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Abstract. We have designed an adaptive essentially nonoscillatory (ENO)-wavelet transform for
approximating discontinuous functions without oscillations near the discontinuities. Our approach
is to apply the main idea from ENO schemes for numerical shock capturing to standard wavelet
transforms. The crucial point is that the wavelet coefficients are computed without differencing
function values across jumps. However, we accomplish this in a different way than in the standard
ENO schemes. Whereas in the standard ENO schemes the stencils are adaptively chosen, in the ENO-
wavelet transforms we adaptively change the function and use the same uniform stencils. The ENO-
wavelet transform retains the essential properties and advantages of standard wavelet transforms such
as concentrating the energy to the low frequencies, obtaining maximum accuracy, maintained up to
the discontinuities, and having a multiresolution framework and fast algorithms, all without any edge
artifacts. We have obtained a rigorous approximation error bound which shows that the error in the
ENO-wavelet approximation depends only on the size of the derivative of the function away from the
discontinuities. We will show some numerical examples to illustrate this error estimate.
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1. Introduction. In this paper, we develop new wavelet algorithms to approx-
imate piecewise continuous functions, for instance piecewise smooth functions con-
nected by large jumps. It is well known that wavelet linear approximation (i.e., trun-
cating the high frequencies) can approximate smooth functions very efficiently: It
can achieve high order accuracy by selecting appropriate wavelet basis; it can concen-
trate the large wavelet coefficients in the low frequencies; and it has a multiresolution
framework and associated fast transform algorithms.

Standard wavelet linear approximation techniques cannot achieve similar results
for functions which are not smooth, for example piecewise smooth functions with
large jumps in function value or in its derivatives. Several problems arise near jumps,
primarily caused by the well-known Gibbs phenomenon. The jumps generate large
high frequency wavelet coefficients and thus linear approximation cannot get the same
high accuracy near the points of discontinuity as in the smooth region. In fact, the
jump points generate oscillations which cannot be removed by mesh refinement.

To overcome these problems within the standard wavelet transform framework,
nonlinear data-dependent approximations, which selectively retain certain high fre-
quency coefficients, are often used, e.g., hard and soft thresholding techniques; see
[6], [15], [19], [18], [27], and corresponding references therein. The main idea of these
thresholding approximations is to truncate both low and high frequency wavelet coef-
ficients by their magnitudes, not frequencies. For instance, hard thresholding sets all
coefficients whose magnitudes are less than a given tolerance to zero and retains the
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other coefficients unchanged. It has been verified through many research efforts that
such nonlinear processes can effectively reduce Gibbs oscillations, and therefore they
have been widely used in many applications such as image compression and denoise,
and even computation of partial differential equations. However, these techniques
often require more complicated data structure to record the location of the retained
wavelet coefficients and still cannot remove the effects of the Gibbs phenomenon com-
pletely unless all jump-related coefficients are preserved.

Another fundamental approach is to modify the wavelet transform to not generate
large high frequency wavelet coefficients near jumps. A few papers in the literature
have discussed this approach. Claypoole et al. [12] proposed an adaptive lifting scheme
which lowers the order of approximation near jumps, thus minimizing the Gibbs effect.
Consequently, this scheme suffers from reduced approximation accuracy near jumps,
and some residual Gibbs phenomenon still exists. Another way due to Donoho is to
construct orthonormal basis such as wedgelets [16] and ridgelets [7], [17] to represent
the discontinuities.

In this paper, we develop a new wavelet algorithm by borrowing the well-developed
essentially nonoscillatory (ENO) technique for shock capturing in computational fluid
dynamics (e.g., see [23] and [29]) to modify the standard wavelet transform near dis-
continuities in order to overcome the above-mentioned difficulties. ENO schemes are
systematic ways of adaptively defining piecewise polynomial approximations of the
given functions according to their smoothness. There are two crucial points in de-
signing ENO schemes. The first is to use one-sided information near jumps and never
differencing across the discontinuities. The second is to adaptively form the divided
difference table and select the smoothest stencil (the support of the basis) for every
grid point. ENO schemes lead to uniform high accuracy approximations for each
smooth piece of the function. We will use only the first point in our design of the
ENO-wavelet transforms. Preliminary results of this work have been reported in [8].

Combining the ENO idea with the multiresolution data representation is a natural
way to avoid oscillations in the approximations. In fact, it has been explored by Harten
in his general framework of multiresolution in [20], [21], and [22]. (The lifting scheme
of Sweldens [31] uses a similar idea.) Recent studies of his general framework and
its application in data compression can be found in [2], [3], [4], and [9]. Harten’s
approach is to directly blend the two ideas and to fully implement the ENO schemes
at every point. This consists of using the adaptive ENO finite difference table to select
the stencil and then compute the decomposition as well as the reconstruction process.
However, his method cannot be directly applied to the more generally used pyramidal
filtering algorithms which the standard wavelet transforms are implemented in because
in this context we have to work only with fixed size and fixed value filters, and these
rigid filters cannot be directly used to compute the adaptive divided difference tables
at each grid point.

Our goal is to design a more direct functional replacement of the standard wavelet
transforms such that there are no oscillations at the discontinuities in the approxima-
tions. We want to stick with the classical pyramidal filtering framework because they
are easy to use and have been successfully applied in many applications. Compared
to Harten’s multiresolution approach, which is more flexible and easier to adaptively
implement than the ENO idea, the standard wavelet transforms are more regular and
rigid in algorithmic structure; therefore, directly applying the ENO idea would lead
to a more drastic perturbation of the underlying pyramidal filtering algorithms. This
is the challenge we face.
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Conceptually, the ENO-wavelet transforms that we will introduce in this paper
are closely related to the ENO implementation of Harten’s multiresolution framework.
Both methods share the one-sided information idea, which computes the decompo-
sition and reconstruction from smooth data. However, we achieve this in a different
manner. The way we accomplish this is to not change the wavelet transforms or
the filter coefficients, which most data-dependent multiresolution algorithms do, but
instead locally change the function near the discontinuities in such a way that the
standard filters are applied only to smooth data. By recording how the changes are
made, the original discontinuous function can be exactly recovered by using the orig-
inal inverse filters. Indeed, by applying the idea of using one-sided information near
the discontinuities, we directly extend the functions from both sides of the disconti-
nuities, thus we can apply the standard wavelet transforms on these extended values
such that there are no large coefficients generated in the high frequencies and the
low frequency approximations are essentially nonoscillatory, and therefore the Gibbs
phenomenon can be completely avoided.

In addition, in this modified wavelet transform, the low frequency part preserves
the piecewise smoothness of the original function. In particular, the jumps in the low
frequency part is not spread widely as in the standard transform. Therefore, the same
ENO idea can be recursively used for the coarser levels of the low pass coefficients.
By doing so, the multiresolution framework also can be kept.

We show that the resulting wavelet transform retains all the desirable properties of
the standard transform: It can have uniformly maximum accuracy, maintained up to
the discontinuities (with a rigorous uniform order of the error bound); it concentrates
the large coefficients to the low frequencies; it preserves the multiresolution framework
and fast transform algorithms; and it is easy to implement. Furthermore, since we do
not fully adopt the ENO schemes, in particular we do not build the divided difference
table and compare the smoothness of all possible stencils at every point, the extra
cost (in floating point operations) required by the modified ENO-wavelet transforms is
insignificant. In fact, it is of the order O(dl), where d is the number of discontinuities
and l+1 the stencil length. Compared to the cost of the standard wavelet transform,
which is of the order O(nl), where n is the size of the data, the ratio of the extra cost
over that of the standard transform is of the order O( dn ) which is independent of l
and negligible when n is large.

Besides, since the designed ENO-wavelet transforms play the same role as the
standard wavelet transforms in the applications, in principle, any of the numerous
existing algorithms for postprocessing wavelet coefficients can also be used in con-
junction with the ENO-wavelet coefficients. For example, ENO-wavelet transforms
can be used in conjunction with the standard adaptive nonlinear techniques such
as hard and soft thresholding, tree structured (e.g., Shapiro’s EZW [28]) coders in
image compression, and Coifman and Donoho’s translation invariant algorithm [10]
in denoising. However, in this paper we focus on the construction of ENO-wavelet
transforms, and we will not discuss those applications in detail. Instead, we show
a numerical example which illustrates the advantages of using the combination of
ENO-wavelet transforms with hard thresholding in section 5.

The arrangement of the paper is as follows. In section 2 , we review the standard
continuous and discrete wavelet transforms. In section 3, we give a general algorithm
to implement the ENO-wavelet transform discretely. In section 4, we prove an error
bound for the ENO-wavelet approximation which shows that the error in the ENO-
wavelet approximation depends only on the size of the derivative of the function away
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from the discontinuities. Finally, in section 5, we give some numerical examples to
illustrate the main advantage of the ENO-wavelet transforms, including some two-
dimensional (2-D) examples.

2. Wavelet transforms. Before we introduce the adaptive ENO-wavelet
transforms, we briefly review the standard wavelet transforms; e.g., see [5], [11], [13],
[14], [25], [26], [27], and [30]. We use Daubechies orthonormal wavelets as the frame-
work in all discussion in this paper. We will go over both continuous and discrete
wavelet transforms, because we will present our ENO-wavelet transforms in the dis-
crete form and prove the approximation error bound by using the continuous form.

First, we review the standard wavelet transforms. To simplify the notation, we
assume zeros have been padded to the data at the boundaries.

The standard wavelet transforms are based on translation and dilation. Suppose
φ(x) and ψ(x) are the scaling function and the corresponding wavelet, respectively,
with finite support [0, l], where l is a positive integer. It is well known that φ(x)
satisfies the basic dilation equation

φ(x) =
√
2

l∑
s=0

csφ(2x− s)(1)

and ψ(x) satisfies the corresponding wavelet equation

ψ(x) =
√
2

l∑
s=0

hsφ(2x− s),(2)

where the cs’s and hs’s are constants called low pass and high pass filter coefficients,
respectively.

We assume that ψ(x) has p vanishing moments∫
ψ(x)xjdx = 0 for j = 0, 1, . . . , p− 1.(3)

We will use the following standard notations:

φj,i(x) = 2
j
2φ(2jx− i)(4)

and

ψj,i(x) = 2
j
2φ(2jx− i).(5)

Consider the subspace Vj of L
2 defined by

Vj = Span{φj,i(x), i ∈ Z}
and the subspace Wj of L

2 defined by

Wj = Span{ψj,i(x), i ∈ Z}.
The subspaces Vj ’s, −∞ < j <∞, form a multiresolution of L2 with the subspaceWj

being the difference between Vj and Vj+1. In fact, the L
2 space has an orthonormal

decomposition as

L2 = VJ ⊕
∞∑
j=J

Wj .(6)
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The projection of a L2 function f(x) onto the subspace Vj is defined by

fj(x) =
∑
i

αj,iφj,i(x),(7)

where

αj,i =

∫
f(x)φj,i(x)dx, i = · · · ,−1, 0, 1, . . . ,(8)

which we call low frequency wavelet coefficients. (They are often called scaling coef-
ficients in many literatures.) Similarly, we can project f(x) onto Wj by

wj(x) =
∑
i

βj,iψj,i(x),(9)

where

βj,i =

∫
f(x)ψj,i(x)dx, i = · · · ,−1, 0, 1, . . . ,(10)

which we call high frequency wavelet coefficients (often called wavelet coefficients in
many literatures). In this paper, we refer to wavelet coefficients as both low and high
frequency coefficients. Therefore, the function f(x) can be decomposed by

f(x) = fj(x) +

∞∑
t=j

wt(x).(11)

The projection fj(x) is called the linear approximation of the function f(x) in the
subspace Vj .

From (4) and (5), the projection coefficients αj,i and βj,i of f(x) in the subspaces
Vj and Wj can be easily computed by the so-called fast wavelet transform

αj,i =

l∑
s=0

csαj+1,2i+s(12)

and

βj,i =

l∑
s=0

hsαj+1,2i+s.(13)

In practice, discrete wavelet transforms are often directly used with a set of dis-
crete numbers which are the low frequency coefficients of the L2 function f(x) at a
fine level subspace Vj+1. In many applications, this set of numbers are sample values
of the function f(x) on a fine grid (although in [30] this is called a “wavelet crime”).

Let us define the following matrices:

L =



c0 c1 · · · cl

c0 c1 · · · cl
· · · · · · · · ·

c0 c1 · · · cl






1374 T. F. CHAN AND H. M. ZHOU

and

H =



h0 h1 · · · hl

h0 h1 · · · hl
· · · · · · · · ·

h0 h1 · · · hl


 .

We also denote �αj = (. . . , αj,i, αj,i+1, . . .)
T and �βj = (. . . , βj,i, βj,i+1, . . .)

T .
By using matrix and vector forms, the fast wavelet transform equations (12) and

(13) can be written as

�αj = L�αj+1(14)

and

�βj = H�αj+1.(15)

It is well known that the wavelet transform matrices L and H are orthogonal:

L∗L+H∗H = I.(16)

It follows that the inverse wavelet transform is simply

�αj+1 = L
∗�αj +H∗�βj .(17)

The standard linear wavelet approximation achieves maximum accuracy away
from discontinuities, but it oscillates near the jumps. The reason for the oscillations is
that some stencils cross jumps and cause the corresponding high frequency coefficients
to becoming large and therefore more information is lost when the high frequency
coefficients are discarded.

In Figure 1, we display a piecewise continuous function (left) and its DB4 wavelet
coefficients (right) with low frequencies at the left end and high frequencies at the
right end. From the right picture, we see that most of the high frequency coefficients
are zero, except for a few large coefficients which are computed near jumps. Fig-
ure 2 displays the linear approximation (solid line) compared to the initial function
(dotted line). The right picture is the zoom-in to show the approximation behavior
near a jump. In this figure, we clearly see oscillations (people call them the Gibbs
phenomenon) near discontinuities.

Since the oscillations are generated by discarding large high frequency coefficients
which are computed on the stencils crossing discontinuities, to get rid of the oscilla-
tions, we want to avoid stencils crossing discontinuities. This motivates us to apply
the ENO idea to avoid stencils crossing jumps.

Before we introduce the ENO-wavelet transforms, we give the following definition
which we will use in the later sections. Given a function f(x) which has discontinuous
set D, then

D = {xi : f(x) is discontinuous at xi}.

Denote t as the closest distance between any two discontinuous points, i.e.,

t = inf{|xi − xj | : xi, xj ∈ D}.
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Fig. 1. The initial function (left) and its DB4 coefficients (right). Most of the high frequency
coefficients (right part) are zero except for a few large coefficients computed near the jumps.
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Fig. 2. The approximation function (left) and its zoom-in (right). Oscillations are generated
near the discontinuities in the linear approximation.

Definition 1. For a given wavelet filter with stencil length l + 1, we say a
projection of f(x) in space Vj with spatial step ∆x = 2−j satisfies the discontinuity
separation property (DSP) if (l + 2)∆x < t.

A projection satisfying the DSP implies that any one discontinuity is located at
least one stencil and two data points away from other discontinuities. In other words,
there are no two consecutive stencils containing two discontinuities. We assume that
all projections we consider in this paper satisfy the DSP. Since our ENO-wavelet
transform is essentially using ENO techniques to modify the standard wavelet trans-
form near discontinuities, this property will avoid the modifications near one discon-
tinuity interacting with the modifications near other discontinuities.

Remark. For any piecewise discontinuous function, a projection will satisfy this
DSP if j is sufficiently large, i.e., if the discretization is fine enough. On the other
hand, at the place where the DSP is invalid, the approximations produced by the
ENO-wavelet transforms are comparable to that by the standard wavelet transforms.
We will show numerical examples in section 5 illustrating this point.

3. ENO-wavelet transforms. In this section, we design the ENO-wavelet
transforms. In addition to the standard wavelet transforms, our ENO-wavelet
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transforms are composed of two phases: locating the jumps and forming the ap-
proximations at the discontinuities. First, assuming that the location of the jumps
are known, we give the ENO-wavelet approximations at the discontinuities by using
one-sided information to avoid oscillations. Then we give the methods to detect the
exact subinterval on the next finer grid at which the discontinuity is located.

3.1. ENO-wavelet approximation at discontinuities. In this subsection, we
assume that the exact subintervals on the next finer grid at which the discontinuities
is located are known. We want to modify the standard wavelet transforms near the
jumps such that oscillations can be avoided in the approximation. From ENO schemes,
we borrow the idea of using one-sided information to form the approximation and
avoid applying the wavelet filters crossing the discontinuities. Since we assume the
DSP is satisfied by the given projection of the function f(x), we can just consider
the local modification near one jump. The main tool which we use to modify the
standard wavelet transforms at the discontinuities is function extrapolation in the
function spaces or in the wavelet spaces.

Direct function extrapolation. The first way is to extend the function directly
at the discontinuity by extrapolation from both sides. Then we can apply the standard
wavelet transforms on the extended functions and avoid computing wavelet coefficients
using information from both sides.

To maintain the same approximation accuracy near the discontinuity as that
for away from the discontinuity, the extrapolation has to be pth order accurate if the
wavelet functions have p vanishing moments. For instance, we use constant extrapola-
tion for Haar wavelets and (p−1)th order extrapolation for Daubechies-2p orthogonal
wavelets which have p vanishing moments.

We use the diagram in Figure 3 to show how to extend the function and compute
the ENO-wavelet coefficients.

As shown in Figure 3, the discontinuity is located between {x(2i+ l − 2), x(2i+
l − 1)}. We extend the function from both sides of the discontinuity using (p− 1)th
order extrapolation; i.e., we use the information from the left side of the jump to
extrapolate the function over x̂(2i+ l− 1), . . . , x̂(2i+2l− 2) and use the information
from the right side to extrapolate the function over x̄(2i), . . . , x̄(2i+ l− 2). And then
for i ≤ m ≤ i+ k− 2, where l = 2k− 1, we can compute the wavelet coefficients α̂j,m
and β̂j,m from the left side, and compute ᾱj,m and β̄j,m from the right side by using
the standard wavelet transforms, respectively.

In general, we have the low frequency wavelet coefficients on the finer levels instead
of knowing the function values themselves near the discontinuities. We extrapolate
these finer level coefficients from both sides of the discontinuities to obtain the values
of α̂j+1,m and ᾱj+1,m, and use the fast wavelet transforms (12) and (13) to compute

the coarser level coefficients. For instance, we can compute α̂j,i and β̂j,i by

(
α̂j,i
β̂j,i

)
=

( ∑l−2
s=0 csαj+1,2i+s + cl−1α̂j+1,2i+l−1 + clα̂j+1,2i+l∑l−2
s=0 hsαj+1,2i+s + hl−1α̂j+1,2i+l−1 + hlα̂j+1,2i+l

)

≡
(
δj,i
γj,i

)
+A

(
α̂j+1,2i+l−1

α̂j+1,2i+l

)
,(18)

where δj,i and γj,i are
∑l−2

s=0 csαj+1,2i+s and
∑l−2

s=0 hsαj+1,2i+s, respectively, and de-
pend only on the unextrapolated values of αj+1,m, and A a 2 × 2 matrix defined by
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ENO-wavelet Extrapolation Scheme
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j,i j,i+2j,i+2α
j,i+1βj,i+1

Extrapolated values

Extrapolated values

β
j,i

Fig. 3. Coarse level extrapolation illustration. From the left side of the discontinuity, we extrap-
olate the low frequency coefficients α̂j,m to determine corresponding high frequency coefficients β̂j,m

and store them. From the right side of the discontinuity, we extend the high frequency coefficients
β̄j,m to determine and store the low frequency coefficients ᾱj,m.

the filter coefficients as

A =

(
cl−1 cl
hl−1 hl

)
.

In computing α̂j,m and β̂j,m by the fast wavelet transforms, the number of ex-
trapolated values we must use is 2 for m = i, 4 for m = i + 1, and so on. Those
extrapolated values are determined from the smooth side of the discontinuity; then
the high frequency coefficients β̂j,m remain as small values as those of the smooth
stencils.

By symmetry, we can compute ᾱj,m’s and β̄j,m’s from the right side in a similar
way.

There are many methods to extrapolate the extended values. For example, a
straightforward way is to use p-point polynomial extrapolation such as Lagrange poly-
nomials or Taylor expansion polynomials. In our numerical experiments in this paper,
we use Lagrange polynomial extrapolation. Least square extrapolation can be used
too [33], especially for noisy data.

There is a storage problem for this direct function extrapolation. Indeed, it dou-
bles the number of the wavelet coefficients near every discontinuity. To retain the
perfect invertible property, we need to store the ENO-wavelet coefficients α̂j,m and

β̂j,m from the left side, also ᾱj,m and β̄j,m from the right side. Thus, the output se-
quences are no longer the same size as the input sequences. In many applications, such
as image compression, this extra storage requirement definitely needs to be avoided.
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Remark. In the least square extrapolation case, it is possible to reduce the de-
mands of the extra storage because not all the wavelet coefficients α̂j,m, β̂j,m, ᾱj,m,
and β̄j,m are linearly independent [33]. However, this requires complicated extra
computation.

Our approach: Coarse level extrapolation. To avoid computing the wavelet
coefficients using the information from both sides of the discontinuities, to maintain
the same high order accuracy near the discontinuities as away from the discontinu-
ities, and also to keep the size of the output sequences the same as that of the input
sequences without significant extra computation, we introduce the coarse level extrap-
olation schemes. The idea is to extrapolate the coarser level wavelet coefficients near
the discontinuities instead of the function values or the finer level wavelet coefficients.

We still use Figure 3 to illustrate these schemes. We consider the left side of the
jump first.

In the direct function extrapolation case, the computation process is to directly
extrapolate the finer level wavelet coefficients α̂j+1,m, (2i+ l−1) ≤ m ≤ (2i+2l−2),
and then compute the extended coarser level wavelet coefficients α̂j,m and β̂j,m, i ≤
m ≤ (i + k − 2) using the standard filters. We reverse the order of this process
in our coarse level extrapolation. More precisely, we extrapolate the coarser level
low frequency coefficients α̂j,m using the known low frequency coefficients from the

left, and extend the coarser level high frequency coefficients β̂j,m to zero (or some
predefined values), and then determine the extended finer level wavelet coefficients.
For example, in the direct function extrapolation, we extrapolate finer level values
α̂j+1,m and then compute the coarser level coefficients α̂j,i and β̂j,i by (18). On

the contrary, we can first extend the coarser level coefficients α̂j,i and β̂j,i and then
determine the finer level values. Indeed, if the matrix A is nonsingular, we can
uniquely determine the finer level values by solving (18). In this case, we can prescribe
both the coarser level coefficients simultaneously. However, in Daubechies orthogonal
wavelet transforms, the matrix A is singular, because

hl−1

cl−1
=
hl
cl
.(19)

Thus, in order to have a solution of (18), we must extend the coarser level coefficients

α̂j,i and β̂j,i in such a way that they satisfy(
α̂j,i
β̂j,i

)
−
(
δj,i
γj,i

)
∈ R(A),

where R(A) is the range space of A. This requirement implies that(
−1 cl

hl

)[( α̂j,i
β̂j,i

)
−
(
δj,i
γj,i

)]
= 0,

which we can also rewrite as

β̂j,i = γj,i +
hl
cl
(α̂j,i − δj,i)(20)

or

α̂j,i = δj,i +
cl
hl
(β̂j,i − γj,i).(21)

Therefore, we cannot prescribe both α̂j,i and β̂j,i simultaneously. Thus we have two
choices:
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(1) We can extrapolate the low frequency coefficients α̂j,i first and then determine

the corresponding high frequency coefficients β̂j,i by (20).

(2) Or we can extend β̂j,i to zero first and then determine the corresponding α̂j,i
by (21).

Once coefficients β̂j,i and α̂j,i are obtained, we can determine the finer level coef-
ficients α̂j+1,2i+l−1 and α̂j+1,2i+l. Since A is not invertible for Daubechies wavelets,

α̂j+1,2i+l−1 and α̂j+1,2i+l cannot be uniquely determined by β̂j,i and α̂j,i. There is
one more freedom left to use. (In the case of the discontinuity being located between
αj+1,2i+l−1 and αj+1,2i+l, α̂j+1,2i+l can be uniquely determined.) Indeed, there are
many ways to completely determine the values of α̂j+1,2i+l−1 and α̂j+1,2i+l. For in-
stance, one can simply extend α̂j+1,2i+l−1 by any extrapolation technique, such as
(p− 1)th order polynomial extrapolation for smooth data or averaging extrapolation
techniques for noisy data (we use them in our numerical experiments in section 5),

and then determine α̂j+1,2i+l by β̂j,i or α̂j,i. Another possible way to uniquely ex-
tend the coefficients α̂j+1,2i+l−1 and α̂j+1,2i+l on the finer level is to leave this extra
freedom to be used in the next stencil by requiring some special desire properties in
the next extended coarser level coefficients. This involves slightly more complicated
formulation which we will not exploit further in this paper. Thereafter, the above
procedure can be repeatedly used to the next stencil to compute β̂j,i+1 and α̂j,i+1

by treating α̂j+1,2i+l−1 and α̂j+1,2i+l as known values. By the same principle, all

extended coefficients β̂j,m and α̂j,m can be calculated.

Remark. We notice that in both cases (20) and (21) the coefficients are computed
by applying the standard filters to the extended data which is smooth. This implies
that there are no large coefficients generated by them.

Again by symmetry, we have two analogous choices for the right side of the jump.

Using this coarse level extrapolation technique, we can easily solve the storage
problem which we have in the direct function extrapolation. In fact, we just need
to store the high frequency coefficients β̂j,m for choice (1) and the low frequency
coefficients α̂j,m for choice (2). In our implementation, we use choice (1) for the left
side of the jumps and choice (2) for the right side of the jumps; therefore we store

β̂j,m and ᾱj,m for every m. This satisfies the standard wavelet storage scheme, i.e.,
storing one low frequency and one high frequency coefficient for every stencil.

Remark. We select choice (1) from the left side of the jumps and choice (2) from
the right side because we want to keep half of the output sequence to be α’s and half
to be β’s. It is possible to select choice (1) or choice (2) for both sides of the jumps,
but that will not give equal number of α’s and β’s in the output sequence; also, it
may destroy the data structure for the next level decomposition.

Since we know the way we extend the data at the discontinuities, we can easily
extrapolate the low frequency coefficients α̂j,m from the left sides of the discontinuities.

Using them together with the stored high frequency coefficients β̂j,m, we can exactly
recover data at the left sides by applying the standard inverse filters. Similarly, the
data at the right sides of the discontinuities can also be exactly restored.

For each stencil crossing a jump, an extra cost (in floating point operation) is
required in the extrapolation of low frequency coefficients, which is of the order O(1)
per stencil, and in the computation of the corresponding high and low frequency
coefficients by (20) and (21), which is of the order O(l) per stencil. Overall, the extra
cost over the standard wavelet transform is of the order O(dl), where d is the number
of discontinuities. Compared to the cost of the standard wavelet transform, which is
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of the order O(nl) where n is the size of data, the ratio of the extra cost over that of
the standard transform is O( dn ), which is independent of l and negligible when n is
large.

3.2. Locating the discontinuities. In the previous subsection, we showed how
to modify the standard wavelet transforms at the discontinuities to avoid oscillations
if we know the exact subinterval on the next finer grid at which the jumps are located.
In this subsection, we introduce the methods to detect those exact subintervals for
discontinuities for piecewise smooth functions with and without noise. First we give
a method for smooth data.

Piecewise smooth functions. Our purpose is to avoid wavelet stencils crossing
discontinuities. Theoretically, a discontinuity can be characterized by comparing the
left and right limit of the derivatives f (m)(x) at the given point x; i.e., we call a point
x a discontinuity if for some m < p we have

f (m)(x−) 
= f (m)(x+).

We define the intensity of a jump in the mth derivative at x as

[f (m)(x)] = |f (m)(x+)− f (m)(x−)|.
It is well known that the high pass filters in wavelet transforms measure the

smoothness of functions: they produce smaller values at smoother regions and larger
values at rougher regions. In fact, it has been shown in [1], [24], and [32] that if a
function f(x) is Lipschitz γ ≤ p at x, i.e., |f(x+ δ)− f(x)| ≤ δγ for any small δ, the
corresponding high frequency wavelet coefficients are of the order of O(∆xγ). From
this, it is easy to obtain that at smooth regions the magnitudes of high frequency
coefficients |βj,i| have the order of |f (p)(x)|O(∆xp). On the other hand, if a stencil
contains a discontinuity, no matter if it is a discontinuity in function value (m = 0) or
in its mth derivative, the magnitude of the corresponding high frequency coefficient
|βj,i| is of the order of O(∆x(m)), which is at least one order lower than that at
the smooth regions. Therefore, instead of fully adopting the ENO comparison idea
which compares the magnitudes of divided differences on all possible stencils, we can
use the magnitudes of the high frequency coefficients as our criterion to identify the
discontinuities.

The obvious way, also the cheapest way, to identify the discontinuities is to com-
pare the magnitudes of the high frequency coefficients on the current standard stencils
|βj,i| with that on the previous standard stencils |βj,i−1|. Since for smooth functions
we have |βj,i| = |f (p)(x)|O(∆xp), this implies that at smooth regions, by Taylor ex-
pansion, we have

|βj,i| = (1 +O(∆x))|βj,i−1|,(22)

where the constant in the term O(∆x) depends on the size of higher order derivatives
of f(x) such as maxx |f (p+1)(x)|. In contrast, the magnitudes of high frequency coef-
ficients |βj,i| based on the stencils containing the discontinuities are at least one order
lower than that at the smooth regions. More precisely, if we assume function f(x)
has a jump in its mth derivatives at point x0 ∈ (i∆x, (i + l)∆x) for some integer i,
using Taylor expansion, in a small neighborhood of x0, we can write this function as

f(x) = g(x)+

{
f (m)(x0−)(x− x0)

m +O(x− x0)
(m+1), x ≤ x0,

f (m)(x0+)(x− x0)
m +O(x− x0)

(m+1), x0 < x,
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where g(x) is its Taylor polynomial of order m− 1 near x0. Then the wavelet coeffi-
cients βj,i is estimated by using the vanishing moments property as

|βj,i| =
∣∣∣∣
∫
f(x)ψj,i(x)dx

∣∣∣∣
=

∣∣∣∣
∫ x0

i∆x

(f (m)(x0−)(x− x0)
m +O(x− x0)

m+1)ψj,i(x)dx

+

∫ (i+l)∆x

x0

(f (m)(x0+)(x− x0)
m +O(x− x0)

m+1)ψj,i(x)dx

∣∣∣∣∣
= |[f (m)(x0)]|O(∆xm).

It depends on the ∆xm and also on the intensity of the jump.
Thus, we can design a method to detect the discontinuities as follows: For each

standard stencil, suppose we know that the previous standard stencil does not contain
any discontinuities, if we have |βj,i| ≤ a|βj,i−1|, where a > 1 is a given constant, and
then we treat the current stencil as a smooth stencil. Otherwise, we conclude that
there are discontinuities contained in it.

The choice of constant a depends on the grid size ∆x and also on the intensity of
the jumps. In fact, the ratio between a high frequency coefficient at the rough regions
and that at the smooth regions is of the order of |[f (m)(x)]|O(∆x(m−p)). When ∆x
becomes small, this ratio is large. We can choose a as any number such that

(1 +O(∆x)) ≤ a ≤ min
x

{|[f (m)(x)]|O(∆x(m−p))},(23)

provided the above minimal number is larger than 1+O(∆x). This is always true for
piecewise smooth functions with small enough grid size ∆x.

Remark. When a jump in the mth derivative has very small intensity less than
O(∆x(p−m)), this jump cannot be detected by the above-described method. However,
the error caused by missing this jump is also very small, which is at the same order
of the error bound we will give in section 4. In practice, especially when we care only
about the jumps in function values, we have a large range to select a.

To completely avoid oscillations, we also need to know the exact locations of the
discontinuities so that we can avoid computing the wavelet coefficients crossing them.
In fact, the above comparison method based on the magnitudes of high frequency
coefficients can also help us to locate the exact positions of the discontinuities. We
will use the diagram in Figure 4 to explain how to find the exact jump positions.

Assume we consider the wavelet filters with length (l + 1). We compare the
magnitude of the high frequency coefficient |βj,i| on the current stencil, which starts
at x(2i) with |βj,i−1| on the previous stencil. If we have |βj,i| > a|βj,i−1|, we identify
the discontinuity lying in the current stencil. Since there are no discontinuities in the
previous stencils, we know that this discontinuity must be located between {x(2i+ l−
2), x(2i+l)}, where it has only two possible positions: between {x(2i+l−2), x(2i+l−
1)} or between {x(2i+l−1), x(2i+l)}. In fact, we can determine the exact position of
the jump by continuing to compare the subsequent values of βj,m. As shown in Figure
4, we must have at least (k−1) consecutive “large” βj,m, i ≤ m ≤ (i+k−2), because
the subsequent (k − 1) stencils also include the discontinuity. We compute βj,i+k−1

and βj,i+k on the corresponding standard stencils, if we have |βj,i+k−1| > a|βj,i+k|,
and then we have k consecutive stencils containing the discontinuity, which implies
that the discontinuity is located between {x(2i+l−1), x(2i+2l−1)} (see Figure 4(a)).
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(a)

(b)

k consecutive stencils containing the jump which is between x(2i+l-1) and x(2i+l) 

(k-1) consecutive stencils containing the jump which is between x(2i+l-2) and x(2i+l-1)

Jump

Jump

k consecutive stencils 
containing the jump

containing the jump
k-1 consecutive stencils 

Standard Stencils

Standard Stencils

Standard Stencils

Standard Stencil

x(2i+l-1)

x(2i+l-2)

x(2i+l)

x(2i+1)x(2i)

x(2i) x(2i+1) x(2i+l-2) x(2i+l-1)

x(2i+l)

Fig. 4. Locating the exact position of the jump by counting the number of consecutive stencils
containing the jump. (a) If k stencils contain the jump, then the jump position is between x(2i+l−1)
and x(2i+ l). (b) If (k− 1) consecutive stencils contain the jump, then the jump is located between
x(2i + l − 2) and x(2i + l − 1).

If we have exactly (k − 1) consecutive standard stencils containing the discontinuity,
then this implies that the jump must be located between {x(2i+ l− 2), x(2i+ l− 1)}
(see Figure 4(b)). We summarize the above arguments in the following proposition.

Proposition 1. Consider the wavelet filters with length l+ 1, where l = 2k − 1.
For a given index i, assume we have |βj,i−1| ≤ a|βj,i−2| but |βj,i| > a|βj,i−1|. Then

(1) if |βj,i+k−1| > a|βj,i+k|, which means there are k consecutive standard stencils
containing the jump, then the discontinuity is located between {x(2i+ l − 1),
x(2i+ l)};

(2) or else we have |βj,i+k−1| ≤ a|βj,i+k|, which implies that there are (k − 1)
consecutive standard stencils containing the jump, and then the discontinuity
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is located between {x(2i+ l − 2), x(2i+ l − 1)}.
The extra cost introduced by this comparison jump identification method over the

standard wavelet transforms is just the comparison |βj,i| > a|βj,i−1| for each stencil.
In section 5, we use this detection method for all noise-free numerical examples.

Noisy data. The above-described detection method may not be reliable if the
function is polluted by noise, especially when the noise is “large.” This is because
the high frequency coefficients β’s may not be able to measure the correct order of
smoothness of the functions. Indeed, the high frequency coefficients have the order
‖f (p)(x)+σn(p)(x)‖O(∆xp), where n(x) is the random noise and σ a positive number
indicating the noise level. In general, the derivatives of the noise n(p)(x) have large
values. The noise term σn(p)(x) can dominate the function term f (p)(x) if the noise
level σ is large and thus the high frequency coefficients β’s may not be able to detect
certain discontinuities, e.g., if the jump is small or the discontinuity is in the higher
derivatives. In this situation, we need to use heuristics to locate the exact position of
the essential discontinuities. Here, we give a simple method to detect the significant
large jumps in function values in noisy data.

In many applications, such as in image processing, large discontinuities in function
value are the most significant features. Using the standard wavelet transforms, these
large discontinuities will generate high frequency coefficients which can be much larger
than those generated by the noise. (This is also the fundamental principle in the design
of wavelet thresholding.) A simple way to detect these kinds of discontinuities is to
look for these large magnitude high frequency coefficients and then compare the data
values in the corresponding stencils to locate the exact jump positions. For example,
we can look for the places which have the largest difference between two adjacent data
values within the stencils. In our numerical experiments, we found that this simple
way works very well in practice. In section 5, we will show an example using this
method.

Remark. Other jump detection methods can be used for noisy data. As long as the
exact subintervals of the discontinuities on the next finer grid are correctly determined,
the coarse level ENO-wavelet approximations can be formed at the discontinuities, and
our experience shows that it is not sensitive to the presence of noise.

In the ENO-wavelet transforms, to retain the perfect invertibility property, we
need to store the adaptive information near every discontinuity, i.e., the exact location
of the jump. The reason can also be illustrated by using Figure 4. If there is a jump
in the low frequency coefficients (after down sampling) on the coarser level, one can
predict a jump in the finer level coefficients. One can further identify the jump
existing, for example, between {x(2i + l − 2), x(2i + l)} due to the down sampling.
However, as shown in the diagram in Figure 4, for each identified jump, there are two
possible locations, i.e., between {x(2i+ l− 2), x(2i+ l− 1)} or between {x(2i+ l− 1),
x(2i + l)}, in the finer level coefficients. Therefore, in order to achieve the perfect
reconstruction, the exact locations of discontinuities have to be recorded. In our
implementation, we just use one extra bit for each stencil near the discontinuities to
indicate it contains a discontinuity. In the application of compression, which aims to
reduce the total storage of representing an image, these extra bits need to be taken
into account carefully. However, this is beyond the scope of this paper, and we will
not discuss it here.

3.3. Forward and inverse transform algorithms. In this subsection, we
explicitly present the complete one level forward and inverse ENO-wavelet transform
algorithms for the noise-free piecewise smooth data.
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We consider the forward transform algorithms first. We denote by {c0, . . ., cl}
and {h0, . . ., hl} the standard wavelet filter coefficients, and by {r0, . . ., rl} and
{d0, . . ., dl} the corresponding inverse filter coefficients. In this paper, since we
consider Daubechies orthonormal wavelets, these inverse filter coefficients are defined
as rs = (−1)s+1hs, and ds = (−1)scs, for s = 0, 1, . . . , l. We use a one-bit variable si
to indicate whether a stencil contains a jump in our algorithms.

Forward Transform Algorithm.
For each i,
(i) compute βj,i by (13).
(ii) If |βj,i| ≥ a|βj,i−1| and |βj,i| ≥ ε, then

• compute βj,i+k−1 and βj,i+k by (13).
• Find the exact subinterval of the jump by Proposition 1. For i ≤ m ≤
i+ k or i ≤ m ≤ i+ k − 1,
– for the left side of the jump, compute α̂j,m by extrapolation, com-

pute β̂j,m by (20), and then set

βj,m = β̂j,m, si = 1;

– for the right side of the jump, set β̄j,m = 0 and compute ᾱj,m by
(21), and set

αj,m = ᾱj,m.

(iii) Otherwise, compute αj,i by (12). Set si = 0.
In the algorithm, ε is a predefined small positive number which is used to prevent

the numerical instability caused by small βj,i. More precisely, if both βj,i and βj,i−1

are less than the given tolerance ε, we treat the current standard stencil as a smooth
stencil.

In step (ii), it is possible to use any extrapolation techniques to handle the dis-
continuities.

Here, we just described the algorithm for one level ENO-wavelet transform with
input data sequence αj+1,i, and output data αj,i and βj,i. The coefficient sequences
αj,i and βj,i have the same size, and their combined size is the same as the input
data size at level j+1. The multiresolution transform algorithms can be constructed
straightforwardly by recursively applying the one level transform to the low frequency
coefficients αj,i. This is accomplished in the same way as that of the standard mul-
tiresolution algorithms. We do not explicitly include them in this paper. Similarly,
we present the one level inverse transforms next.

Inverse Transform Algorithm.
For each i,
(i) if si = 0 and sj = 0, j = i − k, . . . , i − 1, then the standard inverse wavelet
transforms are applied:

αj+1,2i =

l∑
s=0

(r2s+1αj,i−s + d2s+1βj,i−s)(24)

and

αj+1,2i+1 =

l∑
s=0

(r2sαj,i−s + d2sβj,i−s).(25)
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(ii) If sj = 1, i− k ≤ j ≤ i or i− k + 1 ≤ j ≤ i,
• use Proposition 1 to locate the position of the jump by counting the
number of consecutive si = 1;

• extrapolate α̂j,i from the left side of the jump;
• set β̄j,i as zero for the right side of the jump;
• use α̂j,k and βj,k to restore the left side by (24) and (25);
• use αj,k and β̄j,k to restore the right side of the jump by (24) and (25).

Two simple examples. We give two simple examples in the ENO-Haar and
ENO-DB4 cases to illustrate the algorithms. First, we consider computing the trans-
form coefficients of the following initial data:(

1 1 1 2 2 2
)
.

The standard Haar produces the low and high frequency coefficients

α =
(

2√
2

3√
2

4√
2

)
, β =

(
0 − 1√

2
0
)
.

The corresponding linear approximation is(
1 1 3

2
3
2 2 2

)
,

which cannot recover the discontinuity correctly.
Using the ENO-Haar wavelet, we break the initial data sequence into two smooth

pieces as shown in the following two rows:(
y 2 2 2

1 1 1 x

)
,

where x and y are some smooth extensions of the corresponding pieces. In fact, we
extend x in a way such that the low frequency coefficient α̂2 (boxed in (26)) based on
the stencil (1, x) is the same as the previous α1, which is based on the stencil (1, 1)
giving x = 1. Similarly, we extend y in a way such that the high frequency coefficient
β̄2 (boxed in (26)) is zero giving y = 2. Therefore we compute the high frequency

coefficients β̂2 based on stencil (1, x) and the low frequency coefficients ᾱ2 based on

stencil (y, 2) by using the corresponding standard filters giving β̂2 = 0 and ᾱ2 =
4√
2
.

Thus we have the coefficients

α =


 4√

2
4√
2

2√
2

2√
2


 , β =

(
0 0

0 0

)
.(26)

Since we know how we extended α̂2 and β̄2, we do not need to store them. In fact,
we just need to store the low and high frequency coefficients as

α =
(

2√
2

4√
2

4√
2

)
, β =

(
0 0 0

)
,

which have the same storage schemes as the standard Haar wavelet transform.
When we reconstruct the linear approximation, we can first recover α̂2 and β̄2 the

same way as in the forward transform and then apply the standard inverse filters to the
smooth data to build the approximation. In fact, in this case the linear approximation
is exactly the initial data.
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In the next example, we show a similar example in which the ENO-DB4 linear
approximation is not exactly the same as the initial data, but it still preserves the
jump well. The initial data is given as

a =
(
0 1 2 3 4.1 5 20 21 22 23

)
.

To better demonstrate the coarse level extrapolation idea, we ignore the boundary
extension at two ends of the array. We leave out the coefficients based on the
boundary extension at the two ends and display only the coefficients correspond-
ing to the middle part of the array. The DB4 filters are given by the low pass fil-
ter (0.4830 0.8365 0.2241 −0.1294) and the high pass filter (−0.1294 −0.2241
0.8365 −0.4830). The standard DB4 low and high frequency coefficients (α2 to α5

and β2 to β5) are

α =
(
0.8966 3.7474 7.9280 29.1808

)
and

β =
( −0.0000 0.0837 4.9368 −0.0000 ) .

Notice that in this case we have a large high frequency coefficient β3 which corresponds
to the discontinuity between a6 = 5 and a7 = 20 in the array. If we discard the high
frequency part, the corresponding linear approximation for the central part of the
array around the jump (from a3 = 2 to a8 = 21) is(

2.0108 3.0187 4.6689 6.1470 15.8703 23.3843
)
,

and the discontinuity cannot be preserved.
Using the ENO-DB4 wavelet, we break the initial data sequence into two smooth

pieces as shown in the following two rows:(
u v 20 21 22 23

0 1 2 3 4.1 5 x y

)
,

where (x, y) and (u, v) are some smooth extensions of the corresponding pieces. In
fact, we extend (x, y) in such a way that the low frequency coefficient α̂3 = 6.5983
(boxed in (27)) based on the stencil (4.1, 5, x, y) is the linear extension of the previous
α1 and α2. Similarly, we extend (u, v) in such a way that the high frequency coefficient

β̄3 (boxed in (28)) is zero. Therefore we compute the high frequency coefficients β̂3

based on stencil (4.1, 5, x, y) by (20) giving β̂3 = −0.0259 and the low frequency
coefficients ᾱ3 based on stencil (u, v, 20, 21) by the analogy of (20) at the right side
of a jump giving ᾱ3 = 26.3524. Thus we have the coefficients

α =

(
26.3524 29.1808

0.8966 3.7474 6.5983

)
(27)

and

β =

(
0 0

0 0.0837 −0.0259
)
.(28)

Since we know how we extended α̂3 and β̄3, we do not need to store them. In fact,
we just need to store the low and high frequency coefficients as

α =
(
0.8966 3.7474 26.3524 29.1808

)
, β =

(
0 0.0837 −0.0259 0

)
,

which have the same storage schemes as the standard DB4 wavelet transform.
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The recovered linear approximation for a3 to a8 is(
2.0108 3.0187 4.0267 5.0346 20.0000 21.0000

)
.

In this case, although the linear approximation is not the same as the initial data, it
forms a much more accurate approximation than that of the standard DB4 transform.
More importantly, this approximation preserves the discontinuity sharply in contrast
to the standard DB4 wavelet which smears the discontinuity.

Remarks.
(i) The ENO-wavelet transforms are just simple modifications of the standard
wavelet transforms near discontinuities. The computational complexity of the
algorithms remains O(n), and they are relatively easy to implement.

(ii) In the transform algorithms and the corresponding inverse algorithms, the
extended low frequency coefficients α̂j,m and the high frequency coefficients
β̄j,m can be computed by other extrapolation schemes such as least square
extrapolation. This may be more robust, especially for noisy data.

(iii) The adaptive ENO-wavelet idea can also be used for other kind of wavelets.
They do not necessarily have to be orthogonal wavelets. For instance, one
can apply it to the biorthonormal wavelets.

(iv) Like other wavelet transforms, 2-D or even higher-dimensional transforms can
be formed by tensor products. In the numerical example section, we will give
a 2-D example.

(v) The adaptive ENO-wavelet idea can be recursively used even if the projections
do not satisfy the DSP. In such a case, of course we will not get the nice error
bound (see section 4), but the approximation errors are comparable to that
of the standard wavelet transforms. Also, it is easy to modify the algorithms
such that the standard wavelet transforms are applied at the place where the
DSP is invalid.

4. Approximation error. In this section, we consider the ENO-wavelet ap-
proximation error for piecewise continuous functions.

Given a function f(x) in L2, in standard wavelet theory [27], [14], [30], it can
be linearly approximated by its projection fj(x) in Vj as in (7) and (8). This linear
approximation has a standard error estimate which we state in the following theorem;
see also [30].

Theorem 1. Suppose the wavelet ψ(x) generated by scaling function φ(x) has
p vanishing moments and fj(x) is the approximation of f(x), which has bounded pth
order derivative, in Vj with basis φj,k(x); then,

‖f(x)− fj(x)‖ ≤ C(∆x)p‖f (p)(x)‖,(29)

where ∆x = 2−j and C is a constant which is independent of j.
This theorem holds for the L2 norm in general. Moreover, if the scaling function

and its wavelet have finite support, then it also holds for the L∞ norm.
In this theorem, we can see that the approximation error is controlled by two

factors. One is the pth power of the spatial step ∆x; the other is the norm of the
pth derivative of the function. This error bound does not hold if the function does
not have the finite pth derivative. This implies that the approximation could be poor
for irregular functions even if the spatial step ∆x is small. For piecewise continuous
functions, especially functions with large jumps, the approximation error cannot be
controlled as smooth functions. In fact, in the standard approximation function fj(x),
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oscillations are generated near the discontinuous points, and they will not disappear
even if the spatial step size is reduced (the Gibbs phenomenon).

In contrast, in our ENO-wavelet transforms, since no approximation coefficients
are computed using information from both sides of the discontinuities, we can obtain
a similar error estimate without taking derivatives across the jumps. In the next
theorem, we state the estimation and prove it in the rest of this section.

Theorem 2. Suppose the scaling function φ(x) and its ψ(x) have finite support
in [0, l], ψ(x) has p vanishing moments, f(x) is a piecewise continuous function in
[a, b] with bounded pth derivatives in each piece of smooth regions, and fj(x) is its
jth level ENO-wavelet projection obtained by using any one of the three extrapolation
methods given in section 2.4 with the choice of a satisfying (23). If the projection
fj+1(x) satisfies the DSP, then

‖f(x)− fj(x)‖ ≤ C(∆x)p‖f (p)(x)‖(a,b)\D,(30)

where ∆x = 2−j and D is the set where f(x) has jumps in the function value or up
to the pth derivatives. The norm ‖ · ‖ can be either the L2 or the L∞ norm.

Proof. We prove the inequality (30) under the L∞ norm, and the L2 result can
be obtained in a similar way.

According to section 3.2, with the choice of a, all jumps in set D will be detected
by the algorithms described for the piecewise smooth data unless the intensity of the
jump is less than O(∆x(p−m)), where the jump is in the mth derivative. In the latter
case, the error caused by missing the jump is of the order of O(∆xp), which can be
absorbed by the right-hand side of (30).

The DSP allows us to separate the discontinuities and individually consider a
small neighborhood around each jump. Therefore, to simplify the discussion without
loss of generality, we consider a piecewise function f(x) with one jump at the origin.
In other words,

f(x) =

{
f1(x), a ≤ x < 0,
f2(x), 0 ≤ x ≤ b,

where f1(x) ∈ Cp[a, 0] and f2(x) ∈ Cp[0, b]. Because both φj,i(x) and ψj,i(x) have sup-
port [i, (l+i)∆x], the small neighborhood affected by the ENO decision is [−l∆x, l∆x].
In fact, the ENO-wavelet coefficients depend only on one-sided information and there-
fore, by symmetry, we just need to prove (30) in [−l∆x, 0].

Before we prove that (30) holds for the three types of extrapolation methods,
namely direct function extrapolation and the two choices of coarse level extension
((1) and (2) in section 3.1), we give some notations which we will frequently use in
the proof.

Denote by g1(x) the (p − 1)th order polynomial which is the first p term of the
Taylor expansion of f1(x) at the origin, i.e.,

f1(x) = g1(x) +
f

(p)
1 (ξ)

p!
xp,(31)

where ξ is in interval [−l∆x, 0]. Also denote by αj,m and βj,m the ENO-wavelet low
and high frequency coefficients, respectively, and ᾱj,m the low frequency coefficients
of the polynomial g1(x), i.e.,

ᾱj,m =

∫
g1(x)φj,m(x)dx
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and

g1,j(x) =
∑
m

ᾱj,mφj,m(x).

As we mentioned in section 3.1, different techniques can be used for extrapo-
lation. Here we select the extrapolation by Taylor expansion as our starting point
throughout the proof because of its simplicity. For other types of extrapolation tech-
niques, the proof can be directly generalized by taking into account the difference
between that type of extrapolation and the Taylor expansion extrapolation. For in-
stance, the classical approximation result shows us that the difference between the
Lagrange extrapolation that we use in the numerical experiments in this paper and
Taylor expansion extrapolation is of the order of O(∆xp), which will be absorbed into
the right-hand side of the estimate (30).

Now we are ready to prove that (30) holds for the three types of extrapolation
methods. We first prove (30) for direct function extrapolation.

Direct function extrapolation. The direct function extrapolation extends
f1(x) to interval [0, l∆x] by defining

fd(x) =

{
f1(x), −l∆x ≤ x < 0,
g1(x), 0 ≤ x ≤ l∆x.

The corresponding ENO-wavelet low frequency coefficients αj,m are computed by

αj,m =

∫
fd(x)φj,m(x)dx,(32)

and the approximation function is defined as

fd,j(x) =
∑
m

αj,mφj,m(x), x ∈ [−l∆x, 0].(33)

For any point x0 ∈ [−l∆x, 0], by using (31) and the fact that since g1(x) is a
(p− 1)th order polynomial, g1,j(x) = g1(x), we have

|f1(x0)− fd,j(x0)| ≤ |f1(x0)− g1(x0)|+ |g1,j(x0)− fd,j(x0)|
≤ C(∆x)p‖f (p)

1 ‖+ |g1,j(x0)− fd,j(x0)|.(34)

Let q be an integer in [−l, 0] such that x0 ∈ [q∆x, (q + 1)∆x); then the last term of
(34) can be bounded by

|g1,j(x0)− fd,j(x0)| =
∣∣∣∣∣
∑
m

(ᾱj,m − αj,m)φj,m(x0)

∣∣∣∣∣
≤

∑
q−l≤m≤q

|ᾱj,m − αj,m||φj,m(x0)|

=
∑

q−l≤m≤q

|ᾱj,m − αj,m||(∆x)− 1
2φ(2jx0 −m)|.(35)

To prove (30), we now need to estimate |ᾱj,m − αj,m|. Since when m ≤ −l the
coefficients are computed in the standard manner, i.e., ᾱj,m = αj,m, we just need to
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consider all m with −l + 1 ≤ m ≤ 0. In fact, we have

|ᾱj,m − αj,m| =
∣∣∣∣
∫
(fd(x)− g1(x))φj,m(x)dx

∣∣∣∣
≤
∣∣∣∣
∫ 0

m∆x

(fd(x)− g1(x))φj,m(x)dx
∣∣∣∣

+

∣∣∣∣∣
∫ (m+l)∆x

0

(fd(x)− g1(x))φj,m(x)dx
∣∣∣∣∣ .

Because fd(x) is the same as g1(x) in [0, (m+ l)∆x], using (31), we have

|ᾱj,m − αj,m| =
∣∣∣∣
∫ 0

m∆x

(f1(x)− g1(x))φj,m(x)dx
∣∣∣∣

≤
(∫ 0

m∆x

|f1(x)− g1(x)|2dx
) 1

2
(∫ 0

m∆x

|φj,m(x)|2dx
) 1

2

≤ C(∆x)p‖f (p)‖(∆x) 1
2

≤ C(∆x)p+ 1
2 ‖f (p)‖.

Therefore, combining this with (35), we have

|g1,j(x0)− fd,j(x0)| ≤ C(∆x)p‖f (p)‖.
This and (34) complete the proof of (30) for the case of direct function extrapolation.

Coarse level extrapolation. As described in section 3.1, there are two ways
of extrapolating coefficients on the coarse level. One way is to set the extended high
frequencies to zero. The other way is to extrapolate the low frequency coefficients by
a (p− 1)th order polynomial in wavelet space. In the following part of the proof, we
consider them separately.

We consider the high frequency zero extension first.
Similar to the direct function extrapolation, we also extend f1(x) to the interval

[0, l∆x] and denote it by

fh(x) =

{
f1(x), x ∈ [−l∆x, 0],
gh(x), x ∈ (0, l∆x],

where gh(x) is implicitly defined such that it makes fh(x) satisfy∫
fh(x)ψj,m(x)dx = 0, −l + 1 ≤ m ≤ 0,(36)

and ∫
fh(x)φj,m(x)dx = αj,m, −l + 1 ≤ m ≤ 0.(37)

The difference between fd(x) and fh(x) is that in the direct function extrapolation
fd(x) we know that g1(x) is the (p− 1)th order polynomial, but in this case gh(x) is
unknown.

Formally following the proof of (30) for the direct function extrapolation, (34) and
(35) also hold for this case. Therefore, we need only to estimate |ᾱj,m−αj,m|,−l+1 ≤
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m ≤ 0. We consider m = −l + 1 first. Unlike in the direct function extrapolation,
where |ᾱj,−l+1 − αj,−l+1| can be computed directly by the Taylor expansion, here we
cannot bound |ᾱj,−l+1 −αj,−l+1| in the same way. Instead, we use the following trick
to obtain the estimate we need.

From the dilation equation (1) and the wavelet equation (2), we have the following
relationships:

φj,m(x) =

l∑
s=0

csφj+1,s+2m(x)(38)

and

ψj,m(x) =

l∑
s=0

hsφj+1,s+2m(x).(39)

Using (38), ᾱj,−l+1 and αj,−l+1 can be computed by

αj,−l+1 =

∫
fh(x)φj,−l+1(x)dx =

l∑
s=0

cs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

fh(x)φj+1,s−2l+2(x)dx

and

ᾱj,−l+1 =

∫
g1(x)φj,−l+1(x)dx =

l∑
s=0

cs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

g1(x)φj+1,s−2l+2(x)dx.

Therefore, we have

|ᾱj,−l+1 − αj,−l+1| ≤
∣∣∣∣∣
l−2∑
s=0

cs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

(g1(x)− fh(x))φj+1,s−2l+2(x)dx

∣∣∣∣∣
+

∣∣∣∣∣cl−1

∫ ∆x
2

∆x
2 (−l+1)

(g1(x)− fh(x))φj+1,1−l(x)dx

+ cl

∫ ∆x

∆x
2 (−l+2)

(g1(x)− fh(x))φj+1,2−l(x)dx

∣∣∣∣∣ .(40)

We know that only the last two terms involve the value of fh(x) in [0,∆x]. The other
terms use fh(x) in [−l∆x, 0], which is f1(x). Then, by Taylor expansion and Schwartz
inequality,∣∣∣∣∣

l−2∑
s=0

cs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

(g1(x)− fh(x))φj+1,s−2l+2(x)dx

∣∣∣∣∣ ≤ C(∆x)p‖f (p)
1 ‖2−(j+1)

2 .(41)

Thus, to bound |ᾱj,−l+1 − αj,−l+1|, the only remaining task is to estimate the last
two terms in (40).

Considering that g1(x) is a (p− 1)th order polynomial, we obtain∫
fh(x)ψj,−l+1(x)dx = 0 =

∫
g1(x)ψj,−l+1(x)dx.



1392 T. F. CHAN AND H. M. ZHOU

Substituting the wavelet equation (39) into the above equation, we have

l∑
s=0

hs

∫
(fh(x)− g1(x))φj+1,s−2l+2(x)dx = 0.

We can rewrite this equation in the following form:

hl−1

∫ ∆x
2

∆x
2 (−l+1)

(fh(x)− g1(x))φj+1,1−l(x)dx

+ hl

∫ ∆x

∆x
2 (−l+2)

(fh(x)− g1(x))φj+1,2−l(x)dx

= −
l−2∑
s=0

hs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

(fh(x)− g1(x))φj+1,s−2l+2(x)dx.

Notice that we have hl−1

cl−1
= hl

cl
. We find that the left-hand side contains the term

we need to estimate, whereas the right-hand side uses only fh(x) at the left side of
the origin and thus can be controlled again by Taylor expansion. This means that we
have∣∣∣∣∣cl−1

∫ ∆x
2

∆x
2 (−l+1)

(fh(x)− g1(x))φj+1,1−l(x)dx

+ cl

∫ ∆x

∆x
2 (−l+2)

(fh(x)− g1(x))φj+1,2−l(x)dx

∣∣∣∣∣
≤
∣∣∣∣ clhl
∣∣∣∣
l−2∑
s=0

|hs|
∫ ∆x

2 (s−l+2)

∆x
2 (s−2l+2)

|f1(x)− g1(x)||φj+1,s−2l+2(x)|dx

≤ C(∆x)p‖f (p)
1 ‖2−(j+1)

2 .(42)

Combining (40), (41), and (42), we have

|ᾱj,−l+1 − αj,−l+1| ≤ C(∆x)p‖f (p)
1 ‖2− (j+1)

2 .

Similarly, we can prove that, for all m,−l + 1 < m ≤ 0,

|ᾱj,m − αj,m| ≤ C(∆x)p‖f (p)
1 ‖2− (j+1)

2 .

Substituting them into (35), we prove that (30) holds for the high frequency extension
case.

The last case we need to consider is the coarse level extrapolation of low fre-
quency coefficients. To prove (30), we use the result obtained for the direct function
extrapolation.

We denote by αdj,m the low frequency coefficients for fd(x). The jth level low
frequency extrapolation approximation fl,j(x) is defined as

fl,j(x) =
∑
m

αj,mφj,m(x).

For any point x0 ∈ [q∆x, (q + 1)∆x) ⊂ [−l∆x, 0], we have
|f1(x0)− fl,j(x0)| ≤ |f1(x0)− fd,j(x0)|+ |fd,j(x0)− fl,j(x0)|.(43)
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Using (30) for the direct function extrapolation case, we know that

|f1(x0)− fd,j(x0)| ≤ C(∆x)p‖f (p)
1 ‖.(44)

And the remaining term can be bounded by

|fd,j(x0)− fl,j(x0)| ≤
∑

q−l≤m≤q

|αdj,m − αj,m||2 j
2φ(2jx0 −m)|.(45)

Again, we need to estimate |αdj,m − αj,m|.
Unlike the previous two cases where the low frequency coefficients αj,m are com-

puted by integration (32) or (37), in this case αj,m are determined by the low frequency
extrapolation on the coarse level in wavelet space. So, to estimate |αdj,m − αj,m|, we
need to consider them in wavelet space. We introduce the following operator notations
first.

Define the continuous wavelet transform (WT ) of any function f(x) in space Vj
by

WT (f)(s) =

∫
f(x)φj,s(x)dx = 2

j
2

∫
f(x)φ(2jx− s)dx.

Also define the following Taylor extrapolation operator (EX) of f(x):

EX(f)(x) =

{
f(x), x ≤ 0,
g(x), x > 0,

where g(x) is the (p − 1)th order Taylor polynomial of f(x). Using these notations,
we can represent the low frequency wavelet coefficients

αj,m = EXw(WT (f1))(m), for − l + 1 ≤ m ≤ 0,
and

αdj,m =WT (EXf (f1))(m), for − l + 1 ≤ m ≤ 0,
where EXw and EXf represent the extrapolation operator EX in the wavelet and
physical space, respectively.

Instead of estimating |αdj,m − αj,m| directly, we prove the following more general
result.

Lemma 1. Given a smooth function g(x), let gwe(s) = WT (EXf (g))(s) and
gew(s) = EXw(WT (g))(s); then

|gwe(s)− gew(s)| ≤ C(∆x)p‖g(p)‖2−
j
2 .

Using this lemma, we obtain the desired bounds for |αdj,m−αj,m| easily by taking
s = m. Combining them with (44) and (45), we prove that (30) holds for the low
frequency coefficient extrapolation case.

Proof. Denote ḡ(x) = EXf (g)(x), and then

gwe(s) = 2
j
2

∫
ḡ(x)φ(2jx− s)dx

= 2−
j
2

∫
ḡ(2−j(y − s))φ(y)dy.
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By changing variable z = 2−js, and denoting

ej(z) =

∫
ḡ(2−jy − z)φ(y)dy,

we have

gwe(s) = 2
− j

2 ej(2
−js).

We also know that ej(z) is a smooth function and, by differentiating p times, we have

‖e(p)j ‖ =
∥∥∥∥
∫
(−1)pḡ(p)(2−jy − z)φ(y)dy

∥∥∥∥ ≤ C‖g(p)‖
∥∥∥∥
∫
φ(y)dy

∥∥∥∥ ≤ C‖g(p)‖.(46)

Taking the (p− 1)th order Taylor expansion of ej(z) at z = −l∆x, we have

ej(z) = êj(z) + e
(p)
j (ξ)

(z + l∆x)p

p!
,

where êj(z) is the (p−1)th order Taylor polynomial and ξ ∈ [2l, 0]. Since gew(s) is the
same as gwe(s) if s ≤ −l, it is defined as the Taylor polynomial for s > −l according
to the definition of EX; i.e., we have

gew(s) =

{
2−

j
2 ej(2

−js), s ≤ −l,
2−

j
2 êj(2

−js), s > −l.
Therefore,

|gwe(s)− gew(s)| ≤ 2−
j
2 |ej(2−js)− êj(2−js)|

≤ C(∆x)p‖g(p)‖2− j
2 .

This completes the proof of Lemma 1 and also completes the proof of Theorem 2.

5. Numerical examples. In this section, we give some one-dimensional (1-D)
and 2-D numerical examples by using the ENO-wavelet transforms. In particular, we
show results of the ENO-Haar, ENO-DB4, and ENO-DB6 wavelet transforms.

In all examples, for simplicity, we just consider functions with zero values at the
boundary. For nonzero boundary functions, we can easily extend the function by zero
and treat the boundaries as discontinuities.

To illustrate the performance of ENO-wavelet transforms, we show picture com-
parisons of the standard wavelet approximations and corresponding ENO-wavelet ap-
proximations. In addition, we compare the L∞ and L2 errors of the standard wavelet
approximations and the ENO-wavelet approximations at different levels by measuring
E∞,j = infx ‖f(x) − fj(x)‖, which is computed by finding the largest difference on
the finest grid, and E2,j = ‖f(x) − fj(x)‖2. Using them, we compute the orders of
accuracy defined by

Order∞ = log2
E∞,i

E∞,i−1

and

Order2 = log2
E2,i

E2,i−1
,
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Table 1
Comparison of the maximum error of the standard Haar and the ENO-Haar wavelet approxi-

mation for the smooth function sin(x). We see that they have the same approximation error for the
smooth functions.

Level Haar E∞ ENO-Haar E∞ Order∞
4 0.0919 0.0919
3 0.0430 0.0430 1.070
2 0.0184 0.0184 1.202
1 0.0061 0.0061 1.585

Table 2
Comparison of the maximum error of the standard DB4 and the ENO-DB4 approximations

for the smooth function f(x) = exp [−( 1
x

+ 1
1−x

)], 0 < x < 1. They have the same error and both

achieve second order accuracy which agrees with the results in Theorem 1 for the smooth functions.

Level DB4 E∞ ENO-DB4 E∞ Order∞
4 3.316e-5 3.316e-5
3 7.650e-6 7.650e-6 2.104
2 1.590e-6 1.590e-6 2.232
1 2.972e-7 2.973e-7 2.406

which indicates the order of accuracy of the approximation in the L∞ norm and L2

norm, respectively.
For all noise-free examples, we use the method described in section 3.2 to locate

the exact positions of the discontinuities. And we select a = 2 and ε = 0.0001 (as
used in the algorithms in section 3.3) for all 1-D examples.

First, we compare the approximations for smooth functions. Table 1 is the com-
parison of Haar and ENO-Haar approximations for the smooth function f(x) =
sin(x), 0 ≤ x ≤ 2π at different levels, and Table 2 is the comparison of DB4 and
ENO-DB4 approximations for the function f(x) = exp [−( 1x + 1

1−x )], 0 < x < 1.
We see from these tables that for smooth functions the ENO-wavelet transforms

have exactly the same approximation error as the standard wavelet transforms. Both
of them maintain the approximation order 1 and 2 for Haar and DB4, respectively,
which agree with the results in Theorem 1. In fact, we notice that in this situation
no singularity is detected, and the ENO-wavelet algorithms perform the standard
transforms for completely smooth functions as we expected.

Next, we consider a piecewise smooth function defined by

f(x) =




0, 0 ≤ x < 0.2,
−50x− 5, 0.2 ≤ x < 0.4,
10 sin(4πx+ 0.8π)− 1, 0.4 ≤ x < 1.1,
5e2x − 100, 1.1 ≤ x < 1.6,
0, 1.6 ≤ x ≤ 2.

We apply Haar and ENO-Haar, DB4 and ENO-DB4, and DB6 and ENO-DB6 trans-
forms to this function and compare the approximation error. Figure 5 shows the
comparison of the order of accuracy in the L∞ and L2 norm. It is clear that both
L∞ and L2 order of accuracy for ENO-wavelet transforms are of the order 1, 2, and
3 for ENO-Haar, ENO-DB4, and ENO-DB6, respectively, and they agree with the
results in Theorem 2. In contrast, standard wavelet transforms do not retain the
corresponding order of accuracy for piecewise smooth functions.
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Fig. 5. The approximation accuracy comparison of ENO-wavelet and wavelet transforms. Both
L∞ (left) and L2 (right) order of accuracy show that ENO-wavelet transforms maintain the order
1, 2, and 3 for ENO-Haar, ENO-DB4, and ENO-DB6, respectively, and they agree with the results
of Theorem 2. In contrast, standard wavelet transforms do not retain the order of accuracy for
piecewise smooth functions.
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Fig. 6. The 4-level ENO-Haar and Haar approximation. The left picture shows the origi-
nal function (dotted line), the standard Haar approximation (dash-dotted line) and the ENO-Haar
approximation (solid line). The right picture is a zoom-in near a discontinuity. We see the Gibbs
phenomenon (staircase) in the standard Haar approximation but not in the ENO-Haar approxima-
tion.

To see the Gibbs oscillations, we display the 4-level ENO-wavelet and standard
wavelet approximations in Figures 6, 7, and 8 for ENO-Haar, ENO-DB4, and ENO-
DB6 approximations, respectively. In the left column, we show the original func-
tion (dotted line), the standard wavelet linear approximations (dash-dotted), and the
ENO-wavelet approximations (solid line). The right pictures are zoom-ins of the left
pictures near a discontinuity. We clearly see the Gibbs oscillations in the standard
approximations; in contrast, the ENO-wavelet approximations preserve the jump ac-
curately.

In Figures 9, 10, and 11, we also present the standard Haar, DB4, and DB6 wavelet
coefficients (dotted line) and the ENO-Haar, ENO-DB4, and ENO-DB6 wavelet co-
efficients (solid line), respectively. The left part corresponds to the low frequency
coefficients and the right part to the high frequency coefficients. We notice that
there are some large standard high frequency coefficients near the discontinuities. On
the other hand, no large high frequency coefficients are present in the ENO-wavelet
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Fig. 7. The 4-level ENO-DB4 and the standard DB4 approximations. The original discontin-
uous function (dotted line), the standard DB4 approximation (dash-dotted line), and the ENO-DB4
approximation (solid line) are displayed. The Gibbs phenomenon is clearly seen for the standard
DB4 approximation but not for the ENO-DB4 approximation.
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Fig. 8. The 4-level ENO-DB6 (solid line) and the standard DB6 (dash-dotted line) approxima-
tion. The standard DB6 generates oscillations near discontinuities, but the ENO-DB6 does not.
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Fig. 9. The 4-level ENO-Haar (solid line) and the standard Haar coefficients (dotted line).
The left part corresponds to the low frequencies, the right part to the high frequencies. In the
standard Haar coefficients, large high frequency coefficients present near discontinuities, while in
the ENO-Haar case there are no large high frequency coefficients.
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Fig. 10. The 4-level ENO-DB4 coefficients (solid line) and the standard DB4 coefficients (dotted
line). There are large high frequency coefficients (right part) near the discontinuities in the standard
DB4 transform but not in the ENO-DB4 transform.
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Fig. 11. The 4-level ENO-DB6 coefficients (solid line) and the standard DB6 coefficients
(dotted line). There are large high frequency coefficients near the discontinuities in the standard
DB6 transform but not in the ENO-DB6 transform.

coefficients. This illustrates that the ENO-wavelet coefficients have better distribu-
tion than standard wavelet coefficients; i.e., they have no large coefficients in the high
frequencies, and the energy is concentrated in the low frequency end.

The next 1-D example we present here (Figure 12) is a comparison of the standard
DB6 and the ENO-DB6 transforms to illustrate the performance at places where the
DSP is not valid and also at jumps in the derivative. The original data (circles)
has two discontinuities (the middle bump) which violate the DSP assumption, which
requires that there are at least eight data points between any pair of discontinuities.
Although the ENO-DB6 approximation (solid line) does not preserve this pair of
discontinuities exactly, its approximation error is still comparable (actually better in
this case) to that of the standard DB6 approximation (dotted line). At the left bump
where the DSP holds, the ENO-DB6 does preserve the discontinuities exactly as we
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Fig. 12. The level-1 approximation comparison of the ENO-DB6 and the standard DB6 wavelets
at places where the DSP is invalid (the middle bump). The initial data (circles) has two close
discontinuities. The ENO-DB6 approximation (solid line) error is comparable to that of the standard
DB6 approximation (dotted line). The left bump satisfies the DSP and therefore the ENO-DB6
exactly recovers it. The right kink is a discontinuity in the first derivative, and the standard DB6
still generates oscillations although their magnitudes are not significant. The ENO-DB6 restores it
perfectly, We display a zoom-in picture of this kink in Figure 13.
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Fig. 13. The zoom-in of Figure 12 at the kink where there is a discontinuity in its derivative.
The ENO-DB6 (solid line) can recover it perfectly, but the standard DB6 (dash-dotted line) generates
oscillations.

expected. In the same example, we also display the comparison of the ENO-DB6 and
the standard DB6 approximations at the right kink, which is not a discontinuity in
function values but in its first order derivative. The standard DB6 approximation
has oscillations, although their magnitudes are small, but the ENO-DB6 restores it
exactly (see Figure 13).

The last 1-D example is applying the ENO-DB6 wavelet transform to a piecewise
constant function polluted by Gaussian random noise (see Figure 14). For this exam-
ple, the jump detection method corresponding to Lemma 1 does not work. Instead,
we use the simple method given in section 3.2, which detects jumps by looking for



1400 T. F. CHAN AND H. M. ZHOU

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

150 160 170 180 190 200 210 220 230

0

5

10

15

20

Fig. 14. Left: The comparison of the 3-level ENO-DB6 approximation (solid line) with the
standard DB6 approximation (dash-dotted line) for noisy initial data (circles). The ENO-DB6
approximation retains the sharp jumps, but the standard DB6 approximation does not (right picture).
Right: A zoom-in of the left example at the discontinuities.
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Fig. 15. Original 2-D function.

stencils with significant larger high frequency coefficients than their neighbors and
then locates the exact jump locations by directly comparing the differences between
two adjacent function values within the stencil. Despite the presence of noise in the
initial data (circles), the level-3 ENO-DB6 approximation (solid line) still retains the
sharp edges (see zoom-in in the right picture in Figure 14) compared to the stan-
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Haar, level=3, keep 64x64 coefficients
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Fig. 16. The 3-level standard Haar approximation: The reconstructions are obtained from low
frequency coefficients αJ−3 only, where αJ is the original image. The edges are fuzzier than those
in the next picture.

dard DB6 approximation (dash-dotted line) which not only has oscillations at the
discontinuities but also smears them.

Finally, we give a 2-D testing image example to compare the standard Haar and
the ENO-Haar approximations. Here we use tensor products of 1-D transforms. The
original picture is shown in Figure 15. Figure 16 is the 3-level standard Haar approxi-
mation and Figure 17 is the 3-level ENO-Haar approximation. Both use low frequency
approximations (the reconstructions are obtained from low frequency coefficients αJ−3

only, where αJ is the original image) and store the same number of coefficients (
1
64

of the original data). It is clear that in the standard Haar case the function becomes
fuzzier than in the ENO-Haar case. This illustrates that the ENO-Haar approxima-
tion can reduce the edge oscillations for 2-D functions. In addition, as we mentioned
in the introduction, we designed ENO-wavelet transforms not to replace the standard
nonlinear adaptive wavelet techniques; rather we think it would be beneficial to use
them in conjunction with the standard adaptive nonlinear techniques. For instance,
we can combine ENO-wavelets with hard thresholding techniques as one can do it for
the standard wavelet transforms. We show the standard hard thresholding approxima-
tion image by retaining the largest 64× 64 coefficients in Figure 18, and we note that
sharper edges are recovered comparing to the linear approximations. Similarly, we can
apply the same thresholding techniques to the ENO-wavelet transforms. In Figure 19,
we give the approximate image by using the ENO-Haar hard thresholding technique by
keeping the largest 3506 ENO-Haar coefficients, which is 70% of number of coefficients
retained in the previous image. In this image, edges are almost perfectly recovered.
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ENO−Haar low frequency approximation, level=3, keep 64x64 coefficients
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Fig. 17. The 3-level ENO-Haar approximation: Similar to Figure 16, the reconstruction is
obtained from low frequency coefficients αJ−3 only. Both the edges and the interior of the characters
are clearer than those in the standard Haar linear approximation.

Haar, Hard Thresholding, level=3, keep 64x64 coefficients
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Fig. 18. The 3-level standard Haar hard thresholding approximation: The image is recon-
structed from the largest 64× 64 wavelet coefficients (including αJ−3, βJ−3, βJ−2, βJ−1). The edge
artifacts are less severe than the standard linear approximation. On the other hard, the picture is
comparable to the ENO-Haar low frequency approximation.
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ENO−Haar hard thresholding, level=3, keep 3506 coefficients
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Fig. 19. The 3-level ENO-Haar hard thresholding approximation: Similar to Figure
18, the image is reconstructed from the largest 64 × 64 ENO-wavelet coefficients (including
αJ−3, βJ−3, βJ−2, βJ−1). Less severe edge artifacts are generated compared to the previous im-
ages.
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