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Abstract

Interest is directed to a moving boundary problem with a gradient flow struc-
ture which generalizes surface-tension driven Hele-Shaw flow to the case of non-
constant surface tension coefficient taken along with the liquid particles at the
boundary. In the case with kinetic undercooling regularization well-posedness of
the resulting evolution problem in Sobolev scales is proved, including cases in
which the surface tension coefficient degenerates. The problem is reformulated
as a vector-valued, degenerate parabolic Cauchy problem. To solve this, we prove
and apply an abstract result on Galerkin approximations with variable bilinear
forms.
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1. Introduction

Various experimental studies investigate the influence of spatial variations of the surface

energy density (corresponding to the surface tension coefficient γ) on surface tension

driven Hele-Shaw flows (cf. e.g. [14]). However, a mathematical model for such flows

seems to be lacking. In this paper, a first step is attempted to close this gap. We

derive and investigate a moving boundary problem (MBP) which arises, at least from a

mathematical point of view, as a natural generalization from the case where γ is a positive

constant to the case of variable, nonnegative γ. Let us give an informal description of

this generalization here; for the details we refer to Section 2.

The Hele-Shaw MBP with constant γ is well investigated. In particular, our starting

point is the following observation [1, 7]: On the Fréchet manifold M of the surfaces Γ

that bound a domain of fixed given volume, an evolution t 7→ Γt satisfying the MBP can

be interpreted as a gradient flow with respect to the energy functional

E = E (Γ) := γ meas(Γ) (1.1)
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and the Riemannian metric g given by (2.4).

In our generalization to nonconstant γ we use the energy functional

E = E (Γ, γ) :=

∫

Γ

γ dΓ (1.2)

and keep the demand that the evolution is given by a gradient flow with respect to

the same Riemannian metric. (A parallel procedure applied to viscous free boundary

flows leads to the usual description of the Marangoni effect.) This leads to two related

difficulties: First, the functional E is not longer depending on Γ only. This is resolved

in the following way: Instead of the manifold M we consider the vector bundle F over

M , having as fiber space at Γ the (smooth) functions on Γ. On this bundle, E is well

defined. Secondly, one also has to prescribe an evolution law for γ as a function on the

moving surface t 7→ Γt. Again, we make a simple choice: We assume γ to be transported

along with the velocity field at the boundary, and we allow the tangential transport to

be diminished by a “slip factor” δ ∈ [0, 1]. The case δ = 1 describes a fixed coupling

of the values of γ to the moving liquid particles. Physically, this would occur e.g. if γ

is temperature dependent and heat conduction is negligible. On the other hand, the

case δ = 0 corresponds to transport in normal direction only. In differential geometric

terms, this transport law is realized by introducing a suitable connection D on F and

demanding parallel transport of γ, see (2.7)-(2.10).

Let us remark here that we do not claim that these assumptions are necessarily in

accordance with the physics of an actual Hele-Shaw flow with nonuniform surface energy

density, e.g. induced by the presence of a surfactant. It is well conceivable that the inter-

face dynamics in such a situation might be dominated by more complex phenomena like

the occurrence of boundary layers, thin surfactant films, or other effects. For instance,

if a surfactant is present, one has to solve a transport equation for the surfactant con-

centration and to determine γ from this. (See [16] for the case of Stokes flow; such a

modification of our problem would not present new principal difficulties.)

To test our assumptions in a concrete situation, numerical work as well as comparison

with experiments would be necessary. However, even our simple model is of mathematical

interest in its own right and as a typical example for nonlocal, degenerate parabolic

evolutions.

In Section 2 of this paper we derive the moving boundary problem (2.12), (2.13) from

the gradient flow formulation. In the sequel, we prove our main result, namely, a local

existence and uniqueness result for this problem in scales of Sobolev spaces. For the

precise formulation and further results concerning continuous dependence on the initial

data see Theorems 3.1 and 3.2 below. If the surface Γt and the coefficient γt are known

at some time t, then the velocity potential φt is completely determined by (2.12). If

one parametrizes Γt over a fixed reference surface S, the moving boundary problem

can be interpreted as an evolution equation with nonlinear, nonlocal pseudodifferential

operators. The parametrization can be constructed in at least two different ways: On

one hand, it is possible to parametrize the surfaces using one scalar function, e.g. the

normal distance to the reference surface. Then γt has to satisfy a transport equation

whose coefficients depend on the parametrization and on the velocity potential. On the

other hand, the moving boundary can also be represented by mappings u(·, t) : S → R
m
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whose time derivatives are given by the velocity vector, i.e.

∂tu = F (u) :=
(
(∇N + δ∇T )φt

)
◦ u,

where ∇N and ∇T denote the normal and tangential component of the gradient, respec-

tively.

This formulation, which we will use in the sequel, is R
m-valued. Therefore, the cor-

responding Cauchy problem will be necessarily degenerate, even if γ is strictly positive

(or even constant). However, this is no crucial disadvantage as our problem couples a

transport equation with a parabolic evolution and we allow γ to degenerate as well. Our

approach has two favorable properties: γ now appears only as a known, time-independent

function on the reference domain, and the additional freedom in the choice of the dif-

feomorphisms can be used to derive generalized chain rules for our nonlocal operators

which reduce the technical effort in the proofs of the necessary estimates.

As long as γ is nonnegative, the normal component of the linearisation F ′(u)v behaves

as a degenerate elliptic second order operator on the normal component of v, so that we

have, e.g., with respect to the L2-inner product

〈
n · v, n · F ′(u)v

〉
L2 ≤ C‖v‖2

L2 .

An estimate like this does not hold for the complete linearization, including the tangential

components. Due to the special structure of F , however, it is possible to define inner

products 〈 , 〉u which define equivalent norms on L2 and satisfy

〈
v,F ′(u)v

〉
u
≤ C‖v‖2

L2 .

Defining higher order inner products 〈 , 〉u,s on the basis of 〈·, ·〉u, one finally can show

an Hs-energy estimate
〈
F (u), u

〉
u,s

≤ C‖u‖2
s

for s sufficiently large, and, on the other hand, the dependence of these inner products on

u can be controlled by a weaker Sobolev norm. In a suitable abstract functional analytic

framework, these estimates can be used to obtain proofs for our main results. Moreover,

these results implies the existence of an unique solution w := (Id−λF )−1 of the equation

w − λF (w) = v provided λ ≥ 0 sufficiently small. The solution of the Cauchy problem

for the evolution equation is given by the exponential formula

u(t) = lim
n→∞

(
Id − t

n
F

)−n

u(0)

with convergence in Hs provided u(0) ∈ Hs, s sufficiently large.

The structure of the paper after Section 2 is as follows: In Section 3, we introduce

the necessary notation and announce our main results together with the abstract exis-

tence theorems which are used. Section 4 is devoted to the behavior of our (nonlocal)

operators in scales of Sobolev spaces, and in Section 5 the u-dependent inner products

are introduced, and the necessary estimates are shown. Finally, the main results (The-

orems 3.1 and 3.2) are proved in Section 6. The proof of a general abstract existence

result (Theorem 3.4), which may be of independent interest, is given in the Appendix.
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2. The equations of motion

Here we characterize the moving boundary problem as abstract gradient flow on the

manifold of the natural configuration space. We start by recalling the following general

properties of incompressible, source free Hele-Shaw flows. One looks for a family of

domains Ω(t) ⊂ R
m parametrized by time t ≥ 0 and corresponding velocity fields v(·, t)

such that (according to Darcy’s law)

v(·, t) = ∇ϕ(·, t) in Ω(t) (2.1)

with a potential field ϕ(·, t) proportional to negative pressure. As we also demand that

the boundary Γ(t) of Ω(t) moves along with the velocity field, we find the kinematic

boundary condition

Vn(t) = ∂nϕ(·, t) on Γ(t), (2.2)

where Vn(t) is the normal velocity of the moving boundary Γ(t) and ∂n = ∂/∂n is the

derivative in direction of the unit outward normal n(t) of Γ(t). As v is divergence-free,

∆ϕ(·, t) = 0 in Ω(t). (2.3)

Thus, in any Hele-Shaw flow, the complete velocity field is determined by the normal

velocity at the boundary.

If the surface tension coefficient is a positive constant, the corresponding surface energy

is proportional to the surface area and the Hele-Shaw flow driven by surface tension can

be interpreted as abstract gradient flow of this functional with respect to an appropriately

chosen inner product, cf. [1, 7]. As this formulation is a main ingredient in our derivation

of the moving boundary problem below, we define this inner product more precisely.

Consider for the time being a fixed smooth domain Ω with boundary Γ and define

VΓ :=
{
v ∈ C∞(Γ)

∣∣ ∫
Γ
v dΓ = 0

}
.

The space VΓ can be interpreted as space of all possible normal boundary velocities, the

restriction expresses conservation of volume. We fix β ≥ 0 and introduce on VΓ the

bilinear form gΓ given by

gΓ(v1, v2) :=

∫

Ω

∇ϕ1∇ϕ2 dx+ β

∫

Γ

v1v2 dΓ, (2.4)

where the ϕi, i = 1, 2 are (weak) solutions of the Neumann problems

∆ϕi = 0 in Ω, ∂nϕi = vi on Γ.

To give a physical interpretation of the quadratic functional v 7→ gΓ(v, v) we remark that

the first term represents energy dissipation by the corresponding Hele-Shaw flow (cf. [7])

while for β > 0 the second term is a penalty for large normal boundary velocities. Note

that, by Green’s formula,

gΓ(v1, v2) =

∫

Γ

(
ϕ1 + β∂nϕ1

)
v2 dΓ. (2.5)

In differential geometric terms, this inner product arises a Riemannian metric on the

Fréchet manifold M of boundaries Γ = ∂Ω to smooth compact domains Ω ⊂ R
m with

given fixed volume. By interpreting a tangent vector at Γ ∈ M as normal velocity field
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of the boundary, there is a natural way of thinking of vector fields X on M as sections in

the Fréchet vector bundle E = ∪Γ∈MVΓ with base M and fiber VΓ, i.e. there is a natural

isomorphismus TΓM ' VΓ and we have for any real functional J ∈ C∞(M)

(XJ)(Γ) = ∂εJ(Γε)|ε=0,

where ε 7→ Γε ∈M is a path of admissibles shapes with normal velocity v for ε = 0,

Γε :=
{
xε

∣∣ x ∈ Γ
}
, xε := x+ ε

(
v(x) +O(ε)

)
n(x). (2.6)

Thus, identifying a vector XΓ ∈ TΓM in this sense with its image v ∈ VΓ and considering

smooth domain dependence of the solution to a Neumann problem, Γ 7→ gΓ defines a

Riemannian metric g on the manifold M . It is remarkable that in the case β = 0 a

geodetic line w.r. to this metric g represents the motion of an incompressible irrotational

perfect fluid with a free boundary; for the corresponding Levi-Civita derivative, Rieman-

nian curvature and an analysis of the Jacobi equation from a differential geometric point

of view we refer to [3].

Now, considering first the surface energy (1.1) with constant γ, the normal velocity

Vn ∈ VΓ of a surface tension driven Hele-Shaw flow is determined by

gΓ
(
Vn, v

)
= −E

′(Γ){v} for all v ∈ VΓ,

where E ′(Γ){v} := (XE )(Γ) denotes the derivative of the energy in direction of XΓ ' v.

As a consequence, at each instant of time t the flow reduces the surface energy as rapidly

as possible among all normal velocities with prescribed norm corresponding to the inner

product (2.4), in particular, the flow is volume preserving and surface area decreasing.

By a well-known formula for the first variation of surface area we find

E
′(Γ){v} = −

∫

Γ

κv dΓ,

where κ is the mean curvature of Γ with sign determined by the above variation formula

(negative sign if Ω is convex); for notational convenience, throughout the paper the usual

normalization of κ has been changed by a cofactor m − 1. To model the influence of a

variable surface tension coefficient which is coupled on a transport mechanism, it arises

now quite natural to consider a surface energy functional of the form (1.2) where γ ≥ 0

denotes an surfaces energy density function along Γ, not necessarily constant. It should be

noted that we don’t assume a priori an one-to-one correspondence between the surface Γ

and density γ, as it is the case in simpler situations, e.g. where a known global function

generates the density via restriction or where an anisotropic surface energy density is

considered, i.e.

γ = f |Γ or γ = f ◦ n on Γ

with given f ∈ C∞(Rm); the latter energy density is commonly used to model crystal

growth problems. In fact, in our setting the functional E is uniquely defined on the

vector bundle F := ∪Γ∈MC∞(Γ) with base M only. In such a case, computation of

the derivative of the surface energy in direction of a given vector field requires a law for

the change of γ on the moving surface. Using differential geometric terms we make the

following assumption: along a path c in M the energy density is transported by parallel



6 M. Günther and G. Prokert

displacement with respect to a given connection DX which acts on sections γ in F , i.e.

Dċγ = 0 along c. (2.7)

In further considerations we restrict our attention to the connection DX which is defined

as follows: Let X be any vector field, Γ ∈ M and v ∈ VΓ with XΓ ' v, then we set for

any section γ in F

DXγ|Γ := ∂εγ̄ε |ε=0 + δ∇Γψ∇Γγ, δ ∈ [0, 1], (2.8)

where in terms of the notation (2.6)

γ̄ε(x) := γ̄Γε(xε), (ε, x) ∈ (−ε0, ε0) × Γ, (2.9)

and ψ is a solution of the Neumann problem

∆ψ = 0 in Ω, ∂nψ = v on Γ. (2.10)

Interpretation of DX and parallel transport w.r. to DX is quite obvious in terms of the

underlying Hele-Shaw flow. In contrast to the case of constant γ, we also have to consider

the influence of the tangential motion at the boundary which results from a normal

variation of the boundary. As pointed out before, in a Hele-Shaw flow the velocity field

corresponding to a normal boundary velocity v ∈ VΓ is ∇ψ where ψ solves (2.10). Hence,

in the case δ = 1, (2.7), (2.8) express that the surface energy density is transported along

with the liquid particles, i.e. with the velocity field ∇ψ at the boundary. On the other

hand, in case of δ = 0, transport in normal direction without any tangential movement is

expressed. The other cases are intermediate. On VΓ we define the linear operator AND

(“Neumann-to-Dirichlet operator”) by

ANDv := ψ|Γ,

where ψ satisfies (2.10) and
∫
Γ ψ dΓ = 0. Hence, again in terms of the notation (2.6),

the assumption Dvγ|Γ = 0 implies

∂εγ̄ε |ε=0 = −δ∇Γγ∇ΓANDv

and we obtain for

E
′(γ,Γ){v} :=

d

dε
E (γε,Γε)

∣∣∣
ε=0

using again the formula for the first variation of area

E
′(γ,Γ){v} =

∫

Γ

(
∂εγ̄ε |ε=0 − κγv

)
dΓ = −

∫

Γ

(
κγv + δ∇Γγ∇Γψ

)
dΓ.

It easily follows from Green’s formula that AND is symmetric with respect to the usual

L2-scalar product on Γ, and thus

E
′(γ,Γ){v} = −

∫

Γ

(γκv − δ∆Γγ ANDv) dΓ = −
∫

Γ

(γκ− δAND∆Γγ)v dΓ. (2.11)

We have to consider (2.7), (2.11) as a differential rule for the change of surface energy

in dependence on surface and energy density. They allow the computation of the energy

along any path in M starting from a know intial shape Γ(0) with know energy density γ0.
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But of course, in general, this computation is path-dependent, i.e. the resulting energy

in the endpoint of the path will depend on the history along the whole path.

Now, as in the case of constant γ, we define the normal velocity Vn ∈ VΓ as solution

of the variational problem

gΓ(Vn, v) = −E
′(γ,Γ){v} for all v ∈ VΓ.

Together with (2.2), (2.5), and (2.11), this yields the dynamic boundary condition

ϕ+ β∂nϕ = γκ− δAND∆Γγ.

Summarizing and using an auxiliary function ψ instead of the nonlocal operator AND,

we have obtained the following moving boundary problem: For a given bounded domain

Ω(0) ⊂ R
m and a given nonnegative function γ0 defined on ∂Ω(0) one looks for a family

of C2-domains Ω(t) ⊆ R
m, t > 0 and functions ϕ(·, t), ψ(·, t) ∈ C2

(
Ω(t)

)
, γt ∈ C2

(
Γ(t)

)

such that

∆ϕ(·, t) = 0 in Ω(t),

∆ψ(·, t) = 0 in Ω(t),

∂nψ(·, t) = ∆Γ(t)γt on Γ(t),

ϕ(·, t) + β∂nϕ(·, t) = γtκ(t) − δψ(·, t) on Γ(t),

Vn(t) = ∂nϕ(·, t) on Γ(t),





(2.12)

where κ(t) is the curvature of Γ(t). In the main part of this paper, we restrict our

attention to the case δ = 1. The generalization to δ ∈ [0, 1) is sketched at the end

of Section 5. Additionally, we describe the transport of γ by (2.7), (2.8) with δ = 1.

Introducing Lagrangian coordinates x = x(ξ, t), ξ ∈ Γ(0) corresponding to the velocity

field via

∂tx(ξ, t) = ∇ϕ
(
x(ξ, t), t

)
for t ≥ 0, x(ξ, 0) = ξ, (2.13)

we obtain from (2.2) that x = x(·, t) is a diffeomorphism from Γ(0) onto Γ(t), and the

transport law for γt takes the form

γt

(
x(ξ, t)

)
= γ0(ξ), ξ ∈ Γ(0), t ≥ 0. (2.14)

In (2.12), ϕ(·, t) and ψ(·, t) are determined up to a constant only, but this is without

significance for the evolution of both Ω(t) and γt. Note that in the case β = 0, by setting

Φ = ϕ+ ψ, (2.12) simplifies to

∆Φ(·, t) = 0 in Ω(t),

Φ(·, t) = γtκ(t) on Γ(t),

Vn = ∂nΦ(·, t) − ∆Γ(t)γt on Γ(t).





(2.15)

In the sequel, however, we will restrict our attention to the case β > 0. Without loss of

generality, we can assume β = 1. In the case β > 0, δ = 1, we can show well-posedness

of our moving boundary problem even if γ is zero on parts of the boundary, provided

its square root is smooth. This seems to be particular to this situation. We intend to

discuss the case β = 0, which leads to a third-order problem, in a forthcoming paper.

For γt = γ = const and γ > 0, ψ is constant, and (2.12) is known as the so-called Hele-

Shaw flow problem with kinetic undercooling and surface tension regularization. From a
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modelling point of view, this problem can be seen as the quasistationary version of the

well-known Stefan problem. In this context, the boundary condition incorporates both

the Gibbs-Thomson surface energy and a nonequilibrium effect of temperature decrease

at the advancing phase boundary. A short-time existence proof for this problem and a

proof that its solution is the limit for the solutions of the corresponding Stefan problems

can be found in [19]. For existence results concerning a corresponding two-phase problem

we refer to [5, 20]. Both effects are known to regularize the motion of the interface, and

this is also true for Hele-Shaw flow problems [12, 17, 18]. In the case γ ≡ 0, with

internal sources or sinks as driving forces, existence results are given in [10] for the two-

dimensional case and analytic data and in [15] for arbitrary dimensions, in the framework

of Sobolev spaces.

If γ is a positive constant, the moving boundary has stable, attractive equilibria which

are given by the spheres (see e.g. [4, 6] for the case β = 0). In general, however, after

prescribing a nonconstant function γ on the reference domain and an inital diffeomor-

phism u, it is not a priori clear (even with γ near a constant and the moving domain near

a ball) what the long-time evolution and the corresponding equilibrium will be. Instead,

determining the equlibria belonging to a γ prescribed on the reference domain leads to

a stationary free boundary problem in ψ whose solvability and stability (for Γ near a

sphere and γ near a constant) we intend to discuss elsewhere.

3. Notation and main results

We list some notation. C,C1, . . . etc. denote generic constants; their dependences on

other quantities is only indicated if not obvious from the context. Let E ⊆ R
m, m ≥ 2

be a bounded domain with smooth boundary S := ∂E and ν the outer unit normal on

S. For M = S or M = E, we make constant use of the usual L2-based Sobolev spaces

Hs(S), Hs(S,Rm) of order s with values in R and R
m, respectively. If no confusion is

likely, we just write Hs. The norms of these spaces will be denoted by ‖ · ‖M
s ; for M = S

the upper index M is dropped in most cases. When Fréchet derivatives of operator-

valued mappings are considered, the additional arguments describing the variations are

written in accolades ({ }).

3.1. Well-posedness for the moving boundary problem

Now, as already mentioned in the introduction, we reformulate the moving boundary

problem (2.12) - (2.14) by describing Γ(t) as an embedding u(·, t) : S → R
m such that

the curves t 7→ u(y, t) for fixed y ∈ S are trajectories belonging to the velocity field

and γt is constant along these curves. This approach enables us to consider γt as a

known function during the evolution at the cost of describing the moving boundary by

m functions. To do so, let

U :=
{
u : S → R

m
∣∣ u = w|S with w ∈ Diff(Ē,Ωu ∪ Γu)

}
, (3.1)

where

Ωu := w(E) and Γu := ∂Ωu = u(S).
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Throughout this paper, we use the abbreviation

Us := U ∩Hs(S,Rm).

Now, (2.12) - (2.14) is reduced to the following Cauchy problem, which will be inves-

tigated in the sequel: For given u0 ∈ Us, s sufficiently large, we look for T > 0 and a

mapping [0, T ] 3 t 7→ u(t) ∈ Us, such that

u′(t) = F
(
u(t)

)
, t ∈ [0, T ], (3.2)

u(0) = u0. (3.3)

Thereby, for u ∈ U , we have set

F (u) := F (u)
(
G (u)

)
with G (u) := H(u) +G(u), (3.4)

where, for any given function f on S,

F (u)f := ∇ϕ(u, f) ◦ u, (3.5)

and ϕ = ϕ(u, f) denotes the solution of the Robin boundary value problem

∆ϕ = 0 in Ωu, ∂nϕ+ ϕ = f ◦ u−1 on Γu. (3.6)

Further, H(u), G(u) are given by

H(u) := γ(κΓu ◦ u), G(u) := −A(u)
(
∆(u)γ

)
. (3.7)

Here γ ∈ C∞(S) is a fixed and given nonnegative function, κΓu denotes the mean cur-

vature of Γu with sign and scaling conventions as above,

∆(u)w := ∆Γu(w ◦ u−1) ◦ u (3.8)

is the pullback to S of the Laplace-Beltrami operator ∆Γu on Γu and

A(u)f := ϕN

(
u, f) ◦ u (3.9)

is the Neumann-Dirichlet operator, i.e. ϕN = ϕN (u, f) solves the Neumann problem

∆ϕN = 0 in Ωu, ∂nϕN = c+ f ◦ u−1 on Γu,
∫
Γu
ϕN dx = 0. (3.10)

The constant c = c(u, f) ∈ R in (3.10) is determined by the solvability condition
∫
Γu

(f ◦ u+ c) dΓu = 0; (3.11)

clearly c(u, f) = 0 for f = ∆(u)γ. For fixed smooth γ on S, the mappings u 7→ H(u)

and u 7→ ∆(u)γ constitute quasi-linear second order differential operators on S. More-

over, the solutions of the boundary value problems (3.6), (3.10) depend smoothly on

the domain Ωu, i.e. on u ∈ Hs, s > (m + 1)/2 and f 7→ F (u)f , f 7→ A(u)f represent

pseudodifferential operators of order zero and minus one, respectively. In particular, G

is a pseudodifferential operator of lower order than H and may be considered as a cor-

rection term to ensure the gradient flow structure of the evolution problem. For precise

formulations of the mapping properties of F and A and detailed proofs see Section 4. In

the consequence, this leads to

[u 7→ F (u)] ∈ C∞
(
Us, H

s−2(S,Rm)
)

(3.12)

for s > (m+ 3)/2. Now we are in position to formulate our main results.
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Theorem 3.1. (Short-time existence and uniqueness.)

Fix an integer s0 > (m+5)/2 and assume γ = ρ2 with ρ ∈ C∞(S). Let s ≥ s0 be integer

and u0 ∈ Us. Then there exists T > 0 and an unique solution

u ∈ C
(
[0, T ], Us

)
∩ C1

(
[0, T ], Hs−2(S,Rm)

)
(3.13)

of the initial value problem (3.2), (3.3). Additionally, any given ū0 ∈ Us0
has a suitable

Hs0 -neighbourhood K, such that for initial values u0 varying in K ∩Hs, there are T > 0

and C independent of u0 such that

‖u(t)‖s ≤ C(1 + ‖u(0)‖s) for all t ∈ [0, T ]. (3.14)

Theorem 3.2. (Regularity and continuous dependence on initial values.)

Under the assumptions of Theorem 3.1 let u be any solution to (3.2) in the class (3.13)

with some T > 0. Then there holds:

(i) u(0) ∈ Hs+1(S,Rm) implies

u ∈ C
(
[0, T ], Us+1

)
∩ C1

(
[0, T ], Hs−1(S,Rm)

)
.

(ii) Assume un
0 → u0 in Hs(S,Rm) for n → ∞. Then, for n sufficiently large, there

exist solutions un of (3.2) in the class (3.13) with initial values un(0) = un
0 and

there holds un → u in C
(
[0, T ], Hs(S,Rm)

)
.

The proof of both theorems is given in Section 6.

3.2. An existence result for abstract evolution equations

Here we consider (3.2), (3.3) as an abstract nonlinear Cauchy problem for an unknown

function u = u(t) with values in a Banach space and prove existence of a solution if the

nonlinearity F satisfies a certain condition of semi-boundedness with respect to a family

of bilinear forms. As general framework we adopt the following assumptions.

Let X ⊆ Y ⊆ Z be real, separable Banach spaces with dense und

continuous embeddings and U ⊆ Y open. For every u ∈ U let 〈·, ·〉u :

X × Z → R be a continuous and nondegenerate bilinear form, such

that with fixed constants C ≥ 1, M ≥ 0:

(H1) 〈v, w〉u = 〈w, v〉u for all v, w ∈ X ;

(H2) C−1‖v‖2
Y ≤ 〈v, v〉u ≤ C‖v‖2

Y for all v ∈ X , u ∈ U ;

(H3) 〈v, v〉u ≤ 〈v, v〉w
(
1 +M‖u− w‖Z

)
for all v ∈ X , u,w ∈ U ;

(H4) weak convergences un ⇀ u in Y , un, u ∈ U , and wn ⇀ w in Z

imply 〈v, wn〉un → 〈v, w〉u for all v ∈ X .





(H)

Assuming (H) to hold, by the dense embedding X ⊆ Y and
∣∣〈v, w〉u

∣∣2 ≤ 〈v, v〉u〈w,w〉u ≤ C2‖v‖2
Y ‖w‖2

Y for v, w ∈ X

there exists to each u ∈ U a scalar product (·, ·)u on Y , which is compatible with 〈·, ·〉u,

i.e. we have holds

(v, w)u = 〈v, w〉u for v ∈ X,w ∈ Y.
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Moreover, for un, u ∈ U , un ⇀ u, wn ⇀ w in Y implies

(v, wn)un → (v, w)u for all v ∈ X.

In further considerations, for the sake of brevity we put

‖v‖u = (v, v)1/2
u , |||u||| = (u, u)1/2

u .

Assumption (H2) implies that ‖ · ‖Y and ‖ · ‖u are equivalent, hence Y has all topological

properties of a Hilbert space, in particular, Y is reflexive. From un, u ∈ U , un ⇀ u in

Y it follows

|||u||| ≤ lim
n→∞

|||un||| ;

if |||u||| = limn→∞ |||un||| one concludes hereby un → u in Y .

Theorem 3.3. Let (H) be valid and F : U → Z a weakly sequentially continuous

mapping such that for every u0 ∈ U there exists a neighbourhood B(u0) ⊂ U of u0 in Y

with

sup
{
〈u,F (u)〉u

∣∣ u ∈ B(u0) ∩X
}
< +∞. (3.15)

Then for any u0 ∈ U , there exist T > 0 and a solution u of (3.2), (3.3) in the class

u ∈ Cw

(
[0, T ],U

)
∩ C1

w

(
[0, T ], Z

)
. (3.16)

Additionally, this solution satisfies u(t) → u0 in Y for t→ +0. Moreover, T > 0 can be

chosen uniformly for initial values taken from a suitable neighbourhood of u0 in Y .

In (3.16), we denote by Cw

(
[0, T ],U

)
the space of functions from [0, T ] to U which

are continuous with respect to weak convergence in Y . Similarly, C1
w

(
[0, T ], Z

)
denotes

the set of weakly differentiable functions from [0, T ] to Z with derivative in Cw

(
[0, T ], Z

)
.

It should be noted that in general there is no uniqueness and no continuous dependence

on initial data in any sense in Theorem 3.3. This theorem can be easily derived from a

more elaborate, quantitative formulation given in the next theorem. Remark that, for

the limit case R = +∞ and bilinear forms independent of u, this theorem coincides with

Theorem A in [13], but, as already mentioned in the introduction, our application just

requires the generalization to such variable bilinear forms.

Theorem 3.4. Assume (H) is satisfied with some ball

U = B :=
{
u ∈ Y

∣∣ ‖u‖Y < R
}
, R > 0,

and G : B → Z is a weakly sequentially continuous mapping such that

2〈u,G (u)〉u +M ‖G (u) ‖Z |||u||| ≤ β
(
|||u|||2

)
for all u ∈ X ∩ B (3.17)

with a C1-function β : R+ → R+ = [0,∞). Let u0 ∈ B,

|||u0||| < r := R/(2C3)1/2,

and T > 0 such that the solution ρ of the scalar Cauchy problem

dρ/dt = β
(
ρ(t)

)
, ρ(0) = |||u0|||2 (3.18)
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exists on [0, T ] and satisfies ρ(t) < r2 there. Then the Cauchy problem

u′(t) = G (u(t)), u(0) = u0, (3.19)

possesses a solution u in the class (3.16) for which additionally

|||u(t)|||2 ≤ ρ(t) for all t ∈ [0, T ],

u(t) → u0 in Y for t→ +0.

The proof of this theorem will be given in the appendix.

Proof of Theorem 3.3. Let u0 ∈ U and B(u0) as in Theorem 3.3 be given. We set

G (v) = F (v + w0) for v ∈ B :=
{
v ∈ Y

∣∣ ‖v‖Y < R
}
,

〈·, ·〉v,1 := 〈·, ·〉v+w0
, |||v|||1 := (v, v)

1/2
v+w0

,

whereby the density of X in Y enables us to choose w0 ∈ X and R > 0 such that

‖w0 − u0‖Y < R/(32C5)1/2,
{
w0 + v

∣∣ v ∈ B
}
⊆ B(u0).

Clearly, the bilinear form 〈·, ·〉v,1, v ∈ B satisfies the assumptions (H) again (with same

constants as 〈·, ·〉u, u ∈ U ). Further, by (3.15), there exists L > 0 such that

〈v + w0,G (v)〉v,1 ≤ L for all v ∈ B ∩X

and, by the weak sequential continuity of F , the reflexivity of Y and (H4),
∣∣〈w0,G (v)〉v,1

∣∣, ‖G (v)‖Z ≤ L for all v ∈ B.

Thus

2〈v,G (v)〉v,1 +M‖G (v)‖Z |||v|||1 ≤ K for all v ∈ B ∩X
with K := L(4 +MCR). Now, for any given w ∈ Y with

‖w − u0‖Y ≤ R/(32C5)1/2,

we apply Theorem 3.4 to solve the initial value problem

dv/dt = G (v), v(0) = w − w0

which corresponds to (3.2) with initial value u(0) = w. As

|||w − w0|||1 ≤ C
(
‖w − u0‖Y + ‖u0 − w0‖Y

)
< r/2, r := R/(2C3)1/2,

Theorem 3.4 ensures the existence of a solution in the class (3.16) with T = 3r2/(4K)

and v(t) → w − w0 in Y for t→ +0.

4. Smooth domain dependence of the nonlocal operators

In this Section we study the domain dependence, i.e. dependence on u ∈ Us, of the Robin

problem (3.6) by transforming it into a boundary value problem on the fixed reference

domain E. In particular, we derive multilinear estimates for the Fréchet derivatives w.r.

to u. The crucial tools here will be estimates for (multiple) pointwise products in our

scale of Sobolev spaces and a differentiation rule based on invariance properties of the

nonlocal operators.
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To begin with, we recall some well-known basic properties and estimates concerning

Sobolev spaces. For s > d/2, where M is E or S and d = dimM/2, the spaces H s(M)

turn into Banach algebras and the pointwise product of functions w1, . . . , wn ∈ Hs(M)

allows the estimate

‖w1w2 · · ·wn‖M
s ≤ C

n∑

i=1

(
‖wi‖M

s

∏

j 6=i

‖wj‖M
s0

)
(4.1)

if s ≥ s0 > d/2. Moreover, for such values of s the composition of C∞-functions with

Hs-functions leads to Hs-functions again: e.g. Ψ ∈ C∞(M̄ × R) and w ∈ Hs(M) imply

Ψ(·, w(·)) ∈ Hs(M) (note the continuity of w by Sobolev’s embedding),
[
w 7→ Ψ(·, w(·))

]
∈ C∞

(
Hs(M), Hs(M)

)
(4.2)

and there holds

‖Ψ(·, w(·))‖M
s ≤ C

(
1 + ‖w‖M

s

)
(4.3)

for all w from bounded subsets of Hs0(M), where the constant depends, in addition to

s0, s and M , on Ψ and on upper bounds of ‖w‖s0
. In particular,

‖1/w‖M
s ≤ C

(
α, ‖w‖M

s0

)
‖w‖M

s (4.4)

for all w ∈ Hs(M) with w ≥ α > 0 on M . On the other hand, we have the following

counterpart of (4.1) for the product of functions w1 ∈ Hs1(M), . . . , wn ∈ Hsn(M)

‖w1w2 · · ·wn‖M
s ≤ c ‖w1‖M

s1
‖w2‖M

s2
· · · ‖wn‖M

sn
(4.5)

if 0 ≤ s ≤ s1, . . . , sn ≤ s0 with s1 + . . .+ sn ≥ s+ (n− 1)s0 and s0 > d/2.

In the following, for functions w defined on S let Ew be an extension into Ē, i.e.

Ew|S = w, whereby the trace mapping theorem permits us to choose

E ∈ L
(
Hs(S), Hs+1/2(E)

)
for all s > 0. (4.6)

For R
m-valued functions we apply E componentwise.

Lemma 4.1. Let v ∈ Us, s > (m+ 1)/2. Then there exist a Hs-neighbourhood Vs ⊆ Us

of v and a map u0 ∈ C∞(Ē,Rm) such that for every u ∈ Vs the mapping

ũ := u0 + E (u− u0) (4.7)

defines a diffeomorphism of Ē onto Ω̄u.

Proof. By the definition (3.1) of U , every v ∈ U has a an extension v1 ∈ Diff(Ē, Ω̄v)

and there exists a ε > 0 such that w ∈ Diff(Ē, Ω̄w|S) for all w ∈ C1(Ē,Rn) with

‖w − v1‖Ē
C1 ≤ ε. Thus it suffices to find u0 and Vs with

‖ũ− v1‖Ē
C1 ≤ ε for all u ∈ Vs, (4.8)

where ũ is given by (4.7). Let

E1 ∈ L
(
C1(S,Rm), C1(Ē,Rm)

)
(4.9)

be an extension operator which maps C∞(S,Rm) into C∞(Ē,Rm). Setting

u0 = w1 + E1w2 with w1 ∈ C∞(Ē,Rm), w2 ∈ C∞(S,Rm)
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to be chosen later, we get by Sobolev embedding Hs+1/2(E) ↪→ C1(Ē) and (4.6), (4.9)

‖ũ− v1‖Ē
C1 ≤ C‖u− u0‖S

Hs + ‖u0 − v1‖Ē
C1

≤ C
(
‖w2‖S

C1 + ‖u− u0‖S
Hs

)
+ ‖w1 − v1‖Ē

C1

≤ C
(
‖w1 − v1‖Ē

C1 + ‖w2 + w1 − v‖S
Hs + ‖v − u0‖S

Hs + ‖u− v‖S
Hs

)
.

Hence, letting δ = ε/(4C) and choosing firstly w1 with ‖w1 − v1‖Ē
C1 ≤ δ and, afterwards,

w2 with ‖w2 + w1 − v‖S
Hs ≤ δ then (4.8) is valid with Vs =

{
u | ‖u− v‖S

Hs < δ
}
.

Fix s > (m+1)/2, v ∈ Us, and Vs according to Lemma 4.1. Maintaining notation and

construction of this lemma, let

Ē 3 x → y = ũ(x) =
(
ũ1(x), . . . , ũm(x)

)
∈ Ω̄u, u ∈ Vs, (4.10)

be the corresponding diffeomorphism (4.7), J = (∂iũj) its Jacobian and (gij) = J>J

the Euclidean metric tensor relative to the above coordinates. Furthermore let (gij) be

the inverse of (gij) and g = det(gij). Then we have (gij) = g−1(Cof J)>(Cof J) where

Cof J = (aij) and aij is the algebraic complement of ∂iũj in J . Note that, uniformly

in u ∈ Vs, the function g is strictly positive in E. Moreover, for the transformation

ω = dΓu/dS of surface area elements via (4.10) and the outer normals n of Ωu and ν of

S there holds

ω = |(Cof J)ν|, n ◦ ũ = (Cof J)ν/|(Cof J)ν|.
By definition, all of the quantities g, gij , aij and gij are polynomials in the first derivatives

of ũ and, in case of gij , additionally in 1/g. Consequently, remembering (4.1)-(4.5) and

the construction (4.7) of ũ we obtain smooth dependence of these quantities on u. More

precisely, we have

[u 7→ q] ∈ C∞
(
Vs, H

s−1/2(E)
)
, q = g, gij , aij or gij (4.11)

and (4.5) implies an estimate of the k-th Fréchet derivative:

‖q(k)(u){u1, . . . , uk}‖E
t−1/2 ≤ C‖u1‖s1

· · · ‖uk‖sk
(4.12)

if 1/2 ≤ t ≤ s1, . . . , sk ≤ s and s1 + . . .+ sk ≥ t+ (k− 1)s. The constant is independent

of u ∈ Vs and of u1 ∈ Hs1(S), . . . , uk ∈ Hsk(S). Similar arguments leads to

[u 7→ p] ∈ C∞
(
Vs, H

s−1(S)
)
, p = ω or n ◦ ũ (4.13)

with an estimate of the derivatives corresponding to (4.12).

Now, introducing the transformed velocity potential ψ = ψ(u)f = ϕ(u, f) ◦ ũ and the

transformed Laplace and boundary operator according

L(u)ψ = ∂i

(√
ggij∂jψ

)
, B(u)ψ = ωψ + νi

√
ggij∂jψ,

the Robin problem (3.6) may be written as

L(u)ψ = 0 in E, B(u)ψ = ωf on S. (4.14)

Note that the values of ψ(u)f in E depend not only on u and f , but also on the diffeo-

morphism ũ, i.e. on the chosen Vs. On the other hand, ψ(u)f |S is completely determined
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by u and f . The symmetry of the operator h 7→ ϕ(u)h with respect to the L2-scalar

product on Γu implies
∫

S

w ψ(u)f dS =

∫

S

ωf ψ(u)(wω−1) dS (4.15)

(recall ω = dΓu/dS) and the operator F from (3.5) gets the form

F (u)f = (F1(u)f, . . . , Fm(u)f), Fi(u)f = aij∂jψ(u)f/
√
g. (4.16)

We start the investigation of F by discussing a generalized version of (4.14). Note that

we have to deal with two technical difficulties here, concerning nonsmooth coefficients and

uniformity of the estimates for “large” subsets of Us. Therefore, we need the following

preparation:

Lemma 4.2. Let Ω ⊂ R
m be a bounded smooth domain, x0 ∈ Ω χ ∈ C∞

0 (Rm) and

χε(x) := χ((x− x0)/ε), x ∈ R
m.

Moreover, let µ ∈ Hs(Ω) with s > m/2 and µ(x0) = 0. Then there is an s1 ∈ (m/2, s)

such that

lim
ε↓0

‖χεµ‖Ω
s1

= 0.

Proof. Note at first that

‖χε‖R
m

s ≤ Cεm/2−s.

This is immediately clear for integer s, the general case follows by interpolation. By

Sobolev’s embedding, we have µ ∈ Cα(Ω) for some α > 0, and consequently, due to

µ(x0) = 0,

|µ(x)| ≤ Cεα, x ∈ suppχε ∩ Ω.

Thus,

‖χεµ‖Ω
0 ≤ Cεα‖χε‖Ω

0 ≤ Cεα+m/2

and

‖χεµ‖Ω
s ≤ C‖χε‖Ω

s ‖µ‖Ω
s ≤ Cεm/2−s.

The assertion follows now from interpolation.

Lemma 4.3. Let s > (m+ 1)/2, s0 ∈ ((m+ 1)/2, s) be given.

For any v ∈ Us there is an Hs0-neighbourhood Vs0
such that the BVP

L(u)w = ∂ihi in E, B(u)w = ωe+ νihi on S

is uniquely solvable for u ∈ Vs0
∩Hs(S,Rm), e ∈ Hs−1(S), h ∈ Hs−1/2(E,Rm). More-

over, we have

‖w‖E
t ≤ C

(
‖h‖E

t−1 + ‖e‖S
t−3/2

)
(4.17)

for t ∈ [1, s+ 1/2] with C independent of h, e, and u ∈ Vs0
∩Hs(S,Rm).

Proof. 1. Fix v ∈ Us and choose Vs0
according to Lemma 4.1. Fix u ∈ Vs0

∩Hs(S,Rm).

For t = 1, the assertions easily seen from the variational formulation. For t = s+1/2, the

assertions follow from the Hs-regularity theory of elliptic boundary value problems (with



16 M. Günther and G. Prokert

operators in divergence form). Our coefficients
√
ggij , however, are only in Hs−1/2(E)

which is slightly nonstandard. To prove the necessary regularity result in this case, we

can proceed as in the proof of Theorem A.14 in [11], replacing the Hölder norms there

by Sobolev norms. To control the error terms occurring from the freezing of coefficients,

we use the estimate

‖µij∂jw‖E
s−1/2 ≤ C

(
‖µij‖E

s1
‖w‖E

s+1/2 + ‖µij‖E
s−1/2‖w‖E

s1+1/2

)

(and a corresponding one for the boundary term) with s1 from Lemma 4.2. Recalling

that µij has a form to which that lemma applies, (4.17) can be established for t = s+1/2

by a usual perturbation argument, with a constant C = C(u) . The general case follows

by interpolation.

2. To show uniformity with respect to u ∈ Vs0
∩ Hs(S,Rm), we proceed in a similar

way: For t = s+1/2, pick u1, u2 ∈ Vs0
∩Hs(S,Rm), denote the corresponding coefficients

by
√
gkg

ij
k , k = 1, 2, and estimate

∥∥(√
g1g

ij
1 −√

g2g
ij
2

)
∂jw

∥∥E

s−1/2

≤ C
(
‖ũ1 − ũ2‖E

s0+1/2‖w‖E
s+1/2 + ‖ũ1 − ũ2‖E

s+1/2‖w‖E
s0+1/2

)

≤ C
(
‖u1 − u2‖S

s0
‖w‖E

s + ‖w‖E
1

)
,

where an interpolation inequality has been used. A similar estimate can be given for the

boundary term. After shrinking Vs0
if necessary, one can show the uniformity by another

perturbation argument.

Under the assumptions of Lemma 4.3, as a first trivial consequence we obtain the

estimate

‖ψ(u)f‖E
t , ‖ψ(u)f‖S

t−1/2 ≤ C‖f‖t−3/2 (4.18)

for t ∈ [1, s + 1/2]. Note for later reference that these estimates continue to hold for

t ∈ [0, s+ 1/2], provided s > max{m+ 1, 5}/2. To see this, it is sufficient to show (4.18)

for t = 0; the general case follows by interpolation again. Fix u, pick φ ∈ L2(S) arbitrary

and define w ∈ H3/2(E) by

L(u)w = 0 in E, B(u)w = φ on S.

Then, by Green’s formula rewritten in the form
∫

E

(
φ1L(u)φ2 dx− φ2L(u)φ1

)
dx =

∫

S

(
φ1B(u)φ2 − φ2B(u)φ1

)
dS

and (4.17) with t = 2,
∫

S

φψ(u)f dS =

∫

S

B(u)wψ(u)f dS =

∫

S

wωf dS

≤ C‖w‖3/2‖f‖−3/2 ≤ C‖φ‖1/2‖f‖−3/2.

This proves the second estimate in (4.18). Analogously, picking ζ ∈ L2(E) and defining

v ∈ H2(E) by

L(u)v = ζ in E, B(u)w = 0 on S,
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we get
∫

e

ζψ(u)f dx =

∫

E

L(u)wψ(u)f dx = −
∫

S

vωf dS ≤ C‖ζ‖0‖f‖−3/2.

This proves the first estimate in (4.18).

Furthermore, concerning the smooth dependence of ψ(u)f on u, Lemma 4.3 together

with (4.11), (4.13) implies via a perturbation argument

[u 7→ ψ(u)] ∈ C∞
(
Vs,L

(
Ht−3/2(S), Ht(E)

))
. (4.19)

Replacing t by t− 3/2 and considering (4.16), this leads to

Corollary 4.4. Let s > (m+ 1)/2 and −1/2 ≤ t ≤ s− 1, then

[u 7→ F (u)] ∈ C∞
(
Us,L

(
Ht(S), Ht(S,Rm)

))
.

Lemma 4.5. Let s > (m+ 1)/2, u ∈ Us and t ∈ [1, s] be given. Then for any choice of

s1, . . . sk+1 ∈ [t, s] with s1 + . . .+ sk+1 ≥ t + ks there exists a constant C > 0 such that

for all f ∈ Hs−1(S) and all u1, . . . , uk ∈ Hs(S,Rm) there holds
∥∥F (k)(u){u1, . . . , uk}f

∥∥
t−1

≤ C‖u1‖s1
· · · ‖uk‖sk

‖f‖sk+1−1. (4.20)

The constant may be chosen independently of u as long as u varies in H s-bounded and

closed subsets of Us.

Proof. 1. Fix s0 ∈ ((m+1)/2, s), v ∈ Us and a neighbourhood Vs0
according to Lemma

4.3. We show (4.20) with C independent of u ∈ Vs0
∩Hs(S,Rm). To begin with, recall

the estimate (4.18) in the form

‖∇ψ(u)f‖S
t−1, ‖ψ(u)f‖E

t+1/2 ≤ C‖f‖t−1 (4.21)

for t ∈ [1, s]; concerning the estimate of ∇ψ along S in the limit case t = 1 note that the

boundary condition allows a representation of ∇ψ as a suitable linear combination of ψ, f

and tangential derivatives of ψ. In view of (4.16) this implies the asserted estimate (4.20)

for the simplest case k = 0. To obtain similar estimates for the Fréchet derivatives ψ(k) =

ψ(k)(u){u1, . . . , uk}f , k = 1, 2, . . . we have to examine the corresponding derivatives of

the coefficients in the transformed Laplacian and the boundary terms. For ψ(k) we get

L(u)ψ(k) = −
∑

L(l)(u){ui1 , . . . , uij}ψ(k−l)(u){uij+1
, . . . , uik

}f in E,

B(u)ψ(k) = −
∑

B(l)(u){ui1 , . . . , uij}ψ(k−l)(u){uij+1
, . . . , uik

}f

+ ω(k){u1, . . . , uk}f on S,

(4.22)

where

L(l)(u){ui1 , . . . , uij}ϕ = ∂i

(
(
√
ggij)(k){ui1 , . . . , uij}∂jϕ

)
,

B(l)(u){ui1 , . . . , uij}ϕ = νi(
√
ggij)(k){ui1 , . . . , uij}∂jϕ+ ω(l){ui1 , . . . , uij}ϕ,

and the sums are extended over 1 ≤ l ≤ k and all decompositions i1 < . . . < il and

ij+1 < . . . < ik of the indices 1, 2, . . . , n. In particular, if k = 1 we obtain for ψ′ =

ψ′(u){u1}f the boundary value problem

L(u)ψ′ = −∂i

(
(
√
ggij)′{u1}∂jψ

)
in E,

B(u)ψ′ = −νi

(√
ggij

)′{u1}∂jψ + ω′{u1}(f − ψ) on S.
(4.23)
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Thus, for any t ∈ [1, s], Lemma 4.3 implies

‖ψ′(u){u1}f‖E
t+1/2 ≤ C

(
‖(√ggij)′{u1}∂jψ‖E

t−1/2 + ‖ω′{u1}(f − ψ)‖S
t−1

)
.

To estimate the terms on the right-hand side we obtain by (4.5)

‖(√ggij)′{u1}∂jψ‖E
t−1/2 ≤ C‖(√ggij)′{u1}‖E

s1−1/2‖∂jψ‖E
s2−1/2,

and accordingly

‖ω′{u1}(f − ψ)‖S
t−1 ≤ C‖ω′{u1}‖S

s1−1

(
‖f‖s2−1 + ‖ψ‖S

s2−1

)

for any choice of s1, s2 ∈ [t, s] with s1 + s2 ≥ t+ s. As

‖ψ‖S
s2−1, ‖∂jψ‖E

s2−1/2 ≤ C‖ψ‖E
s2+1/2 ≤ C ′‖f‖s2−1,

by (4.21), using (4.12), (4.13) we find

∥∥(
√
ggij)′{u1}∂jψ

∥∥E

t−1/2
,
∥∥ω′{u1}(f − ψ)

∥∥S

t−1
≤ C ′‖u1‖s1

‖f‖s2−1,

hence

‖∇ψ′(u){u1}f‖S
t−1, ‖ψ′(u){u1}f‖E

t+1/2 ≤ C‖u1‖s1
‖f‖s2−1,

where the same remark applies to the estimate of ∇ψ′ along S as to (4.21). Using (4.22),

these estimates are extended inductively to ψ(k):

‖∇ψ(k)‖S
t−1, ‖ψ(k)‖E

t+1/2 ≤ C‖u1‖s1
· · · ‖uk‖sk

‖f‖sk+1−1, (4.24)

provided s1, . . . , sk+1 ∈ [t, s] with s1 + . . . + sk+1 ≥ t + ks. In view of (4.16), these

estimates together with (4.11) and (4.5) imply the asserted estimate (4.20).

2. Let K ⊂ Us be closed and bounded in Hs(S,Rm). As shown in 1., K can be covered

by Hs0-open sets Vs0 ,v, v ∈ K, such that (4.20) holds uniformly for u ∈ Vs0,v ∩K. Now

the assertion follows from the compactness of K in Hs(S,Rm).

Now we use invariance properties with respect to diffeomorphisms (cf. e.g. [9]). Let

τ ∈ Diff(S). Then by definition

ϕ(u, f) = ϕ(u ◦ τ, f ◦ τ) in Ωu. (4.25)

Recalling the definition of F , we have

(F (u)f) ◦ τ =
(
∇ϕ(u, f)

)
◦ (u ◦ τ),

F (u ◦ τ)(f ◦ τ) =
(
∇ϕ(u ◦ τ, f ◦ τ)

)
◦ (u ◦ τ),

consequently (4.25) implies

(F (u)f) ◦ τ = F (u ◦ τ)(f ◦ τ) on S. (4.26)

Any smooth vector field D on S, identified with a first order differential operator, gen-

erates a one-parameter group of smooth diffeomorphisms t 7→ τt with τt = id for t = 0.

Setting τ = τt in (4.26) and differentiating with respect to t at t = 0 gives

DF (u)f = F ′(u){Du}f + F (u)Df (4.27)

for u ∈ Us and f ∈ Hs−1(S), s > (m+1)/2. Furthermore, by differentiation with respect
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to u,

DF (k)(u){. . .}f = F (k+1)(u){Du, . . .}f + F (k)(u){. . .}Df

+

k∑

j=1

F (k)(u){u1, . . . , uj−1, Duj , uj+1, . . . , uk}f,
(4.28)

where the dots indicate the arguments u1, . . . , uk ∈ Hs(S,Rm). We choose m smooth

vector fields D1, . . . , Dm on S such that

span{D1, . . . , Dm} = Tx for all x ∈ S

and use the multi-index notation Dα = Dα1

1 . . .Dαm
m , α = (α1, . . . , αm) for higher order

derivatives. Note that, for s ≥ 0 integer, we can use

(u, v)s =
∑

|α|≤s

(Dαu,Dαv)L2(S)

as scalar product generating the norm in Hs(S). As a consequence of (4.27), (4.28) by

induction we obtain a differentiation rule which resembles Leibniz’ rule at an abstract

level: For any multi-index α and u ∈ Us, f ∈ Hs−1(S), s > |α| + (m+ 1)/2 there holds

DαF (u)f =
∑

cβ1,...,βk+1
F (k)(u){Dβ1u, . . . , Dβku}Dβk+1f, (4.29)

where the sum has to be extended over all integers k and systems of nonnegative multi-

indices β1, . . . , βk+1 with

0 ≤ k ≤ |α|, 1 ≤ |β1|, . . . , |βk|, β1 + . . .+ βk+1 = α. (4.30)

The coefficients are nonnegative integers, in particular, cα = cα,0 = 1. Combining the

differentiation rule with the estimate of the derivatives in lower norms we obtain

Proposition 4.6. (i) Let s ≥ s0 > (m+ 1)/2 integer, u ∈ Us+1. Then

‖F (u)f‖s ≤ C
(
‖u‖s+1‖f‖s0

+ ‖f‖s

)
.

(ii) Assume additionally s ≥ s0 + 1 and let α be any multi-index with |α| = s. Then we

have

DαF (u)f = F (u)Dαf + F ′(u){Dαu}f,+Rα(u)f

where the remainder term allows the estimate

‖Rα(u)f‖0 ≤ C
(
‖u‖s‖f‖s0

+ ‖f‖s−1

)
.

The constants in both estimates can be chosen uniformly as u varies in H s0 - closed,

Hs0+1- bounded subsets of Us+1.

Proof. We consider the more complicated situation (ii) only. According to (4.29), the

remainder term has a representation as a sum of terms

Iβ = F (k)(u){Dβ1u, . . . , Dβku}Dβk+1f,

where the multi-indices satisfy (4.30) and additionally |βi| < s = |α|. Thus k ≥ 1

and |βi| ≥ 1 for at least two indices, say i = i1, i2. We estimate Iβ using (4.20) with
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si = 1 + (1 − θi)(s0 − 1) and

θi = (|βi| − 1)/(s− 2), i = i1, i2, θi = |βi|/(s− 2), i /∈ {i1, i2}.

Then si ∈ [1, s0] and s1 + . . .+sk+1 = 1+ks0, hence applying (4.20) (with t = 1, s = s0)

yields

‖Iβ‖0 ≤ C‖u‖|β1|+s1
. . . ‖u‖|β1|+sk

‖f‖|βk+1|+sk+1−1.

Note that θ1 + . . .+ θk+1 = 1 and set λ := θ1 + . . .+ θk. From

|βi| + si ≤ (1 − θi)(s0 + 1) + θi(s− 1)

we get by norm convexity and Youngs inequality

‖Iβ‖0 ≤ C‖u‖k−1
s0+1

(
‖u‖s0+1‖f‖s−1

)1−λ(
‖u‖s‖f‖s0

)λ

≤ C‖u‖k−1
s0+1

(
‖u‖s0+1‖f‖s−1 + ‖u‖s‖f‖s0

)
.

This proves the assertion.

We conclude this section with remarks concerning the Neumann-Dirichlet operator A

defined by (3.9), (3.10). It is obvious that the regularity properties of u 7→ A(u) are the

same as for u 7→ ψ(u)|S , hence (4.19) reappears as

[u 7→ A(u)] ∈ C∞
(
Us,L

(
Ht(S), Ht+1(S)

))
(4.31)

for s > (m + 1)/2 and −1/2 ≤ t ≤ s − 1. Moreover, the differentiation rule (4.28) also

holds for A and ψN (u)f := ϕN (u)f ◦ ũ satisfies estimates parallel to (4.24), hence we get

‖A(k)(u){u1, . . . , uk}f‖t ≤ C‖u1‖s1
· · · ‖uk‖sk

‖f‖sk+1−1, (4.32)

provided s1, . . . , sk+1 ∈ [t, s] with s1 + . . . + sk+1 ≥ t + ks. Thus we have the following

analogon of Proposition 4.6:

Proposition 4.7. (i) Let s ≥ s0 > (m+ 1)/2 integer, u ∈ Us and f ∈ Hs−1(S). Then

‖A(u)f‖s ≤ C
(
‖u‖s‖f‖s0−1 + ‖f‖s−1

)
.

with a uniform constant as long as u varies in Hs0 -closed, Hs0 -bounded subsets of Us.

(ii) Assume additionally s ≥ s0 + 1 and let α be any multi-index with |α| = s− 1. Then

we have

‖DαA(u)f −A(u)Dαf‖1 ≤ C
(
‖u‖s‖f‖s0−1 + ‖f‖s−2

)
.

where now the constant can be chosen uniformly as u varies in Hs0 -closed, Hs0+1-bounded

subsets of Us+1.

Finally, for later reference we point out the simple commutator estimate

‖A(u)hf − hA(u)f‖1 ≤ C‖h‖s‖f‖−1 (4.33)

for u ∈ Us, f, h ∈ Hs(S), s > (m + 1)/2. Fixing any neighbourhood Vs according to

Lemma 4.1, u ∈ Vs with corresponding diffeomorphism (4.10) and considering

A(u)f = ψ(u)
(
f − ωA(u)f

)
|S ,

(4.33) is reduced to

‖hψ(u)f − ψ(u)(hf)‖S
1 ≤ C‖h‖s‖f‖−1. (4.34)
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Let h̃ be the extension of h into E determined by solving the Dirichlet problem

L(u)h̃ = 0 in E, h̃ = h on S.

Clearly ‖h̃‖E
s+1/2 ≤ C‖h‖s and ψ̃ := hψ(u)f − ψ(u)(hf) solves the BVP

L(u)ψ̃ = 2∂i

(√
ggij∂ih̃ ψ(u)f

)
in E,

B(u)ψ̃ = −ωνig
ij∂ih̃ ψ(u)f on S.

Hence by Lemma 4.3

‖ψ̃‖E
3/2 ≤ C‖√ggij∂ih̃‖s−1/2‖ψ(u)f‖E

1/2 ≤ C‖h‖s‖ψ(u)f‖E
1/2.

Together with (4.18) this implies (4.34).

5. The main estimate

In this section we prove Hs- a priori estimates for the nonlinear operator F w.r. to

variable bilinear forms which we define in the sequel. As already mentioned in the

introduction, these estimates are the main ingredient in the existence proof.

To begin with, for u ∈ Us, s > (m+ 1)/2 we define

P (u)v := v ·
(
n(u) ◦ u

)
, N(u)w := w

(
n(u) ◦ u

)
, (5.1)

Λ(u)w := ∇Γu(w ◦ u−1) ◦ u (5.2)

as the euclidean scalar product and multiplication with outer normal n(u) of Γu and

pullback of tangential gradient ∇Γu along Γu, respectively. If P (u), N(u), and Λ(u) are

considered as operators in v and w, their coefficients are smooth functions of u and its

first derivatives. Thus, using (4.1) – (4.5),

P (u) ∈ L
(
Ht(S,Rm), Ht(S)

)
, N(u) ∈ L

(
Ht(S), Ht(S,Rm)

)
, (5.3)

Λ(u) ∈ L
(
Ht(S), Ht−1(S,Rm)

)
(5.4)

depend smoothly on u ∈ Us for 0 ≤ t ≤ s and 1 ≤ t ≤ s respectively. Clearly, the

operators P,N,Λ satisfy invariance properties as stated for F in (4.26). As a consequence,

the differentiation rule (4.27) and its corollary (4.28) are also true for P,N,Λ; we make use

of that without explicit mention. Further, recall that the pullback ∆(u)w of the Laplace

Beltrami operator ∆Γu on Γu according to (3.8) and the operator H(u) according to

(3.7) may be expressed as

∆(u)w = Λi(u)
(
Λi(u)w

)
, H(u) = −γΛi(u)

(
ni(u) ◦ u

)
,

respectively (see e.g. [8], Sect. 15.1). Thus, recalling (4.31), the operator G defined by

(3.4), (3.7) satisfies

[u 7→ G (u)] ∈ C∞
(
Us, H

s−2(S)
)

provided s > (m+ 3)/2. Together with Corollary 4.4 this implies the smoothness of F

as stated in (3.12).

In further considerations of this section we fix the integer s0 := [(m+5)/2]+1 and set

Ũs := Us ∩K for all s ≥ s0
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with an Hs0- bounded and L2-closed subset K ⊆ Us0
. Note that

1 ≤ C‖u‖s0
≤ C ′‖u‖s, ‖u‖C3(S) ≤ C

for all u ∈ Ũs, s ≥ s0. By transforming the well-know integration by parts formula for

the differential operator ∇Γu onto S, it gets the form
∫

S

ωΛi(u)f dS = −
∫

S

ω(κΓu ◦ u)(ni(u) ◦ u)f dS.

Consequently, for u ∈ Ũs, s ≥ s0 and any f ∈ C1(S) we have
∣∣∣∣
∫

S

Λi(u)f dS

∣∣∣∣ ≤ C

∫

S

|f | dS. (5.5)

Furthermore, note the estimates

‖G (u)‖s−2, ‖F (u)‖s−2 ≤ C‖u‖s for all u ∈ Ũs, s ≥ s0.

Now we can formulate

Lemma 5.1. Let s ≥ s0. Then for u ∈ Us, v ∈ Hs(S,Rm) and f ∈ Hs−1(S) there holds

F ′(u){v}f = F (u)
(
Λ(u)

(
P (u)v

)
· F (u)f

)
+R(u){v}f,

where R allows the estimate

‖R(u){v}f‖0 ≤ C‖f‖s−1‖v‖0.

The constant is independent of u as long as u varies in Ũs.

Proof. As in the proof of Lemma 4.5 we can assume u ∈ Vs. We have

F ′
i (u){v}f = ∂iϕ

′ ◦ u+ vj∂i∂jϕ ◦ u,
where ϕ′ = ϕ′(u, f){v} denotes the derivative with respect to u of the velocity potential

ϕ = ϕ(u, f) in Ωu. As

‖ϕ(u, f)‖C2(Ω̄u) ≤ C1‖ψ(u)f‖C2(Ē) ≤ C2‖ψ(u)f‖Hs+1/2(E) ≤ C3‖f‖s−1

by Sobolev’s embedding and (4.21), we obtain

‖vj∂i∂jϕ ◦ u‖S
0 ≤ C‖f‖s−1‖v‖0.

Furthermore, ϕ′ satisfies ∆ϕ′ = 0 in Ωu and the boundary condition

ϕ′ + n · ∇ϕ′ + n′ · ∇ϕ+ (∂iϕ+ nj∂i∂jϕ)vi ◦ u−1 = 0 on Γu

where we have used the abbreviation

n′ = ∂ε

(
n(u+ εv) ◦ (id+ εv ◦ u−1)

)
|ε=0

for the variation of the outer normal on Γu. A simple calculation, cf. Lemma 1.1 in [3],

shows

n′ = −∇Γu

(
n · v ◦ u−1

)
+ vi ◦ u−1∇Γuni. (5.6)

By retransformation onto the reference domain E, this implies for ψ̃′ = ϕ′ ◦ u to satisfy

the BVP

L(u)ψ̃′ = 0 in E, B(u)ψ̃′ = Λ(u)
(
P (u)v

)
· F (u)f +R1(u){v}f on S.
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The operator R1 acts by pointwise multiplications with respect to the components of v,

hence by the same reasoning as above we get the estimate

‖R1(u){v}f‖S
0 ≤ C‖f‖s−1‖v‖0.

Thus the result follows.

For u ∈ Us let M(u) ∈ L
(
L2(S,Rm)

)
be the operator defined by

M(u)v := v − Λ(u)
(
ψ(u)P (u)v

)
. (5.7)

By (4.19) and (5.4),

M(u) ∈ L
(
Ht(S,Rm), Ht(S,Rm)

)
, 0 ≤ t ≤ s− 1,

depends smoothly on u ∈ Us, s > (m+ 1)/2; for later reference we state explicitly

‖M(u){u1, . . . , uk}v‖t ≤ C‖u1‖s · · · ‖uk‖s‖v‖t. (5.8)

Because of P (u)Λ(u) = 0 the operator M(u) constitutes an isomorphism in L2(S,Rm)

with inverse

M(u)−1v = v + Λ(u)
(
ψ(u)P (u)v

)
(5.9)

and we have

C−1‖v‖0 ≤ ‖M(u)v‖0 ≤ C‖v‖0 (5.10)

for all v ∈ L2(S,Rm) with a positive constant C independent of u ∈ Ũs.

Lemma 5.2. Let s > (m + 3)/2. There exists a positive constant C such that for all

u ∈ Ũs and f ∈ L2(S), w ∈ L2(S,Rm)
∣∣(M(u)F (u)f,M(u)w

)
0
−

(
f, P (u)w

)
0

∣∣ ≤ C‖f‖−1‖w‖0. (5.11)

Proof. Reformulating the boundary condition satisfied by ψ(u)f , we have

P (u)
(
F (u)f

)
= f − ψ(u)f, F (u)f − Λ(u)

(
ψ(u)f

)
= N(u)

(
f − ψ(u)f

)
,

and consequently

M(u)F (u)f = F (u)f − Λ(u)ψ(u)
(
f − ψ(u)f

)

= N(u)
(
f − ψ(u)f

)
+ Λ(u)ψ(u)2f.

Further, recalling P (u)Λ(u) = 0,
(
N(u)f,M(u)w

)
0

=
(
f, P (u)M(u)w

)
0

=
(
f, P (u)w

)
0
,

and we obtain
(
M(u)F (u)f,M(u)w

)
0

=
(
f − ψ(u)f, P (u)w

)
0

+
(
Λ(u)ψ(u)2f,M(u)w

)
0
.

Together with

‖Λ(u)ψ(u)2f‖S
0 , ‖ψ(u)f‖S

0 ≤ C‖f‖−1

from (4.18), this immediately implies (5.11).
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In view of (5.10), for every fixed u ∈ Us, s ≥ s0,

(v, w)s,u :=
(
M(u)v,M(v)w

)
0
+

∑

|α|=s

(
M(u)Dαv,M(u)Dαw

)
0

(5.12)

defines a scalar product on Hs(S,Rm) which is equivalent to the usual one.

Lemma 5.3. Let s ≥ s0 and u ∈ Ũs.

(i) There exists a C > 0 independent of u such that for all v ∈ H s+2(S,Rm) and

w ∈ Hs(S,Rm)

(v, w)s,u ≤ C‖v‖s+2‖w‖s−2. (5.13)

(ii) There exist λ0, c0 > 0 independent of u such that for all v ∈ Hs+4(S,Rm) and

λ ≥ λ0 (
v, (∆2

0 + λ)v
)

s,u
≥ c0‖v‖2

s+2. (5.14)

with the elliptic operator ∆0 := DiDi on S.

Proof. (i) We consider a typical term of (5.12) and show

Iα(v, w) :=
(
M(u)Dαv,M(u)Dαw

)
0
≤ C‖v‖s+2‖w‖s−2 (5.15)

for smooth v, w and multi-indices α with |α| = s. Recalling (5.8), we have

‖M (k)(u){Dα1u, . . . , Dαku}w‖0 ≤ C‖w‖0

if |α1|, . . . , |αk| ≤ 2. Thus, writing Dαw = DβDδw with |β| = 2 and |δ| = s−2, multiple

application of the differentiation rule gives a representation

M(u)Dαw =
∑

(−1)|α0|Dα0M (k)(u){Dα1u, . . . , Dαku}Dδw, (5.16)

where |αi| ≤ 2 (in fact α0 + . . .+ αk = β), hence

‖M (k)(u){Dα1u, . . . , Dαku}Dδw‖0 ≤ C‖w‖s−2.

Furthermore, using the differentiation rule again, we have

‖M(u)Dαv‖2 ≤ C‖v‖s+2,

and consequently
(
M(u)Dαv,Dα0M (k)(u){Dα1u, . . . , Dαku}Dδv

)
0
≤ C‖v‖s+2‖w‖s−2.

This implies (5.15).

(ii) Using the same type of arguments as in the proof of part (i) we obtain
(
v,∆2

0v
)
s,u

≥
(
DiDjv,DiDjv

)
s,u

− C‖v‖s+1‖v‖s+2

and consequently
(
v, (∆2

0 + λ)v
)

s,u
≥ c0

(
‖v‖2

s+2 + λ‖v‖2
s

)
− C‖v‖2

s+1

with a positive constant c0. Hence applying

‖v‖2
s+1 ≤ σ‖v‖2

s+2 + C(σ)‖v‖2
s

with σ = c0/2 and choosing λ sufficiently large we get the claim.
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An immediate consequence of Lemma 5.3, (i) is the existence of a continuous bilinear

form 〈·, ·〉s,u on Hs+2(S,Rm) × Hs−2(S,Rm) compatible with (·, ·)s,u, i.e. there holds

〈v, w〉s,u = (v, w)s,u for all v, w ∈ Hs+2(S,Rm). Further, we put for ε ∈ (0, 1]

〈v, w〉εs,u := 〈v, w〉s0 ,u + ε2〈v, w〉s,u. (5.17)

Lemma 5.4. We assume as above s ≥ s0, ε ∈ (0, 1].

(i) For fixed u ∈ Us, the mapping 〈·, ·〉εs,u : Hs+2(S,Rm) × Hs−2(S,Rm) → R con-

stitutes a continuous, nondegenerate bilinear form, symmetric on Hs+2(S,Rm) ×
Hs+2(S,Rm).

(ii) With constants C > 0 independent of ε, u, v, w, one has for u,w ∈ Ũs and v ∈
Hs+2(S,Rm):

C
(
‖v‖2

s0
+ ε2‖v‖2

s

)
≤ 〈v, v〉εs,u ≤ C−1

(
‖v‖2

s0
+ ε2‖v‖2

s

)
, (5.18)

〈v, v〉εs,u ≤ 〈v, v〉εs,w

(
1 + C‖u− w‖s0−2

)
. (5.19)

(iii) The weak convergences un ⇀ u ∈ Hs, wn ⇀ w ∈ Hs−2 imply for each v ∈ Hs+2

〈v, wn〉εs,un
→ 〈v, w〉εs,u.

Proof. (i) It remains to show nondegeneracy only. First note that Lemma 5.3, (ii)

implies for every v ∈ Hs+2 and λ ≥ λ0

〈
v,∆2

0v + λv
〉ε

s,u
≥ c0‖v‖2

0.

Let ε, u, w be fixed such that 〈v, w〉εs,u = 0 for every v ∈ Hs+2. Let λ be sufficiently large

and v ∈ Hs+2 the unique solution of the fourth-order elliptic equation

∆2
0v + λv = w on S.

Thus we have

0 =
〈
v, w

〉ε

s,u
=

〈
v,∆2

0v + λv
〉ε

s,u
≥ c0‖v‖2

0

for our special v, consequently it follows that v = 0 and then w = 0.

(ii) The estimates (5.18) are immediate consequences of (5.10). Concerning (5.19) we

only note that by (5.8)

‖M(u)f −M(w)f‖0 ≤ C‖u− w‖s0−2‖f‖0

from which the assertion can easily be derived.

(iii) Fix v ∈ Hs+2, u ∈ Us and for the time being w ∈ Hs. Using the representation

(5.14), we get for |α| = s
(
M(u)Dαv,M(u)Dαw

)
0

=
∑

(−1)|α0|
(
M(u)Dαv,Dα0M (k)(u){Dα1u, . . . , Dαku}Dδw

)
0

with |αi| ≤ 2, |δ| = s− 2. Now assume un ⇀ u in Us, thus un → u in Hs′

with s ∈ [0, s),

and wn ⇀ w in Hs−2. According to the above remark,
〈
v, wn

〉
s,un

can essentially be

represented as a sum of terms
∑

(−1)|α0|
〈
M(un)Dαv,Dα0M (k)(un){Dα1un, . . . , D

αkun}Dδwn

〉
H2×H−2
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with α, αi, and δ as above, where 〈·, ·〉H2×H−2 denotes the L2-duality map onH2(S,Rm)×
H−2(S,Rm). From the smoothness properties of M we conclude

M(un)Dαv →M(u)Dαv in H2(S,Rm). (5.20)

Similarly, uniform boundedness of ‖wn‖s−2 and convergence un → u in Hs0−2 imply via

(5.8)

M (k)(un){Dα1un, . . . , D
αkun}Dδwn −M (k)(u){Dα1u, . . . , Dαku}Dδwn → 0

in L2. As strong continuity of linear operators implies weak continuity, we have

M (k)(u){Dα1u, . . . , Dαku}Dδwn ⇀M (k)(u){Dα1u, . . . , Dαku}Dδw

weakly in L2, and consequently

Dα0M (k)(un){Dα1un, . . . , D
αkun}Dδwn ⇀ Dα0M (k)(u){Dα1u, . . . , Dαku}Dδw

weakly in H−2. Together with (5.20), this completes the proof.

Lemma 5.5. Let s ≥ s0 be an integer, u ∈ Ũs and assume γ = ρ2 with ρ ∈ C∞(S).

(i) There exists positive constants c, C, independent of u, such that

‖G ′(u)v‖0 ≤ C
(
‖ρP (u)v‖2 + ‖v‖1

)
, (5.21)

(
DP (u)v,DG

′(u)v
)
0
≤ −c‖ρP (u)Dv‖2

1 + C‖v‖2
1 (5.22)

for all v ∈ H2(S,Rm) and any derivative D = Dα, |α| ≤ 1.

(ii) Moreover, for |α| = s we have

‖Dα
G (u)‖−1 ≤ C

(
‖ρP (u)Dαu‖1 + ‖u‖s

)
, (5.23)

(
P (u)Dαu,Dα

G (u)
)
0
≤ −c‖ρP (u)Dαu‖2

1 + C‖u‖2
s. (5.24)

Proof. (i) To show (5.21), (5.22) it suffices to construct a representation of the form

G
′(u)v = γ∆(u)(P (u)v) + ρR1(u)v +R2(u)v (5.25)

with operators R1(u), R2(u) such that

‖R1(u)v‖0, ‖R2(u)v‖1 ≤ C‖v‖1. (5.26)

For the part H ′(u)v of G ′(u)v, which is a second order differential operator in v, this is

quite clear using the well-known fact that the linearization of the mean curvature has

∆(u)(P (u)v) as main part. Concerning G′(u)v we note

−G′(u)v = A(u)∆′(u){v}γ +A′(u){v}∆(u)γ,

∆′(u){v}γ = 2ρ∆′(u){v}ρ+ 4Λ′
i(u){v}ρΛi(u)ρ,

hence we have the representation −G′(u)v = ρR1(u) +R2(u) with

R1(u) := 2A(u)∆′(u){v}ρ,
R2(u) := 2

(
A(u)(ρ∆′(u){v}ρ) − ρA(u)∆′(u){v}ρ

)

+ 4A(u)Λ′
i(u){v}ρΛi(u)ρ+A′(u){v}∆(u)γ.
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Due to

‖∆(u)ρ‖s0−2 ≤ C, ‖∆′(u){v}ρ‖−1, ‖Λ′
i(u){v}ρ‖0 ≤ C‖v‖1,

the estimate (5.26) for R1 is now a consequence of

‖A(u)f‖0 ≤ C‖f‖−1, ‖∆′(u){v}ρ‖−1 ≤ C‖v‖1,

whereas the estimate for R2 follows from the commutator estimate (4.33) together with

‖A(u)f‖1 ≤ C‖f‖0, ‖A′(u){v}f‖1 ≤ C‖v‖1‖f‖s0−2.

(ii) Similar to part (i), it suffices to show the existence of a decomposition

Dα
G (u) = γ∆(u)(P (u)Dαu) + ρR1(u) +R2(u)

with operators R1, R2 allowing the estimates

‖R1(u)‖−1, ‖R2(u)‖0 ≤ C‖u‖s.

Again, for the partDαH ofDαG this is quite clear, whereR1, R2 are now local differential

operators with respect to u of order s + 1 and s, respectively. Concerning DαG(u) we

write α = β + δ with |β| = 1, |δ| = s− 1 and calculate

−DαG(u) = 2ρDβA(u)∆′(u){Dδu}ρ+Q1 + . . .+Q5

with

Q1 := Dβ
(
DδA(u)∆(u)γ −A(u)Dδ∆(u)γ

)
,

Q2 := DβA(u)
(
Dδ∆(u)γ − ∆′(u){Dδu}γ

)
,

Q3 := 4DβA(u)Λ′
i(u){Dδu}ρΛi(u)ρ,

Q4 := 2Dβ
(
A(u)(ρ∆′(u){Dδu}ρ) − ρA(u)∆′(u){Dδu}ρ

)
,

Q5 := 2(Dβρ)A(u)∆′(u){Dδu}ρ.

Now we set R1 := 2DβA(u)∆′(u){Dδu}ρ and R2 := Q1 + . . . + Q5. The necessary

estimates follow from the properties of A, in particular, Proposition 4.7 (ii) and (4.33),

and from the additional commutator estimate

‖Dδ∆(u)γ − ∆′(u){Dδu}γ‖0 ≤ C‖u‖s.

Now we are prepared to formulate and prove the following a-priori estimates for F

w.r. to the bilinear forms 〈·, ·〉s,u.

Proposition 5.6. Let s ≥ s0 be integer. Then
〈
v,F ′(u)v

〉
1,u

≤ C‖v‖2
1, (5.27)

〈
u,F (u)

〉
s,u

≤ C‖u‖2
s (5.28)

for all u ∈ Ũs and v ∈ H2(S,Rm) with constants independent of u and v.

Proof. We start with the proof of (5.27). Due to (5.21), for any derivative D
∥∥DF

′(u)v − F ′(u){Dv}G (u) − F (u)
(
DG

′(u)v
)∥∥

0
≤ C

(
‖v‖1 + ‖ρP (u)v‖2

)
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and consequently by Lemma 5.1

DF
′(u)v = F (u)

(
F (u) · Λ(u)(P (u)Dv) +DG

′(u)v
)

+R(u)v,

where the remainder term satisfies

‖R(u)v‖0 ≤ C
(
‖v‖1 + ‖ρP (u)v‖2

)
.

Further, by (5.21) we have

‖DG
′(u)v‖−1 ≤ C

(
‖v‖1 + ‖ρP (u)v‖2

)
,

and moreover

‖F (u) · Λ(u)(P (u)Dv)‖−1 ≤ C‖v‖1.

Hence by Lemma 5.2 it follows that
〈
Dv,DF

′(u)v
〉
0,u

≤
(
P (u)Dv,F (u) · Λ(u)(P (u)Dv) +DG

′(u)v
)
0

+ I(u)v2

where now

I(u)v2 ≤ C
(
‖v‖1 + ‖ρP (u)v‖2

)
‖v‖1.

Writing
(
P (u)Dv,F (u) · Λ(u)(P (u)Dv)

)
0

=
1

2

∫

S

(
Λi(u)

(
Fi(u)(P (u)Dv)2

)
− (P (u)Dv)2Λi(u)Fi(u)

)
dS,

an integration by parts on S using (5.5) yields
∣∣(P (u)Dv,F (u) · Λ(u)(P (u)Dv)

)
0

∣∣ ≤ C‖v‖2
1,

hence together with Lemma 5.5, (5.22) we obtain the estimate (5.27).

Further, to prove (5.28) we use the abbreviation

‖u‖′s+1 :=
(
‖u‖s +

∑

|α|=s

‖ρP (u)Dαu‖1

)
.

Using Proposition 4.6, (ii) we write

Dα
F (u) = F (u)Dα

G (u) + F ′(u){Dαu}G (u) +R1(u),

where R1 allows the estimate

‖R1(u)‖0 ≤ C
(
‖u‖s‖G (u)‖s0−2 + ‖G (u)‖s−1

)
≤ C‖u‖′s+1

because of

‖G (u)‖s−1 ≤ C




∑

|α|=s

‖Dα
G (u)‖−1 + ‖G (u)‖0




and (5.23). Further, using Lemma 5.1 we have

Dα
F (u) = F (u)

(
Dα

G (u) + F (u) · Λ(u)(P (u)Dαu)
)

+R1(u) +R2(u),

where again

‖R2(u)‖0 ≤ C‖Dαu‖0 ≤ C‖u‖s,
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and consequently
〈
R1(u) +R2(u), D

αu
〉
0,u

≤ C‖u‖′s+1‖u‖s.

By Lemma 5.2, (5.11) we obtain
〈
Dαu,Dα

F (u)
〉
0,u

=
(
P (u)Dαu,F (u) · Λ(u)(P (u)Dαu) +Dα

G (u)
)
0
+ I(u),

where I(u) allows the estimate

I(u) ≤ C‖Dαu‖0

(
‖Dα

G (u)‖−1 + ‖F (u) · Λ(u)(P (u)Dαu)‖−1

)

≤ C
(
1 + ‖u‖′s+1

)
‖u‖s.

Finally, by an integration by parts as above we get
(
Dαu,F (u) · Λ(u)(P (u)Dαu

)
0
≤ C‖u‖2

s.

Together with (5.24), this completes the proof.

The structure of F ′(u) as stated in Lemma 5.1 and the integration by parts argument

used in the above proof are necessary to cover the case of a γ which can degenerate. If

γ is strictly positive the argumentation can be simplified by using Lemma 5.1 to obtain

the estimate

‖F ′(u){v}f‖0 ≤ C
(
‖P (u)v‖1 + ‖v‖0

)
‖f‖s0−1. (5.29)

To conclude this section we add some remarks about the case of a slip factor δ (introduced

in (2.8)) different from one. The nonlinear operator of the evolution equation is now

F1(u) := F1(u)
(
G1(u)

)

with

F1(u)f :=
(
δ id + (1 − δ)N(u)P (u)

)
F (u)f, G1(u) = H(u) + δG(u).

Clearly, Lemma 4.5 and Proposition 4.6 continue to hold also for F1. To see that F ′
1(u)

satisfies an estimate parallel to (5.29) as well, note that due to (5.6) we have

‖P ′(u){v}w‖0 ≤ C
(
‖P (u)v‖1 + ‖v‖0

)
‖w‖s0−2,

‖N ′(u){v}z‖0 ≤ C
(
‖P (u)v‖1 + ‖v‖0

)
‖z‖s0−2.

This implies such an estimate for F1. Hence, by changing the definition (5.7) of M into

M(u)v := v − δΛ(u)
(
ψ(u)P (u)v

)

and 〈·, ·〉s,u accordingly, we obtain the crucial estimates (5.27), (5.28) of Proposition 5.6

also for F1, at least in the case of strictly positive γ. Note that for δ = 0 the bilinear

forms 〈·, ·〉s,u are in fact independent of u.

6. Proof of Theorems 3.1 and 3.2

Lemma 6.1. Fix Ũs0
⊂ Us0

. Let u, v ∈ Cw

(
[0, T ], Hs0

)
∩ C1

w

(
[0, T ], Hs0−2

)
be two

solutions of (3.2) with

u(t), v(t) ∈ Ũs0
for t ∈ [0, T ].
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There exists a real number C depending only on T and Ũs0
such that

‖u(t) − v(t)‖1 ≤ C‖u(0) − v(0)‖1 for all t ∈ [0, T ]. (6.1)

Proof. We put w(t) := v(t) − u(t) and remark

u, v ∈ C
(
[0, T ], Hs

)
∩ C1

(
[0, T ], Hs−2

)
for 2 ≤ s < s0;

in particular, the mapping [0, T ] 3 t 7→
〈
w(t), w(t)

〉
0,u(t)

is differentiable and we will

show
d
dt

〈
w(t), w(t)

〉
1,u(t)

≤ C
〈
w(t), w(t)

〉
1,u(t)

, (6.2)

which implies (6.1) via Gronwall’s lemma. Recalling that H is a quasilinear second order

differential operator, we have

‖H ′(z)w‖1 ≤ C‖w‖3, ‖H ′′(z){w,w}‖1 ≤ C‖w‖3‖w‖s0−2

and accordingly by (4.32)

‖G′(z)w‖1 ≤ C‖v‖3, ‖G′′(z){w,w}‖1 ≤ C‖w‖3‖w‖s0−2.

Consequently, together with Lemma 4.5, (4.20) we obtain

‖F ′′(z){w,w}‖1 ≤ C‖w‖3‖w‖s0−2. (6.3)

Using Taylor’s theorem we have

w′(t) := d
dtw(t) = F

(
v(t)

)
− F

(
u(t)

)
= F

′
(
u(t)

)
w(t) +R

(
u(t), v(t)

)
;

the remainder term therein can be estimated by (6.3) and norm convexity
∥∥R

(
u(t), v(t)

)∥∥
1
≤ C1‖w(t)‖s0−2‖w(t)‖3 ≤ C2‖w(t)‖s0

‖w(t)‖1 ≤ C3‖w(t)‖1.

Thus, together with (5.27), we obtain
〈
w(t), w′(t)

〉
1,u(t)

=
〈
w(t),F ′

(
u(t)

)
w(t) +R

(
u(t), v(t)

)〉
1,u(t)

≤ C‖w(t)‖2
1. (6.4)

Furthermore, recalling (5.8), we have
∥∥M ′

(
u(t)

)
{u′(t)}w(t)

∥∥
1
≤ C2‖u′(t)‖s0−2‖w(t)‖1,

hence

‖u′(t)‖s0−2 = ‖F (u(t))‖s0−2 ≤ C

gives
∥∥M ′

(
u(t)

)
{u′(t)}w(t)

∥∥
1
≤ C‖w(t)‖1. (6.5)

Consequently, considering

1
2

d
dt

〈
w(t), w(t)

〉
1,u(t)

=
〈
w(t), w′(t)

〉
1,u(t)

+
(
M

(
u(t)

)
w(t),M ′

(
u(t)

)
{u′(t)}w(t)

)
1
,

we obtain the desired estimate (6.1) from (6.4), (6.5).

We note a result on nonlinear interpolation, whose proof can be found in [2], Propos-

tion A.1 and Remark A.2.
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Lemma 6.2. Let U ⊆ Hs(S,Rm), s ≥ 1 be an open set. Let Tα : U → H1(S,Rm) be

mappings with Tα(U ∩ Hs+1) ⊆ Hs+1; α runs through a certain index set I. Further,

assume Lipschitz continuity of Tα in H1 and boundedness of Tα in Hs+1:

‖Tα(u) − Tα(v)‖1 ≤ C‖u− v‖1 for all u, v ∈ U ,

‖Tα(u)‖s+1 ≤ C
(
1 + ‖u‖s+1

)
for all u ∈ U ∩Hs+1

with a constant C independent of u, v and α ∈ I. Then Tα(U ∩ Hs) ⊆ Hs and the

mappings Tα : U ⊆ Hs → Hs are continuous, uniformly with respect to α ∈ I.

Now we are prepared for the proof of our theorems. In many respects, it is parallel to

the proof of the main results in [9].

Proof of Theorem 3.1. Step 1. We show that for any given ū0 ∈ Us0
and any integer

s ≥ s0 there exist T = T (ū0, s) > 0 and δ = δ(ū0, s) > 0 such that the Cauchy problem

(3.2) has a unique solution in the class

u ∈ Cw

(
[0, T ], Us

)
∩ C1

w

(
[0, T ], Hs−2

)

for all initial values u0 ∈ Hs with ‖u0− ū0‖s0
≤ δ. The uniqueness of the solution follows

immediately from Lemma 6.1. In order to prove the existence we use Theorem 3.4. With

a fixed s ≥ s0 and an ε ∈ (0, 1] which will be fixed below, we put

X = Hs+2(S,Rm), ‖ · ‖X = ‖ · ‖s0+2 + ε‖ · ‖s+2;

Y = Hs(S,Rm), ‖ · ‖Y = ‖ · ‖s0
+ ε‖ · ‖s;

Z = Hs−2(S,Rm), ‖ · ‖Z = ‖ · ‖s0−2 + ε‖ · ‖s−2.

Further, let Ũs be as in Section 5 and assume that the given ū0 is an interior point. Then,

according to the results of Section 5, for u ∈ Ũs the bilinear forms 〈v, w〉εs,u : X ×Z → R

satisfy the requirements (H) of Section 3; note that the constants C,M in (H) can be

chosen independently of ε. As in the proof of Theorem 3.3 we choose w0 ∈ C∞(S,Rm)

and R > 0 (both independent of ε) such that

‖w0 − u0‖s0
≤ R/(32C5)1/2, {w0 + v | v ∈ B} ⊆ Ũs0

with the ball B :=
{
v ∈ Y | ‖v‖Y < R

}
. We set

〈v, w〉u := 〈v, w〉εs,w0+u, |||v||| = 〈v, v〉w0+v

and define a map H : B ⊆ Y → Z by

H (v) := F (v + w0), u ∈ B.

Further, the mapping H : B ⊆ Y → Z is weakly sequentially continuous and

〈w0 + v,H (v)〉 ≤ C1‖w0 + v‖2
Y ≤ C2

by Proposition 5.6. Moreover we have

‖H (v)‖Z ≤ C3‖v + w0‖Y ≤ C4

and

|〈w0,H (v)〉v | ≤ C5‖w0‖X‖H (v)‖Z ≤ C6.
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These estimates hold for all v ∈ B with constants C1, . . . which may depend on C,M,R, s

and ū0, w0, but not on v. Gathering them, we obtain the inequality

2〈v,H (v)〉v +M‖H (v)‖Z |||v||| ≤ C7 for all v ∈ B ∩X.

Now, let u0 ∈ Hs(S,Rm) be given such that

‖u0 − ū0‖s0
≤ R/(32C5)1/2 (6.6)

Hence, with r := R/(2C3)1/2 we find

|||u0 − w0||| ≤ C
(
‖u0 − ū0‖s0

+ ‖ū0 − w0‖s0
+ ε(‖u0‖s + ‖w0‖s)

)
≤ r

if ε is chosen according to

ε := min
{
1, r/4C(‖u0‖s + ‖w0‖s)

}
. (6.7)

By Theorem 3.4, applied to H , there exists T > 0, independent of u0 with (6.6), and a

solution

v ∈ Cw

(
[0, T ], B ∩Hs

)
∩ C1

w

(
[0, T ], Hs−2

)

of

dv(t)/dt = G (v(t)) for t ∈ [0, T ], v(0) = u0 − w0.

Then u := v + w0 is a solution of (3.2) with initial value u(0) = u0 and we have

‖u(t)‖s ≤ ‖w0‖s + ‖v(t)‖s ≤ ‖w0‖s + ε−1‖v(t)‖Y ,

which in view of (6.7) implies

‖u(t)‖s ≤ C(1 + ‖u(0)‖s). (6.8)

Step 2. Let u, ũ be two solutions of (3.2) in [0, T ] according to Step 1 with initial values

u(0), ũ(0) ∈ U , U :=
{
v ∈ Hs | ‖v − ū0‖s0

≤ δ
}
,

δ > 0 sufficiently small. Lemma 6.1 gives

‖u(t) − ũ(t)‖1 ≤ C‖u(0) − ũ(0)‖1. (6.9)

For fixed t ∈ [0, T ] we consider the evolution operator

U 3 u0 7→ Tt(u0) := u(t) ∈ Hs

assigning to any initial value u0 the value of the corresponding solution of (3.2) at time

t. By Step 1 with s replaced by s+ 1 we obtain Tt(U ∩Hs+1) ⊆ Hs+1 and the estimate

‖Tt(u0)‖s+1 ≤ C
(
1 + ‖u0‖s+1

)
. (6.10)

(6.9), (6.10) and together with the interpolation result from Lemma 6.2 shows the con-

tinuity of the mapping

U ∩Hs 3 u0 7→ u(t) ∈ Hs for s ≥ s0,

uniformly with respect to t ∈ [0, T ].

Step 3. To complete the proof of Theorem 3.1 it remains to show that the solutions

according to Step 1 actually belong to

u ∈ C
(
[0, T ], Hs

)
∩ C1

(
[0, T ], Hs−2

)
. (6.11)
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To do this, we approximate the initial value u0 = u(0) by a sequence un
0 ∈ Hs+1 such

that un
0 → u0 in Hs. Then by Step 1, for n sufficiently large, there exist solutions un of

(3.2) with un(0) = un
0 in the class

un ∈ Cw

(
[0, T ], Hs+1

)
∩ C1

w

(
[0, T ], Hs−1

)
,

which in particular implies

un ∈ C
(
[0, T ], Hs

)
∩ C1

(
[0, T ], Hs−2

)
.

On the other hand, by Step 2, we have un(t) → u(t) in Hs uniformly with respect to

t ∈ [0, T ]. As the uniform limit of continuous functions is continuous again, this implies

(6.11).

Proof of Theorem 3.2. Let a solution u ∈ C([0, T ], Us) ∩ C1([0, T ], Hs−2) be given.

The set {u(t) | t ∈ [0, T ]} is compact in Hs and can be covered by the open sets {v ∈
Hs | ‖v − u(t)‖s < δ(u(t), s + 1)}, t ∈ [0, T ], where δ(u(t), s + 1) are the same as in the

proof of Theorem 3.1. Choosing a finite subcover, we find from this theorem and the

autonomous character of (3.2) that there is a T0 > 0 such that for any t ∈ [0, T ] with

u(t) ∈ Hs+1, we have

u|[t,T1] ∈ C([t, T1], Us+1) ∩ C1([t, T1], H
s−1), T1 := min{t+ T0, T}.

Proceeding stepwise, we obtain (i).

A similar compactness argument together with Theorem 3.1 and its proof ensures the

existence of T2 > 0 such that the following is true for all t ∈ [0, T ]: Problem (3.2) is solv-

able on the time interval [0, T2] (in the class (3.13)) for all initial values z sufficiently near

u(t), and the mapping which assigns to z its corresponding solution V (·, z) is continuous

with values in C([0, T2], H
s). We choose ti ∈ [0, T ] such that 0 = t0 < . . . < tn = T ,

ti − ti−1 < T2, and open Hs-neighbourhoods Ki of u(ti) small enough to ensure that V

is defined on Ki and V (ti − ti−1,Ki−1) ⊂ Ki, i = n− 1, . . . , 1. Now (ii) follows from the

continuity of the composition of continuous maps.

A. Proof of Theorem 3.4

We will construct a solution of (3.19) by implicit time discretization, solving the nonlinear

problems in each timestep by Galerkin approximations. For this purpose, we need the

following lemma:

Lemma A.1. For any K ∈ (0, r2) there is an ε0 > 0 such that for any ε ∈ (0, ε0] and

any v ∈ Y satisfying |||v|||2 ≤ K there is a u∗ ∈ B satisfying

u∗ = v + εG (u∗) (A.1)

and the estimate

|||u∗|||2 ≤ |||v|||2 + εβ
(
|||u∗|||2

)
≤ 2K. (A.2)
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Proof: For arbitrary v ∈ Y , u ∈ X ∩ B we have

〈u, u− εG (u) − v〉u = |||u|||2 − ε〈u,G (u)〉u − (u, v)u

≥ |||u|||2 − ε

2
β
(
|||u|||2

)
+
εM

2
‖G (u)‖Z |||u|||2 − |||u|||‖v‖u

≥ 1

2

(
|||u|||2 − εβ

(
|||u|||2

)
− ‖v‖2

u + εM‖G (u)‖Z |||u|||2
)
. (A.3)

Choose ε0 > 0 such that for all ε ∈ (0, ε0] and for all s ∈ [0, 2C4K]

K − εβ(s) ≥ 0, (A.4)

1 − εβ′(s) ≥ 0. (A.5)

Assume now v ∈ B, |||v|||2 ≤ K. Let

B := {u ∈ Y | ‖u‖2
Y ≤ 2KC3}

and note that B is a closed convex subset of B. Assume ‖u‖2
Y = 2KC3. Then

2C2K = C−1‖u‖2
Y ≤ |||u|||2 ≤ C‖u‖2

Y = 2C4K,

‖v‖2
u ≤ C‖v‖2

Y ≤ C2|||v|||2 ≤ C2K.

Therefore, for ε ∈ (0, ε0],

〈u, u− εG (u) − v〉u ≥ 1

2
(C2K − εβ(|||u|||2)) ≥ 0. (A.6)

Let {Mn} be an increasing sequence of finite-dimensional subspaces of X whose union is

dense in X . We fix n, choose a basis {e1, . . . , en} of Mn and show that the variational

equality

〈w, un − εG (un) − v〉u = 0 for all w ∈ Mn (A.7)

has a solution un ∈ Mn ∩ B. Note that (A.7) is equivalent to g(un) = 0 where g :

Mn ∩ B →Mn is defined by

g(u) := Pu(u− εG (u) − v) with Pu(z) :=
n∑

i=1

〈ei, z〉uei.

Due to (H4), g is continuous. Assume now g(u) 6= 0 for all u ∈Mn ∩B. Then we define

the continuous operator f : Mn ∩ B →Mn by

f(u) := −
√

2KC3g(u)
/
‖g(u)‖Y .

As ‖f(u)‖2
Y = 2KC3, f maps the closed convex set Mn ∩ B into itself. Therefore, by

Brouwer’s fixed point theorem, there is an u ∈Mn∩B such that u = f(u). Consequently,

‖u‖2
Y = 2KC3, and from (A.6) we obtain the contradictory inequality

0 < |||u|||2 =
〈
u, f(u)

〉
u

= −
√

2KC3

‖g(u)‖Y

〈
u, g(u)

〉
u

= −
√

2KC3

‖g(u)‖Y

〈
u, u− εG (u) − v

〉
u
≤ 0.

Therefore, (A.7) is solvable for every n, and as {un} is bounded in Y , we can assume



On a Hele-Shaw Type Evolution 35

without loss of generality that un ⇀ u∗ in Y for some u∗ ∈ B. Passage to the limit in

(A.7) yields by (H4)

〈w, u∗ − εG (u∗) − v〉u∗ = 0 for all w ∈ Mn, n = 1, 2, . . .

and consequently by the density assumption

〈w, u∗ − εG (u∗) − v〉u∗ = 0 for all w ∈ X.

The nondegeneracy of 〈·, ·〉u∗ yields (A.1). To show the estimate (A.2), note at first that

|||u∗|||2 ≤ lim
n→∞

|||un|||2 ≤ 2C4K.

Thus, the second inequality in (A.2) follows from (A.4). To show the first inequality we

assume without loss of generality |||v||| ≤ |||u∗||| and use (A.5), (A.3), and (H4) to obtain

|||u∗|||2 − εβ(|||u∗|||2) ≤ lim
n→∞

(
|||un|||2 − εβ

(
|||un|||2

))

≤ lim
n→∞

(
‖v‖2

un
−Mε‖G (un)‖Z |||un|||2

)
≤ ‖v‖2

u∗ −Mε‖G (u∗)‖Z |||u∗|||2

≤ |||v|||2 +M‖u∗ − v‖Z |||v|||2 −Mε‖G (u∗)‖Z |||u∗|||2

= |||v|||2 +Mε‖G (u∗)‖Z |||v|||2 −Mε‖G (u∗)‖Z |||u∗|||2 ≤ |||v|||2.
As a further preparation for the proof of Theorem 3.4 we need the following simple result

on approximate solutions of the ordinary differential equation (3.18).

Lemma A.2. Assume u0 ∈ B and let ρ ∈ C1[0, T ] be the solution of (3.18). There is

an n0 ∈ N such that for n ≥ n0 and k = 1, . . . , n there are ρk
n, rn ∈ R such that

ρ0
n = |||u0|||2, ρk

n + δnβ(ρk+1
n ) ≤ ρk+1

n ≤ ρ
(
(k + 1)δn

)
+ rn, rn → 0

where δn := T/n.

Proof. If n0 is sufficiently large, n ≥ n0, there exist solutions ρn ∈ C1[0, T ] to the initial

value problems

ρ′n(t) = β
(
ρn(t)

)
+ 1/

√
n, ρn(0) = |||u0|||2.

We set

ρk
n := ρn(kδn), k = 0, . . . , n.

Then

ρk+1
n − ρk

n = δnρ
′
n(ξ) = δnβ(ρn(ξ)) + δnn

−1/2

for some ξ ∈
(
kδn, (k + 1)δn

)
. Moreover,

∣∣β
(
ρn(ξ)

)
− β

(
ρk+1

n

)∣∣ ≤ S
∣∣ρn(ξ) − ρk+1

n

∣∣ ≤ S′n−1

with constants S, S′ independent of n. Thus

ρk+1
n − ρk

n ≥ δnβ(ρk+1
n ) + δnn

−1/2 − S′δnn
−1 ≥ δnβ(ρk+1

n )

for n ≥ n0, n0 sufficiently large. Moreover, well-known results on the dependence of the

solution of ODE’s on their right hand side ensure

rn := max
t∈[0,T ]

|ρn(t) − ρ(t)| → 0, n→ ∞,
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hence

ρn(t) ≤ ρ(t) + rn, t ∈ [0, T ].

This proves the lemma.

Proof of Theorem 3.4. In a first step, we construct approximations uk
n for the solu-

tion at time kT/n. Choose K ∈
(
maxt∈[0,T ] ρ(t), r

2
)

and choose ε0 > 0 such that the

assertions of Lemma A.1 and (A.5) hold. Let n0 ∈ N be at least as large as in Lemma A.2

and assume additionally n0 ≥ T/ε0 and

ρ(t) + rn ≤ K for n ≥ n0 and t ∈ [0, T ].

Now we fix n ≥ n0 and show the existence of uk
n ∈ B, k = 0, . . . , n such that

uk+1
n = uk

n + δnG (uk+1
n ), k = 0, . . . , n− 1,

u0
n = u0,

|||uk
n|||2 ≤ ρk

n,

where the ρk
n are given by Lemma A.2. For k = 0, existence and the estimate are clear.

Assume now u0
n, . . . , u

k
n are constructed according to these conditions for 0 ≤ k ≤ n− 1.

Our assumptions imply δn ≤ ε0 and |||uk
n|||2 ≤ K, hence the existence of uk+1

n follows

from Lemma A.1. Moreover, by (A.2), |||uk+1
n |||2 ≤ 2K and

|||uk+1
n |||2 ≤ |||uk

n|||2 + δnβ
(
|||uk+1

n |||2
)
≤ ρk

n + δnβ
(
|||uk+1

n |||2
)
,

hence

|||uk+1
n |||2 − δnβ

(
|||uk+1

n |||2
)
≤ ρk+1

n − δnβ
(
ρk+1

n

)
.

Note that (A.5) implies that the mapping s 7→ s − δnβ(s) is monotone increasing on

[0, 2K], hence |||uk+1
n |||2 ≤ ρk+1

n .

In a second step, we approximate u on [0, T ] by piecewise linear functions un and

piecewise constant functions un, n ≥ n0, given by

un(t) := uk
n + δ−1

n (t− kδn)(uk+1
n − uk

n) for kδn ≤ t ≤ (k + 1)δn,

k = 0, . . . , n− 1,

un(t) := uk+1
n for kδn < t ≤ (k + 1)δn, k = 0, . . . , n− 1, un(0) = u0

n.

Then

un(t) = u0 +

∫ t

0

G
(
un(τ)

)
dτ, t ∈ [0, T ],

and with a suitable constant S independent of t ∈ [0, T ] and n ≥ n0:

‖un(t)‖Y , ‖un(t)‖Y ≤ S.

Consequently, ‖G
(
un(t)

)
‖Z is bounded independently of n and thus

‖un(t) − un(t′)‖Z ≤ L|t− t′|

with L independent of n. Hence, the sequence {un} is bounded and equicontinuous with

values in Z, hence by Ascoli’s theorem, we can assume without loss of generality

un → u in C
(
[0, T ], Z

)
.
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Moreover,

un(t) ⇀ u(t) in Y, t ∈ [0, T ]. (A.8)

To show this, fix t ∈ [0, T ] and choose an arbitrary subsequence {un′(t)}. As it is

bounded in Y , it has a weakly convergent subsequence {un′′(t)} for which un′′(t) ⇀ u?

in Y , hence also in Z, and thus u? = u(t). Now (A.8) follows from a standard argument.

An analogous argument shows

u ∈ Cw

(
[0, T ], Y

)
.

Furthermore, for t ∈
(
kδn, (k + 1)δn

]
we have

‖un(t) − un(t)‖Z = ‖un ((k + 1)δn) − un(t)‖Z ≤ Lδn,

hence also

un → u in C
(
[0, T ], Z

)
,

and, by the same arguments as for un above,

un(t) ⇀ u(t) in Y, t ∈ [0, T ].

As G is weakly sequentially continuous,

G
(
un(t)

)
⇀ G

(
u(t)

)
in Z, t ∈ [0, T ],

and G ◦ u ∈ Cw

(
[0, T ], Z

)
. If f is any bounded linear functional on Z, it follows that

f

(∫ t

0

G (un(τ)) dτ

)
=

∫ t

0

f
(
G (un(τ))

)
dτ →

∫ t

0

f
(
G (u(τ))

)
dτ, n→ ∞,

and hence

f
(
u(t)

)
= f(u0) +

∫ t

0

f
(
G (u(τ))

)
dτ, t ∈ [0, T ].

Consequently,

f

(
u(t+ h) − u(t)

h

)
→ f

(
G (u(t))

)
, h→ 0,

i.e.
u(t+ h) − u(t)

h
⇀ G

(
u(t)

)
in Z, h→ 0.

Therefore u ∈ C1
w

(
[0, T ], Z

)
and u satisfies (3.19). Finally, for t ∈

(
kδn, (k + 1)δn

]
we

have

|||un(t)|||2 = |||uk+1
n |||2 ≤ ρ

(
(k + 1)δn

)
+ rn,

hence

|||un(t)|||2 ≤ ρ(t+ δn) + rn for 0 ≤ t ≤ T − δn.

Thus

|||u(t)|||2 ≤ lim
n→∞

|||un(t)|||2 ≤ ρ(t), t ∈ [0, T ].

For t→ 0 this implies, in particular,

lim
t→0

|||u(t)|||2 ≤ lim
t→0

ρ(t) = |||u(0)|||2 ≤ lim
t→0

|||u(t)|||2,

hence |||u(t)||| → |||u(0)||| and consequently u(t) → u(0) in Y as t→ 0.
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