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Abstract. In this paper, we present the first a priori error analysis for the Local Discontinuous
Galerkin method for a model elliptic problem. For arbitrary meshes with hanging nodes and elements
of various shapes, we show that, for stabilization parameters of order one, the L2-norm of the gradient
and the L2-norm of the potential are of order k and k + 1 /2, respectively, when polynomials of total
degree at least k are used; if stabilization parameters of order h~! are taken, the order of convergence
of the potential increases to k + 1. The optimality of these theoretical results are tested in a series
of numerical experiments on two dimensional domains.
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1. Introduction. In this paper, we present the first a priori error analysis of the
Local Discontinuous Galerkin (LDG) method for the following classical model elliptic
problem:

—Au=f in Q,
U = gD on I'p, (1.1)
ou

g, T
on gy n on 1y,

where (2 is a bounded domain of R? and n is the outward unit normal to its boundary
T'p UTy; for the sake of simplicity, we assume that the (d — 1)-dimensional measure
of I'p is non-zero.

The LDG method was introduced by Cockburn and Shu in [25] as an extension to
general convection-diffusion problems of the numerical scheme for the compressible
Navier-Stokes equations proposed by Bassi and Rebay in [6]. This scheme was in turn
an extension of the Runge-Kutta Discontinuous Galerkin (RKDG) method developed
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by Cockburn and Shu [19, 21, 23, 24, 26] for nonlinear hyperbolic systems. The LDG
method is one of several discontinuous Galerkin methods which are being vigorously
studied, especially as applied to convection-diffusion problems, because of their appli-
cability to a wide range of problems, their properties of local conservativity and high
degree of locality, and their flexibility in handling adaptive hp-refinement. The state
of the art of the development of discontinuous Galerkin methods can be found in the
volume [20] edited by Cockburn, Karniadakis and Shu.

Let us give the reader familiar with (classical and stabilized) mixed and mortar finite
element methods for elliptic problems an idea of what kind of method is the LDG
method.

e The LDG is obtained by using a space discretization that was originally applied to
first-order hyperbolic systems. Hence, to define the method, we rewrite our elliptic
model problem as a system of first-order equations and then we discretize it. Thus,
we introduce the auxiliary variable ¢ = Vu and obtain the equations

q=Vu in Q, (1.2)
—V.-qg=f in Q, (1.3)
U =gp on I'p, (1.4)
g-n=gy-n on Ty (1.5)

Since these are nothing but the equations used to define classical mixed finite element
methods, the LDG method can be considered as a mixed finite element method.
However, the auxiliary variable g can be eliminated from the equations which is usually
not the case for classical mixed methods.

e In the LDG method, local conservativity holds because the conservation laws (1.2)
and (1.3) are weakly enforced element by element. In order to do that, suitable
discrete approximations of the traces of the fluxes on the boundary of the elements
are needed which are provided by the so-called numerical fluxes; these are widely
used in the numerical approximation of non-linear hyperbolic conservation laws and
are nothing but the so-called approzimate Riemann solvers; see Cockburn [17]. As in
the case of non-linear hyperbolic conservation laws, these numerical fluxes enhance
the stability of the method and hence the quality of its approximation. This is why the
LDG method is strongly related to stabilized mixed finite element methods; indeed,
the stabilization is associated with the jumps of the approximate solution across the
element boundaries.

e The LDG method allows general meshes with hanging nodes and elements of several
shapes since no inter-element continuity is required. This is also a key property
of the mortar finite element method. However, in the LDG method there are no
Lagrange multipliers associated to the continuity constraint; instead, the Lagrange
multiplier is replaced by fixed functions of the unknowns which are nothing but the
above mentioned numerical fluxes.

e In the LDG method, on each element, both the approximation to u as well as
the approximations to each of the components of g belong to the same space, which
is very convenient from an implementational point of view. Moreover, the lack of
continuity constraints across element boundaries in the finite element spaces renders
the coding of the hp-version of the LDG method much simpler than that of standard
mixed methods.

Now, let us briefly describe the recent work on error analysis of DG methods in order
to put our results into perspective. Analyses of the LDG method in the context of
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transient convection-diffusion problems have been carried out by Cockburn and Shu
[25], by Cockburn and Dawson [18], by Castillo [14] and more recently by Castillo,
Cockburn, Schétzau and Schwab [15].

The DG method of Baumann and Oden [7, 8, 9, 32] has also been analyzed by several
authors. Oden, Babuska and Baumann [31] studied this method for one dimensional
elliptic problems and later Wihler and Schwab [41] proved robust exponential rates
of convergence of the Oden and Baumann DG method for stationary convection-
diffusion problems also in one space dimension. Riviére, Wheeler and Girault [35] and
Riviere and Wheeler [34] analyzed several variations of the DG method of Baumann
and Oden (involving interior penalty techniques) as applied to non-linear convection-
diffusion problems and, finally, Siili, Schwab and Houston [38] synthesized the self-
adjoint elliptic, parabolic, and hyperbolic theory by extending the analysis of these
DG methods to general second-order linear partial differential equations with non-
negative characteristic form.

As applied to purely elliptic problems, the LDG method and the method of Baumann
and Oden are strongly related to the so-called interior interior penalty (IP) methods
explored mainly by Babuska and Zldmal [3], Douglas and Dupont [27], Baker [4],
Wheeler [39], Arnold [2] and later by Baker, Jureidini and Karakashian [5], by Rusten,
Vassilevski, and Winther [36] and by Becker and Hansbo [10]. All of these DG methods
for elliptic problems can be recast within a single framework as shown by Arnold,
Brezzi, Cockburn and Marini [1]; this framework should provide a basis for a better
understanding of the connections among them and lead to a unified error analysis of
these methods. As a contribution to this effort, we present in this paper an a priori
error analysis of the LDG method for purely elliptic problems.

We show that if polynomials of degree at least k are used in all the elements, the rate
of convergence of the LDG method in the L2-norm of u and q are of order k + 1/2
and k, respectively, when the stabilization or penalization parameter Cy; is taken to
be of order one. When the stabilization parameter Ci; is taken to be of order A~ !,
the order of convergence of u is proven to be k + 1, as expected. Indeed, this is what
happens for the interior penalty methods and for the modifications of the method of
Bassi and Rebay [6] studied by Brezzi, Manzini, Marini, Pietra and Russo [13]; the
penalization parameters of these methods are also of order A~!. These results are
summarized in the Table 1.1.

TABLE 1.1
Orders of convergence for k > 1.

method penalization |[u —un|lo [lg — qllo
LDG ox k+1/2 k
LDG O(h™1) kE+1 k
interior penalty O(h™1) k+1 k
Brezzi et al. O(h™h) k+1 k

Finally, let us point out that the order of convergence of u for the DG method for
purely convective problems is k+ 1/2. This order of convergence was proven by John-
son and Pitkdranta [30] and later confirmed by Peterson [33] to be sharp. Whether
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or not a similar phenomenon is actually taking place for the LDG method, with the
stabilization parameter C7; of order one, as applied to elliptic problems remains to
be investigated. Our numerical experiments for the LDG method have all been per-
formed on structured and unstructured triangulations without hanging nodes and give
the optimal orders of convergence of k + 1 and k for u and q, respectively, with C11
of order h™! and, remarkably, with C1; of order one.

The organization of the paper is as follows. In section 2, we present the LDG methods
and state and discuss our main a priori error estimates. We also give a brief sketch
of the proofs in order to display the ideas of our analysis. The analysis is carried out
in full detail in section 3 and several possible extensions are indicated in section 4.
In section 5, we present several numerical experiments testing the sharpness of our
theoretical results. We end in section 6 with some concluding remarks.

2. The main results. In this section, we formulate the LDG method and show

that it possesses a well-defined solution. We then state and discuss our main result
and, finally, we display the main ideas of our error analysis.
We assume, to avoid unnecessary technicalities, that the exact solution u of our model
problem (1.1) belongs to H?(2) and that the solution of the so-called adjoint prob-
lem satisfies the standard ellipticity regularity property. Extensions to more general
situations are discussed in section 4.

2.1. The LDG method. To introduce our LDG method, we consider a general
discontinuous Galerkin (DG) method of which the LDG method is a particular but
important case. We consider a general triangulation 7 with hanging nodes whose
elements K are of various shapes.

To obtain the weak formulation with which our DG method is defined, we multiply
equations (1.2) and (1.3) by arbitrary, smooth test functions r and v, respectively,
and integrate by parts over the element K € T to obtain

/q-rdw:—/uv-rdwﬁ-/ ur - nds,
K K 0K

/q-Vvdw:/fvdw+/ vq-nds.
K K 0K

Note that the above equations are well defined for any functions (g, u) and (r,v) in
M x V where

M:={g € (L*())" : q|, € H'(K)?, VK € T},

V :={ueL*Q) : u|, € H'(K), VK € T}

Next, we seek to approximate the exact solution (g, ) with functions (g, un) in the
finite element space My X Vy C M x V, where

My:={q € (L*(Q)? : q|, € S(K)?, VK € T},
Vv ={u€L*Q) : u|, € S(K), VK € T},

and the local finite element space S(K) typically consists of polynomials. Note that
for a given element K, the restrictions to K of ux and of each of the components of g
belong to the same local space; this renders the coding of these methods considerably
simpler than that of the standard mixed methods, especially for high-order polynomial
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local spaces. In order to ensure the existence of the approximate solution of the DG
method, we require the following local and quite mild condition:

UGS(K):/Vv-rdx:O Vr € S4(K) impliess Vu=0on K. (2.1)
K

Other than these properties, there is complete freedom in the choice of the local spaces
since no inter-element continuity is required at all.

The approximate solution (g, un) is then defined by using the above weak formula-
tion, that is, by imposing that for all K € T, for all (r,v) € S(K)¢ x S(K),

/qN-rdm:—/uNV-rdw-l-/ unr-nds, (2.2)
K K 8K

/qN-Vvda::/fudw+/ vqy - nds, (2.3)
K K oK

where the numerical fluzes un and gy have to be suitably defined in order to ensure
the stability of the method and in order to enhance its accuracy.

As pointed out in the introduction, we can see that the numerical fluxes 4y and qp
are nothing but discrete approximations to the traces of v and g on the boundary of
the elements. To define these numerical fluxes, let us first introduce some notation.
Let KT and K~ be two adjacent elements of 77; let z be an arbitrary point of the set
e = 0Kt NOK~, which is assumed to have a non-zero (d — 1)-dimensional measure,
and let »t and n~ be the corresponding outward unit normals at that point. Let
(q,u) be a function smooth inside each element K* and let us denote by (g*,u*)
the traces of (g,u) on e from the interior of K*. Then, we define the mean values

{-} and jumps [-] at = € e as follows:
ful = " +u7)/2,  {a}=(¢"+4a7)/2,
[u] == utnt +u"n", [q =q"-n"+q -n".

Note that the jump in w is a vector and the jump in q is a scalar which only involves
the normal component of q.

We are now ready to introduce the expressions that define the numerical fluxes in
(2.2) and (2.3). If the set e is inside the domain {2, we take

- - 1 i @)
u] | fub —Ciz  Ca2] |[d]]’ ’
where the auxiliary parameters Ci1, C12 and Cs; depend on & € e and are still at

our disposal. The boundary conditions are imposed through a suitable definition of
(g, @), namely,

d= gt —Cyi(utnt +gpn~) onTDp,
' 1% on 'y,
and

~ 9o on FD?
u:=
ut — Ca(gT -nt +qy-n~) onTy,

where the superscript + denotes quantities related to the element the edge we are
considering belongs to, and n~ = —n*. We remark that the definition of (g,u) on
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the boundary 012 is still of the form (2.4) if the exterior traces (g~ ,u~) are taken to
be

(@ ,u)=(q",gp)onTp, (g ,u")=(gy,u")onTy, (2.5)

and C12 is chosen such that C13-n~ =1/20on I'p and C12-nt =1/2 on Ty.

Let us stress once more that the numerical fluxes we just defined are nothing but a
particular case of the so-called approximate Riemann solvers widely used in numerical
schemes for non-linear hyperbolic conservation laws.

This completes the definition of our DG method. The LDG method is obtained when
Cs2 = 0; in this case, the function g can be locally solved in terms of unx and hence
eliminated from the equations, as can be easily seen from (2.3). This local solvability
gives its name to the LDG method.

That this DG method actually defines a unique approximate solution depends in a
crucial way on the coefficients C1; and Cs2. Indeed, we have the following result.
PrOPOSITION 2.1 (Well posedness of the DG method). Consider the DG method
defined by the weak formulation (2.2) and (2.3), and by the numerical fluzes in (2.4)
and (2.5). If the coefficients C11 are positive and the coefficients Caa are non-negative,
the DG method defines a unique approzimate solution (q,un) € My X Vy.

Notice that the above result, which we prove in the next subsection, is independent
of the auxiliary vector parameter C12. The choice Co; = —C12 in (2.4) ensures
symmetry and stability of the DG method. Finally, let us point out that the role
of the auxiliary parameters Cy; and Cyy is to enhance the stability and hence the
accuracy of the method.

2.2. The classical mixed setting. The study of our DG method is greatly
facilitated if we recast its formulation in a classical mixed finite element setting. To
do that, we need to introduce some notation. We denote by &; the union of all interior
faces of the triangulation 7, by £p the union of faces on I'p, and by Exr the union of
faces on I'y; we assume that Tp = U.cgp€ and Ty = Ueeg, @

Now, we sum equations (2.2) and (2.3) over all elements and obtain, after some
simple manipulations, that the DG approximation (g, uxn) is the unique solution of
the following variational problem: find (q,,un) € M n x Vn such that

a(gy,r) + blun,r) = F(r), (2.6)
—b(v,qy) + c(un,v) = G(v), (2.7)
for all (r,v) € My x V. Here, the bilinear forms a, b and ¢ are given by

a(q,r) ::/Qq-rdw-i-/g_ Ca|q][r] ds + Ca2(q-n)(r-n)ds,

En

b(u,r) := Z/Kuv-rda:—/({{u}+012-[[u]])|[r]]ds—/g ur-nds,

KeT & N

c(u,v) : / Ch1 [u] - [v] ds +/ Ci1uvds.
&; Ep
The linear forms F, G are defined by
F(r) :=/ gpr-ndzx + Ca (gy - m)(r - n)ds,
Ep En

G(v) ::/fvdm+ CngDvds+/ vy -nds.
Q Ep £

N
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Note that these two linear forms contain all the data of the problem. In particular,
they contain both the Dirichlet and Neumann data, which is not the case for the
classical mixed finite element methods.

Equations (2.6) and (2.7) can be rewritten in a more compact form as follows:

A(qNauN;"':U) =‘7:(T>U)7 (28)

by setting
-A(qa ur, U) = a(q> T) + b(ua ’l") - b(Ua Q) + c(u, U): (29)
F(r,v) := F(r) + G(v). (2.10)

We end this section by proving Proposition 2.1.

Proof of Proposition 2.1. Due to the linearity and finite dimensionality of the problem,
it is enough to show that the only solution to the equations (2.6) and (2.7) with f =0,
gp =0 and gy = 01is gy = 0 and uny = 0. Indeed, taking r = g, v = uny and
adding the two equations, we get

a(qNan) +C(UN,UN) =0,

which implies g = 0, since Cy2 > 0, and [uny] = 0 on &;, uy = 0 on Ep, since
Cy1 > 0. As a consequence, equation (2.6) becomes

blun,r) =0 Vr € My.

Since, after integration by parts, the form b(-,-) can be rewritten as

b(u,r) = — Z/Vu -rd:l:+/g({{r}}—Clzﬂr]])-[u]]ds+/ ur-nds,

KeT 'K i Ep

we get that

b(uN,r)zz Vuny -rdx =0 Vr e My.
KeT 'K

Hence, owing to (2.1), Vuy = 0 on every K € T and since uy is a continuous function
equal to zero on the Dirichlet boundary, we get that uxy = 0. This completes the proof
of Proposition 2.1. O

2.3. A priori error estimates. In this section we state and discuss our a priori
error bounds for the DG method. As pointed out at the beginning of this section,
we restrict our analysis to domains Q such that, for smooth data, the solution u of
problem (1.1) belongs to H2(2). We also assume that when f is in L?(Q2) and the
boundary data are zero, we have the elliptic regularity result ||u]|l2 < C|| fllo; see
Grisvard [28] or [29].

We assume that every element K of the triangulation T is affine equivalent, see [16,
Section 2.3], to one of several reference elements in an arbitrary but fixed set; this
allows us to use elements of various shapes with possibly curved boundaries. For each
K € T, we denote by hi the diameter of K and by pg the diameter of the biggest ball
included in K; we set, as usual, h := maxge7 hg. The triangulations we consider can
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have hanging nodes but have to be regular, that is, there exists a positive constant o
such that
hk
K <5, VEKEeT; (2.11)
PK
see [16, Section 3.1]. Moreover, we let the maximum number of neighbors of a given
element K be arbitrary but fixed. To formally state this property, we need to introduce
the set (K, K') defined as follows:

0 if meas(y_1)(0K NOK') =0,
interior of 8K N OK' otherwise.

(K,K')={

Thus, we assume that there exists a positive constant § < 1 such that, for each element
KeT,
hK’ -1 ! !

55555 VK' . (K,K')#0. (2.12)
These three hypotheses allow for quite general triangulations and are not restrictive
in practice.
The only assumptions we use for the local space S(K) are that it contains the space
P*(K) of polynomials of degree at most k on K and satisfies (2.1).
Next, we introduce a semi-norm that appears in a natural way in the analysis of
these methods. We denote by H*(D), D being a domain in R?, the Sobolev spaces of
integer orders, and by || - ||x,p and | - |¢,p the usual norms and semi-norms in H*(D)
and H*(D)?; we omit the dependence on the domain in the norms whenever D = .
We define | (g,u) |4 = A(q,u;q,u), that is,

l(q,u) % =llallg +©% (g,u), (2.13)
where
e? (q,u) ::/ Coya |[q]]2 ds + / Ca2 (q - 'n,)2 ds +/ Ci1 |[u]]2 ds + Chy u? ds.
E; En &; Ep
(2.14)

We assume that the stabilization coefficients C1; and Cas defining the numerical fluxes
in (2.4) and (2.5) are defined as follows:

Cu(z) = (min{hf., hi_} if 2 € (K™K, (2.15)
Ch([x<+ ifw€6K+ﬂFDa
rmin{hJ,,hY_} if 2 € (KT, K7)

C = K+'""K ’ ’ 216

22(T) {rhfﬁ ifx e KT Ny, ( :

with ¢ > 0,7 >0, -1 < a <0 < g <1 independent of the mesh-size and |C12|
of order one. Qur main result will be written in terms of the parameters p* and .,
defined as follows:

,U/* :max{_aag}a Mo Zmin{_aag}a

where B =1ifr =0 and B = 3 otherwise.
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We are now ready to state our main result.

THEOREM 2.2. Let (g,u) be the solution of (1.2)—(1.5) and let (qn,un) be the ap-
proximate solution given by the DG method (2.2) and (2.3). We assume the hy-
potheses on the local spaces and on the form of the stabilization parameters described
above. The triangulations are assumed to satisfy the hypothesis (2.11); if a # 0 or
B # 0, we also assume that hypothesis (2.12) is satisfied. Then we have that, for
(q,u) € H*1(Q)? x H*+2(Q) with s > 0,

llu = unllo +h" | (g = an,u—un) |4 < CHHP ulsyo,

where C solely depends on o, 6 (not when a=£=0), ¢, 7, k, and d; and

1 1 1
P=min{s + (1 + ). k+5(1-p},  D=5(1+m) if k> 1.

When k =0, we have P = D = 1(1 — p*).

Let us briefly discuss the above result:

e We begin by noting that the orders of convergence depend on the size of the sta-
bilization parameters C1; and Cay only through the quantities p* and p,.. This fact
has several important consequences:

o The same orders of convergence are obtained with either Co2 = 0 or Cys of
order h. This means that there is no loss in the orders of convergence if
instead of penalizing the jumps of the normal component of g, with a Cas
or order h, no penalization at all (the LDG method) is used.

o The same orders of convergence are obtained with either the LDG method
(C2o = 0) with Cy; of order one or Cy; of order h~! and Css of order one.

o In general, the same orders of convergence are obtained by taking (a,3) =
(—a,b) or by taking (a, 8) = (-, a).

o The most remarkable cases occur when —a, 8 € {0, 1} since it is for those val-
ues that p* and p, achieve their maximum and minimum. The corresponding
orders of convergence are displayed in Table 2.1 for k& > 1.

TABLE 2.1
Orders of convergence for u € H12(Q) for s > 0 and k > 1.

Coz Cu | [(@—agn,u—un)|a llu —unllo
0,0(h) 0O) min{s + 1/2, k} min{s +1/2,k} +1/2
0,0(h) O(1/h) min{s + 1, k} min{s + 1,k} +1

0(1) 01) min{s, k} +1/2 min{s, k} +1

o1) 0@1/hn) min{s + 1/2,k} min{s +1/2,k} +1/2

e In the case 1 < k < s, that is, when the degree of the polynomial approximation
is less than needed to fit the smoothness of the exact solution, we see in Table 2.2
that the best orders of convergence for | (¢ — qn,u —un) |4 and ||u — un]|o, k +1/2
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and k + 1, respectively, are obtained for both Cy; and Css of order one. When Co,
is taken to be of order h or equal to zero, the stability of the method is weakened
and, as a consequence, a loss in the orders of convergence of 1/2 takes place. If
now Cp; is taken to be of order A~', the full order of convergence in the error of
the potential is recovered. The numerical experiments of section 5 show that these
orders of convergence are actually achieved. However, the expected loss in the orders
of convergence when Cy; is taken of order one is not observed, which shows that
in practice the LDG method is essentially insensitive to the size of the stabilization
parameter Ci;.

e The influence of the choice of the coefficients C12 on the accuracy has not been
explored in this paper; we only assume those to be of order one. In [22] it is shown
that the LDG method, with a suitable choice of the coefficients C1s, still gives the
orders of convergence of k+1/2 and k + 1 for | (g — gn,u —un) |4 and ||u — un||o,
respectively, if Cartesian grids and tensor product polynomials of degree k in each
variable are used.

TABLE 2.2
Orders of convergence for u € H12(Q) for s > k and k > 1.

Cao Cii | l(@—aqn,u—un)|a | lu—unllo
0,0(h) 0Q1) k k+1/2
0.0(h) O(1/h) k k41

o1 0q) k+1/2 k1

O@1) 0O(1/h) k k+1

o For the case k > s + 1, that is, when the degree of the polynomial approximation
is more than needed to fit the smoothness of the exact solution, we see in Table 2.3
that the LDG method performs at least as well as all the other methods; it performs

better if Cy; is of order h='.

TABLE 2.3

Orders of convergence for u € H12(Q) for s > 0 and k > s+ 1.

Ca2 Cu | l(@—gqn,u—un)|a | [lu—unllo
0,0(h) 0Q1) s+1/2 s+1
0,0(h) O(1/h) s+1 s+2

o1y o) s+1/2 541

0(1)  O(i/h) s+ 1/2 s+1
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e In the case k = 0, the DG method converges provided Cy # 0; in particular, for
constant coefficients C11 and Cas, we obtain estimates of order one for ||u —un||o, and
1/2 for | (g —qx,u—un) | 4. This is one of the few finite element methods for second-
order elliptic problems that actually converges for piecewise-constant approximations.
When Css = 0, that is, for the LDG method, our numerical results, which we do not
report in this paper, show that there is no positive order of convergence in this case,
as predicted by Theorem 2.2.

e Finally, let us point out that the hypothesis (2.12) is not necessary when a = § = 0.

2.4. The idea of the proof. The proof of Theorem 2.2 will be carried out in
section 3. The purpose of this section is to display as clearly as possible the basic
ingredients and the main steps of our error analysis. As usual, we express the error
(eq,eu) = (@ — @y, u — un) as the following sum:

(eq,eu) = (@ — g, u — TIu) + (ITeq, Ile,),

where IT and II are projections from M and V onto the finite element spaces My
and Vy, respectively.

a. The basic ingredients. The basic ingredients of our error analysis are two. The
first one is, as it is classical in finite element error analysis, the so-called Galerkin
orthogonality property, namely,

Aleg,eu;r,v) =0  V(r,v) € My x Vy. (2.17)

This property is a straightforward consequence of the consistency of the numerical
fluxes.

The second ingredient is a couple of inequalities that reflect the approximation prop-
erties of the projections IT and II, namely,

| A(g — TIq,u — Tu; @ — 1@, p — [p) | < Ka(q,u; ,¢) (2.18)
for any (q,u), (®,¢) € M xV, and
| A(r,v;q — Ig,u — Iu) | < | (r,v) |4 Kp(q,u) (2.19)

for any (r,v) € My x Vi and (q,u) € H'(Q)¢ x H2(Q).

As we show next, all the error estimates we are interested in can be obtained solely
in terms of functionals K 4 and Kpg.

b. The estimate of the error in the 4-semi-norm. We have the following result.
LEMMA 2.3. We have

| (eqseu) |4 < KY{*(q,u;9,u) + Kp(g,u).

Proof. | (-,-) |4 is a semi-norm and, hence,

|(eqeu) |4 < (g — g, u —Tu) |4 + | (Ileq, ITey) | 4.

Since

| (TIegq,Ie,) % =A(Ileq, e, ; ITegq, Ie,,)
=A(Ilq — q,1Tu — u;Ileq,Ile,) by Galerkin orthogonality (2.17),
=A(—Tlegq,Tle,;q — TIq,lu — u) by the definition of A, (2.9),
<|(Tegq,ley) |4 Kp(q,u) by assumption (2.19),
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we have that
| (TTeq, ITey) |4 < K5(q,u), (2.20)

and so,

| (e(I7eu) |.A S | (q - HQ7U - HU) |A + KB(q7u)'

The estimate now follows from a simple application of the assumption (2.18). This
completes the proof. O

c. Estimate of the error in u in non-positive order norms. To obtain an
estimate of || ey ||—¢,p, where t is a natural number and D is a sub-domain of ,
we only have to obtain an estimate of the error in the approximation of the linear
functional A(u) = (\,u), where (-,-) denotes the L2-inner product, by A(uy) since

Aey)
llewll-t,p = sup :
recge(p) | A lle,p

In this paper, we are only interested in the case t = 0, but we give here the general
argument to stress the fact that it is essentially the same for all natural numbers
t. Error estimates in negative order norms are very important, as we point out in
section 4 of this paper.

To obtain our estimate, we need to introduce the solution ¢ of the so-called adjoint
problem, namely,

—Ap=2A in Q, (2.21)
=0 on I'p, (2.22)
0
6—‘; =0 onTy. (2.23)
LEMMA 2.4. Let t be a natural number. Then, we have
Ka(g,u; 2, ) Kp(®,¢)

llew||l—¢,p0 < sup + Kp(q,u) sup (2.24)

ey |IAllen rece (o) A le,p

with ¢ denoting the solution of (2.21)—(2.23) and ® = —V.
Proof. Since ¢ is the solution of the adjoint equation, it is easy to verify that if we
set & = —Vy, we have

A(_{)a ®;—S8, U)) = A(w)a

for all (s,w) € M x V; indeed, note that problem (1.1) can be rewritten as in (2.8).
Taking (s,w) = (eq, €u), We get

Ales) =Aleq, eu; @, ¢) by the definition of A4, (2.9),
=A(eq,eu; ® — TI®,p — Ip) by Galerkin orthogonality (2.17),
=A(lleq,Me,; @ — 1P, p — ) + A(q — TIq,u — TTu; @ — TI®, ¢ — IIp).

Since (Ileq,Iley) € My x Vi, by the assumption (2.19) and the estimate (2.20), we
obtain

| A(Heqa Heu; P — HQJ Y - H(p) ‘ S KB(q,U) KB((}: (p)a
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and hence,

|Aeu) | < Ki(q,u) Kp(®,¢)
+ [ Alg —TIg,u — Nu; @ - TI®, o — TIp) |-

The estimate now follows from a simple application of assumption (2.18), and from
the definition of a non-positive order norm. This completes the proof. O

d. Conclusion. Thus, in order to prove our a priori estimates, all we need to do
is to obtain the functionals K 4 and Kjp; this will be carried out in the next section.
Then, Theorem 2.2 will immediately follow after a simple application of Lemmas 2.3
and 2.4.

3. Proofs. In this section, we prove our main results. We proceed as follows.
First, we obtain the functional K 4 for general projection operators II and II. To
obtain the functional Kg, the projections IT and IT are taken to be the standard L2-
projections, just as done by Cockburn and Shu [25] in their study of the LDG method
for transient convection-diffusion problems.

3.1. Preliminaries. The following two lemmas contain all the information we
actually use about our finite elements. The first one is a standard approximation result
for any linear continuous operator II from H"t!(K) onto S(K) satisfying ITw = w for
any w € P¥(K); it can be easily obtained by using the techniques of [16]. The second
one is a standard inverse inequality.

LEMMA 3.1. Let w € H™ Y (K), r > 0. Let II be a linear continuous operator from
H™Y(K) onto S(K) such that lw = w for all w € P*(K). Then for m integer,
0<m<r+1, we have

|w = Tw|m,x < CRE T )l 4k,

in{rk}+3
l[w = Twllo,ox < CRE" T2 ]|, 41

for some constant C' that solely depends on o in inequality (2.11), k, d and r.
LEMMA 3.2. There exists a positive constant Ciyy, that solely depends on o in inequal-
ity (2.11), k and d, such that for all s € S(K)? we have

_1
||3||0,8K < Cinvhy? ||3||07Ka

forall K € T.
We are now ready to prove our main result.

3.2. The functional K 4. In this subsection we determine the functional K 4
in (2.18), up to a multiplicative constant independent of the mesh-size. We start by
giving an expression for K 4 which is valid for coefficients C11 and Cao that vary from
face to face, for £ = 0 and for any regularity of the solution. Then we write K 4 for
the particular choice (2.15), (2.16) of C11 and Css in Theorem 2.2.

Let II and IT be arbitrary projections onto Vx and My, respectively, satisfying
(component-wisely) the assumptions in Lemma 3.1.

LEMMA 3.3. Assume (q,u) € H*t1(Q)? x H*t2(Q) and (®,9) € HTHN)? x
H*2(Q), s,t > 0. Then the approzimation property (2.18) holds true with

5
KA(q7 U; é: 90) = Z Sl(q7 U3 ‘§7 90)7

i=1
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where
1 1
2 2
2min{s,k}+2 2min{t,k}+2
Sy = 0< Y ppmet ||q||s+1K> ( ppm b ||<I>||‘:‘+1,K> :
KeT KeT
1
2
2min{s,k}+1 2min{t,k}+1
S =0< Y CoFnr g ||s+1K> (Z CHI pagmm iy ||<1>||%+1,K> ,
KeT KeT
2
2 min 1,k T2min{t,k}+2
S3:=C (Zh bt }||u||s+2K> < 3 ppminteR ||<I>||§+1,K) :
KeT KeT
1
2
2min{s,k}+2 2 min 1,k p
Sy = c(Zh {ok ||q||s+1K) (z ha }||¢||f+2,K) ,
KeT KeT

1 1
2 2
2min{s+1,k}+1 2min{t+1,k}+1
Ss :=c<2 OO pamintst Lk} ||u||s+2K> (2 COK ppminttt k) ||<,o||f+2,K> :

KeT KeT

hx = sup{hg : (K,K') # 0}, C% := sup{Cii(z) : = € 0K}, i = 1,2. The
positive constant C' is independent of the mesh-size but depends on the approrimation
constants in Lemma 3.1 and on the coefficients C12.

Furthermore, in the case where (®,¢) = (q,u), we have

KA(q,U;q,U) = Sl(Q:“;qau) + SQ(QJu;qau) + 55(qau;qau)‘

Proof. We set, for convenience, £g := ¢ — g, & = u — Iy, £ = @ — 11D,
& == ¢ —IIp. We start by writing

A(ﬁq;&z?&(}:&a) = a(£q,£¢.) + b(§u7£{>) - b(&pagq) + C(&u;&p)a

and then proceed by estimating each of the forms on the right-hand side separately.
The form a(-,-) can be written as

(gqagé / £q c}dw‘*'/ o Cao (ﬁq n)(€g -n)ds

KeT

+ /a o O €a M€ s + /6

where the superscript ‘out’ denotes quantities taken on 0K \ 99 from outside K. By
repeated applications of the Cauchy-Schwarz’s inequality, we obtain that |a(£q, £p)l
is bounded by

022 (é-out out)(g§ n) ds)
K\6Q

1 1
>~ (Ilegllo.xc €@ llo.ic + 105 &g - mlo,oxcrralICE
KeT

1
(||022 €q - llo,ax\00 + ||022 £q" -1 llo,0x\00) ICH €@ 'n||0,aK\aQ)

< (T leqlhn)” (X lealin)’
KeT KeT
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3 3
+2( 3 Clleg i3 ox)” (D CEllEq - i3 ox)
KeT KeT

Now, a straightforward application of Lemma 3.1 yields
la(€q, )| < Si(q,u; ®,¢9) + S2(q,u; @, ).
To deal with the second term, we first note that

eta) =~ Y ([ Ve tqdot [ cieqmas

KeT

+ /BK\BQ & (f€a} - Cm[[g‘}]])ds)’

and obtain, after repeated applications of the Cauchy-Schwarz’s inequality with suit-
ably chosen weights, that [b(y,€g)| is bounded by

_1 1
> (el gl + I Eullooxnrs 1hk € - nllo.oxrrs
KeT

_1 1
+lhg? Eullo,orron IhE (g + %ﬁ?ﬁt —C12-nég—Crp-n°" E%n)HO,BK\aQ)

1 1 N 1
< (X (el n+ 5 l&lBor)) (D (€@l x +4hx (3 = Cro )l ox))
KeT K KeT
A 1 3 ~ 3
<O( Y (&lix+ =Nl ox)) (X U€alid x + A €l x))
KeT K KeT

where C = 14 2 sup{|C12(z) -n|: ¢ € 0K} and hx = sup{hk : (K,K') # 0}.
Once again, a straightforward application of Lemma 3.1 gives that

For the third term, we use the same arguments to get
|b(£§0a gq)l S S4(q7 Us; QJ 30)

Finally, proceeding as above, we get

le(€us € < 2( D2 CHF Nl ox)” (D0 COFlE R oxc)

KeT KeT
S SS(qaua {3‘7(’0)

S

This proves the first assertion. The second one immediately follows by taking into
account that

A(gqaguygqagu) = a(&q;&q) + C(fu;&u)a

and the proof of the lemma is complete. O

The following result is a straightforward consequence of the estimates in Lemma 3.3.
COROLLARY 3.4. Let (q,u) € H**1(Q)2 x H**2(Q), s > 0, be the exact solution of
(1.2)—(1.5); let p € H**2(Q) , t > 0, be the solution of the dual problem (2.21)—(2.23),
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and ® = —Vp. Assume that coefficients C11 and Caz satisfy (2.15), (2.16) . Then
there exist a constant C that solely depends on o, (, 7, k and d such that

Ka(g,u; ®,9) = Ch%|[ullsr2ll@ll42,

where Qa = 14+a fork =0 and Q4 = min{s+1+min{t+/3’, k}, k+1+4+min{t, k+a}}.
for k> 1. Moreover,

KA(qJ u; q7 U) = C h2 Fa ||u||.§+2

where P4 = 1(1+ @) for k =0 and P4 = min{s + %(1+B),k+ t(1+a)} fork>1.
Proof. From Lemma 3.3, we get

K a(q,u; ®, ) zc[hmin{s,k}+1(hmin{t,k}+1 itk | pmin{t1k})
(LR (min{ERY . ¢umin{EE LR ] ul] o 42,
and
Ka(q,u;q,u) = O[> ™ RH (h 4 7hF) 4 p2 Wit bR ]y 7.
Note that the above results hold for arbitrary a and §. If now we restrict ourselves

to the case of Theorem 2.2, the result follows after simple algebraic manipulations. O

3.3. The functional Kp. In this subsection we determine the functional Kg
satisfying (2.19), up to a multiplicative constant independent of the mesh-size. Here,
we take IT to be L?-projection and IT = (II,- - - ,II). Again, we start by determining
expressions which are valid for varying coefficients C7; and Cs,, and we conclude by
considering the particular case of Theorem 2.2. We proceed as follows. We show that
there exists a form | (-, -) |3, which is a semi-norm in both variables, such that for any
(r,v) € My x Vy and (q,u) € HY(Q)? x H2(Q),

| A(r,v;q — g, u —Tlu) | < C | (r,0) |4 | (g — TIg, u —TTu) |5, (3.1)
with C independent of the mesh-size. Then it is enough to determine Kp such that

for any (q,u) € M x V. In the following lemma we prove that (3.1) is satisfied by
defining the semi-norm | (-,-) |5 as

1 2
(@,u)[5 = / (—(q -n)? + 011U2> ds +/ (sz(q -n)? + u_) ds
e» \C11 Ex ~
1 1
+/ (022 [ + & Ifa} — Culal + L {ub+C [u])® + Cux [[u]]2) ds,(3.3)
&
where for each internal or Neumann boundary face e we set

min{hk,hi'} for € (K, K'), hg forx € Ty if Ca2(2)=0,
x(x) := .
Caa(x) otherwise.

Note that only the function values along faces enter the | (-,-) | semi-norm. As can
be inferred from the proof of Lemma 3.5 below, this is due to the particular choice of
II and IT as L2-projections.
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LEMMA 3.5. Let IT and II be the L?(Q)-projection and L?(2)%-projection onto Vi
and My, respectively, and | (-,-) |g be defined by (3.3). Then (3.1) holds true, with a
constant C' that solely depends on o, k and d.

Proof. Setting g := g —Ilg and §, = u — IIu, we have, by the definition of the form
A in (2.9),

|A(T’ U; £qa ‘£u)

< la(r, €g)| + [b(v,€g)] + [b(&u, )] + [c(v; &)
= T1+T2 +T3+T4

Using Cauchy-Schwarz’s inequality and the fact that IT is the L?(2)%-projection, we
obtain

< (/S C’22[[T]]2ds+/¢w022 (r-n)zds); - (/S Coa [[gq]]%ler/chZ2 (Eq-n)2ds>

< [(r, 04| (g )l

Furthermore,

7o =| [ 11 (Hegh— Culeghas+ [ véq-nis

D

1
Multiplying and dividing by C'3 and then applying Cauchy-Schwarz’s inequality, we
obtain

T2 S (/ Cn |[’U]]2 ds + Cn ’1}2 ds)
&

Ep

1 ) 1 e 3
'(/sic_u'{{gq}‘clzﬂﬁqm d”/g,, o Ga™ ds)
< |(r,v)|al€q:&u)lB-

Analogously,

T3 = ‘/& (&} + Car2- |[§u]])|[7‘]]ds+/£jv &ur -nds

< (/Six[[r]]zds+/gj\/x(r-n)2ds>;

1 2 3
: (/ Lgey+cn-alzds+ [ &= ds) .
E; X EN X
The first factor can be estimated as follows:
/X[[r]]2d3+/ X (r-n)*ds 5/ Con[rPds+ [ Con(r-m)*ds
o EnN &; En

+/giY[[r]]2ds+/gNY(r-n)2ds

sl(r,v)l%/gx[[r]]?dw/g X (r-mn)*ds,

N

1
2
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where X(z) = min{hg,hg '} if x € (K, K'), and X(x) = hg if z € T'yr. By the inverse
inequality in Lemma 3.2,

/X[r]]zds-l-/ Y(r-n)zdsgz Z 2% | 7|k -n|® ds
& 2 KET ecoK ' ®
<D 2x7K Ir |k - mllg ox
KeT

hk
<2 Ciny|I7(I§ < 2 Ciny|(r,0) 4,

SQCinv sup ||l"||(2)
KeT

where X°X = sup{X(z) : € K}. Thus, combining the above estimates, we get

T3 S C| (’I",U) |-A| (£Qa§u) |B'
Finally,

T4 = ‘/g 011[[1}]] . [[é-u]] dS +‘/g Cllvé-u dS

2 2 : . 2 2 3
< (/5 Cui [v]" ds + ., Cuv ds) (/g Cu [€u] ds+/£v Ci1 &u ds)
< |(T’U)|.A |(£qwfu)|8

To complete the proof, we simply have to gather the estimates of the terms T;, i =
1,2,3,4, and apply once again the Cauchy-Schwarz’s inequality. O

The function Kp can be easily defined by applying the estimates in Lemma 3.1 to
|(-,-)| defined in (3.3).

LEMMA 3.6. For any (q,u) € H*T1(Q)2x H*T2(Q), s > 0, the approzimation property
(3.2) holds true with

min{s, 1
Ki(q,u) =C Y (hi( (o3 (ngf) ||q||§+1,K)

KeT 11

2 min{s+1,k}+1 1
+C Z (hK {s+Lk}+ (Cf)lK"‘)?g—K) ||U||§+2,K)a

KeT

where CPK = inf{Ci1(z) : x € 0K}, X°K = inf{x(z) : = € 8K}, and C is a
constant independent of the mesh-size and solely depending on the approrimation and
inverse inequality constants (cf. Lemmas 3.1 and 3.2).

From this lemma, we immediately obtain the following result.

COROLLARY 3.7. Let (q,u) € H**1(Q)2 x H**2(Q), s > 0. Assume that the coeffi-
cients C11 and Caa satisfy (2.15), (2.16). The triangulations are assumed to satisfy
the hypothesis (2.11); if « # 0 or B # 0, we also assume that hypothesis (2.12) is
satisfied.

Then there exists a constant C that solely depends on o, 6, (, 7, k and d such that

Kz(q,u) = Ch*Flull31s,

where P = (1 — p*) if k =0 and P = min{s + 1 (1 + p.), k + (1 — p*)}, if k > 1.
If a = B =0 the constant C' is independent of 6.
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Proof. If we take the coefficients C1; and Cas as in Theorem 2.2, we get, after a simple
computation,

1 —1p—asa
(@ +c§’2K> < CTYhR26Y +ThY
and
1 ~ _~
(cﬁK + W—K> < Chg + 7 thPer

where the parameter § is defined in (2.12), and 7 = 1 if 7 = 0, T = 7 otherwise.
Note that the left-hand sides of the above inequalities are trivially uniformly bounded
when o = 3 = 0; otherwise, we must invoke the hypothesis (2.12) to ensure the
boundedness of these quantities. We emphasize that this is the only instance in which
this hypothesis is used.

Hence we obtain

K2(q,u) = C[R2™nekH1 (1 p=e 4 7pf) 4 p20in{st LR (cpe L 571 [|ul|2,.,

where C' is independent of the mesh-size but depends on § and on the approximation
and inverse inequality constants, and

_Jh if 7=0,
R otherwise.
The result follows after simple algebraic manipulations. O

3.4. The proof of Theorem 2.2. From Lemma 2.3 and Corollaries 3.4 and 3.7,
we get

=l

| (q —qnN,U — UN) |A S Ch/min{PA,P} || U ||s+2a
and since min{Py4, P} = P the estimate

(@ = an,u—un)la < ChP |lullss

follows.

Next, consider the L?-norm of the error u — uy. Take t = 0 and D = Q in
Lemma 2.4. From the elliptic regularity of the adjoint problem (2.21)-(2.23), we
have ||¢|l2 < Cl|Allo and ||®[]1 < C||A|lo- The estimates of ||u — un||o directly follow
from substituting the expression of K 4(q,u; ®, ) given by Corollary 3.4, and the ex-
pressions of Kg(q,u), Kg(®,y) given by Corollary 3.7 in (2.24), and bounding ||®||1
and |||z by ||Allo- Indeed, we get

llu = unllo < C pmR{QAl=0PEPlezcd 1y ||y,

and since min{Q 4|¢=0, P + P|s=0} = P + P|s=0, the estimate ||u — un|lo¢ < CAF+P
follows with D = P|;—.
This completes the proof of Theorem 2.2.

4. Extensions. In this section, we indicate how to the extend our main result
in several possible directions.
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4.1. The case of polygonal domains. In the case of a non-convex polygonal
domain in two dimensions, our assumptions on the smoothness of the solution u of
our model problem (1.1) and on the elliptic regularity inequality are no longer true.
Indeed, if for instance the Neumann boundary is empty, the Dirichlet data is smooth
and f is in L2(Q), we have, see Grisvard [28], that u € H*2(Q) with s =y —1 €
(=1/2,0), where

v =7/w,

and w is the maximum interior angle of 9Q2. Moreover, if the Dirichlet data is zero,
we have

| w|lsra—e < CE) | f o, Ve > 0;

see (1.7) in Schatz and Wahlbin [37] and the references therein. This is the elliptic
regularity result that we must use.

To prove our error estimates in this case, we proceed as follows. First, we note that
our main result Theorem 2.2 can be easily extended to this case; indeed, a simple
density argument shows that Lemmas 3.3 and 3.6 remain valid for s,t € (—1/2,0).
Now we proceed as in subsection 3.4 and obtain the desired estimates by using the
above mentioned lemmas and the above described elliptic regularity inequality. The
estimate of the error in the |(-,)|.4-seminorm remains the same but the estimate of
the L2-norm of the potential has to be suitably modified.

For £k = 0, it turns out that only for « = 8 = 0 we obtain non-zero orders of
convergence for | (q—qy,u—un) |4 and ||[u—un||o, namely, y—1/2—c and 2y —1—¢
for all ¢ > 0, respectively. The results for & > 1 are displayed in Table 4.1 for
smooth solutions (v € H**2(Q2), s > 0) and in Table 4.2 for non-smooth solutions
(u € H*t2(Q), s =y — 1). (We simply write  instead of v — ¢, Ve > 0.)

TABLE 4.1
Orders of convergence for u € H512(Q) for s > 0 and k > 1.

Ca2 Cu | [{g—an,u—un)la llu — unllo
0,0(h) 0Q1) min{s + 1/2, k} min{s +1/2,k} +~v—1/2
0,0(h) O(1/h) min{s + 1, k} min{s+ 1,k} + v

0(1) 0@1) min{s, k} +1/2 min{s,k} +~vy—1/2

01) 01/n) min{s + 1/2,k} min{s +1/2,k} +v—1/2

4.2. Estimates of the error in negative-order norms. It is very well known
that the error in linear functionals can be estimated in terms of the error in negative-
order norms. Moreover, Bramble and Schatz [11] showed how to exploit the oscillatory
nature of finite element approximations, captured in estimates of the error in negative-
order norms, to enhance the quality of the approximation by using a simple post-
processing on regions in which the exact solution is very smooth and the mesh is
locally translation invariant.
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Orders of convergence for u € H*T2(Q) for s =y —1¢€ (=1/2,0) and k > 1.

TABLE 4.2

Ca2 Cuu | [(@—an,u—un)|a | llu—unllo
0,0(h) 0(1) y—1/2 2v—1
0,0(h) O(1/h) ¥ 2y

o(1) o) y—1/2 2v—1

o) 01/h) y—1/2 2v—1

21

Error estimates of negative-order norms can be easily obtained for our general DG
method by following the argument described in subsection 2.4 and the technicalities
displayed in section 3.

4.3. Curvilinear elements. The analysis in section 3 covers the case of triangu-
lations of curvilinear elements affine-equivalent to fixed curvilinear reference elements.
The aim of this subsection is to show how our main result can be extended to the more
general case where such an affine equivalence can not be established anymore. This
is, for instance, the case when the problem domain has a boundary with a generic
curvature.

There are two distinctive possibilities to do that. The first one is to keep the finite
element spaces described in the introduction; in this case, the local space S(K) could
be taken to be simply P*(K), for example. For our main result to hold in this case,
only Lemmas 3.1 and 3.2 would have to be proven for these elements and for the case
in which II is the L2-projection.

The other possibility is to consider elements obtained through the so-called Piola
transformation [12, Section IIL.1.3]. This transformation associates the function (g, u)

defined on K to the function (g, %) defined on K by

1 — _ ~ _
4= (mDFK") oFi',  u=ToF

where F denotes the mapping from K to K. With the above notation, our finite
element spaces are given by

My:={q € (LX))" : q|, € SUK) VK € T},
Vn ={ue LX(Q) : u|, €S(K) VKeT})

It is easy to verify that the following properties are satisfied on each element K of
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our triangulation:

This implies that with this choice of finite element spaces, our main result holds if Lem-
mas 3.1 and 3.2 hold for the reference element K and for the standard L2-projection,
provided the mappings Fi are sufficiently smooth; see [12] and the references therein.
Indeed, the proof of section 3 holds in this case if we use the projections IT and II
defined by

Tg:=Tg  Iu=1Ta,

where I is the L2-projection into the space S(I/(\') and TI = (f[, - ,ﬁ) The only
slight modification of the proof occurs in section 3.3 in the definition of | (-, -)|%, (3.3),
to which we have to add the term || ¢ ||3. This implies that an extra term in the upper
bound of the term 73 in the proof of Lemma 3.5 appears which is easily dealt with.
No other modification of the proof is required at all.

4.4. General elliptic problems. The extension of our main result to more
general elliptic problems which include lower order terms can be done in a straight-
forward way by applying our techniques to the formulation used by Cockburn and
Dawson [18].

4.5. Exponential convergence of hp-approximations. In the analysis of
the DG methods considered in this paper, we have only derived error estimates with
respect to the mesh-size h and we have not exploited the dependence of our estimates
on the approximation order k. However, this can be done by modifying Lemmas
3.3 and 3.6 correspondingly; see also the work of Houston, Schwab and Siili [38]
and the references there. In addition, by using the proper mesh design principles
and by obtaining suitable approximation error estimates in the elements abutting
at solution singularities, exponential convergence of the DG method can be proved.
See, for example, the recent work of Wihler and Schwab [40] who showed exponential
convergence for a model elliptic problem on a polygonal domain 2 for the DG method
of Baumann and Oden with interior penalties.

5. Numerical results for the LDG method. The purpose of this section is
to validate our a priori error estimates for the LDG method (i.e., Cs2 = 0) and to
assess how the quality of its approximations depends on the size of the stabilization
parameters C11. Since Ca2 = 0, the function g, can be expressed locally in terms of
un and hence can be eliminated from the equations. In our examples we solve the
resulting linear system for un by using the standard Conjugate Gradient algorithm;
in order to obtain as much precision as possible, the stopping criterion is such that the
absolute residual norm is less than 10712, The approximation gy is then recovered
in a post-processing step by using the local expression of g, in terms of uy.

We present numerical results using sequences of structured as well as unstructured
triangular meshes {7;}, ¢ = 1,2,..., where the mesh-size parameter of 7;;1 is half
the one of 7;. The numerical orders of convergence of the errors are computed for
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polynomials of degree 1 to 6 in the L?-norm and .A-semi-norm. These orders are
defined as follows. If e(7;) denotes the error on mesh 7; (in the corresponding norm),
then the numerical order of convergence r; is

r; = log (ei?%)))/log(O.S).

In all our computations, we take C13 normal to the edges and of modulus 1/2. The
stabilization coefficient Cj; is chosen to be of order h~!. We emphasize, however,
that for all our experiments no significant difference has been observed in the errors
of the approximations when C; is of order one. We also remark that results for k = 0
are not included either, since no positive orders of convergence have been obtained,
as predicted in Theorem 2.2.

5.1. Smooth solutions. In our first example, we investigate the order of conver-
gence for smooth solutions. We solve the model problem (1.1) in Q = (—1,1) x (—1,1)
with homogeneous Dirichlet boundary conditions and empty Neumann boundary. The
right hand side f is chosen such that the exact solution is given by

u(z,y) = cos (ga:) cos (gy) .

The sequence of structured meshes used in this example is created from consecutive
global refinement of an initial coarse structured mesh; at each refinement, every tri-
angle is divided into 4 similar triangles. The number of triangles of the meshes are
16, 64, 256, 1024 and 4096. Since our analysis is valid for arbitrary meshes, we also
perform some tests with a sequence of unstructured meshes. It consists of a set of
meshes such that the maximum edge length is less than a certain value. This value
is reduced by a factor of two, from one mesh to the next. In this way, if we take
two consecutive meshes, one is not the global refinement of the other. The number of
elements of the meshes are 22, 88, 312, 1368 and 5404.

We show the orders of convergence in the L2-norm of the error in the gradient ¢ = Vu,
in the A-semi-norm of the error of (q,u) and in the L?-norm of the error in u in
Tables 5.1, 5.2 and 5.3, respectively. For both types of meshes, we observe that the
optimal order of convergence predicted by our theory, see Table 2.2, is achieved. Note
that since machine precision is achieved for very fine grids and high polynomials, the
corresponding orders of convergence are meaningless and are replaced by a horizontal
line.

To give the reader a better idea of this phenomenon, in Figure 5.1, we display the
actual L2 errors in the potential 4 whose orders of convergence appear in the left side
of Table 5.3. Note how the very last part of the curve corresponding to polynomials
of degree k = 6 bends as a consequence of having reached machine accuracy.
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TABLE 5.1
Smooth solution; order of convergence of the L? error in the gradient q.

order of convergence

Structured meshes

Unstructured meshes

DU W N~

0.7075
1.9701
2.7216
3.9171
4.7384
5.8878

0.9424
1.9764
2.9488
3.9723
4.9438
5.9683

0.9809
1.9864
2.9924
3.9853
4.9897
5.9820

0.9932
1.9925
3.0008
3.9920
5.0114

0.9585
2.0364
2.9303
4.2473
4.8836
6.4090

0.7681
1.6525
2.4986
3.3587
4.2077
5.0744

1.1016
2.0644
3.2825
4.2419
5.5068
6.4362

0.9505
1.9843
2.9120
3.9563
4.8490

TABLE 5.2
Smooth solution; order of convergence of the A-semi-norm of the error in (q,u).

order of convergence

Structured meshes

Unstructured meshes

DU R W N

0.8703
2.0661
2.8380
4.0002
4.8276
5.9582

0.9762
2.0068
2.9745
3.9938
4.9634
5.9844

0.9942
1.9995
3.0018
3.9943
4.9965
5.9885

0.9996
1.9988
3.0052
3.9963
5.0144

1.0346
2.1175
3.0120
4.3158
4.9972
6.4724

0.8469
1.7205
2.5618
3.4195
4.2627
5.1322

1.1349
2.0926
3.2984
4.2588
5.5138
6.4472

0.9692
1.9949
2.9233
3.9632
4.8575

TABLE 5.3
Smooth solution; order of convergence of the L? error in the potential u.

order of convergence

Structured meshes

Unstructured meshes

O U W N

1.7916
2.9241
4.0140
4.9796
6.0358
7.0129

1.9471
2.9872
3.9837
4.9830
5.9949
6.9889

1.9855
2.9868
3.9891
4.9866
5.9910
6.8763

1.9956
2.9915
3.9942
4.9922
5.9589

1.8655
2.9656
3.8730
5.1529
5.9806
7.3003

1.7322
2.7066
3.5958
4.5272
5.4050
6.3641

2.1761
3.1625
4.2955
5.3216
6.4370
6.8498

1.9562
2.9828
3.9421
4.9585
5.7302
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5.2. An exact solution in H5(Q) but not in H5t¢(Q) Ve > 0. We solve the
model problem (1.1) with exact Dirichlet boundary conditions in the convex domain
Q= (-1,1) x (=1,1). The right hand side is chosen such that the exact solution of
the problem is the function u, defined by

~ x in (—1,0) x (=1,1),
wen={ ® . O

This function belongs to H®+2 () but does not belong to Ho+2+¢(Q), for all £ > 0.
In this test, @ = 4.5 and so u, € H®(Q). The predicted orders of convergence of the
L2-norm of the error in the gradient and that of the A-semi-norm of the error are both
5, and the predicted order of convergence of the L2-norm of the error in the potential
is 4; see Tables 2.2 and 2.3. These are precisely the orders observed in Tables 5.4, 5.5
and 5.6, respectively. We use the sequence of structured meshes from the previous
test. Similar results not reported here are obtained using unstructured meshes.

TABLE 5.4
H5-solution; order of convergence of the L? error in the gradient q.

k order of convergence

1| 0.9198 | 0.8929 | 0.9598 | 0.9872
2| 1.3322 | 1.7872 | 1.9288 | 1.9756
3| 2.1363 | 2.8375 | 2.9531 | 2.9844
4 | 3.7141 | 3.8566 | 3.9005 | 3.9213
5 | 3.8198 | 3.9270 | 3.9659 | 3.9835
6 | 3.8556 | 3.9387 | 3.9710 | 3.9860

TABLE 5.5
HS5-solution; order of convergence of the A-semi-norm of the error in (g, u).

order of convergence
1.1492 | 0.9841 | 0.9905 | 0.9993
1.7717 | 1.8698 | 1.9498 | 1.9828
2.5591 | 2.8822 | 2.9641 | 2.9882
3.7747 | 3.8689 | 3.9042 | 3.9227
3.9220 | 3.9483 | 3.9710 | 3.9848
3.9801 | 3.9664 | 3.9776 | 3.9876

S U LN

TABLE 5.6
Hb5-solution; order of convergence of the L? error in the potential u.

k order of convergence

2.1062 | 2.0203 | 2.0035 | 2.0017
2.8861 | 2.9474 | 2.9686 | 2.9810
3.8682 | 3.9669 | 3.9877 | 3.9945
4.8685 | 4.8948 | 4.9095 | 4.9167
5.0664 | 5.0310 | 5.0246 | 5.0088
5.1626 | 5.0583 | 5.1051 | 5.0252

SOt LN~
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5.3. Smooth solution on an L-shaped domain. We solve the model problem
(1.1) in an L-shaped domain with Dirichlet boundary conditions. The exact solution
is the function u,, described above, with a = 4.5. For this test we use a sequence
of unstructured meshes, created from a global refinement of an unstructured coarse
mesh. The number of elements of the meshes are 22, 88, 352, 1408 and 5632.

In Tables 5.7, 5.8 and 5.9 below, we can see that we obtain the same order of conver-
gence as in the convex case even though the standard elliptic regularity result guar-
antees an order of convergence for the L2-error of the potential smaller by 1 — 2y = %,
as indicated in Table 4.1.

A similar phenomenon takes place with the very smooth solution from the first test.

TABLE 5.7
H?-solution on L-shaped domain; order of convergence of the L? error in the gradient q.

k order of convergence

1] 0.8494 | 0.8581 | 0.9148 | 0.9530
2 | 1.7966 | 1.8441 | 1.9136 | 1.9550
3 | 2.6595 | 2.8369 | 2.9260 | 2.9644
4 | 2.6559 | 3.7667 | 3.8908 | 3.9571
5 | 2.7630 | 3.7978 | 3.8723 | 3.8912
6 | 3.0742 | 3.9120 | 4.0307 | 4.1347

TABLE 5.8
Hb5-solution on L-shaped domain; order of convergence of the A-semi-norm of the error in (g,u).

order of convergence
1.0085 | 0.9079 | 0.9315 | 0.9593
1.9217 | 1.8908 | 1.9295 | 1.9609
2.7984 | 2.8763 | 2.9379 | 2.9688
3.2364 | 3.7850 | 3.8960 | 3.9589
3.7948 | 3.8105 | 3.8749 | 3.8918
4.0916 | 3.9158 | 4.0313 | 4.1347

S UL W N

TABLE 5.9
H5-solution on L-shaped domain; order of convergence of the L? error in the potential u.

k order of convergence

2.0435 | 1.9542 | 1.9552 | 1.9714
3.0471 | 2.9694 | 2.9740 | 2.9844
4.0360 | 3.9693 | 3.9831 | 3.9916
5.0226 | 4.8793 | 4.9274 | 4.9528
5.9726 | 4.8779 | 4.8875 | 4.8739
6.3544 | 4.9983 | 5.0609 | 5.0898

S UL N
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5.4. Non-smooth solution on an L-shaped domain. Finally, we present
numerical results for the classical L-shaped domain test with a singularity at the
reentrant corner. We consider the model problem (1.1) in an L-shaped domain with
zero right hand side and Dirichlet boundary conditions such that the exact solution
is given by

. 2

u(r,8) = r7 sin (v0), T=73
For conforming finite element methods, it has been shown that the orders of conver-
gence in the H' and L? norms are 2 — ¢ and 3 — ¢ for all ¢ > 0, respectively. The
numerical results for the LDG method on the sequence of unstructured meshes de-
scribed in the previous experiment are reported in Tables 5.10, 5.11 and 5.12. They
show that the rates of convergence predicted by Table 4.2 are achieved by the LDG
method. Observe that the same rates of convergence as in the conforming case are
achieved.

TABLE 5.10
Non-smooth solution on L-shaped domain; L? error in the gradient q.

k order of convergence

1] 0.7818 | 0.6298 | 0.6420 | 0.6513
2| 0.7794 | 0.6662 | 0.6665 | 0.6666
3| 0.7362 | 0.6665 | 0.6666 | 0.6666
4| 0.7139 | 0.6666 | 0.6666 | 0.6667
5 | 0.7016 | 0.6666 | 0.6666 | 0.6667
6 | 0.6941 | 0.6666 | 0.6666 | 0.6667

TABLE 5.11
Non-smooth solution on L-shaped domain; A-semi-norm of the error in (q,u).

order of convergence
0.8043 | 0.6529 | 0.6538 | 0.6572
0.7918 | 0.6766 | 0.6718 | 0.6693
0.7448 | 0.6725 | 0.6696 | 0.6682
0.7200 | 0.6705 | 0.6686 | 0.6676
0.7062 | 0.6694 | 0.6681 | 0.6674
0.6977 | 0.6688 | 0.6677 | 0.6672

SO W N

TABLE 5.12
Non-smooth solution on L-shaped domain; L? error in the potential u.

k order of convergence

1.6098 | 1.5694 | 1.5793 | 1.5760
1.5610 | 1.5383 | 1.5014 | 1.4639
1.5015 | 1.4810 | 1.4449 | 1.4137
1.4715 | 1.4543 | 1.4215 | 1.3950
1.4535 | 1.4383 | 1.4083 | 1.3849
1.4408 | 1.4277 | 1.3998 | 1.3786

[ R R N S
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6. Concluding remarks. In this paper, we present the first a priori error anal-
ysis for a general DG method that includes the LDG method and allows for triangu-
lations with hanging nodes and elements of several shapes.

We have proven that the orders of convergence of the approximations given by the
LDG method with the stabilization parameter Ci; of order h~! are optimal; these
results have been confirmed by our numerical experiments which also indicate that
the quality of the approximation does not deteriorate when C4; is taken to be of order
one. Theoretically, a loss of 1/2 in the orders of convergence can take place but this
phenomenon was not observed in the particular test problems we considered; as a
consequence, the sharpness of our error estimates in this case remains to be studied.
We have also theoretically shown that the effect of taking non-zero stabilization pa-
rameters Cao does not significantly improve the orders of convergence of the LDG
method. An exception is, of course, the piecewise constant case in which the LDG
method has an order of convergence of 0 whereas the DG method with C;; and Cas
of order one do converge with orders of convergence of at least 1/2 and 1 in the error
of the gradient and potential, respectively.

In this paper, nothing has been said about how to chose the parameters Ci5. In
a forthcoming paper [22], it will be shown that, in the case of Cartesian grids and
tensor product polynomials, the orders of convergence of the LDG method can actually
increase if C14 is suitably chosen.

Let us end by pointing out tha the implementation of codes for hp-adaptive versions
of the LDG method for general elliptic and transient convection-diffusion-reaction
problems is the subject of ongoing work.
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