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Abstract

A positivity—preserving numerical scheme for a fourth order nonlinear
parabolic system arising in quantum semiconductor modelling is studied.
The system is numerically treated by introducing an additional nonlinear
potential and a subsequent semidiscretization in time. The resulting se-
quence of nonlinear second order elliptic systems admits at each time level
strictly positive solutions, which is proved by an exponential transforma-
tion of variables. The stability of the scheme is shown and convergence
is proved in one space dimension. The results extend under additional
assumptions to the multi-dimensional case. Assuming enough regularity
on the solution the rate of convergence proves to be optimal. Numerical
results concerning the switching behaviour of a resonant tunneling diode
are presented.
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1 Introduction

During the last years there was a fast progress in the miniaturization of semicon-
ductor devices, reaching a length scale at which quantum effects play a dominant
role. As classical simulation codes are no more capable of resolving the correct
device behaviour, applied mathematicians have to keep pace by deriving accurate
quantum models, which allow for an efficient numerical treatment.

The state of the art in quantum semiconductor device modelling ranges from
microscopic models such as Schrédinger—Poisson systems [PU95] to macroscopic
equations such as the quantum hydrodynamic model (QHD) [Gar94, GJ97, GR9S].
While the former incorporate all relevant quantum phenomena they have two
drawbacks: Firstly, the high computational costs which result from the extreme
oscillatory behaviour of the wave function [MPP99] and secondly, the lack of
appropriate boundary conditions as the Schrodinger equation is stated on an
unbounded position domain [KKFR89, RFK89.

In contrast, the QHD deals with macroscopic, fluid—type unknowns which allow
for a natural interpretation of boundary conditions [Pin99b]. The model consists
of conservation laws for the particle density, current density and energy density
and can be derived via a moment expansion from a many particle Schrodinger—
Poisson system [GM97]. Although only a few moments are considered, numer-
ical investigations underline the capability of the QHD to resolve the relevant
quantum mechanical effects, e.g. negative differential resistance in the stationary
current—voltage characteristic of resonant tunneling structures [Gar94, GR98|. A
lot of information concerning the device behaviour can already be deduced from
the stationary characteristics, but there are applications when one has to employ
the transient equations, e.g. when a diode is switched from forward to reverse
bias or when one studies the response time of several coupled devices or high
frequency oscillation circuits.

Especially for stationary simulations a first moment version of the isothermal
QHD, the quantum drift diffusion model (QDD) [Anc87, AU98|, proved to quite
promising since it allows a very effective numerical treatment [PU99]. The tran-
sient equations are a result of a zero relaxation time limit in the QHD [Pin99a],
which reads in the diffusion scaling

ny +divJ =0,

72 Jy + 7 div <J®J> +Vn+nVV —e2nV (A—\/ﬁ) =—J,
n Vi

XAV =n — Cyy.

Here, the parameters are the scaled Planck constant €, the scaled Debye length
A and the scaled relaxation time 7. The distribution of charged background ions
is described by the doping profile Cy(x), which is assumed to be independent
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of time (for details see [Pin99a]). The variables are the electron density n(z,1),
the current density J(z,t) and the electrostatic potential V' (z,t¢). The limiting
system (7 = 0), stated on a bounded domain 2, can be written as

2 2 _d 9.m 0
Y € x; 10 Og; 0 .
ng = _EA n-+ 5321 oo (T) + An+div(nVV), (1.1a)
XAV =n — Cyor, (1.1b)

yielding a fourth order nonlinear parabolic equation for the electron density n,
which is self-consistently coupled to Poisson’s equation for the potential V.

To get a well posed problem, the system (1.1) has to be supplemented with ap-
propriate boundary conditions. We assume that the boundary 0f2 of the domain
Q splits into two disjoint parts I'p and 'y, where I'p models the Ohmic contacts
of the device and I'y represents the insulating parts of the boundary. Let v de-
note the unit outward normal vector along 0€). The electron density is assumed
to fulfill local charge neutrality at the Ohmic contacts:

n==Cygs onlp. (1.1¢)

Concerning the potential we assume that it is a superposition of its equilibrium
value and an applied biasing voltage U at the Ohmic contacts, and that the
electric field vanishes along the Neumann part of the boundary:

V=Vg+U onlp, VV-v=0 only. (1.1d)

Further, it is natural to assume that there is no normal component of the current
along the insulating part of the boundary and additionally the normal component
of the quantum current has to vanish:

sv=0, v(2£)v=0 oty (110

Lastly, we require that no quantum effects occur at the contacts:
Ayn=0 onTp. (1.1f)

These boundary conditions are physically motivated and commonly employed
in quantum semiconductor modelling. The numerical investigations in [Pin99b]
underline the reasonability of this choice.

System (1.1) is supplemented by an initial condition
n(z,0) = ne(z) in . (1.1g)

This model was first investigated in [Pin99a] with a slightly different set of bound-
ary conditions. There, the dynamic stability of stationary states was established,

3



at least for small scaled Planck constants and small applied biasing voltages. So
far, there are only a few results available concerning the solvability of (1.1) due
to the lack of an appropriate maximum principle ensuring the positivity of the
electron density n. Nevertheless, for zero temperature and vanishing electric field
(1.1) simplifies to

2 2 _d

ny = —%A% + % Z O, O, (W) . (1.2)

2,j=1
This equation also arises as a scaling limit in the study of interface fluctuations
in a certain spin system. Bleher, et al. [BLS94] showed that there exists a
unique positive classical solution locally in time in one space dimension, assuming
strictly positive H'())-data and periodic boundary conditions. The authors
[JP99] deduced under much weaker assumptions the existence of a non-negative

global solution n in one space dimension.

The preservation of non—negativity or positivity is not only challenging from an
analytical point of view, also the derivation of sign—preserving numerical schemes
for fourth—order equations is a field of intensive research. Even for strictly positive
analytical solutions, the solution of a naive discretization scheme may become
negative, causing unwanted numerical instabilities [Ber98].

In the last years this question was thoroughly investigated in the context of
lubrication—type equations [BF90, BP98, dPGG98|, which read

hy + div (f(h) VAR) = 0. (1.3)

They arise in the study of thin liquid films and spreading droplets (for an overview
see [Ber98| and the references therein). Here, the main ingredient for the proof
of the non—negativity or positivity property is to exploit the special nonlinear
structure of (1.3), especially the degeneracy of the mobility f(h), i.e. f(h) = h*
as h — 0 for some a > 0. Numerically, there are two ways of dealing with
Equation (1.3): Bertozzi et al. [BZ99| designed a space discretization using fi-
nite differences, which exhibits the same properties as the continuous equation.
While Barrett et al. [BBG98| proposed a non—negativity preserving finite element
method, where the non—negativity property is imposed as a constraint such that
at each time level a variational inequality has to be solved.

Concerning Equation (1.2) a different approach was used in the existence proof
[JP99]. After an exponential transformation of variables, n = %, a semi—discreti-
zation in time was performed for

(€2u)t — —52 (€2u uww)ww .

As the resulting sequence of elliptic problems is uniquely solvable in each time
step, this yields intrinsically a global non—negative solution. However, due to the
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introduced additional nonlinearity in the time derivative this scheme meets some
difficulties in numerical simulations.

In this paper we introduce a totally new approach to the numerical solution of
the fully coupled system (1.1), which consists of two main ideas: Firstly, we write
Equation (1.1a) in conservation form

ny = div (nV (—sQAT‘{Lﬁ + log(n) + V))

and introduce the quantum quasi Fermi level

Ay/n
Vn
Here, —e?A+/n/+/n is the so-called quantum Bohm potential. Employing the

boundary conditions (1.1¢)—(1.1f) we learn that the equilibrium value of the po-
tential is given by V., = —log(Cye) and that F fulfills

F=—¢°

+ log(n) + V.

F=U onlp, VF-v=0 only.

Secondly, motivated by the results for the stationary problem [AU98], we employ
an implicit time discretization by a backward EULER scheme on the system

ny = div(n VF), (1.4a)
Ayn
—¢? 1 =F 1.4
5 NG +log(n) +V , (1.4b)
XAV =n — Cypt. (1.4¢)

In the following we prove that in one space dimension the discretized version
of (1.4) admits at each time level a strictly positive solution n(z,t;) and state
conditions, which are sufficient to ensure the solvability in the multi-dimensional
case. Unfortunately, we cannot derive a uniform lower bound on the electron
density such that this property does not hold in the limit and weakens to non—
negativity. Further, it is worth noting that the entropy (or free energy)

5@=§A

is (formally) non—increasing in time, as long as the boundary data Fp for the
quantum quasi Fermi level is non—positive. Here,

merm+AHm@ym+%wawﬁm (1.5)

H(s) ¥ s(log(s) — 1) + 1

denotes a primitive of the logarithm. This observation allows us to derive a
stability bound for the numerical scheme in arbitrary space dimensions. However,
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without additional assumptions, this is only sufficient to prove convergence of
the scheme in one space dimension, since in the proof the Sobolev embedding
HY(Q) — L*(Q) plays a crucial role. Imposing stronger assumptions on the
regularity of the continuous solutions we show convergence in arbitrary space
dimensions and give an estimate on the order of convergence, which proves to be
optimal.

Finally, let us give some comments on the numerical advantages of (1.4) compared
with (1.1), which are twofold: On the one hand we do not have to discretize a
higher order differential operator and on the other hand it is now possible to
introduce an external potential, modelling discontinuities in the conduction band,
which occur for example in resonant tunneling structures [Gar94, PU99|. It is
common to replace in (1.4b) the potential V' +— V + B, where B is a step function.
Clearly, such a replacement in (1.1a) causes extreme numerical problems due to
the second derivative of B.

The paper is organized as follows. In Section 2 we introduce the semidiscretiza-
tion of (1.4), prove the solvability of the discretized system in one space dimension
and state additional conditions ensuring the solvability in multi-dimensions. Fur-
ther, we derive a stability estimate on the discrete solution, which also holds for
space dimensions larger than one. Section 3 is devoted to the proof of conver-
gence in one space dimension, which relies on an energy estimate for the discrete
solution. Imposing stronger assumptions we show in Section 4 that the scheme
is convergent with the optimal order in some suitable norm. Finally, in Section 5
we apply the scheme for the simulation of a resonant tunneling diode and present
numerical results concerning its switching behaviour. These are the first transient
computations employing a macroscopic quantum model.

2 Semidiscretization

In this section we derive the implicit semidiscretization of (1.4) and prove the ex-
istence of solutions to the resulting system on each time level in the case (2 C R.
Especially, we show that the approximation of the electron density is strictly pos-
itive. We discuss sufficient conditions guaranteeing the solvability in the multi-
dimensional case. Further, we derive a stability estimate on the discrete solution,
which is essentially a consequence of the boundedness of the entropy (1.5).

For the following investigations we introduce the new variable p = /n. Then
(1.4) reads:

(pQ)t = div(p* VF), (2.1a)

2 Ap 2
—& s +log(p?) +V =F, (2.1b)
XAV = p? — Cyor- (2.1c)



For the numerical treatment of (2.1) we employ a vertical line method and replace
the transient problem by a sequence of elliptic problems.

Let T > 0 be given. We divide the time interval [0,7] into N subintervals by
introducing the temporal mesh {t; : £ =0,... ,N}, where 0 = ¢, < t; < ... <

tv = T. We set 7, def tx — tg—1 and define the maximal subinterval length

T maxy=1,.. n Tk- We assume that the partition fulfills

T—0, asN — oc. (2.2)

For any Banach space B we define

PCN(0,T; B) € {v™: (0,T] = B : v"|(y_,.4) = const. for k =1,... ,N}
and introduce the short-cut v, = v7(¢) for ¢t € (ty_1,t] and £ = 1,...,N.
Further, let 7" denote the linear interpolant of v € PCx(0,T; L*(Q ) iven by

1 — 1k

- (Uk - ’l)k_l) + Vg—1, for x € Q, te (tk—lgtk]-
k

" (t,x) =

Now we discretize (2.1) using an implicit EULER scheme:
Set po = v/n(0). For k =1,..., N solve recursively the elliptic systems

1

. (Pk — Pr—1) = div(p; VFy), (2.3a)
=2 log(p?) + Vi = B, (2.3b)
—NAV, = p2 — Cyor, (2.3c)

subject to the boundary conditions

pr=pp, Fr=Fp, Vi=Vp onlp, (2.3d)
Vor-v=VF,-v=VV,-v=0 on [y, (2.3e)

where

pp =V Caot, Fp=U, Vp=—log(Cyu)+U.

Then the approximate solution to (2.1) is given by (p™, F™, V7).

2.1 Solvability of the Discretized System

We use the standard notation for Sobolev spaces (see [Ada75]), denoting the norm
of W™P(Q) (m € R} ,p € [1,00]) by ||- [ wm.s(q)- In the special case p = 2 we use
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H™(Q) instead of W™?(Q). Further, let H*(2) be the closure of C°(2) with
respect to the H™(2)—norm. Its dual space (HJ*(2))" is denoted by H™(Q)
and the duality pairing of H{*(§2) with its dual space is given by (-, '>H*m,H6’“
Moreover, for any Banach space B we define the space L?(0,7T; B) with p € [1, <]
consisting of all measurable functions ¢ : (0,7) — B for which the norm

dof T 1/p
e
||so||Lp(o,T;B)=(/0 el dt)  peft,oo)

def
||(P||L°°(O,T;B) = sup le@)llg, p= o0,
t€(0,T)

is finite. If the time interval is clear we shortly write |||,z

We can show the existence of a solution to the discrete system in one space di-
mension under natural assumptions on the data. The multi-dimensional case can
be treated under additional assumptions (see Remark 2.3). For the subsequent
considerations we impose the following assumptions.

A.1 Let Q CR¢, d =1,2 or 3 be a bounded domain with boundary 99 € C*!.
The boundary 02 is piecewise regular and splits into two disjoint parts
'y and I'p. The set I'p has nonvanishing (d — 1)-dimensional Lebesgue—
measure. 'y is closed.

A.2 The boundary data fulfills
pp € H*(Q), infpp >0, Vpp-v=0onTy,
FpeC*(Q) forye (O, %) , Fp<-Fp<Q,
Vp € C*(Q)
and for the initial condition holds py € H?(f2). Further, Cyp; € C%7(Q).

A.3 Lety € (0,1) and a € C*7(Q) with a > @ > 0. Then there exists a constant
K = K(Q,Tp,T'y,a,d,7v) > 0 such that for f € C%(Q) and up € C*7(Q)
there exists a solution u € C?7(Q2) of

div(aVu) = f, u—up € Hy(QUTy),
which fulfills
ullosaay < K (lunllcanay + 1 oo ) -

Remark 2.1.



(a) Assumption A.3 is essentially a restriction on the geometry of Q. It is
fulfilled in L the case where the Dirichlet and the Neumann boundary do not
meet, i.e. Tp N Ty =0 [Tro87].

(b) The restriction Fp < —Fp on the Quantum Quasi Fermi level is purely
technical. From the physical point of view the device behaviour is indepen-
dent of a shift FF'—» F4+a, V=V +a, acR

(c) For a smoother presentation we assume that the boundary conditions are
independent of time.

Now we state the main existence theorem for (2.3).

Theorem 2.2. Assume A.2—A_.3 and d =1, 02 = I'p. Furthermore, let k €
{1,...,N} and let py_1 € C®7(Q). Then there exists a solution (pg, Fy, Vi) of
the system (2.3), fulfilling

(a) (prs Fe, Vi) € H*(Q) x C*7(Q) x C*7(Q) for 0 <y < 3,
(b)30k>05 pk20k>0 i .

Proof. The proof is done in three steps: We eliminate Fj, from (2.3), introduce
an exponentional transformation of variables and employ Schauder’s fixed point
theorem on the resulting system. Elimination of F}, and some calculus yields (for
positive p)

1 g2
5(92 - pi—l) = _5(:02(10g PQ)ww)m + (p2(10g P2)x)w + (pQVw)wa (2.4a)
AV, = p* — Cyor  in Q, (2.4D)
P=pp, Pwz=0, V =Vp on o, (2.4¢)

which has to be solved for (p, V).

Since there is no maximum principle available we employ the exponential trans-
formation of variables p = e* as in [GJ99] and get the system

1 U U U U
T—k(e2 — i 1) = —€2(e™Upg)zz + 2(€* Uz )z + (€7 Vy)g, (2.5a)
AV, = e* — Cypr  in Q, (2.5b)
U=Up, Uy = —(Uz)?, on 02, 2.5¢)

where up = log pp. We show that there exists a solution u € H?(Q) to (2.5).
Since H?(2) — L°°(£2), we can set p = e and p solves the system (2.4). More-
over, p is strictly positive in €.



To establish the existence of a solution to (2.5) we use Schauder’s fixed point
theorem. For this purpose we define a fixed point mapping G : H*?t7(Q) —
H3/?%7(Q), with o € (0,2) as follows. Let w € H%?*7(Q2) be given. Let V €

'3
H'(Q) be the unique solution to

AV, =€ —CyyinQ, V =Vpon 00.

Furthermore, solve the linear problem

1
_(62w - pi—l) = _52(62wuxx)ww + 2(62wuw)w + (62wvw)$ on Q’ (2.6&)
Tk

U=1Up, U =—(w;)> on O (2.6b)

Notice that H3/2t7(Q) < C'(Q) such that the above equation is strictly elliptic
and w, is well defined on 0€2. It is easy to see that this problem has a unique
solution u € H?(2). Then the mapping G, given by G(w) = u, is well defined.

Further, we have the following apriori estimate on u. Using u—up as test function
in (2.6a) and integration by parts give

52/ e®u? dx + 2/ e*u? dx (2.7)
Q Q

= 82/ e Uge (U — up)g ds + 52/ € UpgUp 2 AT + 2/ e*uyup » dx
890 Q Q

1
— / e*Vy(u — up), dx + —/(pil —e®)(u — up) dz.
Q Tk Jo

In view of the boundary condition u,, = —(w;)?, we can estimate the boundary
term as follows:

/ e®Ugy(u — Up)y ds
890

exp (2wl oo () llwellFoo o0y (1l Lro0) + lltupellLion))

er(lwllov@y) (lltall o) + 1)
2

9
exp (~2ullm@)  Fluaele + Nuali ) + e (lullen).

<
<

IA

Here, we have used the embedding H'(Q2) — L!'(d9Q). Employing the elliptic
estimate

IVar@) < eslle®” = Caotll 2o

with c3 > 0, Young’s and Poincaré’s inequality, we arrive at
) g q

&2
5exp(—2||w||Loo(n>)/Uim dw+eXp(—2I|w||Loom))/U§ dz < es([|wllerg))-
Q Q
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Thus, by Poincaré’s inequality,

ullz2@) < calllwllmsrote(a))-
The constant ¢, > 0 also depends on k£ and the data.

Standard arguments now show that G is a continuous mapping. The com-
pactness of G follows from the above estimate and the compact embedding
H?(Q) — H??%7(Q). Hence, the existence of a fixed point is now a consequence
of Schauder’s fixed point theorem.

Since p = €* and p > 0 in 2, the Quantum Quasi Fermi level F in (2.3) is well
defined and as F' fulfills

1

div (p* VF) = — (0 — pi_1) € C™(Q)
k

we get from A.3 the desired regularity F' € C%7(2). An analoguous argument
gives V € C%7(Q). O

Remark 2.3. The same argument as in the previous proof does not work for
the multi-dimensional problem. Indeed, the boundary condition 4z, = —w?2 on
['p has to be replaced by

Au = —|Vw[> on Tp,

and the boundary term in estimate (2.7) becomes

3 Z/ e”" Oyu 0;(u — up) v; ds.

3,j=1

But now we cannot replace 0;;u by an expression involving the derivatives of w
and estimate as in the previous proof. Therefore, we have to consider another
strategy.

Let A.1-A.3 hold. Working directly with the system (2.3), where we replace
log p? by flog p?, § > 0 being a temperature constant, we can prove the existence
of solutions if # is sufficiently large. To see this, we define the fixed point operator
as follows. Let w € H3?%7(Q) (0 < o < 1/2) with w > m > 0 in § for some
m > 0 to be determined, and let V € H'(Q) be the unique solution to

—NAV =w? = Cypy  in Q,
V=Vp onlp, VV.-v=0 only.

Since w € H3/?+7(Q) — C%(Q) with v < o, we have V € C*7(Q), in view of
Assumption A.3. Further, the unique solution F' to

1
div(w?VF) = E(wQ —pi_,) inQ, (2.8)

F=Fp onlp, VF-v=0 only,
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satisfies the regularity property F € C%7(Q). Finally, let p € H'(2) be the
unique solution to

e2Ap=p(@logp®*+V —F) inQ, (2.9)
p=pp onlp, Vp-v=0 only.

The main difficulty now is to prove that p > m > 0 holds in 2. Assuming a reg-
ularity assumption for W??(Q) spaces, similar to A.3, we obtain p € W?P(Q) —
C*(Q) for p > d and then, using Assumption A.3, p € C*7(Q2). Moreover, the
fixed point operator w +— p is well defined.

In order to obtain the lower bound for p, we can use (p — m)~ = min(0, p — m)
as a test function in (2.9) if 0 < m < infr, pp. Then we can achieve p > m
if infq F' > —oo is independent of m, by choosing m > 0 small enough. For
an estimate for infg F' take (F' — f)~ for appropriate f as test function in (2.8).
Using Stampacchia’s method, however, it is only possible to show that /' >
f —c(||w||za)/m? (for some g > 1).

We need to choose 6 > 0 large enough in order to get the bound p > m. We
proceed similar as in [Jiin98]. Indeed, it is easy to check that supg F' < ¢i(m).
This gives p < cy(m), by the truncation method, and thus infq F' > —c3(m)
(defining the fixed point operator in an appropriate way). Furthermore, it holds
supg V' < ¢4(m). Hence, employing the test function (p—m)~ in (2.9), we obtain

£ / V(o—m) Pdz < / p(Blogm? +V — F)(—(p — m)")dz

IN

/Q p(Blogm? + ca(m) + cs(m)) (—(p — m)")dz
< 0)

if we choose m = min(0, infr, pp) and 6 > 0 large enough. Therefore, p > m in
Q.

With these a priori bounds, it is not difficult to show the existence of a solution
to (2.3) in the multi-dimensional case for sufficiently large 6 > 0.

2.2 Stability Bounds

Now we prove a stability estimate on the solution, which is essentially a conse-
quence of the boundedness of the entropy (1.5).

Lemma 2.4. Assume A.1—A.2. For fited k € {1,...,N} let (pk, Fi, Vi) €
H?(Q) x C*7(Q) x C*7(Q) be a solution of (2.3). Then the following discrete
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entropy estimate holds

)\2
52/ 'V pi|” dx—i—/H(pi) dx—i-?/ VVi|? dx—/FDpi dx
Q Q 0 Q

/\2
< 62/ |Vpk_1|2 dx—i—/H(pi_l) dz + 5/ |V1/k_1|2 dm—/FD pi_, dx.
Q Q Q Q
(2.10)

Proof. We use ¢ = Fy, — Fp = —e*Apy/pr + log(pz) + Vi, — Fp as test function
in (2.3a). Note that ¢ satisfies homogeneous boundary donditions. This yields

1
— (pi—ﬂﬁ1)¢dx=—/inFkV(Fk—FD) dzx.
Tk Jo Q

First, we estimate the left hand side
1 1 Ap
— | (k= phr) pdz=— [—52/ (k= piy) = da
Q

Tk Ja Tk Pk

+ / (pk — Pir_1) log(p}) dz
Q

+ [ =) Vedo= [ (R=st ) Foda
Q Q

1
:—[11+IQ+I3+I4]

Tk

We estimate termwise. Integration by parts yields

2
I :52/ 'V pi|” dm—eQ/Vka (pkl) dx
Q Q Pk
:52/ 'V pr|” dx—eQ/ Ve 1| daH—eQ/
0 0 0

> 62/ 'V pi|” d:c—sQ/ \Vpe_r|” da.
Q Q

2 2

Pr_
V-1 — lek dx

2
k

Employing some straight-forward calculus we get

L= /Qpi (log(pz) —1) +1 do — /Qpi—l (loglpier) — 1) + 1 do

+ / P (log(pi_1) — 1) — pi_, log(p}) + pi; dz
’ 0
> [H(R) do [ H (G ) o
Q Q
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Integration by parts yields
I = _v/ A (Ve = Ver) Vi da
Q
= )\2/ V (Vi = Vit) VV, dx
Q

and using the identity 27 (r — s) = 7% — s + (r — s)?

)\2
=5 [ d:r——/|VVk I d:r—|——/|V Vi~ Vi)l d
Q

/\2
2—/|V%|2 x——/ka |7 da.
2 Q

Now we estimate the right hand side by Young’s inequality.

—/pz VE,V (F, — Fp) dx = —/ pr |V Ey|? dgch/inF,c VFp dz
Q Q Q
1 1
< ——/pi\VFk\Q dx+—/pi\VFD|2 dz.
2 Jo 2 Jo
Define the entropy
2 2 2 A2 2
S(pr)=¢" | |Vpx|” de+ | H(py) de+— [ |[VVi|” dz.
Q Q 2 Ja
Combining the above estimates we get
T
S(px) — / Fp pi dz + Ek/ pp \VF|* dz < S(pe-)
Q
/FDPk y do + - 9 /P%|VFD|2 dx
S(pk 1) /FD,Oil de—C1(FD)Tk/FDpi dzx (2.11)
Q
(notice that Fp < 0), where

F oo
Cl(FD) || D2||;,VlD (Q)

Thus consecutively we get

k—1
S(pk)—/QFDpi da:ﬁS(po)—/QFDpO dx — ¢1(Fp) ZTZ/QFD,O? dzx.
I=1

14



Note that S > 0. Hence, it holds

k—1
/FD,O,c dx < co(po, Fp) — ¢1(Fp) ZTl/FDplQ dz.
Q - Ja
Now the discrete Gronwall Lemma implies

~ [ Fopt o < calpu, Fo)exp (e (Fo) )
Q
from which we immediately deduce the uniform boundedness of the entropy

S(px) < ca(po, Fp, T).

Hence, the approximate solution is stable in the following sense.

Corollary 2.5. Assume A.1—A.2. Fork=1,...,N let (px, Fi, Vi) be the re-
cursively defined solution of (2.3) and (p™, F",V") € PCy(0,T; H*(Q)xC%7(Q) x
C%*7(Q)). Then p™ € L®(0,T; H'(Q)) and p" VF™ € L?(0,T; L*(2)). Further,

there exists a positive constant ¢, independent of T, such that
107 Lo gy + IV oo iy + 107 VE (| 2p2) < € (2.12)

Proof. The bounds on p” and V" are an immediate consequence of Lemma 2.4,
while the one on F7 follows from (2.11). O

3 Convergence in One Space Dimension

In this section we prove convergence of the scheme in one space dimension. Our
argument depends crucially on a uniform L*(£2)-bound on p”, which follows

a priori from Corollary 2.5 only in one space dimension due to the embedding
HY(Q) — L>(Q).

First, we derive the following energy estimate.

Lemma 3.1. Assume A.1—A.2 and let d =1, 02 =T'p. Fork=1,...,N
let (pk, Fy, Vi) be the recursively defined solution of (2.3) and (p™, F™,VT) €
PCx(0,T; H2(Q) x C27(Q) x C?7(Q)). Then p” € L?(0,T; H*(Q)) and there
exists a positive constant c, independent of T, such that

||:0T||L2(H2) <c (3.1)

15



Proof. We start with (2.3a), which can be equivalently written as

2 1 .
—pk (pk — 1) — — (pr — pr_1)’ = div (p} VF}) .
Tk Tk

Since p; > 0, we can divide by pg, which yields

2 1 (px — pe—r)’

1
2 e — or 1) — = —div (p2 VF
™ (ok — Pr-1) ™ o o v (Pk k)

and after elimination of Fj,

2 1 (px — pr—1)’
- (Pk — Pr-1) " or
2 A2 (Apk) v Pk‘Q
:—SApk+8 P +2A + 2 P —|—2VkaVk+pkAVk.
k k

Now we use ¢ = pr—pp as test function, observing that, in view of A.2, Vpp-v =
0onI'y:
2 2
— [ (o= pr—1) (px — pp) dz = —¢" | Apy A(px — pp) dz
Q Q

Tk
A 2
_,_82/@(%_,0[)) da
Q Pk

|V pi|”
+ 2Ap,+2 (px — pp) dz
Q Pk

+ / (2 Vor VVi + pi AVk) (,Ok — ,OD) dx
Q

1 Pk — PD
+— [ (ox— Pk—1)2
Tk Ja Pk

:Il+12+13+14+l5.

dx

We estimate termwise. The left hand side can be written as

2
" (Pk—Pk 1)(Pk—PD) dfﬂ—_/ Pk—PD—(Pk 1—PD (Pk—l)D) dz
—/ pr — pp)’ iE——/ pr—1— pp)’ dz
(Pk—Pk 1) dz
Tk
Define
def ming pp >0,

C maxg_;.. N ||Pk||L°°(Q)

16



which is independent of N due to Corollary 2.5 and the embedding H'(Q) —
L*>(€) in one space dimension. Note, that for £ =1,..., N it holds
Pk — PD
Pk
Then we have the following estimates. Young’s inequality yields

(App)? <p’“ _'OD> dx

Pk

<1l-—n.

Il+12:_52/ApkA(pk_pD) d$+52/
Q Q

< —62/ (Apg)? dx+62/ App App dz+ (1 —n) 52/ (Apg)? dx
Q Q Q

2 2
< —% (Apg)” dz + 28—/ (App)® dz.
Q nJa

By integration by parts and usage of Young’s inequality we get

I; = —2/ Vor V (pr, — pp) dx + 2/ 'V pi|” <M> dx
Q Q Pk
< —277/ |V,0;c|2 d:c+2/VkapD dz
Q Q
1
< —77/ |V pi|” d:r+—/ Voo da.
Q nJa
From Holder’s inequality we derive

I4=/V(Pk—PD)2 VVi d$+2/VpDVVk (px — pp) dx
Q Q
+/Pk (or — pp) AV} dx
Q
=—/(pk—pD)2AVk dx+2/VpDVVk(pk—pD) dx
Q Q

+ /Q (px — pp)* AVy da +/QPD (px — pp) AV dx
<2 ||va||L°°(Q) ||VVk||L2(Q) o — PD||L2(Q)

-7 /Q pp (px — pp) (Pi — Caot) da
< ¢,

for some positive constant ¢; = ¢1(, €, pp, po, Caot). Note that in one space
dimension the embedding H*(2) — Wh*°(Q) holds.
Finally, we get directly

I <

77/ (ox — pr—1)” da.
Q

Tk

17



Combining these estimates we arrive at

1
—/ (px — pp)* d$+£/ (or — pr—1)” dz
Tk Ja Tk Jao

7752 2 2
+ 5 | (Bpe)” dz+ 77/ Voi|” dz
Q Q

1 g2 1
< —/ (pr—1 — pp)° dz + —/ (App)” dz + —/ \Vop|® dz + ¢,
Tk Ja 2n Ja nJa
from which we immediately deduce

7752 Tk
2
2 2
+ 0761V (ok = pp)l|1200) < llPk-1 = PD|72(0) + Th C2-

0k = Pl + 1119k = prcslPgey + LT 1A (o1 = po)2agey

Now (3.1) follows from Gronwall’s Lemma. O

For the convergence result we also need some bound on the time derivative. To

this purpose we introduce the linear interpolant of (p™)? € PCy(0,T; L*(2)),
defined by

t—t

W (tx) E —= (0h(2) = pioa(@) + Aios(@), T €Q, L E (st

Lemma 3.2. Let the assumptions of Lemma 8.1 hold. Then n™ € L*(0,T;
H~Y(Q)), and there exists a positive constant c, independent of T, such that

177 |21y < e
Proof. We supply H~!(Q2) with the norm [|[VA™"|| ., (), where A™! : H™H(Q) —

H;(Q) is the inverse Laplacian [Tem97]. Using ¢ = —A '@} as test function in
(2.3a) yields after integration by parts

/ VA7 [* de = / P2 VE, VA AT da.
Q Q
Employing Holder’s inequality we get
1 2
HVA lntTHLz(Q) < ||:0T||L°°(L°°) llp” VFT”LZ(L?) )
which is uniformly bounded according to Corollary 2.5. O

We state the desired convergence result.
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Theorem 3.3. Assume A.1—A.2 andletd=1,00=Tp. Fork=1,... ,N
let (pg, Fy, Vi) be the recursively defined solution of (2.3) and (p™, F™,VT) €
PCx(0,T; H2(Q) x C?7(Q) x C*7(Q2)). Then, there exists a subsequence, again
denoted by (p™, F™, V™), such that

p" — p weakly in L*(0, T, H*(2)),

p" — p  strongly in C°(0,T,C*(Q)),
(p")2FT — J  weakly in L*(0,T, L*()),

VT =V strongly in C°(0,T, C*7(Q)),

as T — 0, where (p, J,V) is a solution of
/ 0° 0pp dxdt + / J ¢, dxdt =0, (3.2a)
Qr Qr

‘A[ﬁm@%¢+MM—f%—V@%MMMﬁ:/QJmm% (3.2b)

Qr

V/‘%%Mﬁ:/(f—@¢MM (3.2¢)
Qr Qr

for all ¢ € CP(Q2 x (0,T)), where Qr = Q2 x (0,7T).

Remark 3.4. The above result shows that (p, V') is a weak solution of the prob-
lem

Pzx 2 2
0 p2 :—<€2,02 - —\P )z — P Vx) ’
1 7?) (%), - $
_)\Qwa = ,02 -C in Qr,
pP=pp, P2z=0  V=Vp on 00 x (0,7),

p(70) = Po in Q7

in the sense of Eqs. (3.2), satisfying p > 0 in .

Proof. We choose a sequence of partitions of [0, T'] satisfying (2.2). According to
Lemma 3.1 we have the boundedness of (p”) in L?(0,7; H*(€2)). We may choose
a subsequence, again denoted by (p”), such that

p" — p weakly in L*(0, T, H*(Q)).
Further, we have due to Lemma 3.2 and Corollary 2.5 that 77 € L>(0,T; H'(2))N
H'Y(0,T; H'(2)). Since the embedding H'(Q2) — C%7(Q) is compact in one
space dimension for vy € (0,1/2) we deduce from Aubin’s Lemma [Sim87] that

L0, T; H(Q)) N H'(0,T; H(2)) — C°(0,T;C*(Q))  compactly.
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Hence, there exists a subsequence, not relabeled, such that
A" —n  strongly in C°(0,T;C*7(Q)).

The reader easily verifies the identification n = p?. Moreover, the compact em-
bedding
L*(0,T; H*(Q)) N H'(0, T; H'(Q2)) < L*(0,T; H' ()

implies that (up to a subsequence)
p” — p strongly in L*(0,T; H'(Q)).
Standard results from elliptic theory and A.2 imply now
VT =V  strongly in C°(0,T, C*7(Q)).

Defining J7 = (p")?VFE" we deduce from Corollary 2.5 that (J7) is bounded in
L*(0,T, L*(52)), such that

JT —J weakly in L?(0,T; L*(2)).

Note that the discrete solutions satisfy

/ ((p7)? 0rd+ J" s) dadt =0,

T

/ (200, (200 6+ 07 62) — (57) 20 — (07)?Va b dadt = / T ¢ dudt,

T T

/\2/ VT ¢, dzdt :/ ((p")? = C)¢ dzdt,
Qr Qr

for all test functions ¢ € C§°(Qr). The derived convergence properties are by
far sufficient to pass to the limit, which assures that (p,J,V) is a solution to
(3.2). O

Remark 3.5. Note that one cannot derive the convergence of (F7), since (p7)
may not be uniformly bounded from below away from zero. Under this additional
assumption one also gets F'” — F strongly in C°(0,T; C*7(Q)) and the identifica-
tion J = p? VF holds. From the physical point of view, the convergences stated
in Theorem 3.3 are satisfactory, since in most applications one is interested in
the current density J and not directly in the Quantum Quasi Fermi level.

4 Convergence in arbitrary Space Dimension

In this section we consider convergence of the numerical scheme given by (2.3) in
higher dimensions. Unfortunately, the apriori bounds on the approximate solu-
tion in Corollary 2.5 are not sufficient to guarantee convergence in this case, since
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the argument depends strongly on an L*°(0,7; L*°(2))-bound on p”. Thus, we
have to state additional assumptions on the sequence of approximating solutions.
These enable us to give even error estimates, which exhibit the optimal order of
convergence for the implicit EULER scheme.

Theorem 4.1. Assume A.1—A.3. Fork=1,...,N let (pg, F, Vi) be the re-
cursively defined solution of (2.3) and (p”, F7, V™) € PCy(0,T; H*(2)xC*7() x
C?7(Q2)). Assuming

A435€(0,1) Vr>0: d<p <671 107l oo 0, 180)) < 5t

there exists a subsequence in L2(0,T; H?(Q))x L2(0,T; H*(Q))x L*(0,T; H*(R)),
again denoted by (p™, F™, V"), such that

p" —p weakly in L*(0, T, H*(S2)),

p" — p  strongly in C°(0,T,C*(Q)),

F™ = F  strongly in C°(0,T, H'(Q)),

VT =V strongly in C°(0,T,C*7(Q)),
as T — 0, where (p, F, V) is a solution of the continuous problem (2.1).
Furthermore, if it holds H*(Q)) — W*?(Q) for k>0, p > 1 and

A.5 py € L(0,T; L*(Q)),

then there erists a constant o = 19(2, A, 6) > 0 such that for 7 € [0,7y) we have
the following error estimate

Ip" — p||L°°(L2) +e?|p" — P||L2(Wk,p)
FFT = Fllpooqey + V7 = Vligoo(zy < Ce*Tr (4.1)
for positive constants o = (2, A\, 0,7) and C = C(2, A, d,9).

For the proof of Theorem 4.1 we need the monotonicity of the quantum operator

Ap)? 1 A
Ap) = A2p— B _ 1 (p2V <—p)> , (4.2)
p p p

which is a consequence of the following result stating a generalized Poincaré-type
inequality.

Lemma 4.2. Assume A.1 and A.3. Choose k > 0, p > 1 such that the embed-
ding H?(Q2) < WF*P(Q) holds. Then there exists for all 3 € R and all 6§ € (0,1)
a constant M = M(S,3,8) > 0 such that for all p € H*(Q) with § < p < 1/§
and all p € H*(Q) N Hy(QUTy) it holds

Jo (e ()
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The proof of Lemma 4.2 is a slight generalization of the one in [Pin99a, Theorem
3.7]. It follows the monotonicity result.

Lemma 4.3. Assume A.1 and A.3. Choose k > 0, p > 1 such that the
embedding H?(Q) — W*P(Q) holds. Let p” € PCy(0,T; H%Q)) and p €
L*(0,T; H*(QY)) be given as in Theorem 4.1. Then there erists a constant M =
M(€,6) > 0 such that

(A(p") = A(p), 0" = ) xo.x = M (107 = plliyiniey (4.3)
where X & H2(Q) N HX(Q UTy).

Proof. The proof settles on the Gateaux—differentiability of A in certain direc-
tions and the mean value theorem. We set f p" — p and

Ph o p+ ho.

The mapping
0,1] =R
h — (A(pn), 9)){*,){

is differentiable, which can be seen as follows. Set Y = Hj(QUT'y). Let o > 0
and calculate, employing integration by parts,

(Alpnsa) = Al). O x = (Alpn -+ 00) = Alp), Oy
== (v (e ) ey (55)),

A 0 0
+<v( (ph+a))1/,(,0h+00)2< )>
P+ b PrF 00 [ gy i)
A 0
(v (5) v ()
Ph Ph Y=Y
A 0
EMCORZAE) -
Ph Pr/ | (Hof?(Tn))* Hog > (Tn)

For the definition of the space Hé({2(FN), see [BaCa84]. The boundary terms
vanish, since the second one for example fulfills

V(ﬂ)z}:hV(A'f ﬂ)-u+(1—h)v<@ﬁ)-u

Ph ) P Ph
T T A’T T
:hp—V<Ap>-1/+h i v(p—)-y
Ph P’ p" Ph
A A
+(1-h)ﬁv(—p>-y+(1_h)—pv<£>-y
Ph p P Ph
=0
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along 'y, see (1.1e).
Another integration by parts yields

A(Ph-i-a@)) 2 ( 4 >>
—(V|————),(pp+00)°V
A 6
(5047 ())
Ph Ph Y*Y
_ [ Alpntab) . 2 4
_/Q P div | (pp +00)° V P dx
_ [ div (in <i>> dz
Q Ph Ph
A(pn + o) Aph} : ( 2 ( 0 ))
= — div +06)°V dx
/Q[ pn + ob Ph (on ) pn + o

_L%[div (@v(%)) _ div ((Ph—i-de)QV(pthg))} dz

7

~~
=0

prn A0 — 0 Apy ( 5 ( 0 ) )
=0 div +060)*V dx
/Q (on +a0)pn (n ) pn + ab

Now we easily derive

A o) — A ,0) . —
gy 0020 A0 D _ [ 00200804 (5 (2)) o
Q Ph

c—0 o pl21
0 2
= / pf div (p,%V (—>> dz
Q Ph
> M |10l xs(0)
by Lemma 4.3. The result follows from the mean value theorem. O

Now we are in the position to prove Theorem 4.1.

Proof of Theorem 4.1. From the proofs of Lemma 3.1 and Lemma 3.2 we learn
that the uniform L*(0,7; L>(2))-bound on p” is sufficient to guarantee the
uniform boundedness of [|p"|| 22y and [|7it[|;2(y-1). Following now the outline
of the proof of Theorem 3.3 we deduce, noting the compact embedding

H'(0,T; H Q) N L*®(0,T; W' (Q)) — C°(0,T; C*(Q))

for 1 < d < 3, that the desired convergence results hold. Here, the convergence
of (F7) follows from the uniform bound p” > ¢ combined with standard elliptic
theory.
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Now we estimate the rate of convergence. Let k£ € {1,..., N} be fixed. We take
the difference of

2p = % div (,02 VF)

and

2 1 ) 1
— (pr — pr—1) — 1 —p) 1 div (p; VFy) -
Tk Tk Pk Pk

Note that pg, p > 6. Further, by Taylor’s expansion we have
1 [
plte) = plta) + t) i+ 5 [ pulo)s = tir) ds.
t—1
Setting
def 1 %
fe = 5/ pit(8)(s — te—1) ds
tp—1
and defining the error

def
er = pr — p(te)

we finally end up with

2 1 (pr — pr_1)® 2
Tk Tk Pk Tk
1 1
= —div(p2VF,) — ——div (p(t,)> VF () .
o div (P VE) — o div (p(t)* VF (1)

Now we use ¢ = 7% e, as test function, which yields

2
2/(ek—ek_1)ek dx—/wek dx—i—?/fkek dx
Q Q Q

Pk

1 .. 2 _L iv 2 € aT
. /Q [adw(pkm) 3 i (o00)? V(1) e o

We estimate termwise starting on the left-hand side.

Using the identity 2r(r — s) = r2 — s + (r — 5)? we get

2 2 2
2 / (ex — ex1)ex 43 = [lexlZaqy — ler—1l2aq + ek — ex-1l2aq) -
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Let n= 5/ maXg=i,...,N ||pk||LOO(Q) = 62. It holds

—/QM ex d:vZ—(l—n)/Q(Pk—Pk—l)Q dx

Pk
- (1-n) / (e — exr + p(te) — plte-r))? da
Q
> —[lex — ek—1||i2(n)

- 1_Tn/Q(Pt(tlc)ﬂc-l-fk)2 dr,

where we used Taylor’s expansion and Young’s inequality. Trivially, it holds

1
=2 [ frewdo <2 1 fully + 5 lerlleo
Q
The right hand side can be estimated using integration by parts.

T /Q [p—lk div (pp VF;) — @ div (p(ty)? VF(tk))} ey dr =

—Tee” (Apr) — Alp(tr)); Pk — P(te)) x- x
|V i | Vp(ti)|”
-1—2779/Q Api + T — Ap(tg) — W] er dx
+ Tk / 2V VVi, =2V p(ty) VV (k) + px AVi — p(te) AV (tk)] ex dz
< —mpe” (Alpr) — Alp(te)), pr — p(tk)) x- x

2
+/ ) G, dz
al Pk p(tr)

+ T / [2 Vpk V‘/;g -2 V,O(tk) VV(tk) + Pk A‘/]C — p(tk) AV(tk)] €L dz.
Q

Vp(tx)
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The last term can be handled as follows.
- / 2V 00 VVi — 2V (k) VV (1) + o AVi — p(t) AV (1) ep da
Q
< Tk/ [2Ve, VVi —2Vp(ty) V(V(tk) — Vi) + pe AVi — p(te) AV (te)] ex dx
Q

. /Q [—e2 AVy — 2Vp(te) V(V (1) — Vi) ex + & AV,
—p(te) AV (tk) — Vi) ex] dx
=27 /Q Vp(tr) V(V(te) — Vi) ex, do — Tk/ﬂp(tk)([’(tk) + pr) e, do
< =27 [ Vp(t) V() ~ Vi) e da
<27 |Vp(te)ll agay VOV () = Vi)l paay llexll 2 -

Combining all these estimates, together with the monotonicity of A (see (4.3))
and [[Vp(te)|| 4y < 0 yields after summation

k k

1 1—n

3 lexll7agy + MY 7 llexlfyengoy < B Z/ (o(t) 7+ f1)° dz
=1 =179

k k
+ ) fillay 267 Y n IV () = Vil iy lleall ey »
=1 =1

where M = M(£,6) > 0 is the constant specified in Lemma 4.3. Estimating

2 2
el z2y < 70 lloeellLaqoctus te) -

and
IV(V () = Vil gy < €107 llekll ey
with ¢; = ¢1(Q2,A) > 0, yields
1 2 2 . 2
) ||€k||L2(n) +Me ZTl ||€k||wkm(n)
=1

k
2 2
< e 272 (||pt||L2(Q><(t1_1,tl)) + ||ptt||L2(Q><(tl_1,t1)))
=1

k
+2¢167> 1 el »
=1
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where ¢; = ¢3(6) > 0. Choose 75 < %. Then

k
1 _
(520082 n) leulEo + M2 lenliyene
=1

k—1
2 2 — 2
< & (Iolaaxioy + loulaanoy) ™ +26672 37 llelaq)-
=1

Now it follows from the discrete Gronwall Lemma
Hekni‘”(m) +Mé ||ek||iZ(Wk,P) < czer?

for some c3,a > 0. The estimates on " —F and V™ —V follow now from standard
results of elliptic theory. O

Remark 4.4. Although we get no estimate on p” —p in L?(0, T, H*(2)), the reg-
ularity in space is by far sufficient to define a suitable finite element discretization
of (1.4).

5 Numerical Investigations

In this section we employ the transient quantum drift diffusion model for the
simulation of the switching behaviour of a resonant tunneling diode (RTD). Such
devices proved to be well suited for the validation of quantum models, since
their performance is completely determined by quantum mechanical phenomena
[KKFR89]. Their main characteristic is the appearance of negative differential
resistance (NDR) in the stationary current voltage characteristic (IVC). During
the last years most simulations focused on the stationary models and the com-
putation of IVCs. There, NDR was recovered by many authors in a varying set
of models, such as the QDD [PU99], the quantum hydrodynamic model (QHD)
[Gar94] and recently the smoothed QHD [GR98|. A typical stationary IVC, which
was computed using the QDD, is depicted in Figure 5.1. From experiments it
is well-known that the switching time of the device is correlated with the peak—
to—valley-ratio of the IVC, where a large ratio corresponds to a small switching
time [MIO™86].

In the following we present the first simulations of the switching behaviour of a
RTD computed by a macroscopic quantum model. The GaAs-AlGaAs double
barrier structure consists of a quantum well GaAs-layer sandwiched between two
Al,Ga;_,As-layers, each 5 nm thick. This resonant structure is itself sandwiched
between two spacer layers of 5 nm thickness and supplemented with two contact
GaAs-layers, each 25 nm thick. The contact region ist highly doped with Cy,; =
10%*m~3, while the channel is moderately doped with Cy; = 10*'m=3. The
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Figure 5.1: Stationary IVC of a RTD

barrier height is assumed to be B = 0.4eV and the relaxation time is fixed at
Trelax = 1072s. These device parameters yield for the scaled Planck constant and
the scaled Debye length, respectively,

e2=5-10"% X2 =86-10""%

In the simulation we switched the RTD from the equilibrium state (U = 0V) to
the valley state (U = 0.3V), see Figure 5.1. For the computations we used the
one—dimensional version of (1.4) and replaced in (1.4b) the potential V +— V + B,
where B is a step function modelling the barriers. Then we employed the vertical
line method given by (2.3) as time discretization. The discretization in space was
done by finite differences on a uniform grid with 300 points.

To solve the resulting nonlinear systems we used a NEWTON-iteration, where the
solution on the previous time level was used as initial guess. Due to this fact only
two or three NEWTON-iterations were needed on each time level. The initial time
step was set to 7o = 10™* and afterwards a heuristic adjustment of the time step
was used, which significantly reduced the total number of time steps required to
reach the stationary state.

In Figure 5.2 we present the computed transient electron density over a period
corresponding to the relaxation time. Note that the electrons move top—down.
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Figure 5.2: Transient Electron Density

One clearly identifies an initial time layer, where the electrons accumulate in
front of the first barrier. After this short delay they start to tunnel through this
barrier and accumulate dramatically in the quantum well. This charge build-up
is more than three orders of magnitude larger than the background doping and
was also reported by other authors [Gar94, Poh98, PU99|.

Lastly we discuss the transient current density at the left contact (z = 0), which
is depicted in Figure 5.3. As we switch at time £ = 0 instantaneously out of
the equlibrium state (J = 0) there is a jump in the current density. During
the evolution to the stationary valley state the current density does not change
monotonically, apparently an oscillation occurs. This oscillatory behaviour was
also reported in [KKFR9], where the RTD was simulated by the (microscopic)
Wigner—Poisson model. There the transient current density proved to be even
highly oscillatory on account of ballistic effects. We cannot expect this in our case,
since we are working in a diffusive regime [CGS99|, where the small relaxation
time prevents ballistic phenomena. Note that the stationary state is reached after
107! seconds, which is approximately ten times the relaxtion time.
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