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Abstract

In this paper we study the space-time asymptotic behavior of the so-
lutions and derivatives to the incompressible Navier-Stokes equations.
Using moment estimates we obtain that strong solutions to the Navier-
Stokes equations which decay in L? at the rate of ||u(t)||s < C(t4+1)7#
will have the following pointwise space-time decay
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|D%u(z, )] < Crm

(t+ 1)ro (14 [2]2)k/2
where p, = (1 = 2k/n)(m/2+ p) + 3/4(1 — 2k/n), and |a| = m. The
dimension nis 2<n <5and 0 <k <mnand g > n/4

1 Introduction

In this paper we study the space-time decay of the solutions and derivatives
to the incompressible Navier-Stokes equations in the whole space R”,

(1) ug+u-Vu+Vp=»~Au
divu =0
u(z,0) =u,(z) € X

Where X will be specified below. Using moment techniques we show that
strong solutions and derivatives of all order decay pointwise at an algebraic
rate as |z| — oo and { — oo .

Questions of decay of solutions to the Navier-Stokes equations in different
norms have been studied, among others, by R. Kajikiya and T. Miyakawa
[?], T. Kato [?], H. Kozono [?], H. Kozono and T. Ogawa [?], M.E. Schonbek
[?], [?], M. Wiegner [?], and Zhang-Linghai [?]. Of particular interest in the
direction of the present paper are the results by Takahashi [?]. In this paper
Takahashi studies the pointwise decay of the solutions and first derivatives
of solutions to Navier-Stokes equations with zero initial data and an external
force which decays at algebraic rate in both space and time. In order to get
his estimates, Takahashi, uses a weighted equation approach. Specifically
in [?], Takahashi, gets pointwise decay rates both in time and space for
solutions bounded in some weighted L?* norms,with n/p 4+ 2/p’ =1 ( the
limiting Serrin class), where L?* stands for the space time norm

{// (e, £)|2d) 1},

We consider that our results complement and extend Takahashi’s results in
the sense that in our case we have non zero initial data but zero external force.



Moreover we are able to obtain the results for derivatives of all orders.We
note that since we are obtaining decay result for derivatives we will work
directly with strong solutions. The results could be applied to weak solutions
provided we start with a sufficiently large time. Since in this case we are
already in the regime where the solution is smooth we prefer to simplify
notation to work directly with smooth solution.

We also would like to refer the reader to [?] to get a very detailed outline of
what other author in the field have done on related questions.

It is already clear at the level of the heat equation that their is a relation
between the time decay and space decay. This kind of balance will be also
found for solutions to the Navier-Stokes equations. In particular the balance
relation we obtain between the decay in space and in time coincides with the
relation for the Heat equation when we consider the solutions itself.

The plan of the paper is the following : We first have a section with no-
tation. The next section first recall some essential estimates on the moments
of approximation to the solutions and derivatives. This approximations solve
a linearization of the Navier-Stokes equations. Passing to the limit they con-
verge to a solution to Navier-Stokes. Moreover by the new uniqueness results
this solutions are the ones Kato constructed in [?] Then we show that these
bounds are also valid for the solutions and derivatives itself. The bounds
we first obtain are valid for all time and depend on time . This will not
suffice to yield a uniform time decay. By the results of [?] we have already
uniform bounds for the moments but not for the moments of the derivatives.
The next section is dedicated to show that these moments are also bounded
independently of time. The last section deals with the space -time pointwise
decay of the solution. The proof here will follow from the uniform bound of
the moments and an appropriate form of the Gagliardo-Nirenberg inequality.

2 Notation and Assumptions

Let

(2) a=(a,...,0y),

be a multi-index with «; > 0. We will use the notation,
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(4) |oz|:oz1-|—...-|—ozn,
0
D, =

For any integer m > 0, we set

1/2
D™ f(x) = ( > ID“f(:v)IQ) :

|e|=m

where © = (z1,...,2,). The L? norm (or energy norm) will be denoted by

(6) lell = N, D2 = [/}Rn e, )] *dz]'/?,

where dx = dx; ...dz,. More generally we denote the L? norm for 1 < p < oo

by

(™) . Ollp = 1] lu(a, Dlda]

and the L* norm by

(8) [ul., t)]|oo = ess sup,[u(x, t)].
The H™ norm is defined by

(9) et = [ 3 1D (e, 0)da] 2

la|<m

In what follows we assume that v = u(z,t) = (ui(z,1),...,un(z,1)) is a
global solution of the Navier-Stokes equations with the following decay: there
exist constants

C, > n/4 such that

(10) [u(@)]l, < C+1)7"



for t > 0. Under the following conditions, it is proved in [?] that the decay
given by (??) generalizes to

(11) | D™ u(t)]]. < C(t+ 1)_“_7”/2 fort>0.
Then recall Gagliardo-Nirenberg’s inequality for f € H™:

1D fllee < CULFIT" D™ F1I5

with a = a;,, = ]-I_—E, as long as j + (n/2) < m. Taking m large enough
m

(assuming we can do this) we get from equations (??) and (?7)

(12) D u(t)]|oo < C(t41)7#73270/ for j=0,1,... .

Since we are interested in decay of derivatives and hence in smooth solutions,
we are going to work with solutions that start with small data or the results
we shall establish will only be valid for large t.
The main idea in order to obtain pointwise decay, is to prove decay of the
moments of the solutions and derivatives and then combine this with an
appropiate Galiardo-Nirenberg inequality. Tt will yield decay in

L>, whence the pointwise decay. With this in mind we introduce the
following weighted spaces.

1/r
(13) Fern iff (/R |J;|”“|f|“dac> < .

Then for s =0,1,2,..., we define the (s, ) moments
Moalt) = [ Jel|Du(e,0) do,
Rn
and in particular for s > 0, ¢ > 0, we define the moment of order s of u by

M, ((u)(1)) = M,o(t) = /R |z [*u(t)? de = (IIU(t)||L§,2>2-

Finally define for s,.m =0,1,2,...,

Ms,m(t> - Z Ms,a(t> :/n |T|9|Dm71(7‘,f>|2d7‘

R
|at|=m



3 Preliminaries

To start our calculations we need to recall some estimates obtained for
weighted norms of approximating solutions to the Navier-Stokes equations,
[?]. These solutions satisfy a “linearized Navier-Stokes equation” , in which
both the convective and the pressure term are linearized in “explicit form.
To this purpose pressure is expressed in terms of product of Riesz transforms.
Specifically a sequence {u’} of approximating solutions is constructed. That
is let v = u*! satisfy

(14) vy — Av+ut - Vo4 VP v) = 0,
dive = 0,
U(O) = 1Ug

with ug in an appropriate space. Solutions of ( ??) are constructed locally
by fixed point arguments and tehn the existence is extended by appriori
estimates. Such solutions are unique by construction. The bilinear operator
P is defined by

P(u,v) = Z R; Ri(ujvr)
gk

if u= (ur,...,u), v = (v1,...,v,) are functions from R" to R” and

where R; denotes the Riesz transforms,

[R;T(€) = ‘ZH (€)

for j = 1,...,n. When u* = v we recuperate the Navier-Stokes equations
since for Navier-Stokes

92
Ap = —
P %; 8;cj8;ck<ujuk>’
hence 6.t
ko
Rl
thus



The linearization ( ??) is of the type used by Caffarelli, Kohn and Nirenberg
in [?], by Kajikiya and Miyakawa in [?], by Leray in [?], and by Sohr, von
Wahl and Wiegner in [?]. The advantage of making the linearization explicit
is that for the approximations we can use well known properties of the Riesz
transforms, such as their boundedness in LP-spaces (cf. [?]) and in weighted
L? spaces satisfying the Muckenhoupt condition (cf. [?], [?]) to obtain bounds
for the solutions of the Navier-Stokes equations and their moments. We
expect that our proofs to establish bounds in weighted LP-spaces, with some
modifications, could be used for the approximating solutions constructed by
Caffarelli, Kohn and Nirenberg [?], Kajikiya and Miyakawa [?], Sohr, von
Wahl and Wiegner [?].

In [?] we constructed solutions to ( ??) via fixed point methods. We showed
that the sequence {u;} converges in C([0,7"):,L* N L") to a weak solution of
Navier-Stokes, provided the data in L*N L” and r > n. If the data is also in
H" and sufficiently small the solution will be smooth. This are the solutions
we will be interested in. Moreover we note that due to the new uniqueness
results [?] and [?] the solutions we are considering are the solutions that Kato
constructed in [?]

One essential result we need to proceed is given by Lemma (2.2) of [?] which
will be stated below. For this reason we need to introduce the following real
numbers v, q,r and r; which satisfy the relations

15 0<v<<n, 2<rm<r, 1<g<o0, r>n

( 7 7 q 7

(16 1<1/ n+1 1<1+I/<] 1
) g 2 2r 2" r~—r n r’

The next lemma ( lemma (2.2) of [?]) is quite technical. It states that if
the linearized equation ( ??) is obtained via a function which is sufficiently
smooth and the data is in an appropriate weighted space then so is the
solution.
In order to state the next lemma we need to recall some notation from [?].
Let

F(z,1) = F(1)(z) = (4mt) /2 e 1214t

be the fundamental solution of the heat equation in n space variables. If v
solves (( ?77) , set
H(u,v) =u-Vuv+ VP(u,v),

7



then
(17) o(t) = F(t)*uo—/o F(t — s) % H(u, 0)(s) ds.

Let ¢ € L*([0,T], H*(R",R")), set

Mep(t) = /Ot F(t—s)x* {ué -Ve(s) + VP(ul, g.o)(s)} ds

(18)

= /0 F(t—s)* Hu',@)(s) ds,
and
(19) Lo(t) = F(t) % ug — Mo(t).

Then the integral version ( ??) of the (LNS) with respect to u becomes
v =Lov.

That is the solution to the linearized Navier-Stokes can be obtained as a
fixed point of the operator £ , (see [?]).

Lemma 3.1 Assume ( ??)-( ??) and assume the function u salisfies
we C(0, T, w™"(R™)" N L0, T], W™ (R™)").
There exists a constant K(T,u) of the form
(20) K(T,u) = C(T) (Jullerwmey + el g gmn))
with C(T) independent of w and depends only on T,n and the exponents

r,r,v,q. Let D%ug € L7 N LY(R™, R™) for |a| < m, then the fized point v
of L satisfies D*v € C([0,T], LI} (R",R™)) for |a| < m and

Do)l < C(T) (HUOHWW + > (1D L:1)
p<m

+K (T, w) (luollwmr =+ lluollwmr ).



Proof. To establish the estimate of this lemma one proceeds as follows .
First write the solution in the implicit form as a solution to the integral equa-
tion as mentioned above ( 2?) ie, v(t) = F(t)*ug— f; F(t—s)* H(u,v)(s) ds.
The process now consist in bounding F(t) * ug and F(t — s) * H(u,v)(s) in
the appropriate weighted L? spaces . The main tools are estimates on the
heat semi-group and the boundedness of the Riesz operator (for the pressure
term) in L? spaces and weighted L? spaces.

For details of the proof see [?]. In this proof C(T') denotes a constant de-
pending only on 7', n and the exponents r,r, v, gq.
|

To obtain decay results we need that our estimates are independent of time.
For this one proceeds in several steps. First the results of the above lemma

are extended to strong solutions of the Navier-Stokes. That is we can suppose
in what follows that the initial data u, satisfies [?]

(21) u, € L™ N L2, ||wol||1r sufficiently small

where r > n. We note that Kato [?] has obtained smooth solutions with small
data in L2 N L". The reason why we do not use his construction solutions is
that we want to insure that the solutions also lie in the appropriate weighted
space provided we add that the data is in that space too. We note that
effectively we could also obtain the bounds for weak solutions for a sufficiently
large time . But this would put us in the regime where the solutions have
become regular. Thus instead of mentioning each time that we are working
for sufficiently large time we suppose we are working with smooth solutions.
The estimates for strong solutions follow by lemma ( ??) and the the esti-
mates on the derivatives obtained in [?]. Specifically we have

Lemma 3.2 Assume ( ??)-( ??) . Let u, € W™ n W™ n H(R") .
Suppose there exvists u a strong solution for the Navier-Stokes equations with
data u,. Then there exists a constant K(T,u,) of the form

Lm

(22) K(T,u,)) < CO][D™uo|

| D™ w, |

Lr,

with C(T) independent of u, such that if D*uo € L)' N L"(R™,R™) for |a] <
m, then the solution u satisfies D*u € C([0,T], L;}(R",R"™)) for |a] < m



and

ID*u()ls < C(T) (||uo||ww+z||Dﬁuo||w)
B<m
(23) FK(T,0,) (Juollwms + o)
Proof.

We note that in order to have strong solutions with bounded derivatives it is
enough to suppose that the solutions have small data in H' for n=3 ( If we
are in n > 3 then it suffices to require that the initial data is small in H?.
Moreover it is shown in [?] that such solutions ( for 2 < n <5) decay in the
W?™ norms . Hence the above bounds are immediate consequence of ( 7?)
and the bounds in W™ for p = r and p = ry. spaces obtained in [?]. Hence
the K (T, uy) of last lemma ( where u = uy, of the approximating sequence) is
bounded uniformly in k for all approximating solutions in terms of norms of
the data. Since the {ux} converge strongly to the solution u of Navier-Stokes
( see [?]). Hence by standard methods the ( ?7) follows.
Note that for the decay for derivatives we only need that the L? norm of the
solution is bounded ie. p could be zero.

|

As an immediate consequence we obtain.

Corollary 3.3 Under the hypothesis of the Lemma ( ??) it follows thal

(24) D% u(?)]

o < C(T)C,

where C, depends only on the appropriate norms of the data.

4 Decay of Moments of derivatives.

In order to obtain the decay of moments of the derivatives we will first need
to establish uniform bounds. Once these are obtained the decay will follow
by a Holder inequality between the (n,s)moments and the L? norm of the
derivates. Specifically we can show that

10



Theorem 4.1 Let u, be as Lemma ( ?7?7). Lel u be a strong solulion with
data u,, satisfying

(25) [u®)lle < C(+1)7
where > n/4. Then

My (1) < O(t 4 1)~ CGrtm)0=2)
form=0,1,2,..., s =0,

1,...,n.

Proof. As before we note that if the data is sufficiently small then such
solutions u exists.In particular if v € H? N L* Then all the derivatives of
higher order are in L* ( see [?].) Moreover the decay in L? yields as noted

before ([?])

(26) 1D u(t)]l2 < C(t+1)7"/2
Thus as we pointed out before Gagliardo-Nirenberg yields

(27) | D3 u(t)]|oo < C(t 4 1)7H73/2n/4

for y =0,1,...

The proof follows the steps of Theorem 4.1 in [?].The proof is by induction
on m. We notice first that the case m = 0 is Theorem 4.1 of [?]. That is
from Theorem(4.1) ( [?]) we have

(28) Mi(u)(t) < C(t+1)7#0=0)
forallt>0,k=0,1,...,n.

We note also that the case s = 0 is covered by (??). Let m > 0. As
in Theorem (4.1) [?] the estimate now for 0 < s < n will follow from the

estimates for s = 0 and s = n by Holder interpolation.
The theorem then follows by Holder interpolation. In fact, with 1/p =

(n—s)/n, 1/p' = s/n. Let |a| = m and write |Du|? = (|D¥u|?)*/"(| D*u|?)(=2)/»

then it easey to see

’

1/p 1/p
Moalt) = [ [eP[Dufdr < (/ |D°“u,|2dm> (/ |x|”m|u,|2(1,x)
R” R” R”»
= MO(D“u)(t)]_%]\/[n(u)(t)k/" <C(t+ 1)_(2“"'7")(1_%)Mn(u)(t)s/”.

11
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Thus we have if M, («)(t) is uniformly bounded that

Ms,m(ﬂ < C(f + ])‘(2M+m)(1_%)

It thus suffices to prove the estimate for s = n, which merely says that
Mmm () is bounded uniformly in ¢ > 0. In proving this, we assume m is a
positive integer and the estimates have been proved up to m — 1.

Let a be a multi-index with |a| = m. For a function ¢ and a multi-index
B, we set g5 = DPg. By Leibniz’ product formula,

Unr = Ay — Z ( g ) ug - Vuy, — Vpy;

Bt+vy=a

dot multiplying by |z|"u, and using that divu = 0, divu, = 0 we get, after
some technical but straightforward manipulations,

1 . 1 .
7 e e = =Ll |Vl + Sn(2n = 2l + Salal" @ - w)lua

—|z|" Z ( g ) (ug - Vuy) -ua+n|x|”_2(x-ua)pa+ div F, o
B+y=a,8#£0

where

z|" n x|™
E, ., = | | §|x|n—2|ua|2x_%

9

V([ual?) -

[uo|?u — |2 Uapa.
One can prove now, as in Lemma 6.1, Appendix B of [?], that

lim inf |FraldS = 0.
R—o0 |z|=R
More precisely the proof is a repetition of the arguments in the above men-
tioned Lemma where we replace u by wu, using the appropriate estimates for
the derivatives obtained in [?].
It follows that integrating with respect to = over R” the divergence term
integrates to 0 and we get

(29) %%Mn,a(t) — A(t) + B(1) + C(t) + D(t),

12



AW = = [ ol Ve do + 520 = 2)Mmsa(t) < 520 = 2)Momsa(t),
R~
_ E n—2 . 2
B = 2 [ e wluaf? de,
cw == ¥ (5] [l Vi) e
B+y=a,20 R

D(t) = n/n |;v|”_2(;v-ua)pa dx.

We have to first obtain a time dependent bound on M, ,(¢) . This bound
follows by induction on the order of the moment ie we let 0 < k < n For
k =0 . The estimate is immediate. The induction step follows using energy
estimates . These are quite straightforward and as such will be omitted ( for
details of a proof of similar type please see [?] ). To obtain the necessary
uniform bound we proceed as follows

Bound for A(t)
Notice first that if n = 2 then

(30) A(t) <2M, , < Co(1 + 1)
Where 211 > n/2 =1 Suppose now 3 < n <5 by Hélder and by (?7?),
My—2,0(t) € Moo ()0 Jua| | < C(L4+ )7 Mo ()21,

with p = (4/n)(g + m/2) > 1 since m > 1 and g > n/4 . For m = 0 please
see [?]. In general, from now on, p denotes a constant > 1, not the same one
in all equations. By the definition of A(%), using also

(14 1) My o ()7 < 2014 0= + 220 4 )2 M, o (1),
n T
we proved .
(31) A < C(1+1)" (1 + Mmm(t))

Bound for B(t)

13



n

S el )l de| < 5 [ el ulluof d
Rn

n 2/n "~ (n=1)/n
Sl ulleo (Mo (1))

1B =

IN

so that by (??) and (?7),

|B()|

IN

O+ 1)~ (My(1)) "™
< CO+1)7 (14 Mym(1),

where this time p = (2/n)(g +m/2) + p+n/4 > 1.

Bound for C(t)
Note that C(t) is a sum in terms of a and 3, where |8| + |7| = |a|. We will
consider the terms when 3 = 0 first.In this case we get the following bound

[t - ¥ d
Rn
D7 il M (8)142) Mo (8172 < (1 £)° Mo ()2 W (1)1

<D™ u| oo |z|"uDudz <
R~»

where p = ng-Hl +p+n/4 > 1 and we recall ( see [?]) M, ,(1)"/? < C,. Thus

< Co((T+ 0+ 1) M (1)

n -V o) Uy ’d
el (0 Vo) ) da
The general term when § > 0 in C'(1) can be estimated by

<N Do My o(1) /2 M (8)'72,

n V) - sl d
[ el (s ) o

where j = min(|3], [y| + 1), £ = max(|3],|y|+ 1), so that 0 < j < [m/2],
[(m+4+1)/2] <l <mand j+{=m+1. For { =m, so j =1, equations (?7)
imply a bound of the form

C(1 4 )~ mn/A DAL (1),

The terms with ¢ < m are bounded, by the induction hypothesis and by

(?7), by
C(1 4+ t)—(u+n/4+j/2)]\;[n m(t)l/Q,

14



and we obtain again an estimate of the form
(32) C) < CO+1)7 (14 Myn(t)) .

where p > 1.
Bound for D(t)

Because the Riesz transforms are bounded in L? with v = (n — 2)/2 and
D% commutes with the Riesz transforms,

P = D% = Z R;Ri[D” (ujuy)] = Z ( g ) R Ry(up,jus n),

j’k k7j7ﬁ+’7':a

and we have

D) =

n/ |2|" 7% (2 - us)pa da
R”
< O Jal" fuallpal de < OV () pallz:

< OMum(®)'? 370 Nupllus|ll s -
Bty=a

By Holder,

1/2
llualluslly = ( [ oD% I D7l de
< ClD ulloe| Dl M o)),

with j = min(3,7v), £ = max(8,7) (so 0 < j < m/2). Once more we
apply (77), (22) to get [ Doull|Dully™ < €1+ 17 with p = (1) +
€/2) + p +nj4 4 j/2 > 1. By the induction hypothesis M, , is bounded
uniformly in ¢ if £ < m, so all terms with £ < m in the last estimate for D
can be bounded by C(1 + )77, the remaining term is bounded by

CL+ 1) MU < (L4 1)7" (14 Mo )

so that D(1) has a bound of the same type as A(t), B(t), C(t). Combining
all the estimates, we proved
d -~ .
%Mn,m(t) SCA+1)74+C(1+1)"" My pm(t)

15



where p > 1, hence integrating
N N C ¢ N
M, . (1) < (Mnm(o) + —) +C [ (s+ 1) M, .(s)ds.
0
By Gronwall’s lemma,
y y C_\ ety
Mn,m<t> S Mn m(0> + —— ] eV

proving Mmm (t) is bounded in ¢ for ¢ > 0. [

NOTE: We took some pains to avoid having to bound || D’ul|. for j >
[(m +1)/2]. In this way, bounds on the L*-norm of derivatives of order m
will give (sometimes) all the needed L* bounds on the D’u’s.

The next theorem will establish the spatial and time decay of strong solutions
to equations for which the moments decay. we will first establish the result
in n dimensions with 2 < n <5.

Theorem 4.2 . Let 2 < n <5 Under the same hypothesis of Theorem J.1
let u be a strong solution with data u, .Let k < n/2 . Then

1
(T 11+ P
Here p, = (p+m/2)(1 = 2k/n) + n/4(1 — 2k/n), and |a| = m.

(33) |Dau($7t)| S Ck,m

Proof We note first that the restriction to 2 < n < 5 is due to that is
where we have estimates for the moments. The main tools for the proof are
the last theorem and Gagliardo Nirenberg’s inequality. Let

o(z,t)=(1+ |;v|2)k/2Dau.
By Leibnitz formula that

34 Dév = A+ |z)? Z;JDS_]-U
(34) Yo+ [z)?)

j:O
From where it follows by the decay of the moments of derivatives Theorem

4.1 that

16



(35) 1D, < Coi(l L )= 24 5= [2)(1=2(05)
7=0

Since the function f(j) = (g+m/2+4 (s —7)/2)(1 —2(k — j)/n) is increasing

it has a minimum at 57 = 0. Thus we have

(36) | D%v]|y < Co(1 4 1)~ (wtm/24s/2)(1=2k/)n

In particular when s = o
(37) Jolla < €1 + py-tmii=25te
We apply Gagliardo Nirenberg’s inequality

(38) lo(z, Dllee < [lo(z-H)ll;7" [ D]l

where

0=a(l/2—=s/n)+(1—a)l/2
Thus @ = n/2s and for @ > 1 we need s > [n/2]. Hence combining the
Gagliardo-Nirenberg inequality with ( ??) and ( ??) yields
(1 + |22 D] < lo(t)]]e0 < Co(1 + 1)
Where

b = (it mf2 4 5/2)(1 — 2fmynf2s + (1 — nf25) (i + m/2)
= (et m/2)(1— 2k/n) + (n/4(1 — 2k/n)

We note that the above value of p, is independent of s. Thus we could have

obtained using only the s derivative with s > [n/2]. In particular note that

when n = 3 than it suffices to use s = 2 and p = (m/2+ p)(1 —2k/3) + (1 —
2k/3)3/4 The proof is now complete.

17



4.1 Comparison with the heat equation

It is easy to show that the Heat kernel ie E(z,1) = (47rt)_”/26_|”3|2/4t which is
the fundamental solution of the Heat equation , ie the linear part of Navier-
Stokes has the following asymptotic behavior

|D*E(z,t)| < co|ac|_'lt_b7

where a + 2b = n + m, with m = |a/.It is also easy to show that there is
a large class of solutions to the heat equation which will have the same type
of decay. For instance solutions such that the data satisfies ug € K where
K = {u.(y) : u,/geqe¥"/**}, will have the above type of decay provided
we are considering ¢ > t, + ¢ In the case of solutions to the Navier-Stokes
equations the relation that holds between the decay in space in time is if we
take yp = n/4

2km

20, + 2k =m+n— —
n

We note that for & = 0 we recuperate the decay of the heat equation ,but this
only gives decay in time If m = 0 we recuperate the relation 2p,+2k = m+n
ie we have the same decay relation in space and time as for solutions to the
heat equation.
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