γ(x, y) for xnyn < 0, ,

Γ(x, y)− k−1
k+1Γ(x, y

⋆) for xn < 0, yn < 0.

The following Proposition holds.
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Proposition 3.2. Let D ⊂ R
n be an open set whose boundary is of class C1,α,

with constants r, L.

(i) There exists a constant c1 > 0 depending on k, n, α and L only, such that

(3.12) |∇xΓD(x, y)| ≤ c1|x− y|1−n,

for every x, y ∈ R
n,

(ii) There exist constants c2, c3 > 0 depending on k, n, α and L only, such
that

∣∣ΓD(x, y)− Γ+(x, y)
∣∣ ≤ c2

rα
|x− y|2−n+α,(3.13)

∣∣∇xΓD(x, y)−∇xΓ+(x, y)
∣∣ ≤ c3

rα
2 |x− y|1−n+α2

,(3.14)

for every x ∈ D ∩ Br(O), and for every y = hν(O), with 0 < r < r0,
0 < h < r0, where r0 =

(
min

{
1
2 (8L)

−1/α, 1
2

})
r
2 .

The next two Propositions give us quantitative estimates on f and SD1 when
we move y towards O, along ν(O).

Proposition 3.3. Let Ω be an open set in R
n satisfying (H1). Let D1, D2 be

two inclusions in Ω verifying (H2) and let y = hν(O), with O defined in (3.3).
If, given ε > 0, we have

‖ΛD1 − ΛD2‖L(H1/2,H−1/2) ≤ ε,

then for every h, 0 < h < c r, where 0 < c < 1, depends on L,

(3.15) |f(y, y)| ≤ C
εBhF

hA
,

where 0 < A < 1 and C,B, F > 0 are constants that depend only on the a priori
data.

Proposition 3.4. Let Ω be an open set in R
n satisfying (H1). Let D1, D2 be two

inclusions in Ω verifying (H2) and y = hν(O). Then for every h, 0 < h < r0/2,

(3.16) |SD1(y, y)| ≥ c1h
2−n − c2d

2−2n
µ + c3,

where c1, c2 and c3 are positive constants only depending on the a priori data.
Here r0 is the number introduced in Proposition 3.2.

Now we have all the tools that we need to prove Theorem 2.2.

Proof of Theorem 2.2. Let O ∈ ∂D1 satisfying (3.3), that is

dµ(D1, D2) = dist(O,D2) = dµ.

Then, for y = hν(O), with 0 < h < h1, where h1 = min {dµ, c r, r0/2}, using
(3.12), we have

(3.17) |SD2(y, y)| ≤ c

∫

D2

1

(dµ − h)n−1

1

(dµ − h)n−1
dx = c

1

(dµ − h)2n−2
|D2|.
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Using Proposition 3.3, we have

|SD1(y, y)| − |SD2(y, y)| ≤ |SD1(y, y)− SD2(y, y)|

= |f(y, y)| ≤ c
εBhF

hA
.

On the other hand, by Proposition 3.4 and (3.17)

|SD1(y, y)| − |SD2(y, y)| ≥ c1h
2−n − c2(dµ − h)2−2n.

Thus we have

c3h
2−n − c4(dµ − h)2−2n ≤ εBhF

hA
.

That is

c4(dµ − h)2−2n ≥ c3h
2−n − εBhF

hA
= h2−n(c3 − εBhF

hÃ)

≥ c5h
2−n

(
1− εBhF

hÃ
)
,(3.18)

where Ã = n − 2 − A, Ã > 0. Let h = h(ε) where h(ε) = min{| ln ε|− 1
2F , dµ},

for 0 < ε ≤ ε1, with ε1 such that exp(−B| ln ε1|1/2) = 1/2. If dµ ≤ | ln ε|− 1
2F

the theorem follows using Proposition 3.1. In the other case we have

εBh(ε)F h(ε)Ã ≤ εB| ln ε|−1/2 ≤ exp
(
−B| ln ε|1/2

)
.

Then, for any ε, 0 < ε < ε1,

(dµ − h(ε))2−2n ≥ c6h(ε)
2−n,

that is

(3.19) dµ ≤ c7| ln ε|−δ n−2
2n−2

where δ = 1/(2F ). When ε ≥ ε1, then

dµ ≤ diamΩ ≤ diamΩ
| ln ε|− 1

2F

| ln ε1|− 1
2F

.

Finally, using Proposition 3.1, the theorem follows.

4 Proofs of the auxiliary Propositions

We premise the proof of Proposition 3.1 with one lemma.

Lemma 4.1. Let Ω be an open set in R
n satisfying (H1). Let D be a bounded

open inclusion of Ω satisfying (H2). Then for every P ∈ ∂D, there exists a
continuous path γ in ΩrD with one end-point in P and the other on ∂Ω, such
that for every z ∈ γ

(4.1) |z − P | ≤ c dist(z,D),

where c is a positive constant depending on the a priori data only.

7



Proof. Using Lemma 5.2 of [A-B-R-V], (which adapted arguments due to Lieber-
man [Li]), we approximate dist(·, ∂D) with a regularized distance d̃ such that
d̃ ∈ C2(ΩrD) ∪ C1,α(ΩrD) and the following facts hold

γ0 ≤ dist(x, ∂D)

d̃(x)
≤ γ1,

|∇d̃(y)| ≥ c1 for every y ∈ Ω s.t. dist(y, ∂D) > br,

‖d̃‖1,α ≤ c2r,

where γ0, γ1, b, c1 and c2 are positive constants only depending on L and α.
We define for 0 < h < ar, with a depending on L and α only,

Eh = {x ∈ ΩrD : d̃(x) > h}.

Arguing as in Lemma 5.3 of [A-B-R-V], Eh is connected with boundary of class
C1 and

(4.2) c̃1h ≤ dist(x, ∂D) ≤ c̃2h, ∀x ∈ ∂Eh ∩Ω,

where c̃1, c̃2 are positive constants depending on L and α only. Let us fix
P ∈ ∂D. Let ν(P ) be the outer unit normal to ∂D in P (we recall that ∂D is
C1,α). Since (4.2), there exists a point P ′ ∈ Eh such that P ′ = h̃ν(P ), where
h̃ is a positive constant c̃1h < h̃ < c̃2h. We denote by PP ′ the segment whose
end-points are P and P ′. Since Eh is connected, there exists a continuous path
γ′ ⊂ Eh with one end-point P ′ and the other on ∂Ω. Since γ′ ⊂ Eh we have
that for every x ∈ γ′, dist(x, ∂D) ≥ ch, where c is a positive constant. We then
define γ = γ′ ∪ PP ′ and the lemma follows.

Proof of Proposition 3.1. Let us fix P ∈ ∂D1. We distinguish the two following
cases.

i) P ∈ ∂D1 ∩ ∂G,

ii) P ∈ ∂D1 r ∂G.
If case i) occurs then,

dist(P, ∂D2) = dist(P,D2) ≤ dµ.

Let us consider case ii). Let γ be the continuous path constructed in Lemma
4.1 from P to ∂Ω. Since P /∈ ∂G, there exists z ∈ γ ∩ ∂D2 ∩ ∂ΩD.

dist(z,D1) ≤ sup
x∈∂D2∩∂ΩD

{
dist(x,D1)

}
≤ dµ(D1, D2).

Thus
|z − P | ≤ cdµ(D1, D2),

where c > 0 is the constant appearing in (4.1) On the other hand

dist(P, ∂D2) ≤ |z − P |.

So we obtain that, for every P ∈ ∂D1

dist(P, ∂D2) ≤ cdµ(D1, D2).

8



Similarly one can show that for every Q ∈ ∂D2

dist(Q, ∂D1) ≤ cdµ(D1, D2).

Then we conclude
dH(∂D1, ∂D2) ≤ cdµ(D1, D2).

Proof of Proposition 3.2. Let us prove (i).
Let us consider the case x ∈ D and y ∈ ∂D. The cases in which x, y ∈ D or
x, y ∈ CD are trivial. Let h = |x − y|. Let c be a positive number less than

1
1+2

√
n
. We distinguish the following two cases:

a) dist(x, ∂D) < ch,

b) dist(x, ∂D) ≥ ch.

Let us consider the case a). Let P ∈ ∂D be such that |P − x| = dist(x, ∂D).
For every r > 0, let Qr(P ) be the cube centered at P , with sides of length 2r
and parallel to the coordinates axes. We have that the ball Br(P ) is inscribed
into Qr(P ). In particular x ∈ Qch(P ). On the other hand

|P − y| ≥ |y − x| − |P − x| ≥ h(1− c).

Then, due to our choice of c, |P − y| > (2ch)
√
n, that is y /∈ Q2ch(P ). Thus

divz
(
(1 + (k − 1)χD)∇zΓD(z, y)

)
= 0 in Q 3

2 ch
(P )

and for the piecewise C1,α regularity of ΓD, proved in [DB-E-F], see also [L-V],
we have

(4.3) ‖∇ΓD(·, y)‖L∞(Qch(P )) ≤
c1
h
‖ΓD(·, y)‖L∞(Q 3

2
ch

(P )),

where c1 depends on L, k, n and α only. Using the pointwise bound of ΓD with
Γ (see [L-S-W]), we have

(4.4) ‖ΓD(·, y)‖L∞(Q 3
2
ch

(P )) ≤ c2

(
ch

2

)2−n

,

where c2 depends on n and k only. Hence, by (4.3) and (4.4), we get

(4.5) |∇xΓD(x, y)| ≤ ‖∇ΓD(·, y)‖L∞(Qch(P )) ≤ c3h
1−n = c3|x− y|1−n,

where c3 depends on L, k, n and α only.
If case b) occurs, then Q ch√

n
(x) ⊂ D. Hence

|∇xΓD(x, y)| ≤ ‖∇ΓD(·, y)‖L∞(Q ch
2
√

n

(x)) ≤
c4
h
‖ΓD(·, y)‖L∞(Q c√

n
(P ))

≤ c4
h
(h(1− c))2−n = c′4h

1−n = c′4|x− y|1−n,

9



where c4, c
′
4 depend on L, k, n and α only.

Let us prove (ii).
Let us fix r1 = min

{
1
2 (8L)

−1/αr, r
2

}
. Recalling Definition 2.1, we have that

∂D ∩Br(0) = {x ∈ Br(0) : xn = ϕ(x′)},

where ϕ ∈ C1,α(Rn−1) satisfying ϕ(0) = |∇ϕ(0)| = 0. Let θ ∈ C∞(R) be such
that 0 ≤ θ ≤ 1, θ(t) = 1, for |t| < 1, θ(t) = 0, for |t| > 2 and |dθdt | ≤ 2. We
consider the following change of variables ξ = Φ(x) defined by

{
ξ′ = x′

ξn = xn − ϕ(x′)θ
( |x′|

r1

)
θ
(
xn

r1

)
.

It can be verified that, with the given choice of r1, the following properties of
Φ hold

Φ(Q2r1(0)) = Q2r1(0),(4.6)

Φ(Qr1(0) ∩D) = Q+
r1(0),(4.7)

c−1|x1 − x2| ≤ |Φ(x1)− Φ(x2)| ≤ c|x1 − x2|, ∀x1, x2 ∈ R
n,(4.8)

|Φ(x)− x| ≤ c

rα
|x|1+α, ∀x ∈ R

n,(4.9)

|DΦ(x)− I| ≤ c

rα
|x|α, ∀x ∈ R

n,(4.10)

where Q+
r1(0) = {x ∈ Qr1(0) : xn > 0} and c ≥ 1 depends on L and α only. Φ

is a C1,α diffeomorphism from R
n into itself. Let us define the cylinder Cr1 as

Cr1 = {x ∈ R
n : |x′| < r1, |xn| < r1}.

For x, y ∈ Cr1 , we have that Γ̃D(ξ, η) = ΓD(x, y), where ξ = Φ(x), η = Φ(y), is
solution of

(4.11) divξ((1 + (k − 1)χ+)B(ξ)∇ξΓ̃D(ξ, η)) = −δ(ξ − η),

where B = JJT

det J , with J = ∂ξ
∂x (Φ

−1(ξ)). We observe that B is of class Cα and
B(0) = I. Let us consider

R̃(x, y) = Γ̃D(x, y)− Γ+(x, y),

where we keep the notation x, y to indicate ξ, η. By the properties of Γ+ and

by (4.11), R̃ satisfies

divx((1 + (k − 1)χ+)∇xR̃(x, y)) = divx((1 + (k − 1)χ+)(I − B)∇xΓ̃D(x, y)).

Let L̃ > 0, depending on the a priori data only, be such that Ω ⊂ BL̃(0). Thus
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using the fundamental solution Γ+ we obtain

−R̃(x, y) =

∫

BL̃(0)

(1 + (k − 1)χ+)(B − I)∇zΓ+(z, y) · ∇zΓ̃D(z, x)dz

+

∫

∂BL̃(0)

(1 + (k − 1)χ+)

[
R̃(x, z)

∂Γ+

∂ν
(z, y)− Γ+(z, y)

∂R̃

∂ν
(x, z)

]
dσ(z)

=

∫

BL̃(0)∩Cr1

(1 + (k − 1)χ+)(B − I)∇zΓ+(z, y) · ∇zΓ̃D(z, x)dz

+

∫

BL̃(0)rCr1

(1 + (k − 1)χ+)(B − I)∇zΓ+(z, y) · ∇zΓ̃D(z, x)dz

+

∫

∂BL̃(0)

[
R̃(x, z)

∂Γ+

∂ν
(z, y)− Γ+(z, y)

∂R̃

∂ν
(x, z)

]
dσ(z).

For |x|, |y| < r1/2, the last two integrals are bounded. Using (3.12) we obtain

|R̃(x, y)| ≤ c

(
1 +

∫

Cr1

|z|α|x− z|1−n|y − z|1−ndz

)

= c

(
1 + I1 + I2

)
,

where c depends on L, α, k and n and

I1 =

∫

{|z|<4h}∩Cr1

|z|α|x− z|1−n|y − z|1−ndz,

I2 =

∫

{|z|>4h}∩Cr1

|z|α|x− z|1−n|y − z|1−ndz.

Now

I1 ≤
∫

|w|<4

hα|w|αh1−n
∣∣x
h
− w

∣∣1−n
h1−n

∣∣y
h
− w

∣∣1−n
hndw

= hα+2−n

∫

|w|<4

|w|α
∣∣x
h
− w

∣∣1−n∣∣ y
h
− w

∣∣1−n
dw

≤ hα+2−nF (ξ, η),

where h = |x− y| and

F (ξ, η) = 4α
∫

|w|<4

|ξ − w|1−n|η − w|1−ndw

and ξ = x/h and η = y/h. From standard bounds (see, for instance, [M]
Chapter 2, Section 11), it is not difficult to see that

F (ξ, η) ≤ const. < ∞,
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for all ξ, η ∈ R
n, |ξ − η| = 1. Thus

I1 ≤ c|x− y|α+2−n.

Let us consider now I2. Since |y| = −yn ≤ |x − y| = h, we can deduce |z| ≤
4
3 |y − z| and |z| ≤ 2|x− z| and thus obtain that

I2 ≤ c

∫

|z|>4h

|z|α+1−n+1−ndz ≤ chα+2−n.

Then we conclude

(4.12) |R̃(x, y)| ≤ c|x− y|α+2−n,

for every |x|, |y| < r1/2, where c depends on L, α, k and n only. Let us go
back to the original coordinates system. We observe that if x ∈ Φ−1(B+

r1/2
(0))

and y = enyn, with yn ∈ (−r1/2, 0) then |Φ(x) − x| is bounded by c|x− y|1+α.
Namely, since Φ(x) · y ≤ 0 and Φ(y) = y, by (4.8) we have

(4.13) c−1|x| ≤ |Φ(x)| ≤ |Φ(x) − y| ≤ c|x− y|.

On the other hand, by (4.9) and (4.13)

(4.14) |Φ(x)− x| ≤ c

rα
|x|1+α ≤ c′

rα
|x− y|1+α.

We have

R(x, y) = ΓD(x, y) − Γ+(x, y)

= ΓD(x, y)− Γ+(x, y) + Γ+(Φ(x),Φ(y)) − Γ+(Φ(x),Φ(y))

= R̃(Φ(x),Φ(y)) + Γ+(Φ(x), y) − Γ+(x, y).

Using (4.8), (4.9), (4.12) and (4.14) we obtain

|ΓD(x, y)− Γ+(x, y)|
≤ c

rα
|x− y|α+2−n +

c

rα
‖∇Γ+(·, y)‖L∞(Qr1)

|x− Φ(x)|

≤ c

rα
|x− y|α+2−n +

c′

rα
|x− y|1+αh1−n

≤ c′′

rα
|x− y|α+2−n,

where c′′ depends on k, n, α and L only. We estimate now the first derivative
of R. To estimate the first derivative of R̃ let us consider a cube Q ⊂ B+

r1/4
(x)

of side cr1/4, with 0 < c < 1, such that x ∈ ∂Q. The following interpolation
inequality holds:

‖∇R̃(·, y)‖L∞(Q) ≤ c‖R̃(·, y)‖1−δ
L∞(Q)|∇R̃(·, y)|δα,Q,

where δ = 1
1+α , c depends on L only and

|∇R̃|α,Q = sup
x,x′∈Q,x 6=x′

|∇R̃(x, y)−∇R̃(x′, y)|
|x− x′|α .
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Since, from the piecewise Hölder continuity of ∇ΓD see (4.3), and also of ∇Γ+,
see (3.11), we have that

|∇R̃(·, y)|α,Q ≤ |∇Γ̃D(·, y)|α,Q + |∇Γ+(·, y)|α,Q ≤ ch−α+1−n,

where c depends on L only, thus we conclude

|∇xR̃(x, y)| ≤ c

rη
h(α+2−n)(1−δ)h(−α+1−n)δ =

c

rη
h1−n+η,

where η = α2

1+α . Thus

(4.15) |∇xR̃(x, y)| ≤ c

rη
|x− y|η+1−n,

where η = α2

1+α and c depends on L only. Concerning Γ+ we have

|∇xΓ+(Φ(x), y) −∇xΓ+(x, y)|

= |DΦ(x)T∇Γ+(·, y)|Φ(x) −∇xΓ+(x, y)|

≤ |(DΦ(x)T − I)∇Γ+(·, y)|Φ(x)|
+|∇Γ+(·, y)|Φ(x) −∇xΓ+(x, y)|

≤ c

rα
‖∇Γ+(·, y)‖L∞(Qr1 )

|x− Φ(x)|+ |∇Γ+(·, y)|α,Q|Φ(x) − x|α

≤ c′

rα
h1+αh1−n +

c

rα
2 h

−α+1−nh(1+α)α

≤ c

rα
2 h

1−n+α2

,

where c depends on k, n, α and L only.

Proof of Proposition 3.3. Let us fix y ∈ S2r and let us consider f(y, ·). We have
that

(4.16) ∆wf(y, w) = 0 in CΩD.

For w ∈ S2r, by (2.6), (3.10) and (3.12) we have

(4.17) |f(y, w)| ≤ C(r, L,M)‖ΛD1 − ΛD2‖ = ε̃.

Let us now estimate f(y, w) when w ∈ G. We define Gh = {x ∈ G : dist(x,ΩD) ≥
h}. For every w ∈ Gh, we have that

|SD1(y, w)| ≤ |k − 1|
∫

D1

|∇xΓD1(x, y)| |∇xΓD2(x,w)|dx

≤ c

∫

D1

|x− w|1−ndx ≤ ch1−n.(4.18)

Similarly |SD2(y, w)| ≤ ch1−n. Then we conclude that

|f(y, w)| ≤ ch1−n in Gh.
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At this stage we shall make use of the three spheres inequality for supremum
norms of harmonic functions v, see for instance [K-M], [K]. For every l1, l2,
1 < l1 < l2 and for every x ∈ G ∪S2r ∪Ωr there exists τ ∈ (0, 1], depending only
on l1, l2 and n such that

‖v‖L∞(Bl1r(x)) ≤ ‖v‖τL∞(Br(x))
‖v‖1−τ

L∞(Bl2r(x))
.

We apply it for v(·) = f(y, ·) in the ball Br(x), where x ∈ S2r be such that
dist(x,Γ) = r/2, where Γ = {x ∈ R

n : dist(x,Ω) = r} ⊂ ∂S2r, l1 = 3r = 3r/2
and l2 = 4r = 2r, then we obtain

(4.19) ‖f(y, ·)‖L∞(B3r/2(x)) ≤ ‖f(y, ·)‖τL∞(Br/2(x))
‖f(y, ·)‖1−τ

L∞(B2r(x))
.

For every w ∈ Gh, we denote with γ a simple arc in G ∪ Ωr ∪ S2r joining x
to w. Let us define {xi}, i = 1, . . . , s as follows x1 = x, xi+1 = γ(ti), where
ti = max{t : |γ(t) − xi| = r} if |xi − w| > r, otherwise let i = s and stop the
process. By construction, the balls Br/2(xi) are pairwise disjoint, |xi+1−xi| = r
for i = 1, . . . , s − 1, |xs − w| ≤ r. For (2.1), there exists β such that s ≤ β.
An iterated application of the three spheres inequality (4.19) for f(y, ·) (see for
instance [A-B-R-V] pg.780, [A-DB] Appendix E) gives that for any r, 0 < r < r

(4.20) ‖f(y, ·)‖L∞(Br/2(w)) ≤ ‖f(y, ·)‖τL∞(Br/2(x))
‖f(y, ·)‖1−τ

L∞(G).

We can now estimate the right hand side of (4.20) by (4.17) and (4.18) and
obtain, for any r, 0 < r < r

(4.21) ‖f(y, ·)‖L∞(Br/2(w)) ≤ c(h1−n)1−τs

ετ
s ≤ c(h1−n)Aεβ̃,

where β̃ = τβ and A = 1− β̃. Let O ∈ ∂D1, as defined in (3.3), that is

d(O,D2) = dµ(D1, D2).

There exists a C1,α neighborhood U of O in ∂ΩD with constants r and L. Thus
there exists a non-tangential vector field ν̃, defined on U such that the truncated
cone

(4.22) C(O, ν̃(O), θ, r) =

{
x ∈ R

n :
(x−O) · ν̃(O)

|x−O| > cos θ, |x−O| < r

}

satisfies
C(O, ν̃(O), θ, r) ⊂ G,

where θ = arctan(1/L). Let us define

λ1 = min

{
r

1 + sin θ
,

r

3 sin θ

}
,

θ1 = arcsin

(
sin θ

4

)
,

w1 = O + λ1ν,

ρ1 = λ1 sin θ1.
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We have that Bρ1(w1) ⊂ C(O, ν̃(O), θ1, r), B4ρ1(w1) ⊂ C(O, ν̃(O), θ, r). Let
w = w1, since ρ1 ≤ r/2, we can use (4.21) in the ball Bρ1(w) and we can
approach O ∈ ∂D1 by constructing a sequence of balls contained in the cone
C(O, ν̃(O), θ1, r). We define, for k ≥ 2

wk = O + λkν, λk = χλk−1, ρk = χρk−1, with χ =
1− sin θ1
1 + sin θ1

.

Hence ρk = χk−1ρ1, λk = χk−1λ1 and

Bρk+1
(wk+1) ⊂ Bρ3k

(wk) ⊂ Bρ4k
(wk) ⊂ C(O, ν, θ, r).

Denoting d(k) = |wk − O| − ρk = λk − ρk, we have d(k) = χk−1d(1), with
d(1) = λ1(1 − sin θ). For any r, 0 < r ≤ d(1), let k(r) be the smallest integer
such that d(k) ≤ r, that is

∣∣ log r
d(1)

∣∣
∣∣ logχ

∣∣ ≤ k(r)− 1 ≤
∣∣ log r

d(1)

∣∣
∣∣ logχ

∣∣ + 1.

By an iterated application of the three spheres inequality over the chain of balls
Bρ1(w1), . . . , Bρk(r)

(wk(r)), we have

‖f(y, ·)‖L∞(Bρk(r)
(wk(r))) ≤ c(h1−n)A(1−τk(r)−1)εβτ

k(r)−1

≤ c(h1−n)Aεβτ
k(r)−1

,(4.23)

for 0 < r < cr, where 0 < c < 1 depends on L only.

Let us consider now f(y, w) as a function of y. First observe that

∆yf(y, w) = 0 in CΩD, for all w ∈ CΩD.

For y, w ∈ Gh, y 6= w, using (3.12), we have

|SD1(y, w)| ≤ c

∫

D1

|x− y|1−n|x− w|1−ndx ≤ ch2−n.

Similarly for SD2 . Therefore

|f(y, w)| ≤ ch2−2n with y, w ∈ Gh.

Finally, for y ∈ S2r and w ∈ Gh, using (4.23), we have

|f(y, w)| ≤ c(h1−n)Aεβτ
k(h)−1

.

Proceeding as before, let us fix w ∈ G such that dist(w, ∂ΩD) = h and ỹ ∈ S2r

such that dist(ỹ,Γ) = r/2. Taking r = r/2, l1 = 3r, l2 = 4r, y1 = O + λ1ν and
using iteratively the three spheres inequality, we have

‖f(y, w)‖L∞(Br/2(y1)) ≤ ‖f(y, w)‖τs

L∞(Br/2(ỹ))
‖f(y, w)‖1−τs

L∞(G),
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where τ and s are the same number established previously. Therefore

‖f(y, w)‖τs

L∞(Br/2(y1)))
≤ c(h2−2n)1−τs

(h1−n)Aτs

(εβτ
k(h)−1

)τ
s

≤ c(h2−2n)1−γ(h1−n)Aτs

(εβτ
k(h)−1

)γ

≤ c(h2−2n)A
′

(εβτ
k(h)−1

)γ ,

where γ = τβ , with β as before, so 0 < γ < 1, and A′ = Aτs + 1 − γ. Once
more, let us apply iteratively the three spheres inequality over a chain of balls
contained in a cone with vertex in O and we obtain

(4.24) ‖f(y, w)‖L∞(Bρk
(yk(h)) ≤ c(h2−2n)A

′(1−τk(h)−1)(εβτ
k(h)−1

)γτ
k(h)−1

.

Now, from (4.24), choosing y = w = hν(O), where ν(O) is the exterior unit
normal to ∂ΩD in O, we obtain

|f(y, y)| ≤ chA′′

(εβτ
k(h)−1

)γτ
k(h)−1

,(4.25)

where A′′ = −(2 − 2n)βA′ > 0. We observe that, for 0 < h < cr, where
0 < c < 1 depends on L, k(h) ≤ c| logh| = −c logh, so we can write

τk(h) = e−c log h log(τ) = h−c log τ = hc| log τ | = hF ,

with F = c| log τ |. Therefore

|f(y, y)| ≤ h−A′′

εBτk(h)

= e−A′′ log heBτk(h) log ε

= e−A′′ log h+B′hF log ε.

Then in (4.25) we obtain that

|f(y, y)| ≤ e−A′ log h+B′hF log ε =
εB

′hF

hA′ .

Proof of Proposition 3.4. Let us consider y = hν(O), where ν(O) is the exterior
outer normal to ∂ΩD in O with O defined as in (3.3), 0 < h < r0, where r0 is
the number introduced in Proposition 3.2 and x ∈ D1 such that |x − y| < r,
with 0 < r < r0. Let us first observe that since O ∈ ∂D1 and x ∈ D1, for ΓD1

we have the asymptotic formula (3.14), which says that

∣∣∣∣∇xΓD1(x, y)−∇xΓ+(x, y)

∣∣∣∣ ≤ c1|x− y|1−n+δ.

Furthermore, since we are in the situation in which x ∈ D1 and y /∈ D1, for
(3.11), Γ+(x, y) = 2/(k + 1)Γ(x, y), where Γ(x, y) denotes the standard funda-
mental solution of the Laplace operator. Let us consider now ΓD2(x, y). With
our choice of O, x and y, we know that y /∈ D2 but we do not have any infor-
mation on x, that is we do not know in which side of the interface ∂D2 it is.
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Thus we have to distinguish different situations.
If x ∈ Br(O) ∩ D1 ∩ D2, then we have the asymptotic formula (3.11) for ΓD2

and from Lemma 3.1 of [A] the following formula holds

(4.26) ∇xΓD1(x, y) · ∇xΓD2(x, y) ≥ c|x− y|2−2n.

Consider now the case x ∈ (D1 r D2) ∩ Br(O). In this region let us consider
a smaller ball Bρ(O) centered in O with radius ρ where 0 < ρ < dµ. Since the
definition of dµ we have Bρ ∩D2 = ∅. If x and y are in Bρ(O), we have

(4.27)

{
∆x

(
ΓD2(x, y)− Γ(x, y)

)
= 0 in Bρ(O),

[
ΓD2(x, y)− Γ(x, y)

]
|∂Bρ(O)

≤ cρ2−n.

Thus by the maximum principle

(4.28)
∣∣ΓD2(x, y)− Γ(x, y)

∣∣ ≤ c1ρ
2−n ∀x, y ∈ Bρ(O),

and by interior gradient bound

(4.29)
∣∣∇xΓD2(x, y) −∇xΓ(x, y)

∣∣ ≤ c2ρ
1−n ∀x ∈ Bρ/2(O), ∀ y ∈ Bρ(O).

Thus, using Lemma 3.1 of [A], in Bρ/2(O) we obtain the formula

(4.30) ∇xΓD1(x, y) · ∇xΓD2(x, y) ≥ c3|x− y|2−2n − c4ρ
2−2n.

Let us consider h ≤ r0/2 and Br(O) = {x ∈ R
n : |x−O| < r}, with 0 < r < r0.

Then we have

|SD1(y, y)|

= |k − 1|
∣∣∣∣

∫

D1∩Br(O)

∇ΓD1 · ∇ΓD2dx+

∫

D1rBr(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣

≥ |k − 1|
∣∣∣∣

∫

D1∩Br(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣− |k − 1|
∣∣∣∣

∫

D1rBr(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣

The first term can be estimated as follows
∣∣∣∣
∫

D1∩Br(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣

=

∣∣∣∣
∫

(D1∩D2)∩Br(O)

∇ΓD1 · ∇ΓD2dx+

∫

(D1rD2)∩Br(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣

≥
∣∣∣∣
∫

(D1∩D2)∩Br(O)

∇ΓD1 · ∇ΓD2dx+

∫

(D1rD2)∩Bρ(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣

−
∣∣∣∣
∫

[(D1rD2)∩Br(O)]rBρ(O)

∇ΓD1 · ∇ΓD2dx

∣∣∣∣
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In conclusion, choosing ρ = dµ/2 and using (4.26) and (3.12) we obtain

|SD(y, y)| ≥ c1

∫

[(D1∩D2)∩Br(O)]∪[(D1rD2)∩Bdµ/2(O)]

|x− y|2−2ndx

−c2

∫

[(D1rD2)∩Br(O)]rBdµ/2(O)

|x− y|1−n|x− y|1−ndx

−c3

∫

D1rBr(O)

|x− y|1−n|x− y|1−ndx

≥ c4h
2−n − c5d

2−2n
µ − c7.
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