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Abstract. We present a method for generating local orthogonal bases on arbitrary partitions

of R from a given local orthogonal shift-invariant basis via what we call a squeeze map. We

give necessary and suÆcient conditions for a squeeze map to generate a non-uniform basis that
preserves any smoothness and/or accuracy (polynomial reproduction) of the shift-invariant basis.

When the shift-invariant basis has suÆcient smoothness or accuracy, there is a unique squeeze map

associated with a given partition that preserves this property and, in this case, the squeeze map
may be calculated locally in terms of the ratios of adjacent intervals. If both the smoothness and

accuracy are large enough, then the resulting nonuniform space contains the nonuniform spline

space characterized by that smoothness and accuracy.
Our examples include a multiresolution on nonuniform partitions such that each space has a

local orthogonal basis consisting of continuous piecewise quadratic functions. We also construct a

family of smooth, local, orthogonal, piecewise polynomial, generators with arbitrary approximation
order.

1. Introduction

Finitely generated shift-invariant (FSI) spaces naturally arise in several areas of numerical anal-

ysis and approximation theory including the theory of splines and wavelets. A major advantage

of an FSI space is the existence of a convenient basis generated by a (usually) small number of

functions. When the basis is local and orthogonal the process of �nding the orthogonal projection

Pf of f 2 L2(R) onto the space is local so that changing f on a compact interval only a�ects Pf

on a slightly larger interval.

In this paper we introduce and investigate a method for adapting local shift-invariant bases to

non-uniform partitions via what we call a squeeze map. When the shift-invariant basis is orthogonal,

the squeeze map may be chosen so that the non-uniform basis is also orthogonal.
The notion of squeeze maps generalizes ideas introduced in [4] where we gave examples of local

orthogonal piecewise polynomial shift-invariant bases that are easily adaptable to arbitrary grids in

R. The focus of this paper is on characterizing when a squeeze map generates a non-uniform basis

preserving any smoothness and/or accuracy (polynomial reproduction) of the shift-invariant basis.

When the shift-invariant basis has suÆcient smoothness or accuracy, there is a unique squeeze

map associated with a given partition of R that preserves this property and, in this case, the

squeeze map may be calculated locally in terms of the ratios of adjacent intervals. When both the

smoothness and accuracy are large enough, we �nd that the resulting nonuniform space contains
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the nonuniform spline space characterized by that smoothness and accuracy.

Two applications that provide motivation for our work are adaptive least squares and the con-
struction of orthogonal wavelets on semi-regular and irregular families of grids. In fact, while we do

not focus on re�nable spaces in this paper, it is the re�nable case that provides the main motivation

for our study. We remark that our methods provide a means to adapt a multiresolution on uniform

grids to one on a semi-uniform family of grids (that is, an arbitrary coarse grid that is uniformly

subdivided). In Example 6.3, we start with Daubechies' famous orthogonal scaling function 2�. We

�nd that given a nonuniform grid, there is a unique squeeze map that preserves the accuracy of the

space. In a sequel to this paper [7] we verify that spaces associated with uniform re�nements of the

initial grid then form a multiresolution and we describe how to �nd the wavelets. In Example 6.4,

we use ideas from [5] to construct a multiresolution on an arbitrary nonuniform subdivision (the

only requirement is that each interval is subdivided into two subintervals). Each space has a local

orthogonal basis consisting of continuous piecewise quadratic functions.

Finally, in Section 7 we construct a family of smooth, local, orthogonal, piecewise polynomial,

generators with arbitrary approximation order using techniques developed [6]. These generators

have fewer components than the corresponding re�nable generators constructed in [6] and so we

prefer them when re�nability is not required. We mention that a possible application of this family

is to CDMA (code division multiple access) technology where several users share a single channel

using orthogonal decompositions.

1.1. Shift-invariant spaces. We call a compactly supported, �nite-length (column) vector

� =

0
B@
�1
...

�n

1
CA 2 L2(R)

n

a generator. Note that when it is clear from the context, we also consider a generator � to be the

set of its components, that is, we also consider � � L2(R). When we refer to the span of � we

mean the subspace of L2(R) spanned by the components of �.

For a generator �, let

B(�) := f�i(� � j) j j 2 Z; i = 1; : : : ; ng:

If B(�) is an orthogonal set, we say � is an orthogonal generator. For a generator �, let

S(�) := f
X
j2Z

c(j)>�(� � j) j c(j) 2 Rn; j 2 Zg:

If V = S(�) for some generator � then V is called a �nitely generated shift-invariant (FSI) space.

1.2. Minimally supported generators. Our procedure for constructing local bases on nonuni-

form partitions starts with generators supported on [�1; 1] satisfying a local linear independence
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condition on [0; 1]. In particular, for k � n, we say that a generator

� =

0
BBBBBBB@

�1
...

�k
�k+1
...

�n

1
CCCCCCCA

=

�
��
��

�

(where �� consists of the �rst k elements of � and �� consists of the last n � k) is a minimally
supported k-generator (or just minimally supported) if

1. supp � � [�1; 1],
2. supp �� � [0; 1],

3. the collection �� [ ���[0;1] [ (��(� � 1))�[0;1] is linearly independent.

We denote the collection of all minimally supported k-generators with n components by Gnk . See

Section 5 for several illustrative examples of orthogonal minimally supported generators.

For � 2 Gnk , we denote the \left" and \right" pieces of �� by

�R := ���[0;1]; and �L := ���[�1;0):

Obviously, condition (3) can be rewritten as �� [ �R [ �L(� � 1) is linearly independent. If � is

minimally supported then it follows from the local linear independence condition (3) above that

B(�) is linearly independent, that is, any f 2 S(�) has a unique representation of the form

f =
P

cj�(�� j). In the remainder of this paper, when there is clearly some underlying minimally

supported generator with k and n as above, then for any (row or column) vector v of length n,

we let �v denote the subvector of the �rst k components of v and �v the subvector of the last n � k

components of v.

Also, for f; g 2 L2(R)
n
we de�ne hf; gi :=

Z
R

f(x)g(x)>dx 2 Rn�n where v> denotes the

transpose of a (column) vector v.

2. Squeeze maps

Let a = (aj)j2Z be a strictly increasing real-valued sequence with no accumulation point in R;

in which case we call a a knot sequence. Let Lj := aj+1 � aj denote the length of the jth interval

[aj+1; aj] and let �j = �aj be given by

�j(x) =

(
(x� aj)=Lj�1 for x � aj

(x� aj)=Lj for x � aj :
(1)

Then �j maps the points aj�1, aj , and aj+1 to �1, 0 and 1, respectively.

Suppose � is an orthogonal minimally supported generator. Consider

B0 =
[
j2Z

� Æ �j :
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If � is continuous and k = 1 (for example, see the example in Section 6.1) then (because �j is

aÆne on each \overlap" interval [aj ; aj+1] and continuous on R) it follows that B0 is a continuous

orthogonal basis for its span.
On the other hand, if � 2 C1(R) and �0(0) 6= 0 (for example, consider the continuously di�eren-

tiable � with k = 2 in Example 6.2) then the components of B0 are not in C1(R) for nonuniform

a. In particular, �� Æ �j is not di�erentiable at aj unless Lj�1 = Lj . This leads us to consider a

more general construction in which linear combinations of ��L Æ �j are pieced together with linear

combinations of ��R Æ �j via what we call a squeeze map.

More speci�cally, let A
(j)
L and A

(j)
R be invertible k�k matrices for j 2 Z and let Aj : R! Rk�k

denote the matrix valued function on R de�ned by

Aj = �[�1;0)A
(j)
L + �[0;1]A

(j)
R :

Given A and a knot sequence a, we call the the sequence of mappings � = (�j)j2Z where �j : Gnk !
L2(R)

n
is given by

�j(�) =

�
Aj

�� Æ �j
�� Æ �j

�
a squeeze map (on Gnk ).

As before we let ��j(�) denote the vector of the �rst k components of �j(�) and ��j(�) the

remaining n � k components. Observe that

��j(�) = (�[�1;0)A
(j)

L
�� + �[0;1]A

(j)

R
��) Æ �j = (A

(j)

L �L +A
(j)

R �R) Æ �j
and supp��j(�) � [aj�1; aj+1] while supp��j(�) � [aj ; aj+1].

If � is a squeeze map on Gnk and � 2 Gnk , then we de�ne

B�(�) :=
[
j2Z

�j�;

and

S�(�) := f
X
j2Z

c(j)>�j� j c(j) 2 Rn; j 2 Zg:

The minimal support of � and the invertibility of A
(j)
L and A

(j)
R imply that B�(�) is linearly

independent.

If � is a squeeze map with matrix sequences (A
(j)
L ) and (A

(j)
R ), we de�ne

Rj = Rj(�) := (A
(j)
L )�1A

(j)
R (j 2 Z):

We say that two squeeze maps � and � on Gnk are equivalent whenever S�(�) = S�(�) for any

� 2 Gnk .
Lemma 1. Suppose � and � are squeeze maps on Gnk . Then � and � are equivalent if and only if

Rj(�) = Rj(�) (j 2 Z)(2)

Proof. Suppose (2) holds. Then

(A
(j)
L )�1��j(�) = ( ~AL

(j)
)�1��j(�) (j 2 Z)

where � has matrix sequences (A
(j)
L ) and (A

(j)
R ) and � has matrix sequences ( ~AL

(j)
) and ( ~AR

(j)
).

Hence, �j(�) and �j(�) (considered as sets) have the same span proving S�(�) = S�(�).
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On the other hand, if S�(�) = S�(�) then the local linear independence of B�(�) and B�(�)

shows that ��j(�) and ��j(�) have the same span for each j 2 Z. Thus, there must be some

nonsingular matrix Wj such that

��j(�) = Wj ��j(�) (j 2 Z)
which implies that (2) holds.

Our motivation for considering squeeze maps is that if � is a minimally supported orthogonal

generator then we can always �nd a local orthogonal basis for S�(�) \ L2(R). To see this, note

that the elements of ��j(�) are orthogonal to the elements of ��j+1(�):

h��j(�); ��j+1(�)i = LjA
(j)

R h�R;�L(� � 1)i(A(j+1)

L )> = 0 (j 2 Z)
It then follows that �j(�) is orthogonal to �j0(�) for any j 6= j0 2 Z. Finally, for each j 2 Z, we

choose some orthogonal basis for the span of ��j(�) (for instance, by applying the Gram-Schmidt

process to ��j(�)). This change of basis corresponds to constructing a squeeze map � equivalent

to � such that B�(�) is an orthogonal set and is equivalent to performing the following matrix

factorization: Let BjB
>
j be a Cholesky factorization of h��j; ��ji, that is

BjB
>
j = h��j(�); ��j(�)i = Lj�1A

(j)
L h�L;�Li(A(j)

L )> + LjA
(j)
R h�R;�Ri(A(j)

R )>(3)

Then � with matrix sequences
�
B�1
j A

(j)
L

�
and

�
B�1
j A

(j)
R

�
is equivalent to �, and B�(�) is an

orthogonal basis for S�(�) \ L2(R). Thus we have

Lemma 2. Suppose � is a minimally supported orthogonal generator and � is a squeeze map for
�. Then there is some squeeze map � equivalent to � such that B�(�) is an orthogonal basis for
S�(�) \ L2(R).

3. Polynomial reproduction and smoothness

In this section we give necessary and suÆcient conditions for a squeeze map � to preserve

the accuracy (polynomial reproduction) and regularity of S(�). Throughout this section � is a

generator in Gnk and � is a squeeze map on Gnk with matrix sequences (A
(j)
L ) and (A

(j)
R ). Recall that

Rj = (A
(j)

L )�1A
(j)

R for j 2 Z.
First we address the smoothness of S�(�). Since S�(�) is locally �nite-dimensional it follows

that S�(�) � Cm(R) if and only if �j(�) � Cm(R) for all j 2 Z.
Theorem 3. Suppose � � Cm(R). Then, for j 2 Z, �j(�) � Cm(R) if and only if

Rj
��(q)(0) = (Lj=Lj�1)

q ��(q)(0)(4)

that is, if and only if ��(q)(0) is either 0 or a right eigenvector of Rj with eigenvalue (Lj=Lj�1)
q for

0 � q � m. (Here ��(q) denotes the qth derivative of ��.)

Hence, S�(�) � Cm(R) if and only if (4) holds for all j 2 Z.
Proof. The theorem follows from

�j(�)
(q)(j�) =

�
(Lj�1)�qA

(j)

L
��(q)(0�)

0

�
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and

�j(�)
(q)(j+) =

�
(Lj)

�qA
(j)
R

��(q)(0+)

0

�
for 0 � q � m and j 2 Z.

Let �p, p � 0, denote the collection of univariate polynomials of degree at most p. A generator

� is said to have accuracy p+1 if �p � S(�). If � has accuracy p+1, then (since B(�) is a linearly

independent set) for each l = 0; : : : ; p, there is a unique sequence of 1� n vectors (�l(j))j2Z such

that

xl =
X
j2Z

�l(j)�(x� j) =
X
j

��l(j)��(x� j) + ��l(j)��(x� j):(5)

We say (�;�) has accuracy p+ 1 if �p � S�(�), in which case there exists for each l = 0; : : : ; p,

a unique sequence (�0l(j))j2Z, such that

xl =
X
j

�0l(j)�j(�)(x):(6)

Theorem 4. Suppose � has accuracy p + 1 and � is a squeeze map for �. Then (�;�) has

accuracy p+1 if and only if ��l(0) is either 0 or a left eigenvector of Rj with eigenvalue (Lj=Lj�1)
l

for l = 0; : : : ; p and all j 2 Z.
Proof. Using (6) and the de�nition of �j(�), observe that (�;�) having accuracy p+1 is equivalent

to the existence of sequences (�0l(j))j2Z, l = 0; : : : ; p, such that

xl = ��0l(j)A
(j)
R

�� Æ �j(x) + ��0l(j + 1)A
(j+1)
L

�� Æ �j+1(x) + ��0l(j)�� Æ �j(x);
for j 2 Z, and x 2 ��1j ([0; 1]) = [aj ; aj+1]. By substituting ��1j (x) for x in the above, we obtain

lX
i=0

�
l

i

�
Lijx

ial�ij = ��0l(j)A
(j)
R

��(x) + ��0l(j + 1)A
(j+1)
L

��(x� 1) + ��0l(j)��(x);

where l and j are as above, but here x 2 [0; 1]. Now, since � has accuracy p+ 1, we can use (5) to

replace xi in the above. In particular,

xi = ��i(0)��(x) + ��i(1)��(x� 1) + ��(0)��(x)

for x 2 [0; 1]. With this substitution and the minimal support properties of �, we �nd an equivalent

system of equations,

��0l(j) =
Pl

i=0

�
l

i

�
Lija

l�i
j ��i(0)

��0l(j)A
(j)
R =

Pl
i=0

�
l

i

�
Lija

l�i
j ��i(0)

��0l(j + 1)A
(j+1)
L =

Pl
i=0

�
l

i

�
Lija

l�i
j ��i(1):

(7)
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Now, since A
(j)
L and A

(j)
R is invertible for all j, the last two of these lead to

lX
i=0

�
l

i

�
Lija

l�i
j ��i(0)(A

(j)
R )�1 =

lX
i=0

�
l

i

�
Lij�1a

l�i
j�1 ��i(1)(A

(j)
L )�1:(8)

Here, we may apply Lemma 8 proved at the end of this section, observing that �i(0) and �i(1)

satisfy (14), as, therefore, do ��i(0) and ��i(1). The \only if" part of the result follows.

All steps in the above argument are reversible except the one from (7) to (8). The \if" part of

the result is achieved by choosing ��0 and ��0 as in (7). The choice is consistent with (8) and leads

to the desired accuracy of (�;�).

If � � Cm(R) and has accuracy p+ 1, then ��(q)(0) = 0 for 0 � q � m and so

��l(0)��
(q)(0) =

dq

dxq
xl
����
x=0

= (q!)Æl;q(9)

for 0 � q � m and 0 � l � p, where Æl;q denotes the Kronecker delta. For 0 � q � m and 0 � l � p,
we de�ne the following matrices:

Vl =

0
B@
��0(0)
...

��l(0)

1
CA and Wq =

�
��(0) � � � ��(q)(0)

�
(10)

Then (9) is equivalent to the matrix equation

VpWm = D(11)

where D is the (p+ 1)� (m+ 1) diagonal matrix whose (l; l)th component is (l� 1)! . The rank of

the right side of (11) is min(m+ 1; p+ 1). Also, Vp and Wm have rank at most k which gives the

following bound for k:

Lemma 5. Suppose � � Cm(R) and has accuracy p+ 1, then

k � min(m+ 1; p+ 1):

We next consider when accuracy or smoothness uniquely determines the squeeze map (up to

equivalency) and when accuracy forces smoothness or smoothness forces accuracy.

Theorem 6. Suppose � � Cm(R) and has accuracy p+ 1. Let a be a given knot sequence.

(i) If k � p + 1 and the square matrix Vk�1 is nonsingular, then there exists a unique (up to
equivalence) squeeze map � with knot sequence a such that (�;�) has accuracy k. In addition,
S�(�) � Cm(R).

(ii) If k � m + 1 and the square matrix Wk�1 is nonsingular, then there exists a unique (up to

equivalence) squeeze map � with knot sequence a such that S�(�) � Ck�1(R). Furthermore,
(�;�) has accuracy p+ 1.

Proof. Case (i). Suppose k � p+ 1, V := Vk�1 is nonsingular, and � is a squeeze map for �. Then

��l(0) 6= 0 for 0 � l � k� 1 and so Theorem 4 asserts that (�;�) has accuracy k if and only if ��l(0)

is a left eigenvector of Rj with eigenvalue (
Lj

Lj�1
)l for 0 � l � k� 1 and j 2 Z. The latter condition

is equivalent to

V Rj = �(Lj=Lj�1)V (j 2 Z)
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where �(�) is k � k diagonal matrix whose (l; l)th component is �l�1 for � 2 R+. Thus, (�;�) has

accuracy k if and only if

Rj = V �1 �(Lj=Lj�1)V (j 2 Z):(12)

Equation (11) shows that �(q)(0) is the qth column of V �1D. Multiplying both sides of Equa-

tion 12 on the right by �(q)(0) then shows that ��(q)(0) is a right eigenvector of Rj with eigenvalue

(
Lj
Lj�1

)q for 0 � q � m. Hence, Theorem 3 shows that S�(�) � Cm(R).

Case (ii). Now suppose k � m + 1 and W := Wk�1 is nonsingular. As in case (i) we �nd that

(�;�) has accuracy k if and only if

Rj = W �(Lj=Lj�1)W
�1(13)

and that ��l(0) is a left eigenvector of Rj with eigenvalue (
Lj

Lj�1
)l for 0 � l � p. Hence Theorem 4

shows that (�;�) has accuracy p+ 1.

If k = min(m+1; p+1) then it follows from (11) that Vk�1 and Wk�1 are both nonsingular and

so both cases in Theorem 6 hold. The next theorem shows that S�(�) contains the spline space

Smp (a) := ff 2 Cm(R) j f j(aj;aj+1) 2 �p; j 2 Zg
when k = min(m+1; p+1). In this case, it is known from classical spline theory that the accuracy

determines the approximation order of S�(�). Note that S
m
p (a) = �p if m � p.

Theorem 7. Suppose � � Cm(R), � has accuracy p + 1 and k = min(m+ 1; p+ 1). Let a be a
given knot sequence.

(i) There exists a squeeze map � with knot sequence a such that S�(�) � Cm(R) and has accuracy
p+ 1.

(ii) If � is any other squeeze map with knot sequence a such that either S�(�) � Ck�1(R) or
(�;�) has accuracy k then � is equivalent to �.

(iii) Smp (a) � S�(�). (This is nontrivial only when m < p in which case k = m+ 1.)

Proof. If k = min(m+ 1; p+ 1) then it follows from Equation (11) that Vk�1 and Wk�1 are both

nonsingular and parts (i) and (ii) follow from 6.

>From part (i) we have �p � S�(�) and so we only need consider the case m < p. Since Wk�1
is nonsingular, it follows from (11) that ��l(0) = 0 for l = m+ 1; : : : ; p.

For simplicity, �rst suppose that one of the knots, say ai, is 0. Then (7) implies

��0l(i)A
(j)

R = Lli ��l(i) = 0; (l = m+ 1; : : : ; p):

Thus Equation (6) becomes

xl = ��0l(i)��i(�) +
X
j 6=i

�0l(j)�j(�):

Thus the truncated powers (x+)
l, l = m+ 1; : : : ; p, can be written as

(x+)
l = ��0l(i)��i(�) +

X
j>i

�0l(j)�j(�):

and so are in S�(�) for l = m + 1; : : : ; p. Observe that shifting the knots by a constant shift

translates the basis B�(�) by the same amount. Hence S�(�) contains the truncated powers
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((x� aj)+)
l for l = m+1; : : : ; p and j 2 Z. The truncated powers form a basis for Smp (a) showing

that (iii) holds.

Finally, we prove the following lemma that was used in the proof of Theorem 4.

Lemma 8. Suppose a0; a1; L1 2 R and L0 = a1�a0. Further, suppose �(0) and �(1) are sequences
of 1� k vectors such that

�l(1) =

lX
i=0

�
l

i

�
�i(0)(14)

for l = 0; : : : ; p. Then the k � k matrices C and D satisfy the conditions

lX
i=0

�
l

i

�
Li1a

l�i
1 �i(0)C =

lX
i=0

�
l

i

�
Li0a

l�i
0 �i(1)D(15)

for l = 0; : : : ; p if and only if

�l(0)(L
l
1C � Ll0D) = 0(16)

for l = 0; : : : ; p.

Proof. For a given l, we may use (14) to substitute for �i(1) in (15). Then using routine combina-

torial manipulations we �nd

lX
i=0

�
l

i

�
Li1a

l�i
1 �i(0)C =

lX
j=0

�
l

j

�
�j(0)D

lX
i=j

�
l� j

i� j

�
Li0a

l�i
0 :(17)

By shifting the index on the inner sum by j, the left-hand side becomes

lX
j=0

�
l

j

�
�j(0)D

l�jX
i=0

�
l � j

i

�
L
i+j
0 a

l�i�j
0

=

lX
j=0

�
l

j

�
�j(0)L

j
0a

l�j
1 D;

where the �nal equality follows from a1 = a0 + L0 and the Binomial Theorem. Thus (15) is

equivalent to

lX
i=0

�
l

i

�
al�i1 �i(0)(L

i
1C � Li0D) = 0:

>From here it is easy to show the equivalence with (16) by induction on l = 0; : : : ; p.
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4. Constructing the squeeze map

Suppose � � Cm(R), � has accuracy p + 1 and k � max(m+ 1; p+ 1). Then either case (i) or
(ii) of Theorem 6 holds and the squeeze map preserving accuracy in case (i) or smoothness in case
(ii) is unique up to equivalence. In both cases there is a full set of k eigenvectors for Rj for j 2 Z
with speci�ed eigenvalues. These eigenvectors then uniquely determine Rj through either (12) or

(13). In case (i), let U = Vk�1 and in case (ii) let U = W�1
k�1 where Vk�1 and Wk�1 are given by

(10). Let

R(�) := U�1�(�)U (� > 0):(18)

Then Rj = R(�j) where �j := Lj=Lj�1 for j 2 Z. Thus, the squeeze map is determined (up to

equivalence) for an arbitrary knot sequence. Furthermore, each Rj is determined only by the ratio

Lj=Lj�1.
Now suppose � is an orthogonal generator. Let � be the squeeze map with matrix sequences

(I; Rj). Following the proof of Lemma 2, an equivalent squeeze map � so that B�(�) is orthogonal

may be found as follows. First, �nd a Cholesky factorization (see Equation (3):

B(�)B(�)> = h�L;�Li+ �R(�)h�R;�RiR(�)>:(19)

Let Bj =
p
Lj�1B(�j) for j 2 Z. Then � with matrix sequences A

(j)

L = (B�1
j ) and A

(j)

R = (B�1
j Rj)

gives an orthogonal basis. Again note that for �xed �, Bj depends only on Lj�1 and Lj and (since

a Cholesky factorization is equivalent to an LU factorization using Gaussian elimination) we can
�nd a closed form expression for �j in terms of the ratio �j = Lj=Lj�1. This makes it simple and

quick to construct the squeeze map for an arbitrary knot sequence.

In our examples we only consider k = 1 or k = 2. When k = 1 it is trivial to obtain Bj . Suppose

A =

�
a b

b c

�

is a symmetric positive de�nite matrix (that is, v>Av > 0 for any nonzero 2-vector v). Then A is

positive de�nite if and only if both a and detA are positive. One choice for B such that BB> = A

is given by

B =
1p
a

�
a 0

b
p
detA

�
:(20)

5. Orthogonal minimally supported generators

5.1. Rescaling orthogonal generators. Any orthogonal compactly supported generator may be

used to construct an orthogonal generator supported on [�1; 1] as we next describe. If the support
of � = (�1; : : : ; �n)

> is contained in [�1;M ], then let �M denote the generator consisting of the

concatenation of the M generators �(M � +k), (k = 0; : : : ;M � 1). Then �M is an orthogonal

generator supported in [�1; 1] and S(�M) equals S(�)(M �) (that is, the dilation by 1=M of the

space S(�)). The local linear independence conditions for minimal support must then be checked

separately. Example 6.3 is constructed in this way.
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5.2. General construction. In [5] the authors developed a method for constructing orthogonal

generators. For W � L2(R), let PW denote the orthogonal projection onto W .

Lemma 9. ([5]) Suppose � is a minimally supported k-generator. There exists an orthogonal
minimally supported k-generator 	 such that S(	) = S(�) if and only if

(I � P
S(��)

)�� ? (I � P
S(��)

)��(� � 1)(21)

(that is, (I � P
S(��)

)�i ? (I � P
S(��)

)�j(� � 1) for 1 � i; j � k).

Proof. (Sketch of proof.) Let �	 be an orthogonal basis for the span of �� and choose �	 to be

an orthogonal basis for the span of (I � P
S(��)

)��. Then 	 is an orthogonal, minimally supported

k-generator for S(�) if 	 and 	(� � 1) are orthogonal (or, equivalently, if (21) holds). The other

direction relies on the observation that if � and 	 are minimally supported k-generators such that

S(	) = S(�) then

span�� = span�	

and

span� [ ��(�+ 1) = span�	 [ �	(�+ 1)

The idea of the construction is to choose �� so that (21) holds. The orthogonal generators in
Examples 6.1 and 6.2 and Section 7 are constructed in this way.

6. Examples

In this section we present several examples to illustrate our methods. Examples 6.1 and 6.2 �rst

appeared in [4]. In both examples it is the smoothness condition that determines the squeeze map.

Also, in these two examples, k = min(m+ 1; p+ 1) and so the resulting S�(�) conatins S
m
p (a) by

Theorem 7.

In Example 6.3, we rescale Daubechies orthogonal scaling function 2� as described in Section 5.1

to construct a continuous orthogonal re�nable generator minimally supported on [-1,1] with k =

n = 2. The accuracy in this case is p + 1 = 2 and, by Theorem 6 part (i), the squeeze map is

uniquely determined by the accuracy condition once a knot sequence is speci�ed. In fact, it is this

example that motivated our study of the accuracy of squeezed spaces S�(�). In Example 6.3 we

have m+ 1 = 1 < 2 = k and so Theorem 7 does not apply in this case.

We are also interested in this example because the generator � is re�nable, that is

�(�=2) =
1X

j2Z
c(j)�(� � j)(22)

for some �nitely supported sequence c : Z 7! Rn�n (in this case the support of c is f�2;�1; 0; 1g.
We next remark that such a re�nable minimally supported generator � generates a semi-regular

multiresolution analysis (that is, a multiresolution consisting of a nonuniform coarse space that is

uniformly re�ned, see [3]) as follows: Let a0 be an arbitrary knot sequence and let a1 � a0 be given

by

a12j = a0j and a12j+1 = (a0j + a0j )=2 (j 2 Z):
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Let �0 and �1 be the squeeze maps determined (up to equivalence) by the knot sequences a0 and

a1, respectively. Then one may verify (and we take this up in a sequel to this paper [7]) that

S�0(�) � S�1(�). Thus we provide a way to construct orthogonal semi-regular multiresolutions
from orthogonal scaling functions in a way that preserves the accuracy and smoothness of the shift-
invariant multiresolution.

In Example 4, we construct an irregular multiresolution analysis (that is, a fully nonuniform

multiresolution, see [3]) such that each space in the multiresolution has a compactly supported

orthogonal basis consisting of continuous piecewise quadratic functions. The spaces in this irregular

multiresolution are not, strictly speaking, squeezed spaces of the form S�(�), but instead result

from a slight generalization of our notion of squeeze map. The ideas behind this construction are

further developed in [7].

6.1. k = 1, m = 0, p = 1, n = 2. Let h denote the hat function de�ned by h(x) = (1� jxj)+ and

suppose w 2 L2(R) is nontrivial and supported in the interval [0; 1]. Let � = (h; w). Then (21)

reduces to:

hh; h(� � 1)i = hh; wihw; h(�� 1)i
hw;wi :(23)

Thus, any w 2 L2(R) supported in [0; 1] and satisfying (23) gives an orthogonal generator 	 by

the process described in Lemma 9. For example, let q be the piecewise quadratic function given by

q(x) = x(1� x)�[0;1](x). Choose w 2 spanfq; q2g so that w = c1q + c2q
2 for some constants c1, c2.

Substituting into Equation (23) yields a quadratic equation in the variable � := c2=c1:

�2 + 30�+ 105 = 0

or � = �15 � 2
p
30. The graphs of �1 and �2 are shown in Figure 1 for � = �15 � 2

p
30. (This

example was �rst given in [4].)

For 0 � x � 1, we have

�1(x) =
p
3 (1� x)

�
1� 2 x+

�
�3 +

p
30
�
x (1� 5 (1� x) x)

�
and

�2(x) =

q
330� 60

p
30 (1� x) x

�
�1 +

�
15 + 2

p
30
�
(1� x) x

�
:

Note that �1 is even and supported on [�1; 1] and that �2 has support [0; 1].

In the case k = 1 and m = 0, the squeeze maps preserving continuity are given by Rj = 1 for

all j 2 Z. By Theorem 6, this squeeze map will also preserve the approximation of �. By the

symmetry of � we have

h�L;�Li = h�R;�Ri = 1=2:

Using (3) we get that � given by

A
j
L = A

j
R =

s
2

Lj�1 + Lj

generates an orthogonal basis B�(�).
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Figure 1. Continuous orthogonal generator of Example 6.1.

6.2. k = 2, m = 1, p = 3, n = 4. We next construct a continuously di�erentiable orthogonal

generator. We start with the C1 cubic Hermite spline functions

h1(x) =

8<
:

(1 + x)2(1� 2x) x 2 [�1; 0];
(1� x)2(1 + 2x) x 2 [0; 1];

0 otherwise

h2(x) =

8<
:

(1 + x)2x x 2 [�1; 0];
(1� x)2x x 2 [0; 1];

0 otherwise

and add two continuously di�erentiable functions w1 and w2 supported on [0; 1]. (In [[5]], it is

shown that at least two w's are required in this case.) The condition (23) is equivalent to the

following:

hhi; hj(� � 1)i = hhi; w1ihw1; hj(� � 1)i
hw1; w1i +

hhi; w2ihw2; hj(� � 1)i
hw2; w2i :(24)

Again let q be the piecewise quadratic function given by q(x) = x(1� x)�[0;1](x). We choose w1 to

be of the form (c1+ c2q + c3q
2)q2 and w2 of the form (� � 1=2)(c4+ c5q)q

2 so that w1 is symmetric

about x = 1=2 and w2 is antisymmetric about x = 1=2. Substituting into (24) yields three qua-

dratic equations in the three variables c2=c1, c3=c1, and c5=c4. Solving these equations numerically
and choosing c1 and c4 so that kw1k = kw2k = 1 yields several solutions. One solution with good

properties is given by:

c1 +2.102558692333885

c2 +214.7707569159831

c3 -492.4339092336308

c4 -112.0742772596177

c5 +1401.893433767276
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Figure 2. The C1 orthonormal generator of Example 6.2. From upper left, going

clockwise: �1, �3, �4, �2.

The graphs of the components of the resulting orthogonal generator (�1; �2; �3; �4) are shown in

Figure 2.

From the construction of � we see that W =
�
��(0) ��0(0)

�
is diagonal and so, using (18), we get

that S�(�) � C1(R) if

Rj = R(�j) =

�
1 0

0 �j

�
where �j := Lj=Lj�1.

Since � is piecewise polynomial the inner products h�L;�Li and h�R;�Ri are easily calculated.

UsingMathematicaa to perform these calculations, we arrive at the squeeze maps de�ned by

A
(j)
L =

1p
Lj�1

a

0
BB@

1:414213p
1+�j

0

2:829115�2:829115�2
j

(1+�j)
p
(0:381634+�j) (1+�j) (2:62031+�j)

3:162893p
(0:381634+�j) (1+�j) (2:62031+�j)

1
CCA

and

A
(j)
R =

1p
Lj�1

0
BB@

1:414213p
1+�j

0

2:829115�2:829115�2
j

(1+�j)
p
(0:381634+�j) (1+�j) (2:62031+�j)

3:162893�jp
(0:381634+�j) (1+�j) (2:62031+�j)

1
CCA

We show in Figure 3 the resulting ��j(�) for several values of �j .

6.3. Semi-regular multiresolution analysis: k = 2, m = 0, p = 1, n = 2. Let 2� denote the

continuous orthogonal scaling function of Daubechies supported on [0; 3] and let

� =
p
2

�
2�(2 �+2)
2�(2 �+1)

�
:
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Figure 3. ��j(�) from Example 6.2 for (a) �j = 2 and (b) �j = 10.

Then, as discussed in Section 5.1, � is an orthogonal generator supported on [�1; 1]. The local

linear independence condition for minimal support may be veri�ed from the support properties of

� and the fact that the components of �R are orthogonal to the components of �L, thus showing

that � is a minimally supported generator with k = 2. Also, note that � is continuous and has

accuracy 2. In this example, it is the accuracy that determines the squeeze map.

Recall that 2� satis�es a re�nement equation

2� =

3X
j=0

cj 2�(2 � �j)(25)

where

c0 =
1 +

p
3

4
; c1 =

3 +
p
3

4
; c2 =

3� p
3

4
; c3 =

1�p
3

4
:

Using the re�nement equation it is possible to calculate the following coeÆcients from the zeroth

and �rst moments of 2�:

�0(0) =

�
1p
2
;
1p
2

�
; �1(0) =

 
�1� p

3

4
p
2

;
1�p

3

4
p
2

!

and

h�R;�Ri =
 

7
12 +

5

7
p
3

1

28
p
3

1

28
p
3

5
12

+ 5

7
p
3

!
; h�L;�Li =

 
5
12 � 5

7
p
3

�1
28

p
3

�1
28
p
3

7
12
� 5

7
p
3

!

Then

R(�) =
1

2

�
1� p

3 +
�
1 +

p
3
�
�

�
1 +

p
3
�
(1� �)�

1� p
3
�
(1� �) 1 +

p
3 +

�
1�p

3
�
�

�
and �

h�L;�Li+ �R(�)h�R;�RiR(�)>
�
=

1

84

�
a(�) b(�)

b(�) c(�)

�
where

a(�) = 35� 20
p
3 + 4

�
21 + 8

p
3
�
�� 4

�
44 + 23

p
3
�
�2 +

�
141 + 80

p
3
�
�3
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b(�) = (�1 + �)
�p

3� 84�� 31
p
3�+ 42�2 + 19

p
3�2

�

c(�) = 49� 20
p
3 + 4

�
21 + 8

p
3
�
�� 4

�
19 + 2

p
3
�
�2 +

�
27� 4

p
3
�
�3

The factors Bj may then be calculated from (20).

6.4. Irregular multiresolution analysis: k = 1, m = 0, p = 2, n = 3. Let
�
a`
�
`2Z be a

sequence of nested knot sequences such that a`+12j = a`j for `; j 2 Z and let V` = S0;2(a
`) the space

of continous piecewise quadratic splines with break points given by a`. From the theory of splines

it follows that (V`) is a multiresolution analysis. Here we construct a multiresolution (V 0
` ) such that

V` � V 0
` � V`+1

and each V 0
` has a local orthogonal basis. The local orthogonal basis for V 0

` is generated with a

generalization of the squeeze map idea. Our construction here extends the idea of intertwining

multiresolution analyses ([5] to the nonuniform case.

Let � = (h; q) where h and q are as in Example 6.1. Then V` = S�`(�) where �
` is the squeeze

map with knot sequence a` given by Rj = 1.

Let I`j = [a`j ; a
`
j+1]. The idea of the construction is to add basis functions w`

j 2 V` supported

on I`j for each j 2 Z to the basis B�`(�) in such a way that the resulting space V 0
` has a local

orthogonal basis. We �rst describe the construction when I = I`j = [0; 1], the general case will

follow by rescaling. Then a := a`+12j+1 is in (0; 1). De�ne q1;0, q1;1 and h1 by

q1;0(x) = q(x=a); q1;1 = q(
x� a

a
);

and

h1(x) =

8><
>:
x=a for x 2 [0; a]

(1� x)=(1� a) for x 2 [a; 1]

0 otherwise:

Observe that the space A of functions in V `+1 whose support is contained in [0,1] is spanned by q1;0,

q1;1, and h1. Note that q is in this 3-dimensional space. We choose w = w`
j in the 2-dimensional

orthogonal complement of q in A. A basis for this space is given by (with help from Mathematica)

u0 = a2(3a� 5)q1;0 + (1� a)2(2 + 3a)q1;1

u1 = (�2 + 3 (�1 + a) a3)q1;0 + (�2 + 3 (�1 + a)3 a)q1;1 + (
16

5
� 12 (�1 + a)2 a2)h1:

We choose w in A and orthogonal to q so that it is of the form

w = c1u1 + c2u2:

De�ne

�R = (I � Pspan(w;q))hR

and

�L = (I � Pspan(w(�+1);q(�+1)))hL
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where hR = h�[0;1) and hL = h�[�1;0). In order to construct a local orthogonal basis we require

h�R; �L(� � 1)i = 0

which is equivalent to the following quadratic equation in the variable c = c1=c2

0 =5
�
4� 5 (1� a)2 a2 (15 + (1� a) a)

�
(26)

� 20 (2 + a (9 + 13 a (�3 + 2 a))) c+ 4 (1 + 45 (1� a) a) c2

The discriminant of this equation is

80
�
4� 15 (1� a)2 a2

�2
giving the two solutions

c =
20(2 + a(9 + 13a(2a� 3)))� 4

p
5(4� 15(1� a)2a2)

8(1 + 45(1� a)a)
:

Hence, there are two choices for w for any a 2 (0; 1). For each a 2 (0; 1) choose one such w and

denote it by W� where � = (1� a)=a is the ratio of the lengths of the two subintervals [0; a] and

[a; 1]. Let �R;� = �R and �L;� = �L with w = W�. De�ne

��L;�R =

0
@�L;�L + �R;�R

q

W�R

1
A

and note that ��L;�R is continuous and supported on [�1; 1]. Given a`+1 we construct basis

functions supported on [a`j�1; a
`
j+1] = [a`+12j�2; a

`+1
2j+2] as follows. Let � `j be as in (1) with knot

sequence a`, let L`j = a`j+1 � a`j , and

�`j = L`+12j+1=L
`+1
2j

Note that the collection of functions

B` =
[
j2Z

��`
j�1

;�`
j Æ � `j

is an orthogonal system of functions. Let

V 0
` = spanL2B

`

for ` 2 Z. Then
V` � V 0

` � V`+1 � V 0
`+1

from which it follows that (V 0
` )`2Z is a multiresolution with local orthogonal basis B`.

Figure 4 shows several of the basis functions (we chose the minus branch of the square root) for

a` = : : : ; 0; 3; 7; 10; : : : and a`+1 = : : : ; 0; 1; 3; 6; 7; 8; 10; : : : .
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Figure 4. Continuous, orthogonal piecewise quadratic basis functions from Ex-

ample 6.4 with knots a`+1 = : : : ; 0; 1; 3; 6; 7; 8; 10; : : : .

7. Higher Order Accuracy and Smoothness

Let Snm be the space of polynomial splines of degree n with Cm knots at the integers. If we

denote An;m = fg 2 Snm : supp g = [0; 1]g then it is easy to see [6] that an orthogonal basis for

An;m is provided by �mi (t) = tm(1� t)mp
2m+5=2
i�2m�2(2t � 1), 2m+ 2 � i � n where p

2m+5=2
j (t) is the

monic ultraspherical polynomial of degree j with � = 2m+ 5=2. If we set � = (�m0 � � ��mn )T where

�mi , i = 0; : : : ; m, supp �mi = [�1; 1] are appropriately chosen (i.e., judicious linear combinations of

rim and lim, i = 0; : : : ; m with rim(t) = ti(1 + t)m+1 � 1 � t � 0 and lim(t) = ti(1� t)m+10 < t � 1)

then � and all its integer translates form a basis for Snm This basis is not orthogonal so � does

not generate a local orthogonal basis. We will modify � in order to construct an orthogonal set
of generators. We do this by adding to �, m + 1 functions wi chosen so that W ? An;m and

h(I � PW )�̂mi ; (I � PW )�̂mj (� � 1)i = 0 i; j = 1; : : : ; m+ 1. Here W = spanfwi : i = 1; : : : ; m+ 1g,
PW is the orthogonal projection onto W , and �̂mi = (I � PfAn;m;An;m(+1)g)�

m
i . In the examples

given below we will choose wi to be linear combinations of f�mj gj>n. In this way wi ? An;m since

the ftm(1 � t)mp
2m+5=2

l (2 � �1)g1l=0 is a set of orthogonal polynomials. Notice that the above wi

will have their knots located at the integers. This is in contrast to the construction carried out in

[6] where in order to build a MRA it was necessary to use wi with half integer knots.

7.1. C0 example. As a �rst example we consider the case m = 0. Then r0(t) = (1 + t) and

l0(t) = (1 � t) and we will choose wn
1 = �0n+1 + �n�

0
n+3. Since �0i is symmetric or antisymmetric

about 1=2 depending whether i is even or odd respectively we see that wn
1 chosen above will be

either symmetric or antisymmetric. With r̂n0 (�) = (I � PAn;0 )r0(� � 1) and l̂n0 (t) = (I � PAn0 )l0 we

choose �n so that h(I�Pwn
1
)r̂0; (I�Pwn

1
)l̂0(t)i = 0. This gives the following quadratic equation for

�n

hr̂n0 ; l̂n0 ihwn
1 ; w

n
1 i = hwn

1 ; r0(� � 1)ihwn
1 ; l0i;(27)
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Figure 5. The functions �0 and �3 from Section 7.1 for n = 3.

or

hr̂n0 ; l̂n0 i(h�0n+1; �0n+1i+ �2nh�0n+3; �0n+3i) =
(h�0n+1; r0(� � 1)i+ �nh�0n+3; r0(� � 1)i)(h�0n+1; l0i+ �nh�0n+3; l0i):(28)

>From [6] we �nd hr̂n0 ; l̂n0i = (�1)n+1n!
(n+3)!

, hr̂n0 ; r̂n0 i = 1
n(n+2)

and hr0; �0ni = 2n�2 n!(n�2)
2n!

. Furthermore

since h�0n; �0ni = 1
32

(n+2)!(n�2)!
(2n�1)!(2n+1)!! the above equation may be solved for �n to obtain,

�n = �((2n+ 7)(2n+ 3)(n+ 1)�p3(2n+ 7)(2n+ 3)(n+ 1)(n+ 3)(n+ 3))(2n+ 5)

(n+ 2)(n+ 1)(n2 � 5n� 30)

and �
n;0
0 is given by

�
n;0
0 (t) = (I � P(wn

1
;wn

1
(�+1)))h(t);

where h(t) = (1� jtj)+.
With �

n;0
1 = wn

1 we have the following theorem,

Theorem 10. For n � 3 �n = (�
n;0
0 ; �

n;0
1 ; �02 : : : ; �

0
n)

T constructed as above is a continuous or-
thogonal generator for B(�). Furthermore �n has accuracy n + 1.

7.2. C1 example. We now construct a family of C1 orthogonal compactly supported generators

which have varying degrees of accuracy. In this case four ramp functions, ri1 = ti(1+t)2 i = 0; 1 and

li1 = ti(1� t)2 i = 0; 1, are needed in the construction of the orthogonal generators with support

equal to [�1; 1]. We set r̂
n;i
1 (�) = (I � PAn;1 )r

i
1(� � 1) and l̂

n;i
1 (t) = (I � PAn;1)l

i
1. The necessary
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integrals to compute the above projections can be found in [6]. In order to make the computations

somewhat more tractable we biorthogonalize the above ramp functions. Utilizing the integrals [6]

hr̂n;10 ; l̂
n;1
0 i = 4(�1)n+1(n2 + 2n� 9)(n� 2)!

(n+ 3)!
;(29)

hr̂n;10 ; l̂
n;1
1 i = 12(�1)n+1(n� 2)!

(n+ 3)!
;(30)

and

hr̂n;11 ; l̂
n;1
1 i = 36(�1)n+1(n� 3)!

(n+ 4)!
:(31)

we set rn;0 = r̂
n;1
0 ; ln;0 = l̂

n;1
0 , rn;1 = r̂

n;1
1 � hr̂n;11

;ln;0i
hrn;0;ln;0irn;0, and ln;1 = l̂

n;1
1 � hl̂n;11

;rn;0i
hrn;01;ln;1i ln;1. With the

help of the inner products given above, we �nd

hrn;1; ln;1i = (�1)n36(n� 3)!

(n+ 4)!(n2+ 2n� 9)
;(32)

and

hrn;1; �1i i = �3

8

2n+i(n+ i)!(n+ i� 4)!(i2+ i+ 2ni� n � 3)

(2n+ 2i)!(n2 + 2n� 9)
:(33)

Two functions wi i = 1; 2 will be needed to construct orthogonal generators from the above ramp

functions and these will be symmetric and antisymmetric with respect to 1=2 in order to con-

struct symmetric or antisymmetric generators. To this end let w1 = v0(n) + �1(n)v2(n) where
vi(n) linear combination of �1n+1+i and �1n+3+i chosen so that hvi(n); rn;1i = 0. Thus v0(n) =

� (5n+9)(n�2)
2(2n+5)(2n+3)

�1n+1 + �1n+3 and v2(n) = �9 (n+3)(n+1)n
2(2n+9)(2n+7)(5n+9)

�1n+3 + �1n+5: Likewise w2 = v1(n) +

�2(n)v3(n) where vi(n) i = 1; 3 are orthogonal to rn;0. In this case v1(n) = � (n+8)(n+1)n
2(2n+7)(2n+5)(n+8)

�1n+2+

�1n+4 and v3(n) = v1(n+2). The biorthogonality of the ramps and the construction of vi i = 0; 1; 2; 3

imply that each �i(n) must be chosen as a solution to the equation,

hrn;i; ln;iihwi+1; wi+1i = hwi+1; r
1
i (� � 1)ihwi+1; l

1
i i:

Utilizing (32), (33), and h�1n; �1ni = n!(n+8)!

256(2n+9)!!(2n+7)!!
to compute the inner products needed in the

above equation we �nd using a symbolic manipulation routine such as maple that

�1(n) =

(5n+ 9)(2n+ 7)

(n+ 3)

(2n+ 11)q1(n)� (n + 4)(n+ 5)(5n+ 9)(2n+ 7)f5(2n+11)(n+4)
n(n+1)(2n+3)

q2(n)g
1

2

2q3(n)
;

where

q1(n) = 41n5 + 625n4 + 3733n3 + 11099n2 + 17010n+ 11340;

q2(n) = 17n5 + 131n4 � 105n3 � 2979n2 � 7884n� 6804;

and

q3(n) = 37n7 + 1376n6 + 18862n5 + 139394n4 + 502291n3 + 1099160n2+ 1287090n+ 635040:
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Likewise

�2(n) =

(2n+ 9)(n+ 8)

(n+ 3)(n+ 6)

(�(2n+ 13)q4(n)� (n+ 5)(n+ 6)(n+ 8)(2n+ 9)f7(2n+13)(n+4)(n+1)
(2n+5)(n+2)

q5(n)g 1

2 )

2q6(n)
;

where

q4(n) = 11n6 + 115n5 + 323n4 + 893n3 + 8642n2 + 28968n+ 25200;

q2(n) = 3n5 + 27n4 + 7n3 � 503n2 � 1486n� 1400;

and

q6(n) = 5n7 + 39n6 � 335n5 � 5129n4 � 29484n3� 112048n2� 242304n� 159600:

Knowing w1 and w2, we are now able to construct the orthogonal C1. Let h0(t) = 2jtj3 � 3 jtj2 +
1; if t 2 [�1; 1); and 0 elsewhere, h1(t) = (1 � jtj)2t; if t 2 [�1; 1); and 0 elsewhere, and �

n;1
i+1 =

wi; i = 1; 2. Then with �
n;1
i = (I � P(�1

2
;::: ;�1

n
;�1
2
(�+1);::: ;�1

n
(�+1)))hi, i = 0; 1. the above computations

give,

Theorem 11. For n � 5, and �i(n) given above �1(n) = f�n;10 ; : : : ; �1ng� is a continuously di�er-

entiable orthogonal generator for B(�1(n)). Furthermore the last n� 1 functions are symmetric or

antisymmetric about 1=2. The �rst function �
n;1
0 is symmetric about 0 while �n;11 is antisymmetric

about 0.

We now construct the squeeze map associated with �1(n). Since the last n � 2 generators are

supported on [0; 1] we need only concentrate on �
n;1
0 and �

n;1
1 . Because of the de�nition of h0 and

h1 and the symmetry of �
n;1
0 and �

n;1
1 it is easy to see that W (n) is a diagonal matrix for all n.

Therefore R(n) is as in the previous C1 example and with A
(j)
L a diagonal matrix R(n) is equal

to A
(j)
R . In order to complete the construction of the squeeze map we need to compute the inner

products h�L;�Li and h�R;�Ri. From equation(3.9) in [6] (we would like to point out some errors

in that equation namely r
n;k
i+1 in the �rst term on the right hand side should be r

n;k
i , the factor

multiplying the third term on the right hand side should be (n-k-1-i), and the factor multiplying

the last term should be (n+k+i+3)) we �nd that

hrn;10 ; r
n;1
0 i = 4

(n2 + 2n � 6)(n� 2)!

(n+ 3)!
;(34)

hrn;11 ; r
n;1
0 i = 6

(n� 2)!

(n+ 3)!
;(35)

and

hrn;11 ; r
n;1
1 i = 12

(n� 3)!

(n+ 4)!
:(36)

To continue on we choose the minus sign in �1(n) and the plus sign in �2(n) to compute �
n;1
i i = 2; 3.

Then (33) and the norm squared of �1n can be employed to compute (using a symbolic manipulation

routine such as maple) the norms of �
n;1
i i = 2; 3 and the inner products of these functions with
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Figure 6. The functions �
n;1
i for n = 6, and i = 0::3.

r̂
n;1
i ; i = 0; 1. With these in hand, equations (34),(35), and (36) can be used to compute h�R;�Ri
which is

h�R;�Ri =
 

4 n5+3n4�10n3�21n2+27n+18
(n�2)(n2+2n+9)(n+1)(n+2)(n+3) �6 n3�9n+6

(n�2)(n2+2n+9)(n+1)(n+2)(n+3)
�6 n3�9n+6

(n�2)(n2+2n+9)(n+1)(n+2)(n+3) 12 n�3
(n�2)(n2+2n+9)(n+1)(n+2)(n+3)

!
:

Since these functions are either symmetric or antisymmetric h�L;�Li is the same as the above

matrix except that the o� diagonal elements take the opposite sign. Thus equation (3) becomes

BBT =

(Lj + Lj�1)

0
@ 4

(n5+3n4�10n3�21n2+27n+18)
(n�2)(n2+2n+9)(n+1)(n+2)(n+3) 6

(Lj�Lj�1)(n3�9n+6)
Lj�1(n�2)(n2+2n+9)(n+1)(n+2)(n+3)

6
(Lj�Lj�1)(n3�9n+6)

Lj�1(n�2)(n2+2n+9)(n+1)(n+2)(n+3) 12
(L2

j
�LjLj�1+L2j�1)(n�3)

L2
j�1

(n�2)(n2+2n+9)(n+1)(n+2)(n+3)

1
A
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The determinant of the above matrix may be written as

det(BBT ) =
(Lj + Lj�1)2

(Lj�1(n� 2)(n2 + 2n+ 9)(n+ 1)(n+ 2)(n+ 3))2
[12(n3 � 9n� 18)(L2j + L2j�1)

+6(5n5 � 92n3 + 54n2 + 423n� 450)LjLj�1]

so that (20) may be used to compute B.
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