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Abstract. In this paper we discuss the Cauchy problem for linear elasticity with a space-time
white noise forcing term. We show that the solution can be represented by a formula analogous to the
Riesz formula for solutions of a wave equation. The solution is a generalized stochastic process and
is obtained as the limit of a sequence of ordinary stochastic processes. Our basic tool is the Hilbert
space method combined with geometric properties of solutions inherent with a hyperbolic system.
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0. Introduction. In this paper we present new results on the Cauchy prob-
lem for a hyperbolic system with a white noise forcing term associated with linear
elasticity:

utt(t, x) = A(t, x,Dx)u(t, x) + F (t, x)ξ(t, x) in (0,∞)×Rn;(0.1)

u(0, x) = 0, ut(0, x) = 0, in Rn,(0.2)

where x = (x1, . . . , xn) ∈ Rn, u = (u1, . . . , un) denotes the displacement from equi-
librium. A(t, x,Dx) is a second order matrix differential operator, F (t, x) is a matrix
function, and ξ(t, x) stands for a vector-valued space-time white noise. Here we only
focus on the nonhomogeneous forcing term, and assume the zero initial conditions.
Since the system is linear, nonzero initial conditions can be handled separately. The
motion of a one-dimensional elastic medium driven by a random noise is typically
described by a one-dimensional wave equation with a space-time white noise. This
was discussed by Walsh [15] in the framework of Brownian sheets. A numerical result
is shown on the front cover of the monograph [7]. Other versions were investigated by
Cabaña [1] and Orsingher [13]. It was also discussed by Da Prato and Zabczyk [3] as an
example of abstract evolution equations. A semilinear hyperbolic equation with one-
dimensional space variable was discussed by Nualart [12] as a two-parameter stochastic
differential equation. Marcus and Mizel [10] studied initial-boundary value problems
for a stochastic hyperbolic system in one space dimension. A two-dimensional semi-
linear wave equation was discussed by Dalang and Frangos [4], and Mueller [11] when
the random noise is a white noise in time with smooth spatial covariance.

The purpose of this work is to establish the existence of a solution of (0.1) and
(0.2) by a representation formula analogous to the Riesz formula for solutions of a
wave equation. The representation formula gives good information on the structure
of the solution which is a generalized stochastic process. This motivates our quest for
the representation formula. Riesz [14] used analytical theory of integrals of fractional
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ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 305

order to establish the formula

u(t, x) =
1

2nπ(n−1)/2((n− 1)/2)!
Λ(n−1)/2

∫
Ξ(t,x)

f(s, y) dy ds,(0.3)

where n ≥ 3 is an odd integer, x ∈ Rn, t ≥ 0, Ξ(t, x) is the backward light cone
defined by (t− s)2 ≥ |x− y|2, 0 ≤ s ≤ t. Here, u is the solution of

Λu = f for x ∈ Rn, t ≥ 0;(0.4)

u(0, x) = 0, ut(0, x) = 0 for x ∈ Rn,(0.5)

where Λ = ∂tt −∆, and ∆ is the Laplacian.
Gaveau [6] applied this formula to the Cauchy problem for a three-dimensional

wave equation with a space-time white noise. For a one-dimensional wave equation,
the solution can be represented by a stochastic integral because the integral kernel is
locally L2, which is not true in the higher-dimensional case. Gaveau overcame this
difficulty by means of the above Riesz formula, for the above integral in (0.3) can
be well-defined as a stochastic integral when f dy ds is replaced by f ξ(dy ds) where
f is locally bounded and ξ is the white noise. Thanks to the explicit structure of
the formula, he could first construct a continuous martingale (according to a partial
ordering defined in terms of the backward light cone) through the Riesz integral,
and then, a solution was obtained by applying the wave operator to this continuous
stochastic process. Hence the resulting solution is a generalized stochastic process.
However, the particular formula used in [6], which easily generates a martingale, is
valid only for odd space dimensions. He also showed that the Cauchy value of this
generalized stochastic process is well-defined by the formula of integration by parts.

This work is an outgrowth of our effort to obtain a similar representation formula
for the system of equations in linear elasticity. We will show that the unique solution
u of the above Cauchy problem (0.1)–(0.2) in any space dimension can be obtained
as a generalized stochastic process in the following form:

u(t, x;ω) = LdV (t, x;ω),(0.6)

where L = ∂ttI −A(t, x,Dx), I is the n× n identity matrix, d is the smallest integer
larger than (n/2) − 1, and V is a continuous Gaussian process which satisfies the
property of a domain of dependence. In particular, when n ≥ 3 is an odd integer,
d = (n − 1)/2. Since the Riesz formula is not available in our case, we have to
employ an entirely different argument. The core task is to obtain an integral kernel.
For this, we use the Hilbert space method combined with the property of a domain
of dependence. We then approximate the space-time white noise by truncating the
chaos expansion. The corresponding approximate solution is an ordinary stochastic
process, and the true solution is obtained as the limit. Our results are completely new
and our approach is different from those of all the previous works.

1. Preliminaries and statement of the main result. Throughout this paper,
we make the following assumptions.

The matrix operator A(t, x,Dx) is given by

Aij(t, x,Dx) =

n∑
k,l=1

Cklij (t, x)
∂2

∂xk∂xl
+

n∑
k=1

Dkij(t, x)
∂

∂xk
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306 JONG UHN KIM

for i, j = 1, . . . , n. All coefficients are real valued and
(I) Cklij (t, x) ∈ C∞(Rn+1) and all the derivatives of each Cklij are bounded on

Rn+1;
(II) Cklij (t, x) = C

il
kj(t, x) = C

lk
ji (t, x) for all (t, x) ∈ Rn+1 and every i, j, k, and l;

(III) there is a positive constant c0 such that∑
k,l,i,j

Cklij (t, x)εkiεlj ≥ c0
∑
k,i

εkiεki(1.1)

for all (t, x) ∈ Rn+1 and every symmetric tensor εki;
(IV) Dkij(t, x) ∈ C∞(Rn+1) and all the derivatives of each Dkij are bounded on

Rn+1;
(V) F (t, x) is an n×n matrix function whose components are all measurable and

bounded on each bounded subset of Rn+1.
We now list some known facts about the following deterministic Cauchy problem:

utt(t, x) = A(t, x,Dx)u(t, x) + f(t, x) in (0,∞)×Rn;(1.2)

u(0, x) = u0(x), ut(0, x) = u1(x) in Rn.(1.3)

Let a real number s and a positive number T be given.
Theorem 1.1. For given f(t, x) ∈ L2(0, T ; (Hs(Rn))n), u0(x) ∈ (Hs+1(Rn))n,

and u1(x) ∈ (Hs(Rn))n, there is a unique solution u(t, x) of (1.2) and (1.3) in
C([0, T ]; (Hs+1(Rn))n) ∩ C1([0, T ]; (Hs(Rn))n).

Here Hs(Rn) denotes the usual Sobolev space. For the technical details of the
proof, see [9].

Next we fix any t0 ≥ 0 and x0 ∈ Rn and define for 0 ≤ t ≤ t0, ε > 0 and η > 0,

Γ(t0,x0)(t; ε, η) = {x ∈ Rn | |x− x0| < ε+ η(t0 − t)}.(1.4)

Γ(t0,x0)(t; ε, η) is an n-dimensional ball for each 0 ≤ t ≤ t0, and ∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))}
is a truncated cone in Rn+1.

Theorem 1.2. Let s = m be a nonnegative integer, and T > 0 be given. Choose
any (t0, x0) ∈ [0, T ] × Rn. Then there is η > 0 depending on the coefficients of
A(t, x,Dx), but independent of u, f, (t0, x0), and ε such that the above solution sat-
isfies

‖u(t0, ·)‖2
(Hm+1(Γ(t0;ε,η)))n

+ ‖ut(t0, ·)‖2
(Hm(Γ(t0;ε,η)))n

(1.5)

≤M
(
‖u0‖2

(Hm+1(Γ(0;ε,η)))n + ‖u1‖2
(Hm(Γ(0;ε,η)))n +

∫ t0

0

‖f(h, ·)‖2
(Hm(Γ(h;ε,η)))n dh

)
,

whereM is a positive constant independent of u, f, (t0, x0), and ε. Here the subscript
(t0, x0) of Γ has been suppressed.

This has been established for a general first order hyperbolic system in [2]. The
same argument can be applied to a second order hyperbolic system. See [5] and [9].

Corollary 1.3. Suppose that the support of u0 and u1 is disjoint from
Γ(t0,x0)(0; ε, η), and the support of f is disjoint from ∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))} for
some (t0, x0) ∈ [0,∞) × Rn in Theorem 1.1. Then the support of u is disjoint from
∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))}.

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 307

If s < 0, this can be proved by approximating the solution by a sequence of
solutions with smooth initial data and f, for which (1.5) can be applied.

Next we set up a base probability space for generalized stochastic processes. Let
S = (S(Rn+1))n be the space of Rn-valued rapidly decreasing C∞ functions on Rn+1,
and S ′ = (S ′(Rn+1))n be its dual equipped with the weak-star topology. B(S ′) stands
for the set of all Borel subsets of S ′. By the Bochner–Minlos theorem, there is a
probability measure µ on B(S ′) such that∫

S′
exp(

√−1〈ω , φ〉n) dµ(ω) = exp(−‖φ‖2
(L2(Rn+1))n/2)(1.6)

for all φ ∈ S. Here, 〈· , ·〉n denotes the duality pairing between S ′ and S, i.e.,

〈ω , φ〉n =

n∑
i=1

〈ωi , φi〉,

for ω = (ω1, . . . , ωn), φ = (φ1, . . . , φn), where 〈· , ·〉 denotes the duality pairing
between S ′(Rn+1) and S(Rn+1). By (1.6), it follows that for each f ∈ (L2(Rn+1))n,
〈ω, f〉n can be defined to be a random variable on the probability space (S ′,B(S ′), µ),
and, for each positive integer k,

E(|〈ω, f〉n|2k) =
∫
S′

|〈ω, f〉n|2k dµ =
(2k)!

k! 2k
‖f‖2k

(L2(Rn+1))n .(1.7)

For more details, see [7]. The above white noise ξ(t, x) is a vector-valued generalized
stochastic process in the sense that

ξφ(ω) = (〈ω1, φ1〉, . . . , 〈ωn, φn〉)(1.8)

is a vector-valued random variable on (S ′,B(S ′), µ) for each φ ∈ (C∞
0 (Rn+1))n. In

the meantime, Fξ is a vector-valued generalized stochastic process defined by

(Fξ)φ(ω) =


 n∑
j=1

〈ωj , F1jφ1〉, . . . ,
n∑
j=1

〈ωj , Fnjφn〉

 ,(1.9)

for each φ ∈ (C∞
0 (Rn+1))n. Next we define for each i, j = 1, . . . , n,

Bij(x0, x1, . . . , xn;ω) = 〈ωj(y), Fij(y)χ(x0,... ,xn)(y)〉.(1.10)

Here, y ∈ Rn+1 denotes the variable for the duality action 〈· , ·〉, and

χ(x0,... ,xn)(y0, . . . , yn) =



(−1)k if 0 ≤ yi < xi or xi < yi < 0

for each i = 0, 1, . . . , n,

0 otherwise,

(1.11)

where k is the number of negative xi’s. For each bounded subset K of Rn+1, it holds
that ∫

Rn+1

∣∣χ(x0,... ,xn)(y)− χ(x̃0,... ,x̃n)(y)
∣∣2 dy ≤ CK∣∣(x0, . . . , xn)− (x̃0, . . . , x̃n)

∣∣(1.12)
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308 JONG UHN KIM

for all (x0, . . . , xn), (x̃0, . . . , x̃n) ∈ K, for some positive constant CK . Thus it follows
from (1.7) that for each bounded subset K of Rn+1 and each positive integer m,

E

(∣∣Bij(x0, . . . , xn;ω)−Bij(x̃0, . . . , x̃n;ω)
∣∣2m)(1.13)

≤ Cm,K
∣∣(x0, . . . , xn)− (x̃0, . . . , x̃n)

∣∣m
for all (x0, . . . , xn), (x̃0, . . . , x̃n) ∈ K, for some positive constant Cm,K . By a parti-
tion of unity and the Kolmogorov continuity theorem, there is a continuous version of
Bij(x0, . . . , xn;ω). See [8] and [12] for the multiparameter version of Kolmogorov’s
theorem. From now on, we always mean this continuous version.

Lemma 1.4. For each φ = (φ1, . . . , φn) with φi ∈ C∞
0 (Rn+1), i = 1, . . . , n, it

holds that

the ith component of (Fξ)φ(ω)(1.14)

=

n∑
j=1

∫
Rn+1

(−1)n+1 ∂n+1φi
∂x0 · · · ∂xnBij(x0, . . . , xn;ω) dx0 . . . dxn

for almost all ω.
Proof. Since Bij(x0, . . . , xn;ω) is a continuous version of the process defined by

(1.10), Bij(x0, . . . , xn;ω) is continuous in (x0, . . . , xn), for each ω, and there is a
subset Ω ∈ B(S ′) with µ(Ω) = 1, such that for each ω ∈ Ω,

Bij(r0, . . . , rn;ω) = 〈ωj(y), Fij(y)χ(r0,... ,rn)(y)〉(1.15)

for all (r0, . . . , rn) with ri = a rational number, i = 0, . . . , n.
Choose any φ ∈ (C∞

0 (Rn+1))n and set

ψ =
∂n+1φ

∂x0 . . . ∂xn
(x0, . . . , xn).(1.16)

Let Π be a cube in Rn+1 with side length q such that supp φ ⊂ Π. For each N, we
divide this cube into Nn+1 cubes of equal size. For ν = 1, . . . , Nn+1, let zν denote
an interior point of the νth cube whose coordinates are rational numbers. Then we
have, for every ω ∈ Ω,∫

Rn+1

ψi(x0, . . . , xn)Bij(x0, . . . , xn;ω) dx0 · · · dxn(1.17)

= lim
N→∞

qn+1

Nn+1

Nn+1∑
ν=1

〈ωj(y), Fij(y)ψi(zν)χzν (y)〉.

But it is easy to see that as a function of y = (y0, . . . , yn),

qn+1

Nn+1

Nn+1∑
ν=1

ψi(z
ν)χzν (y)

is bounded and compactly supported uniformly in N, and converges to

(−1)k
∫
y0

· · ·
∫
yn

ψi(x0, . . . , xn) dx0 . . . dxn,
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ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 309

as N → ∞, for each y, where k is the number of negative yi’s and∫
yi

=

∫ ∞

yi

for yi ≥ 0

and ∫
yi

=

∫ yi

−∞
for yi < 0.

Hence, as N → ∞,

qn+1

Nn+1

Nn+1∑
ν=1

Fij(y)ψi(z
ν)χzν (y) → (−1)n+1Fij(y)φi(y) in L

2(Rn+1
y ).(1.18)

By virtue of (1.7), (1.17), and (1.18), we have (1.14) for almost all ω.
Next we consider a chaos expansion of the white noise. We follow the construction

of an orthonormal basis for L2(Rn+1) in [7]. Let ξm(t) be the Hermite function of t ∈ R
for m = 1, 2, . . . . Let δj = (δj0, δ

j
1, . . . , δ

j
n) be the jth multi-index number in some

fixed ordering of all (n + 1)-dimensional multi-indices δ = (δ0, . . . , δn), each δi = a
positive integer. This ordering satisfies the property

i < j implies δi0 + · · ·+ δin ≤ δj0 + · · ·+ δjn.

We write

ηj(x0, . . . , xn) = ξδj0
(x0)ξδj1

(x1) · · · ξδjn(xn).(1.19)

Then {ηj}∞j=1 forms an orthonormal basis for L2(Rn+1). It follows that for each

φ ∈ (C∞
0 (Rn+1))n,

the ith component of (Fξ)φ(ω) =

n∑
j=1

〈ωj(y), Fij(y)φi(y)〉(1.20)

= lim
N→∞

N∑
k=1

n∑
j=1

〈ηk(y), Fij(y)φi(y)〉L2(Rn+1
y ) 〈ωj(y), ηk(y)〉

in L2(S ′, dµ). This will be used to construct a solution in the next section.
We adopt the following definition of a solution to (0.1).
Definition 1.5. A vector-valued generalized stochastic process u(t, x1, . . . , xn;ω)

is a solution of (0.1) in Rn+1
+ if there is a subset Ω ∈ B(S ′) with µ(Ω) = 1 such that

� u, L∗φ�=

n∑
i,j=1

∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t · · · ∂xnBij(t, x1, . . . , xn;ω) dt · · · dxn(1.21)

holds for all φ ∈ (C∞
0 (Rn+1

+ ))n, for each ω ∈ Ω.

Here, Rn+1
+ = {(t, x) | t > 0, x ∈ Rn}, � · , · � is the duality pairing of

(D′(Rn+1
+ ))n and (C∞

0 (Rn+1
+ ))n, and L∗ is the adjoint of

L = ∂ttI −A(t, x,Dx).(1.22)
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310 JONG UHN KIM

Lemma 1.6. Suppose u(t, x1, . . . , xn;ω) is a solution of (0.1) in Rn+1
+ according

to the above definition, i.e., there is a subset Ω ∈ B(S ′) with µ(Ω) = 1 such that for
each ω ∈ Ω, (1.21) holds for all φ ∈ (C∞

0 (Rn+1
+ ))n. Then, for each ω ∈ Ω, T > 0

and bounded open subset ∆ ⊂ Rn, we have
ψ(x)u(t, x ; ω) ∈ (C([0, T ];H−m+1(Rn)))n,(1.23)

ψ(x)ut(t, x ; ω) ∈ (C([0, T ];H−m(Rn)))n(1.24)

for all ψ ∈ C∞
0 (∆), for some positive integer m.

Proof. Let us set, for i = 1, . . . , n,

vi(t, x1, . . . , xn;ω)(1.25)

= ui(t, x1, . . . , xn;ω)−
n∑
j=1

∂n

∂x1 . . . ∂xn

∫ t

0

Bij(s, x1, . . . , xn;ω) ds.

We fix ω ∈ Ω, T > 0, and ∆ ⊂ Rn. Let η > 0 be the number in Theorem 1.2. We
note that Theorem 1.2 and Corollary 1.3 are also valid with respect to the reversed
time variable. Choose q > 0 such that

∆ ⊂ {x ∈ Rn | |x| < q − Tη}.(1.26)

Fix any 0 < ε < T/4, and let Ψ(t, x) ∈ C∞
0 (Rn+1

+ ) such that

Ψ(t, x) = 1 for ε ≤ t ≤ T + ε, |x| ≤ 2q.(1.27)

Since Ψv ∈ (D′(Rn+1
+ ))n has compact support, there is a positive integer ν such that

Ψv ∈ (H−ν(Rn+1
+ ))n,(1.28)

and hence,

Ψv ∈ (H−ν(0,∞ ; H−ν(Rn)))n.(1.29)

In fact, we take ν ≥ n to handle Bij(t, x1, . . . , xn;ω). Next we choose a sequence of
functions ψi(t, x) ∈ C∞

0 (Rn+1
+ ), i = 1, . . . , ν + 2, such that Ψ = 1 on the support

of ψ1, ψi = 1 on the support of ψi+1, for i = 1, . . . , ν + 1, and ψν+2 = 1, for
2ε ≤ t ≤ T, |x| ≤ q. It is easy to see that

∂2

∂t2
(ψ1v) − A(t, x,Dx)(ψ1v)(1.30)

= ψ1A(t, x,Dx)

∫ t

0

∂n

∂x1 . . . ∂xn
B(s, x1, . . . , xn;ω) ds

+
(
a linear combination of v and first order derivatives of v

which vanishes outside the support of ψ1

)
,

in the sense of distribution over Rn+1
+ , where B is Rn-valued, and its ith component

is
∑n
j=1 Bij(t, x1, . . . , xn;ω).

Since ψ1v = ψ1Ψv ∈ (H−ν(0,∞ ; H−ν(Rn)))n, it follows from (1.30)

ψ1v ∈ (H−ν+1(0,∞ ; H−ν−2(Rn)))n.(1.31)
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ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 311

By repetition of this procedure, we arrive at

ψν+2v ∈ (H2(0,∞ ; H−3ν−4(Rn)))n,(1.32)

and hence,

ψν+2v ∈ (C((0,∞) ; H−3ν−2(Rn)))n ∩ (C1((0,∞) ; H−3ν−4(Rn)))n.(1.33)

By taking t = T/2 as the initial time, we consider the forward and backward Cauchy
problem

Lθ = Φ(x)A(t, x,Dx)

∫ t

0

∂n

∂x1 . . . ∂xn
B(s, x1, . . . , xn;ω) ds,(1.34)

θ(T/2, x) = (ψν+2v)(T/2, x), θt(T/2, x) = (ψν+2v)t(T/2, x),(1.35)

where Φ(x) ∈ C∞
0 (Rn) with Φ(x) = 1, for |x| ≤ q.

By Theorem 1.1, there is a unique solution

θ ∈ (C([0, T ];H−3ν−3(Rn)))n ∩ (C1([0, T ];H−3ν−4(Rn)))n.(1.36)

But, by Corollary 1.3, (1.26), (1.30), (1.34), and (1.35), it holds that

ψ(x)v(t, x) = ψ(x)θ(t, x) in [2ε, T ]×∆(1.37)

for every ψ(x) ∈ C∞
0 (∆). Now suppose we started out with a smaller number ε̃ < ε.

Let ν̃ and θ̃ correspond to ε̃ in (1.28) through (1.37). Since θ(T/2, x) = θ̃(T/2, x) and
θt(T/2, x) = θ̃t(T/2, x) in the open ball |x| < q, it again follows from Corollary 1.3
and (1.26) that

ψ(x)θ(t, x) = ψ(x)θ̃(t, x) in [0, T ]×∆(1.38)

for all ψ ∈ C∞
0 (∆). Meanwhile, we have

ψ(x)v(t, x) = ψ(x)θ̃(t, x) in [2ε̃, T ]×∆(1.39)

for all ψ ∈ C∞
0 (∆). By virtue of (1.37), (1.38), and (1.39), we can maintain the same

ν for any smaller ε and conclude

ψ(x)v(t, x) = ψ(x)θ(t, x) in (0, T ]×∆(1.40)

for every ψ ∈ C∞
0 (∆). Consequently, (1.23) and (1.24) follow withm = 3ν+4.

Lemma 1.7. In the same setting as above, there is some Ω ∈ B(S ′) with µ(Ω) = 1
such that for each ω ∈ Ω, Bij(0, x;ω) = 0 for all x ∈ Rn and

− 〈ut(0, x;ω), φ(0, x)〉� + 〈u(0, x;ω), φt(0, x)〉�(1.41)

+

∫ ∞

0

〈u(t, x;ω), L∗φ(t, x)〉� dt

=

n∑
i,j=1

∫
Rn+1

+

(−1)n+1 ∂
n+1φi(t, x)

∂t · · · ∂xn Bij(t, x1, . . . , xn;ω) dt dx1 · · · dxnD
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312 JONG UHN KIM

for every φ(t, x) ∈ (C∞
0 (Rn+1))n, where 〈· , ·〉� is the duality pairing between (D′(Rn))n

and (C∞
0 (Rn))n.

Proof. By the same argument as in the first paragraph of the proof of Lemma 1.4,
there is some Ω ∈ B(S ′) with µ(Ω) = 1 such that for each ω ∈ Ω, Bij(0, x;ω) = 0, for
all x ∈ Rn. By modifying Ω, if necessary, we may assume that for each ω ∈ Ω, (1.21)
holds for all φ ∈ (

C∞
0 (Rn+1)

)n
. Now let us fix ω ∈ Ω. Since the tensor product

C∞
0 (R)⊗ C∞

0 (Rn) is sequentially dense in C∞
0 (Rn+1), it is enough to consider φ in

the form of α(t)β(x). Choose any α(t) ∈ C∞
0 (R) and β(x) ∈ (C∞

0 (Rn))n, and choose
T > 0 such that α(t) = 0 for t ≥ T. We may take ∆ and q in (1.26) such that the
support of β ⊂ ∆. Since Bij(t, x;ω) is continuous in (t, x) ∈ Rn+1, we can extend
the solution of (1.34) and (1.35) to a larger time interval so that

〈u(t, x;ω), β(x)〉� ∈ C1
(
[−ε, T + ε]

)
,(1.42)

〈u(t, x;ω), A∗(t, x,Dx)β(x)〉� ∈ C1
(
[−ε, T + ε]

)
(1.43)

for some positive constant ε, and

d2

dt2
〈u ∗ ρh, β〉�(t)−

(〈u, A∗β〉� ∗ ρh
)
(t)(1.44)

=
d

dt

n∑
i,j=1

〈
Bij ∗ ρh, (−1)n

∂n βi
∂x1 · · · ∂xn

〉
�

(t)

for each t ∈ (−ε/2, T + ε/2), 0 < h < ε/2, where A∗(t, x,Dx) is the adjoint of
A(t, x,Dx), ρh(t) = ρ(t/h)/h, with ρ(t) ∈ C∞

0 (R) satisfying

ρ(t) = ρ(−t) ≥ 0; ρ(t) = 0 for |t| ≥ 1;

∫ ∞

−∞
ρ(t) dt = 1.(1.45)

The convolution is taken with respect to the time variable.
Now we obtain (1.41) by going through the standard procedure: (i) multiply

(1.44) by α(t) for −ε/2 < t < T + ε/2 ; (ii) integrate over [0, T ]; (iii) pass h → 0
with the help of (1.42), (1.43), and the fact Bij(0, x;ω) = 0 for all x ∈ Rn.

Next we show that the traces of u and ut with respect to the time variable can
be defined as generalized stochastic processes.

Lemma 1.8. Let u(t, x1, . . . , xn;ω) be a solution of (0.1) in R
n+1
+ . Then, for each

fixed t0 > 0, u(t0, x1, . . . , xn;ω) and ut(t0, x1, . . . , xn;ω) are generalized stochastic
processes with respect to F(S ′) which is the completion of B(S ′).

Proof. Choose any β(x1, . . . , xn) ∈ (C∞
0 (Rn))n. We have to show that

〈u(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�
and

〈u(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�
are measurable with respect to F(S ′). Here 〈· , ·〉� is the duality pairing between
(D′(Rn))n and (C∞

0 (Rn))n. Choose a positive number T and an open bounded subset
∆ ⊂ Rn so that t0 < T and the support of β ⊂ ∆. Then, by Lemma 1.6, for each
fixed ω ∈ Ω, where Ω ∈ B(S ′) with µ(Ω) = 1,

〈u(t, x1, . . . , xn;ω), β(x1, . . . , xn)〉�
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ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 313

is continuous in t ∈ [0, T ]. Consequently,

〈u(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�(1.46)

= lim
h→0

� u(t, x1, . . . , xn;ω), ρh(t− t0)β(x1, . . . , xn) �,

where � · , · � is the duality pairing between (D′(Rn+1
+ ))n and (C∞

0 (Rn+1
+ ))n,

ρh(t) = ρ(t/h)/h and ρ(t) is the same as in (1.45). But, for each sufficiently small h,

� u(t, x1, . . . , xn;ω), ρh(t− t0)β(x1, . . . , xn) �

is measurable with respect to B(S ′), because u is a generalized stochastic process
with respect to B(S ′). Since (1.46) holds for each ω ∈ Ω,

〈u(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�

is measurable with respect to F(S ′). By the same argument,

〈ut(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�

is also measurable with respect to F(S ′).
By virtue of Theorem 1.1, Corollary 1.3, and Lemma 1.6, we have the uniqueness

of the solution to (0.1) and (0.2) in the following form.

Lemma 1.9. If u1 and u2 are solutions of (0.1) and (0.2), then

u1 = u2 in Rn+1
+(1.47)

for almost all ω.

Let us write with the same η as in Theorem 1.2,

Ξ(t0, x0; η) = {(t, x) ∈ Rn+1 | 0 ≤ t ≤ t0, |x− x0| ≤ η(t0 − t)},(1.48)

and let d be the smallest integer larger than (n/2)−1. Our main result is the following.

Theorem 1.10. There is a continuous Gaussian process V (t, x1, . . . , xn;ω) with
parameter (t, x1, . . . , xn) ∈ [0,∞)×Rn such that

(i) Ld V is a unique solution of (0.1) and (0.2);

(ii) V (t, x1, . . . , xn;ω) and V (t̃, x̃1, . . . , x̃n;ω) are independent random variables

if Ξ(t, x1, . . . , xn; η) and Ξ(t̃, x̃1, . . . , x̃n; η) are disjoint.

The operator L was defined by (1.22).

2. Proof of the main result. The proof of Theorem 1.10 consists of two ba-
sic steps. First, we construct an integral kernel which represents a solution of the
deterministic equation:

Ldv = f in Rn+1
+ ,(2.1)

with zero initial conditions and f ∈ L2
loc([0,∞); (L2(Rn))n). For this, we use Theo-

rems 1.1, 1.2, and Corollary 1.3. We then obtain approximate solutions by truncating
the chaos expansion of the space-time white noise, and prove the convergence to the
true solution. Approximation of the white noise is necessary to establish rigorously
the existence of a solution according to Definition 1.5.
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314 JONG UHN KIM

2.1. Construction of an integral kernel. Consider the initial value problem{
Lu(1) = f in Rn+1

+ ,

u(1)(0, x) = 0, u
(1)
t (0, x) = 0 for x ∈ Rn,(2.2)

where f ∈ L2
loc

(
[0,∞); (L2(Rn))n

)
. Then there is a unique solution

u(1) ∈ C([0,∞); (H1(Rn))n
) ∩ C1

(
[0,∞); (L2(Rn))n

)
,

which satisfies

‖u(1)(t, ·)‖(H1(Rn))n + ‖u(1)
t (t, ·)‖(L2(Rn))n ≤ CT ‖f‖L2(0,T ;(L2(Rn))n)(2.3)

for all 0 ≤ t ≤ T. Here and below, CT stands for generic positive constants depending
only on T > 0. Next we consider{

Lu(2) = u(1) in Rn+1
+ ,

u(2)(0, x) = 0, u
(2)
t (0, x) = 0 for x ∈ Rn.(2.4)

We have

u(2) ∈ C([0,∞); (H2(Rn))n
) ∩ C1

(
[0,∞); (H1(Rn))n

)
,

which satisfies

‖u(2)(t, ·)‖(H2(Rn))n + ‖u(2)
t (t, ·)‖(H1(Rn))n ≤ CT ‖f‖L2(0,T ;(L2(Rn))n)(2.5)

for all 0 ≤ t ≤ T.
Inductively, we have for i = 1, . . . , d,{

Lu(i+1) = u(i) in Rn+1
+ ,

u(i+1)(0, x) = 0, u
(i+1)
t (0, x) = 0 for x ∈ Rn.(2.6)

It follows that

Ld+1u(d+1) = f in Rn+1
+(2.7)

and

u(d+1) ∈ C([0,∞); (Hd+1(Rn))n
) ∩ C1

(
[0,∞); (Hd(Rn))n

)
;(2.8)

‖u(d+1)(t, ·)‖(Hd+1(Rn))n + ‖u(d+1)
t (t, ·)‖(Hd(Rn))n ≤ CT ‖f‖L2(0,T ;(L2(Rn))n)(2.9)

for all 0 ≤ t ≤ T. Recall that d is the smallest integer larger than (n/2) − 1. Let
CB(R

n) be the space of all uniformly bounded continuous functions on Rn. Since
Hd+1(Rn) ⊂ CB(Rn), we find that for each fixed 0 ≤ t0 ≤ T, x0 ∈ Rn, the mapping

f �→ u(d+1)(t0, x0)(2.10)

is a bounded linear mapping from (L2(0, T ;L2(Rn)))n to Rn. Thus there is a matrix
function G = [Gij(t, x; t0, x0)] with each Gij ∈ L2(0, T ;L2(Rn)) so that

u
(d+1)
i (t0, x0) =

∫ T

0

∫
Rn

n∑
j=1

Gij(t, x; t0, x0)fj(t, x) dx dt.(2.11)D
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ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 315

By Corollary 1.3, we find that modification of f outside of ∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))}
does not change the values of u(k), k = 1, . . . , d+ 1, in ∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))}.
Consequently, it holds that

u
(d+1)
i (t0, x0) =

∫ t0

0

∫
Γ(t0,x0)(t;ε,η)

n∑
j=1

Gij(t, x; t0, x0)fj(t, x) dx dt(2.12)

for every ε > 0. By passing ε→ 0, we arrive at

u
(d+1)
i (t0, x0) =

∫∫
Ξ(t0,x0;η)

n∑
j=1

Gij(t, x; t0, x0)fj(t, x) dx dt(2.13)

which, together with (2.11), implies

the support of Gij(t, x; t0, x0) ⊂ Ξ(t0, x0; η).(2.14)

Lemma 2.1. For each T > 0, the mapping (t0, x0) �→ Gij( · ; t0, x0) is Hölder
continuous from [0, T ]×Rn to L2([0, T ]×Rn), i, j = 1, . . . , n.

Proof. Let us write d+1 = (n/2) + ε, where ε = 1/2 if n is odd, and ε = 1 if n is
even. It follows from (2.8) and (2.9)

|u(d+1)(t0, x0)− u(d+1)(t̃0, x0)|
(2.15)

≤ C‖u(d+1)(t0, ·)− u(d+1)(t̃0, ·)‖(H(n/2)+(ε/2)(Rn))n

≤ C‖u(d+1)(t0, ·)− u(d+1)(t̃0, ·)‖1−(ε/2)

(H(n/2)+ε(Rn))n
‖
∫ t0

t̃0

u
(d+1)
t (t, ·) dt‖ε/2

(H(n/2)+ε−1(Rn))n

≤ CT |t0 − t̃0|ε/2 ‖f‖L2(0,T ;(L2(Rn))n)

for all t0, t̃0 ∈ [0, T ] and all x0 ∈ Rn. In the meantime, by (2.9) and the Sobolev
imbedding theorem,

|u(d+1)(t0, x0)− u(d+1)(t0, x̃0)| ≤ CT |x0 − x̃0|ε ‖f‖L2(0,T ;(L2(Rn))n)(2.16)

for all t0 ∈ [0, T ] and all x0, x̃0 ∈ Rn.
This, together with (2.11) and (2.15), yields

∣∣∣∣
∫ T

0

∫
Rn

n∑
j=1

(
Gij(t, x; t0, x0) − Gij(t, x; t̃0, x̃0)

)
fj(t, x) dx dt

∣∣∣∣(2.17)

≤ CT (|t0 − t̃0|ε/2 + |x0 − x̃0|ε) ‖f‖(L2([0,T ]×Rn))n ,

and thus, for each i, j = 1, . . . , n,

‖Gij( · ; t0, x0)−Gij( · ; t̃0, x̃0)‖L2([0,T ]×Rn) ≤ CT (|t0 − t̃0|ε/2 + |x0 − x̃0|ε)(2.18)

for all (t0, x0), (t̃0, x̃0) ∈ [0, T ]×Rn. This proves the Hölder continuity of Gij .
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316 JONG UHN KIM

2.2. Approximation and convergence. We approximate F (t, x) in (0.1) by

FN (t, x) =

{
F (t, x) for |t|+ |x| ≤ N,
0 otherwise.

(2.19)

Recalling (1.20), we define

QNi (t, x;ω) =

N∑
k=1

n∑
j=1

FNij (t, x)ηk(t, x)〈ωj , ηk〉.(2.20)

Then, for each ω,

QNi (t, x;ω) ∈ L2(Rn+1
+ ), i = 1, . . . , n.(2.21)

Next we define

WN
i (t, x;ω) =

∫ ∞

0

∫
Rn

n∑
j=1

Gij(s, y; t, x)Q
N
j (s, y;ω) dy ds.(2.22)

Let WN = (WN
1 , . . . ,W

N
n ), and QN = (QN1 , . . . , Q

N
n ). Then it holds that for each

ω,

Ld+1WN = QN (t, x;ω) in Rn+1
+ ,(2.23)

and, for j = 0, 1, . . . , d,

LjWN ∈ C([0,∞); (Hd+1−j(Rn))n
) ∩ C1

(
[0,∞); (Hd−j(Rn))n

)
,(2.24)

(LjWN )(0, x;ω) = 0, (LjWN )t(0, x;ω) = 0 in Rn.(2.25)

Choose any M ∈ B(S ′). By virtue of the special structure of WN
i defined by (2.20)

and (2.22), it is apparent that∫∫
Rn+1

+

∫
M
WN · ((L∗)d+1φ

)
dµ dx dt =

∫
M

∫∫
Rn+1

+

WN · ((L∗)d+1φ
)
dx dt dµ(2.26)

for all φ ∈ (C∞
0 (Rn+1))n. At the same time, we use (2.21), (2.23), (2.24), (2.25), and

the same argument as in the proof of Lemma 1.7 to find that∫
M

∫∫
Rn+1

+

WN · ((L∗)d+1φ
)
dx dt dµ =

∫
M

∫∫
Rn+1

+

QN · φdx dt dµ(2.27)

for all φ ∈ (C∞
0 (Rn+1))n.

Recalling (1.20), (2.20), and (2.22), we define, for i = 1, . . . , n,

Wi(t, x;ω) =

n∑
ν,j=1

〈ωj(s, y), Giν(s, y; t, x)Fνj(s, y)〉,(2.28)D
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ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 317

and write W = (W1, . . . ,Wn). We can use (1.7) in the same way as for (1.20) to find
that for each g ∈ (L2(Rn+1))n,

N∑
k=1

n∑
j=1

〈ωj(z), ηk(z)〉
∫
Rn+1

ηk(z)gj(z) dz →
n∑
j=1

〈ωj(z), gj(z)〉,(2.29)

in L2(S ′, dµ). The assumption (V), (2.14), (2.18), and (2.29) imply that as N → ∞
WN
i (t, x;ω) →Wi(t, x;ω) in L2(S ′, dµ),(2.30)

uniformly in (t, x) of each bounded subset of [0,∞) × Rn. Hence, we find that for
every φ ∈ (C∞

0 (Rn+1))n,∫∫
Rn+1

+

∫
M
WN · ((L∗)d+1φ

)
dµ dx dt→

∫∫
Rn+1

+

∫
M
W · ((L∗)d+1φ

)
dµ dx dt,(2.31)

as N → ∞.
Meanwhile, for every φ ∈ (C∞

0 (Rn+1))n, as N → ∞,∫
M

∫∫
Rn+1

+

QN · φdx dt dµ→
∫
M

n∑
i,j=1

〈ωj(t, x), Fij(t, x)φi(t, x)π+(t)〉 dµ,(2.32)

where

π+(t) =

{
1 for t ≥ 0,

0 otherwise.
(2.33)

Thus, for every φ ∈ (C∞
0 (Rn+1))n,∫∫

Rn+1
+

∫
M
W · ((L∗)d+1φ

)
dµ dx dt =

∫
M

n∑
i,j=1

〈ωj , Fijφiπ+〉 dµ.(2.34)

Next we will obtain a continuous version ofW. Let K be a bounded subset of [0,∞)×
Rn. It follows from (1.7) and (2.18) that for each positive integer m,

E
(∣∣Wi(t, x;ω)−Wi(t̃, x̃;ω)∣∣2m) ≤ Cm,K |(t, x)− (t̃, x̃)|εm(2.35)

for all (t, x), (t̃, x̃) ∈ K, for some positive constant Cm,K . By a partition of unity
and Kolmogorov’s theorem, there is a continuous version Vi(t, x;ω) of Wi(t, x;ω).
We write V = (V1, . . . , Vn). It is evident that V is a continuous Gaussian process
with parameter (t, x) ∈ [0,∞)×Rn.

Lemma 2.2. For every φ ∈ (C∞
0 (Rn+1))n, and every M ∈ B(S ′), it holds that∫

M

∫∫
Rn+1

+

V · ((L∗)d+1φ
)
dx dt dµ(2.36)

=

∫
M

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t∂x1 · · · ∂xnBij(t, x;ω) dx dt dµ.D
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318 JONG UHN KIM

Proof. Since E(|Wi(t, x; · )|2) is bounded uniformly in (t, x) of each bounded
subset of [0,∞)×Rn, it is apparent that∫∫

Rn+1
+

∫
M

∣∣W · ((L∗)d+1φ
)∣∣ dµ dx dt <∞(2.37)

for each φ ∈ (C∞
0 (Rn+1))n. In the meantime, Vi(t, x;ω) = Wi(t, x;ω) for almost all

ω, for each fixed (t, x) so that∫∫
Rn+1

+

∫
M
W · ((L∗)d+1φ

)
dµ dx dt =

∫∫
Rn+1

+

∫
M
V · ((L∗)d+1φ

)
dµ dx dt(2.38)

and also, ∫∫
Rn+1

+

∫
M

∣∣W · ((L∗)d+1φ
)∣∣ dµ dx dt = ∫∫

Rn+1
+

∫
M

∣∣V · ((L∗)d+1φ
)∣∣ dµ dx dt(2.39)

for every φ ∈ (C∞
0 (Rn+1))n. Furthermore, Vi(t, x;ω) is continuous in (t, x) for each

ω, and measurable with respect to B(S ′) for each (t, x). Hence, Vi is measurable with
respect to the product σ-algebra. By Fubini’s theorem, we have∫∫

Rn+1
+

∫
M
V · ((L∗)d+1φ

)
dµ dx dt =

∫
M

∫∫
Rn+1

+

V · ((L∗)d+1φ
)
dx dt dµ.(2.40)

Meanwhile, it follows from Lemma 1.4 that for every φ ∈ (C∞
0 (Rn+1))n,

∫
M

n∑
i,j=1

< ωj , Fijφi > dµ(2.41)

=

∫
M

n∑
i,j=1

∫∫
Rn+1

(−1)n+1 ∂n+1φi
∂t∂x1 . . . ∂xn

Bij(t, x1, . . . , xn;ω) dx dt dµ.

Let us choose π(t) ∈ C∞(R) with π(t) = 1 for t ≥ 0, and π(t) = 0 for t ≤ −1, and
write

πh(t) = π(t/h) for h > 0.(2.42)

Then (2.41) is valid with φi replaced by φiπ
h, and it is easy to see that as h→ 0,

n∑
i,j=1

〈ωj , Fijφiπh〉 →
n∑

i,j=1

〈ωj , Fijφiπ+〉 in L2(S ′, dµ).(2.43)

Since Bij(t, x;ω) is continuous in (t, x) for each ω, it follows from (1.15) and Fatou’s
lemma that for each bounded subset K ⊂ [0,∞)×Rn,

E
(∣∣Bij(t, x; · )∣∣2) ≤ CK(2.44)
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ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 319

for all (t, x) ∈ K, for some positive constant CK . We use this for the following
procedure:

lim
h→0

∫
M

∫∫
Rn+1

∂nφi(t, x)

∂x1 · · · ∂xn
1

h
π′(t/h)Bij(t, x;ω) dx dt dµ(2.45)

= lim
h→0

∫ 0

−1

∫
|x|≤q

∫
M

∂nφi
∂x1 · · · ∂xn (hs, x)π

′(s)Bij(hs, x;ω) dµ dx ds

=

∫ 0

−1

∫
|x|≤q

(
lim
h→0

∫
M

∂nφi
∂x1 · · · ∂xn (hs, x)π

′(s)Bij(hs, x;ω) dµ
)
dx ds

= 0.

Here the second equality is justified by the fact that∫
M

∂nφi
∂x1 · · · ∂xn (hs, x)π

′(s)Bij(hs, x;ω) dµ

is bounded uniformly in 0 ≤ h ≤ 1, −1 ≤ s ≤ 0, and |x| ≤ q, where q is a positive
number such that φi(t, x) = 0 for |x| ≥ q. For the last equality, we argue as follows.
First, for each fixed s and x, as h→ 0,

< ωj(y), Fij(y)χ(hs,x1,... ,xn)(y) >→ 0 in L2(S ′, dµ).(2.46)

Next, since Bij(t, x;ω) is a continuous version of the process defined by (1.10), we
have for each fixed s and x,

lim
h→0

∫
M
Bij(hs, x;ω) dµ = lim

h→0

∫
M
< ωj(y), Fij(y)χ(hs,x1,... ,xn)(y) > dµ(2.47)

= 0.

Hence, the last equality follows.
Similarly, we also have

lim
h→0

∫
M

∫∫
Rn+1

∂n+1φi(t, x)

∂t · · · ∂xn πh(t, x)Bij(t, x;ω) dx dt dµ(2.48)

=

∫
M

∫∫
Rn+1

+

∂n+1φi(t, x)

∂t · · · ∂xn Bij(t, x;ω) dx dt dµ.

Combining (2.43), (2.45), and (2.48), we finally arrive at

∫
M

n∑
i,j=1

〈ωj , Fijφiπ+〉 dµ(2.49)

=

∫
M

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t∂x1 · · · ∂xnBij(t, x;ω) dx dt dµ

for all φ ∈ (C∞
0 (Rn+1))n. By means of (2.34), (2.38), (2.40), and (2.49), we derive

(2.36) and conclude the proof of Lemma 2.2.
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320 JONG UHN KIM

We now show that Ld V (t, x;ω) is a solution of (0.1) according to Definition 1.5.
(2.36) implies that for each φ ∈ (C∞

0 (Rn+1
+ ))n,

� V, (L∗)d+1φ�=

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t · · · ∂xnBij(t, x;ω) dx dt(2.50)

holds for almost all ω. Let K be a compact subset of Rn+1
+ . Then C∞

0 (K) is a separa-

ble Fréchet space. Hence, there is a countable dense subset {φ(ν)}∞ν=1 ⊂ (
C∞

0 (K)
)n
.

For each φ(ν), there is Ων ∈ B(S ′) such that µ(Ων) = 1, and, for all ω ∈ Ων ,

� V, (L∗)d+1φ(ν) �=

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂
n+1φ

(ν)
i

∂t · · · ∂xnBij(t, x;ω) dx dt(2.51)

holds. Let ΩK = ∩∞
ν=1 Ων . Then, µ(ΩK) = 1, and for all ω ∈ ΩK , (2.51) holds

for every φ ∈ (
C∞

0 (K)
)n
. Since Rn+1

+ is a countable union of compact subsets,
there is Ω ∈ B(S ′) such that µ(Ω) = 1, and for every ω ∈ Ω, (2.50) holds for all
φ ∈ (C∞

0 (Rn+1
+ ))n. Hence, Ld V is a solution of (0.1) in Rn+1

+ .
Next we will show that Ld V satisfies the initial conditions (0.2). Choose any

γ1(x), γ2(x) ∈ (C∞
0 (Rn))n, and consider the Cauchy problem:

L∗ψ = 0 in (−∞,∞)×Rn,(2.52)

ψ(0, x) = γ1(x), ψt(0, x) = γ2(x) in Rn.(2.53)

Choose a function ζ(t) ∈ C∞
0 (R) such that ζ(t) = 1 for |t| ≤ 1, and ζ(t) = 0 for |t| ≥

2. Let us set σ(t, x) = ζ(t)ψ(t, x). The solution of the above Cauchy problem satisfies
the property of a domain of dependence, and consequently, σ(t, x) ∈ (C∞

0 (Rn+1))n.
Furthermore, it is easy to see

L∗σ = 2ζt ψt + ζttψ ∈ (C∞
0 (Rn+1))n,(2.54)

where the right-hand side vanishes for |t| ≤ 1. In the meantime, by the same argument
as above, we can infer from (2.36) that there is some Ω ∈ B(S ′) with µ(Ω) = 1 such
that for each ω ∈ Ω,∫∫

Rn+1
+

V · ((L∗)d+1φ
)
dx dt =

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t · · · ∂xnBij(t, x;ω) dx dt(2.55)

holds for all φ ∈ (C∞
0 (Rn+1))n. With φ = σ, the left-hand side can be written as∫∫

Rn+1
+

V · ((L∗)dL∗σ
)
dx dt =

∫ ∞

0

〈Ld V, L∗σ〉� dt,(2.56)

because L∗σ ∈ (
C∞

0 (Rn+1
+ )

)n
for t ≥ 0. Thus (2.55) yields∫ ∞

0

〈LdV (t, x;ω), L∗σ(t, x)〉� dt(2.57)

=

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂
n+1σi(t, x)

∂t · · · ∂xn Bij(t, x;ω) dx dtD
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ON A STOCHASTIC HYPERBOLIC SYSTEM IN LINEAR ELASTICITY 321

for all ω ∈ Ω. On the other hand, Lemma 1.7 implies that

− 〈(Ld V )t(0, x;ω), γ1(x)〉� + 〈Ld V (0, x;ω), γ2(x)〉�(2.58)

+

∫ ∞

0

〈Ld V (t, x;ω), L∗σ(t, x)〉� dt

=

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂
n+1σi(t, x)

∂t · · · ∂xn Bij(t, x;ω) dx dt

for all ω ∈ Ω, after modification of Ω if necessary. But we note that this Ω is
independent of γ1 and γ2. By comparing (2.57) and (2.58), we conclude that

Ld V (0, x;ω) = 0, (Ld V )t(0, x;ω) = 0 in Rn

for each ω ∈ Ω, because γ1 and γ2 were chosen arbitrarily. The uniqueness is given
by Lemma 1.9

Now the statement (i) of Theorem 1.10 has been established. The statement (ii)
follows easily from (1.6), (2.14), and (2.28).

Final remark. Our goal is to obtain a solution in the form (0.6). If one is interested
only in the existence of weak solutions for almost all ω, there is a somewhat direct ap-
proach. It follows from Lemma 1.4 that Fξ ∈ (H−1

loc (R;H
−n
loc (R

n)))n for almost all ω.
Since Theorem 1.1 cannot be applied directly for this function class, it requires some
work to obtain a weak solution. This involves localization in the space variables and
handling low regularity in the time variable as in the proof of Lemma 1.6. It also needs
some extra work to show that the resulting weak solution is a generalized stochastic
process. Meanwhile, the structure of such a solution is intractable. The reward for
our special procedure for the existence of solution is twofold. First, the representation
formula shows globally uniform structure of the solution as a generalized stochastic
process. Second, our procedure shows that the solution can be approximated by a
sequence of ordinary stochastic processes.
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