• OAI
  • SRU
  • Mapa web
  • Castellano
    • Inglés
AMERICANAE
  • Inicio
  • Presentación
  • Búsqueda
  • Directorio
  • Repositorios OAI
AMERICANAE
Gobierno de España Ministerio de Asuntos Exteriores, Unión Europea y Cooperación Agencia Española de Cooperación Internacional para el Desarrollo
AMERICANAE
  • Inicio
  • Presentación
  • Búsqueda
  • Directorio
  • Repositorios OAI
Está en:  › Datos de registro
Linked Open Data
Bounds on the dispersion of vorticity in 2D incompressible, inviscid flows with a priori unbounded velocity
Identificadores del recurso
Siam Journal On Mathematical Analysis. Siam Publications, v. 31, n. 1, n. 134, n. 153, 1999.
http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78234
http://www.repositorio.unicamp.br/handle/REPOSIP/78234
http://repositorio.unicamp.br/jspui/handle/REPOSIP/78234
0036-1410
WOS:000084703800007
10.1137/S0036141098337503
Procedencia
(LA Referencia)

Ficha

Título:
Bounds on the dispersion of vorticity in 2D incompressible, inviscid flows with a priori unbounded velocity
Tema:
incompressible flow
ideal flow
vorticity
irregular transport
Vortex Patch
Growth
Descripción:
Made available in DSpace on 2014-12-02T16:31:05Z (GMT). No. of bitstreams: 1 WOS000084703800007.pdf: 406226 bytes, checksum: 647c037e1ab89e01644c791dbba9b224 (MD5) Previous issue date: 1999
Made available in DSpace on 2015-11-26T17:41:38Z (GMT). No. of bitstreams: 2 WOS000084703800007.pdf: 406226 bytes, checksum: 647c037e1ab89e01644c791dbba9b224 (MD5) WOS000084703800007.pdf.txt: 51173 bytes, checksum: bfda98dcc7110c38d50886feb2e3525f (MD5) Previous issue date: 1999
We consider approximate solution sequences of the 2D incompressible Euler equations obtained by mollifying compactly supported initial vorticities in L-p, 1 less than or equal to p less than or equal to 2, or bounded measures in H-loc(-1) and exactly solving the equations. For these solution sequences we obtain uniform estimates on the evolution of the mass of vorticity and on the measure of the support of vorticity outside a ball of radius R. If the initial vorticity is in L-p, 1 less than or equal to p less than or equal to 2, these uniform estimates imply certain a priori estimates for weak solutions which are weak limits of these approximations. In the case of nonnegative vorticities, we obtain results that extend, in a natural way, the cubic-root growth of the diameter of the support of vorticity proved first by C. Marchioro for bounded initial vorticities [Comm. Math. Phys., 164 (1994), pp. 507-524] and extended by two of the authors to initial vorticities in L-p, p > 2.
31
1
134
153
Fuente:
Web of Science
reponame:Repositório Institucional da Unicamp
instname:Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
Idioma:
English
Relación:
Siam Journal On Mathematical Analysis
SIAM J. Math. Anal.
Autor/Productor:
Hounie, J
Lopes, MC
Lopes, HJN
Editor:
Philadelphia
Siam Publications
EUA
Otros colaboradores/productores:
Universidade Estadual de Campinas
Derechos:
info:eu-repo/semantics/openAccess
Fecha:
1999
2014-12-02T16:31:05Z
2015-11-26T17:41:38Z
DEC 10
Tipo de recurso:
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
About:
http://repositorio.unicamp.br/oai/requestoai:repositorio.unicamp.br:REPOSIP/782342015-11-30 11:28:01.912http://www.openarchives.org/OAI/2.0/oai_dc/opendoar:1529Repositório Institucional da Unicamp - Universidade Estadual de Campinas (UNICAMP)

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>Bounds on the dispersion of vorticity in 2D incompressible, inviscid flows with a priori unbounded velocity</dc:title>

    2. <dc:creator>Hounie, J</dc:creator>

    3. <dc:creator>Lopes, MC</dc:creator>

    4. <dc:creator>Lopes, HJN</dc:creator>

    5. <dc:contributor>Universidade Estadual de Campinas</dc:contributor>

    6. <dc:subject>incompressible flow</dc:subject>

    7. <dc:subject>ideal flow</dc:subject>

    8. <dc:subject>vorticity</dc:subject>

    9. <dc:subject>irregular transport</dc:subject>

    10. <dc:subject>Vortex Patch</dc:subject>

    11. <dc:subject>Growth</dc:subject>

    12. <dc:description>Made available in DSpace on 2014-12-02T16:31:05Z (GMT). No. of bitstreams: 1 WOS000084703800007.pdf: 406226 bytes, checksum: 647c037e1ab89e01644c791dbba9b224 (MD5) Previous issue date: 1999</dc:description>

    13. <dc:description>Made available in DSpace on 2015-11-26T17:41:38Z (GMT). No. of bitstreams: 2 WOS000084703800007.pdf: 406226 bytes, checksum: 647c037e1ab89e01644c791dbba9b224 (MD5) WOS000084703800007.pdf.txt: 51173 bytes, checksum: bfda98dcc7110c38d50886feb2e3525f (MD5) Previous issue date: 1999</dc:description>

    14. <dc:description>We consider approximate solution sequences of the 2D incompressible Euler equations obtained by mollifying compactly supported initial vorticities in L-p, 1 less than or equal to p less than or equal to 2, or bounded measures in H-loc(-1) and exactly solving the equations. For these solution sequences we obtain uniform estimates on the evolution of the mass of vorticity and on the measure of the support of vorticity outside a ball of radius R. If the initial vorticity is in L-p, 1 less than or equal to p less than or equal to 2, these uniform estimates imply certain a priori estimates for weak solutions which are weak limits of these approximations. In the case of nonnegative vorticities, we obtain results that extend, in a natural way, the cubic-root growth of the diameter of the support of vorticity proved first by C. Marchioro for bounded initial vorticities [Comm. Math. Phys., 164 (1994), pp. 507-524] and extended by two of the authors to initial vorticities in L-p, p > 2.</dc:description>

    15. <dc:description>31</dc:description>

    16. <dc:description>1</dc:description>

    17. <dc:description>134</dc:description>

    18. <dc:description>153</dc:description>

    19. <dc:date>1999</dc:date>

    20. <dc:date>2014-12-02T16:31:05Z</dc:date>

    21. <dc:date>2015-11-26T17:41:38Z</dc:date>

    22. <dc:date>2014-12-02T16:31:05Z</dc:date>

    23. <dc:date>2015-11-26T17:41:38Z</dc:date>

    24. <dc:date>DEC 10</dc:date>

    25. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    26. <dc:type>info:eu-repo/semantics/article</dc:type>

    27. <dc:identifier>Siam Journal On Mathematical Analysis. Siam Publications, v. 31, n. 1, n. 134, n. 153, 1999.</dc:identifier>

    28. <dc:identifier>http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78234</dc:identifier>

    29. <dc:identifier>http://www.repositorio.unicamp.br/handle/REPOSIP/78234</dc:identifier>

    30. <dc:identifier>http://repositorio.unicamp.br/jspui/handle/REPOSIP/78234</dc:identifier>

    31. <dc:identifier>0036-1410</dc:identifier>

    32. <dc:identifier>WOS:000084703800007</dc:identifier>

    33. <dc:identifier>10.1137/S0036141098337503</dc:identifier>

    34. <dc:language>eng</dc:language>

    35. <dc:relation>Siam Journal On Mathematical Analysis</dc:relation>

    36. <dc:relation>SIAM J. Math. Anal.</dc:relation>

    37. <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>

    38. <dc:publisher>Philadelphia</dc:publisher>

    39. <dc:publisher>Siam Publications</dc:publisher>

    40. <dc:publisher>EUA</dc:publisher>

    41. <dc:source>Web of Science</dc:source>

    42. <dc:source>reponame:Repositório Institucional da Unicamp</dc:source>

    43. <dc:source>instname:Universidade Estadual de Campinas (UNICAMP)</dc:source>

    44. <dc:source>instacron:UNICAMP</dc:source>

    45. <about>

      1. <provenance>

        1. <originDescription altered="false" harvestDate="2021-02-07 01:45:38.516">

          1. <baseURL>http://repositorio.unicamp.br/oai/request</baseURL>

          2. <identifier>oai:repositorio.unicamp.br:REPOSIP/78234</identifier>

          3. <datestamp>2015-11-30 11:28:01.912</datestamp>

          4. <metadataNamespace>http://www.openarchives.org/OAI/2.0/oai_dc/</metadataNamespace>

          5. <repositoryID>opendoar:1529</repositoryID>

          6. <repositoryName>Repositório Institucional da Unicamp - Universidade Estadual de Campinas (UNICAMP)</repositoryName>

          </originDescription>

        </provenance>

      </about>

    </oai_dc:dc>

xoai

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">

    1. <element name="dc">

      1. <element name="contributor">

        1. <element name="CRUESP">

          1. <element name="pt">

            1. <field name="value">Universidade Estadual de Campinas</field>

            </element>

          </element>

        </element>

      2. <element name="type">

        1. <element name="status">

          1. <field name="value">info:eu-repo/semantics/publishedVersion</field>

          </element>

        2. <element name="driver">

          1. <field name="value">info:eu-repo/semantics/article</field>

          </element>

        </element>

      3. <element name="title">

        1. <element name="pt">

          1. <field name="value">Bounds on the dispersion of vorticity in 2D incompressible, inviscid flows with a priori unbounded velocity</field>

          </element>

        </element>

      4. <element name="subject">

        1. <element name="wos">

          1. <element name="pt">

            1. <field name="value">Vortex Patch</field>

            2. <field name="value">Growth</field>

            </element>

          </element>

        2. <element name="por">

          1. <field name="value">incompressible flow</field>

          2. <field name="value">ideal flow</field>

          3. <field name="value">vorticity</field>

          4. <field name="value">irregular transport</field>

          </element>

        </element>

      5. <element name="description">

        1. <element name="abstract">

          1. <element name="por">

            1. <field name="value">We consider approximate solution sequences of the 2D incompressible Euler equations obtained by mollifying compactly supported initial vorticities in L-p, 1 less than or equal to p less than or equal to 2, or bounded measures in H-loc(-1) and exactly solving the equations. For these solution sequences we obtain uniform estimates on the evolution of the mass of vorticity and on the measure of the support of vorticity outside a ball of radius R. If the initial vorticity is in L-p, 1 less than or equal to p less than or equal to 2, these uniform estimates imply certain a priori estimates for weak solutions which are weak limits of these approximations. In the case of nonnegative vorticities, we obtain results that extend, in a natural way, the cubic-root growth of the diameter of the support of vorticity proved first by C. Marchioro for bounded initial vorticities [Comm. Math. Phys., 164 (1994), pp. 507-524] and extended by two of the authors to initial vorticities in L-p, p > 2.</field>

            </element>

          </element>

        2. <element name="volume">

          1. <element name="pt">

            1. <field name="value">31</field>

            </element>

          </element>

        3. <element name="issuenumber">

          1. <element name="pt">

            1. <field name="value">1</field>

            </element>

          </element>

        4. <element name="initialpage">

          1. <element name="pt">

            1. <field name="value">134</field>

            </element>

          </element>

        5. <element name="lastpage">

          1. <element name="pt">

            1. <field name="value">153</field>

            </element>

          </element>

        6. <element name="provenance">

          1. <field name="value">Made available in DSpace on 2014-12-02T16:31:05Z (GMT). No. of bitstreams: 1 WOS000084703800007.pdf: 406226 bytes, checksum: 647c037e1ab89e01644c791dbba9b224 (MD5) Previous issue date: 1999</field>

          2. <field name="value">Made available in DSpace on 2015-11-26T17:41:38Z (GMT). No. of bitstreams: 2 WOS000084703800007.pdf: 406226 bytes, checksum: 647c037e1ab89e01644c791dbba9b224 (MD5) WOS000084703800007.pdf.txt: 51173 bytes, checksum: bfda98dcc7110c38d50886feb2e3525f (MD5) Previous issue date: 1999</field>

          </element>

        </element>

      6. <element name="relation">

        1. <element name="ispartof">

          1. <element name="pt_BR">

            1. <field name="value">Siam Journal On Mathematical Analysis</field>

            </element>

          </element>

        2. <element name="ispartofabbreviation">

          1. <element name="pt">

            1. <field name="value">SIAM J. Math. Anal.</field>

            </element>

          </element>

        </element>

      7. <element name="publisher">

        1. <element name="none">

          1. <field name="value">Philadelphia</field>

          2. <field name="value">Siam Publications</field>

          </element>

        2. <element name="country">

          1. <field name="value">EUA</field>

          </element>

        </element>

      8. <element name="date">

        1. <element name="issued">

          1. <field name="value">1999</field>

          </element>

        2. <element name="monthofcirculation">

          1. <element name="pt">

            1. <field name="value">DEC 10</field>

            </element>

          </element>

        3. <element name="available">

          1. <field name="value">2014-12-02T16:31:05Z</field>

          2. <field name="value">2015-11-26T17:41:38Z</field>

          </element>

        4. <element name="accessioned">

          1. <field name="value">2014-12-02T16:31:05Z</field>

          2. <field name="value">2015-11-26T17:41:38Z</field>

          </element>

        </element>

      9. <element name="identifier">

        1. <element name="citation">

          1. <field name="value">Siam Journal On Mathematical Analysis. Siam Publications, v. 31, n. 1, n. 134, n. 153, 1999.</field>

          </element>

        2. <element name="issn">

          1. <element name="pt">

            1. <field name="value">0036-1410</field>

            </element>

          </element>

        3. <element name="wosid">

          1. <element name="pt">

            1. <field name="value">WOS:000084703800007</field>

            </element>

          </element>

        4. <element name="doi">

          1. <element name="pt">

            1. <field name="value">10.1137/S0036141098337503</field>

            </element>

          </element>

        5. <element name="uri">

          1. <field name="value">http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78234</field>

          2. <field name="value">http://www.repositorio.unicamp.br/handle/REPOSIP/78234</field>

          3. <field name="value">http://repositorio.unicamp.br/jspui/handle/REPOSIP/78234</field>

          </element>

        </element>

      10. <element name="source">

        1. <element name="pt">

          1. <field name="value">Web of Science</field>

          </element>

        2. <element name="none">

          1. <field name="value">reponame:Repositório Institucional da Unicamp</field>

          2. <field name="value">instname:Universidade Estadual de Campinas (UNICAMP)</field>

          3. <field name="value">instacron:UNICAMP</field>

          </element>

        </element>

      11. <element name="rights">

        1. <element name="driver">

          1. <field name="value">info:eu-repo/semantics/openAccess</field>

          </element>

        </element>

      12. <element name="language">

        1. <element name="iso">

          1. <field name="value">eng</field>

          </element>

        </element>

      13. <element name="creator">

        1. <element name="author">

          1. <field name="value">Hounie, J</field>

          2. <field name="value">Lopes, MC</field>

          3. <field name="value">Lopes, HJN</field>

          </element>

        </element>

      </element>

    2. <element name="unicamp">

      1. <element name="author">

        1. <element name="pt">

          1. <field name="value">UFSCar, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil UNICAMP, IMECC, Dept Matemat, BR-13081970 Campinas, SP, Brazil</field>

          </element>

        </element>

      </element>

    3. <element name="bundles">

      1. <element name="bundle">

        1. <field name="name">ORIGINAL</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">WOS000084703800007.pdf</field>

            2. <field name="format">application/pdf</field>

            3. <field name="size">406226</field>

            4. <field name="url">http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/78234/1/WOS000084703800007.pdf</field>

            5. <field name="checksum">647c037e1ab89e01644c791dbba9b224</field>

            6. <field name="checksumAlgorithm">MD5</field>

            7. <field name="sid">1</field>

            </element>

          </element>

        </element>

      2. <element name="bundle">

        1. <field name="name">TEXT</field>

        2. <element name="bitstreams">

          1. <element name="bitstream">

            1. <field name="name">WOS000084703800007.pdf.txt</field>

            2. <field name="description">Extracted text</field>

            3. <field name="format">text/plain</field>

            4. <field name="size">51173</field>

            5. <field name="url">http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/78234/2/WOS000084703800007.pdf.txt</field>

            6. <field name="checksum">bfda98dcc7110c38d50886feb2e3525f</field>

            7. <field name="checksumAlgorithm">MD5</field>

            8. <field name="sid">2</field>

            </element>

          </element>

        </element>

      </element>

    4. <element name="others">

      1. <field name="handle">REPOSIP/78234</field>

      2. <field name="lastModifyDate">2015-11-30 11:28:01.912</field>

      3. <field name="identifier">oai:repositorio.unicamp.br:REPOSIP/78234</field>

      </element>

    5. <element name="repository">

      1. <field name="repositoryType">Repositório de Publicações</field>

      2. <field name="repositoryURL">http://repositorio.unicamp.br</field>

      3. <field name="institutionType">PUB</field>

      4. <field name="institutionURL" />
      5. <field name="baseURL">http://repositorio.unicamp.br/oai/request</field>

      6. <field name="mail" />
      7. <field name="country" />
      8. <field name="DOI" />
      9. <field name="ISSN" />
      10. <field name="ISSN_L" />
      11. <field name="repositoryID">opendoar:1529</field>

      12. <field name="harvestDate">2021-02-07 01:45:38.516</field>

      13. <field name="name">Repositório Institucional da Unicamp - Universidade Estadual de Campinas (UNICAMP)</field>

      14. <field name="altered">false</field>

      </element>

    </metadata>

  • Biblioteca AECID
  • Av. Reyes Católicos, nº 4. 28040 Madrid.
  • biblio.cooperacion@aecid.es
  • (+34) 91 583 81 75 - (+34) 91 583 81 64
  • Aviso legal
  • Protección de datos
  • Accesibilidad
  • 
  • Logo Flickr
  • 
  • 
  • 