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Abstract. Different definitions of spectra have been proposed over the years to characterize
the asymptotic behavior of nonautonomous linear systems. Here, we consider the spectrum based
on exponential dichotomy of Sacker and Sell [J. Differential Equations, 7 (1978), pp. 320–358] and
the spectrum defined in terms of upper and lower Lyapunov exponents. A main goal of ours is to
understand to what extent these spectra are computable. By using an orthogonal change of variables
transforming the system to upper triangular form, and the assumption of integral separation for the
diagonal of the new triangular system, we justify how popular numerical methods, the so-called
continuous QR and SVD approaches, can be used to approximate these spectra. We further discuss
how to verify the property of integral separation, and hence how to a posteriori infer stability of the
attained spectral information. Finally, we discuss the algorithms we have used to approximate the
Lyapunov and Sacker–Sell spectra and present some numerical results.
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1. Introduction. Lyapunov exponents, or Lyapunov characteristic numbers,
characterize growth rates of time dependent linear differential equations and, by lin-
earizing about trajectories, measure rates of convergence or divergence of nearby tra-
jectories for nonlinear differential equations. For an n-dimensional problem, there are
n Lyapunov exponents: these are the natural generalization to time dependent lin-
ear differential equations of the eigenvalues for autonomous linear systems. Although
Lyapunov exponents are a set of n points, it is perhaps more natural to think of the
spectrum of a linear nonautonomous system as possibly being a continuum. For ex-
ample, consider the linear scalar differential equation ẋ = (sin(ln(t))+cos(ln(t)))x for
t ≥ t0 > 0: the solution is x(t) = exp(t sin(ln(t)))κ0, κ0 = x(t0) exp(−t0 sin(ln(t0))),
so that all growth rates in the interval [−1,+1] are attained.

This work is an attempt to blend the numerical techniques developed to approx-
imate Lyapunov exponents with stability theory for Lyapunov exponents developed
over 30 years ago. Characteristic exponents were developed by Lyapunov in his the-
sis [22] that was first published in 1892. Many of the ideas from Lyapunov’s thesis
and further developments on Lyapunov exponents are contained in the monograph
of Adrianova [1] which serves as an excellent accessible introduction to the use of
Lyapunov exponents in stability theory. Important results on stability of Lyapunov
exponents that we use are due to Bylov [6], Bylov et al. [5], Bylov and Izobov [7], and
Millionshchikov [24, 25]. An alternative to the spectrum of Lyapunov is based upon
defining a spectrum in terms of exponential dichotomy. Important works are the book
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COMPUTING SPECTRAL INTERVALS 517

of Coppel [9] on exponential dichotomy in stability theory, the work of Sacker and
Sell [30] which defines a spectrum in terms of exponential dichotomy, and the work
of Palmer [28] who showed that the structurally stable linear systems on the half-line
are those with exponential dichotomy.

A contribution of this paper is to show, under certain natural conditions, the
relationship between three definitions of spectra. The first spectrum is commonly
referred to as the Sacker–Sell spectrum and its origin may be traced back to [30]. The
second spectrum generalizes the original definition of Lyapunov [22] so that it may be
viewed as a continuous spectrum. The third spectrum is motivated by computational
considerations, since its definition is based upon the information one may be able to
retrieve when using the so-called QR method to approximate Lyapunov exponents.

The assumption under which we are able to show the relationship between these
three spectra is integral separation. It has been well known in the theoretical com-
munity (see the results summarized in [1]) that, for systems with distinct Lyapunov
exponents, integral separation is a necessary and sufficient condition for stability of
the exponents, i.e., for continuity of the exponents with respect to changes in the
coefficient matrix. Thus, it is natural to assume such a condition if we are interested
in numerical approximation of the Lyapunov exponents.

We will emphasize how integral separation can be characterized for the numerical
techniques that have been proposed to approximate Lyapunov exponents.

1. The continuous QR method is based upon finding an orthogonal change of
variables transforming the system to upper triangular form. Then, the Lya-
punov exponents are determined from the diagonal elements of the new sys-
tem. The approach can be made legitimate under the assumption of regularity
of the system. However, in spite of being a strong assumption, regularity does
not ensure stability of the exponents. This motivated us to consider integral
separation of the diagonal of the upper triangular coefficient matrix: we prove
that this is sufficient for stability of the Lyapunov exponents.

2. We also consider a method for finding Lyapunov exponents based upon de-
composing a fundamental matrix solution via a smooth singular value de-
composition, the SVD approach. If such decomposition is feasible,1 then the
system is transformed to diagonal form, and the Lyapunov exponents are
extracted from time averages of the diagonal system. Again, this can be jus-
tified under the assumption of regularity. But, rather, we show that if the
new diagonal system has an integrally separated diagonal, then the Lyapunov
exponents can be found from the diagonal system and are stable.

In spite of their importance in the physical sciences, Lyapunov exponents have
received little attention from the numerical community. This is certainly due to the
inherent difficulties (and uncertainties) present in the task, but we believe that it is
also due to the fact that stability theory for Lyapunov exponents is not as well known
as it should be. For this reason, and also to make the present work self-contained, the
first two sections of this paper present background information. Sections 2 and 3 sum-
marize results from [1] on Lyapunov exponents and on equivalence between stability of
distinct Lyapunov exponents and integral separation. Section 4 summarizes the three
spectra we consider. Sections 5, 6, and 7 contain our main results: under assumptions
of integral separation, we show some relationships between the three spectra. Further,
we validate the QR and SVD techniques to find the Lyapunov spectra. In section 8,
we detail numerical techniques based on the continuous QR method to approximate

1E.g., it is feasible if the singular values stay distinct for all times t.
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518 LUCA DIECI AND ERIK S. VAN VLECK

the spectra, and we also discuss how we can attempt to verify integral separation of a
system. Finally, we give some new results on the relation between integral separation
and the Sacker–Sell spectrum and outline a computational procedure to approximate
such a spectrum. In Section 9 we present numerical experiments. Section 10 contains
conclusions.

2. Lyapunov exponents theory. The characteristic exponent of a (nonvan-
ishing) function f(t) is defined as

χ(f) = lim sup
t→∞

1

t
ln |f(t)|.(2.1)

The following equalities relate the upper and lower characteristic exponents of f and
1/f and will be useful when relating the exponents of a linear system and of its
adjoint:

lim supt→∞
1
t ln |f(t)| = − lim inft→∞ 1

t ln |1/f(t)|,
lim inft→∞ 1

t ln |f(t)| = − lim supt→∞
1
t ln |1/f(t)|.(2.2)

We now summarize some results on properties of characteristic exponents.
Theorem 2.1 ([1, Thms. 2.1.2 and 2.1.4]). The characteristic exponent of a

product does not exceed the sum of the characteristic exponents, i.e., χ(fg) ≤ χ(f) +
χ(g). Moreover, if χ(f) + χ(1/f) = 0, then χ(fg) = χ(f) + χ(g).

Definition 2.2. The Lyapunov exponent of a vector valued function x : t ∈ R→
R

n is defined as the Lyapunov exponent of the norm: χ(x) = χ(||x||).
In this work, we restrict our consideration to the 2-norm, ‖x(t)‖2, and similarly for

matrix valued functions. The advantage is that these are invariant under orthogonal
transformations, but similar results would hold for different norms.

Consider now an n-dimensional linear system

ẋ = A(t)x ,(2.3)

where A is continuous and bounded: supt ‖A(t)‖ < ∞. Given a fundamental matrix
solution X of (2.3), consider the quantities

λi = lim sup
t→∞

1

t
ln ||X(t)ei||, i = 1, . . . , n,(2.4)

where ei denotes the ith standard unit vector. When
∑n

i=1 λi is minimized with re-
spect to all possible fundamental matrix solutions, then the λi are called the Lyapunov
exponents, or Lyapunov characteristic numbers, and the corresponding fundamental
matrix solution is called a normal basis. In general, the Lyapunov exponents satisfy

n∑
i=1

λi ≥ lim sup
t→∞

1

t

∫ t

0

Tr(A(s))ds,(2.5)

where Tr(A(s)) is the trace of the matrix A(s).
Remark 2.1. The Lyapunov exponents are unaffected by what happens to X on a

finite interval. For this reason, in (2.5) and elsewhere in this paper, one may replace
0 with any other (finite) value of t. With this in mind, we will continue using 0 as
the lower limit of integration.
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COMPUTING SPECTRAL INTERVALS 519

Along with (2.3), we will also need to consider the associated adjoint equation

ẏ(t) = −AT (t)y(t).(2.6)

Similarly to (2.4), one can define the Lyapunov exponents for (2.6); call them {−µi}ni=1.
We will henceforth restrict our consideration to the system (2.3) and the λi exponents
only, but of course everything can be formulated also in terms of the adjoint system
(2.6) and the µi’s.

Given any fundamental matrix solution, Lyapunov showed how to construct a
normal fundamental matrix solution.

Theorem 2.3 (see Lyapunov’s construction of a normal basis [22]). Consider a
matrix solution Z(·) = [Z1, . . . , Zn] such that the Lyapunov exponents of the columns
of Z are ordered as χ(Z1) ≥ · · · ≥ χ(Zn). Then, there exists a unit upper triangular
matrix C such that X(·) = Z(·)C is normal. Similarly, if the Lyapunov exponents of
the columns of Z are ordered as χ(Z1) ≤ · · · ≤ χ(Zn), then there exists a unit lower
triangular matrix C such that X(·) = Z(·)C is normal.

Remark 2.2. The assumption of ordered characteristic exponents for the columns
of Z is not stringent, since it can be trivially achieved via column permutation of any
matrix solution. In the original work of Lyapunov (see also [1]), the matrix C was
taken as a unit lower triangular with the corresponding assumption that the growth
rates of the columns of Z are ordered as χ(Z1) ≤ · · · ≤ χ(Zn). However, the ordering
in which C is taken to be unit upper triangular is more natural for us, since often
we end up working with upper triangular systems, and we should expect that the
growth rates will be ordered from largest down to smallest. On the other hand, when
working with the adjoint, it is the reverse ordering which is more natural; hence the
use of a unit lower triangular C is more appropriate in this case. Indeed (see [1,
Cor. 3.6.2]), if the basis X is normal for (2.3), then the basis X−T is normal for
the adjoint system; here and elsewhere in this work, X−T is shorthand notation for
(X−1)T . Conceptually, then, we can always work with a normal basis and assume to
have ordered Lyapunov exponents for a system and its adjoint:

λ1 ≥ λ2 ≥ · · · ≥ λn and − µn ≥ · · · ≥ −µ2 ≥ −µ1 .

Indeed, we will henceforth assume that we are working with a normal matrix solution
X.

A fundamental property of Lyapunov exponents is that they (and their stability
properties) are preserved under Lyapunov transformations.

Definition 2.4. A smooth invertible change of variables y ← T−1x is called a
Lyapunov transformation if T , T−1, and Ṫ are bounded.

Clearly, under a Lyapunov transformation, (2.3) is transformed into

ẏ = B(t)y, B = T−1AT − Ṫ T−1 .(2.7)

For example, it has been known since Perron [29] and Diliberto [17] that there exists a
Lyapunov, and orthogonal, change of variables for which B is upper triangular. To see
this, write a fundamental matrix solution X(t) as Q(t)R(t), where Q is an orthogonal
matrix valued function and R is an upper triangular matrix valued function with
positive diagonal entries. Upon differentiating we have

AQR = QṘ+ Q̇R or Q̇ = AQ−QB.(2.8)

Since Ṙ = BR, then B is upper triangular. Since Q is orthogonal, if we let S(Q) :=
QT Q̇ = QTAQ − B, then the strict lower triangular piece of the skew symmetric
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520 LUCA DIECI AND ERIK S. VAN VLECK

function S can be defined as the corresponding piece of QTAQ, and the rest of S is
given by skew-symmetry.

Remark 2.3. In what follows, when considering upper triangular systems Ṙ = BR,
we will always assume that the diagonal entries of R are positive.

Linear systems for which the Lyapunov exponents exist as limits were called
regular by Lyapunov.

Definition 2.5. A system is regular (Lyapunov) if the time average of the trace
has a finite limit and equality holds in (2.5).

Example 2.1. A simple example of a linear system where a strict inequality holds
in (2.5) is

ẋ = (sin(ln t) + cos(ln t))y,

ẏ = (sin(ln t) + cos(ln t))x

which has Lyapunov exponents λ1 = λ2 = 1, but lim supt→∞
1
t

∫ t

0
trace(A(s))ds = 0.

It was shown by Lyapunov that regularity is maintained under Lyapunov transfor-
mations and, in particular, for a regular triangular system Ṙ = B(t)R the Lyapunov
exponents may be obtained as time averages of the diagonal elements of B:

λj = lim
t→∞

1

t

∫ t

0

Bjj(s)ds, j = 1, . . . , n.(2.9)

Further, in this regular case, the µi exponents of the adjoint system equal the λi
exponents.

3. Stability of Lyapunov exponents and integral separation. In this sec-
tion we summarize results on the relation between stability of the exponents and the
property of integral separation.

Definition 3.1. The characteristic exponents λ1 ≥ · · · ≥ λn of system (2.3) are
said to be stable if for any ε > 0 there exists δ > 0 such that supt∈R+ ||E(t)|| < δ
implies

|λi − γi| < ε, i = 1, . . . , n,(3.1)

where the γi’s are the (ordered) Lyapunov exponents of the perturbed system ẋ =
[A(t) + E(t)]x.

Naturally, since Lyapunov transformations preserve the exponents and the small-
ness of perturbations, stability of the characteristic exponents is invariant under Lya-
punov transformations.

Theorem 3.2 (see [1, Thm. 5.2.1]). If the λi exponents of (2.3) are stable, and
E → 0 as t → ∞, then the exponents of the perturbed system are also given by the
λi’s.

Definition 3.3 (see [1, Def. 5.3.2] and [6]). Write a fundamental matrix solution
columnwise X(t) = [X1(t), . . . , Xn(t)]. Then, X is integrally separated if for i =
1, . . . , n− 1 there exist a > 0 and d > 0 such that

||Xi(t)||
||Xi(s)|| ·

||Xi+1(s)||
||Xi+1(t)|| ≥ de

a(t−s)(3.2)

for all t, s : t ≥ s.
Again, if a matrix solution X is integrally separated, and T is a Lyapunov trans-

formation, then the matrix solution Y ← T−1X associated with (2.7) is also integrally
separated; i.e., integral separation is kept under Lyapunov transformations.
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COMPUTING SPECTRAL INTERVALS 521

Theorem 3.4 (see [1, Props. 5.3.1 and 5.3.3]). Integrally separated systems have
distinct Lyapunov exponents.

Definition 3.5. The functions gi, i = 1, . . . , n, are said to be integrally separated
if for i = 1, . . . , n− 1,

∫ t

s

(gi(τ)− gi+1(τ))dτ ≥ a(t− s)− d, t ≥ s, a > 0, d ∈ R.(3.3)

Theorem 3.6 (see [1, Thm. 5.4.7] and [7]). If the system (2.3) has distinct
characteristic exponents λ1 > · · · > λn, then they are stable if and only if there exists
a Lyapunov transformation z ← T−1x transforming (2.3) to the diagonal form

ż = diag[p1(t), . . . , pn(t)]z,(3.4)

where the diagonal elements, the pi, are integrally separated functions.
Theorem 3.7 (see [1, Thm. 5.4.8] and [7]). If the system (2.3) has distinct

characteristic exponents λ1 > · · · > λn, then they are stable if and only if there exists
a fundamental matrix solution with integrally separated columns, as in Definition 3.3.

Given the implications of integral separation, it is a comforting fact that it is a
natural condition to have. This is because of a result of Palmer [28, p. 21]. Palmer
considered the Banach space B, of continuous bounded matrix valued functions A,
with norm ||A|| = supt≥0 ||A(t)||, and—using results from [24] and [5]—he showed that
the systems with integral separation form an open and dense subset of B. Therefore,
integral separation is a generic property in B.

Regularity (see Definition 2.5), however, is not enough to ensure stability and
hence integral separation, as the following example from [1, p. 171] shows. Consider
the regular system

ẋ1 =
(

1 +
π

2
sin(π

√
t)
)
x1,(3.5)

ẋ2 = 0,

which has distinct Lyapunov exponents λ1 = 1 and λ2 = 0. Since for any n ∈ N,

∫ (2n)2

(2n−1)2

(
1 +

π

2
sin(π

√
t)
)
dτ = 0,(3.6)

then the system (3.5) is not integrally separated and hence the Lyapunov exponents
are not stable.

Remark 3.1. In all numerical works on approximation of Lyapunov exponents of
which we are aware, it is assumed that system (2.3) is regular; e.g., see [2, 3, 12, 13,
18, 19, 20, 21]. This is justified on the grounds that regularity is a prevalent condition
in a measure theoretic sense; see [27]. However, from the numerical point of view, we
need to insist that the Lyapunov exponents be stable, and for this to be true we need
integral separation, not regularity.

We now show that the adjoint system (2.6) has an integrally separated funda-
mental matrix solution if the original system (2.3) does.

Lemma 3.8. If (2.3) has a fundamental matrix solution with integrally separated
columns, then the adjoint (2.6) has a fundamental matrix solution with integrally
separated columns.
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522 LUCA DIECI AND ERIK S. VAN VLECK

Proof. Because of (2.7) and (2.8), we may consider, without loss of generality, an
upper triangular system Ṙ = BR with an integrally separated fundamental matrix
solution R. Then S = R−T satisfies Ṡ = −BTS. Since R has integrally separated
columns, by Theorems 3.6 and 3.7, there exists a Lyapunov transformation L such that
D = diag(pi) = L−1BL− L−1L̇ and the pi are integrally separated, i.e., they satisfy

(3.3). Let Y = L−1R; then Y is integrally separated and Y = diag(exp(
∫ t

0
pi(s)ds)).

Let Z = (L−T )−1S so that Z = Y −T and Z satisfies Ż = −DTZ = −DZ. Then

Zii(t) = exp(− ∫ t

0
pi(s)ds) for i = 1, . . . , n, and so

Zi,i(t)

Zi,i(s)
· Zi+1,i+1(s)

Zi+1,i+1(t)
=
Yi+1,i+1(t)

Yi+1,i+1(s)
· Yi,i(s)
Yi,i(t)

≥ d exp(a(t− s)),

a > 0, t ≥ s, i = 1, . . . , n− 1.

Thus, by Theorems 3.6 and 3.7 the adjoint equation has an integrally separated fun-
damental matrix solution.

4. Three definitions of spectra. Consider (2.3). It is well known that if A(·)
is constant, then the asymptotic stability properties of the zero solution of (2.3) are
determined by the real parts of the eigenvalues of A and the corresponding eigenvec-
tors. In the case in which A is periodic in t, the Floquet theory effectively reduces the
question of stability to the constant coefficient case. For the general case, we recall
the next two classical concepts of stability, and we introduce a third related one.

4.1. Sacker–Sell spectrum. In [30], Sacker and Sell introduced a spectrum for
(2.3) based upon exponential dichotomy: the Sacker–Sell spectrum is given by those
values λ ∈ R such that the shifted system ẋ = [A(t)−λI]x does not have exponential
dichotomy. We will indicate the Sacker–Sell spectrum with ΣED. Recall that the
system (2.3) has exponential dichotomy if for a fundamental matrix solution X there
exists a projection P and constants α, β > 0 and K,L ≥ 1, such that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s), t ≥ s,
‖X(t)(I − P )X−1(s)‖ ≤ Leβ(t−s), t ≤ s.(4.1)

It is shown in [30] that ΣED is given by the union of at most n closed intervals. Thus,
it can be written, for some k: 1 ≤ k ≤ n, as

ΣED := [a1, b1] ∪ · · · ∪ [ak, bk].(4.2)

4.2. Lyapunov spectrum. Another characterization of spectrum is based on
the characteristic exponents of (2.3) and (2.6), the λi’s and −µi’s which we can
consider as being ordered: λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn. We define
the Lyapunov spectrum, written ΣL, as

ΣL :=

n⋃
j=1

[λij , λ
s
j ],(4.3)

where λij = µj and λsj = λj and, in fact, λj ≥ µj for j = 1, . . . , n. The last statement

is a consequence of the fact that the normal bases for (2.3) and (2.6) are X and X−T ,
so, if λj = χ(Xej), then −µj = χ(X−T ej). But obviously, (X−T ej)

T (Xej) = 1 for
all t so that Theorem 2.1 gives λj ≥ µj .
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COMPUTING SPECTRAL INTERVALS 523

Remark 4.1. Our definition of Lyapunov spectrum is strictly related to the co-
efficient of irregularity of Perron, who proved that a system is regular if and only if
λj = µj .

Remark 4.2. It must be appreciated that ΣL and ΣED provide information on
related, but different, questions. In particular, λ /∈ ΣL implies the existence of a
bounded solution to the homogeneous problem ẋ = (A(t) − λI)x, for some initial
condition x(0). Instead, λ /∈ ΣED implies both the existence of a bounded solution
to the homogeneous problem ẋ = (A(t) − λI)x for some x(0) and the existence of
a bounded solution to the nonhomogeneous problem ẋ = (A(t) − λI)x + f(t) for
any (continuous and bounded) function f(t), a condition which is not guaranteed
by λ /∈ ΣL. Obviously, both properties are quite important, and it depends on the
particular application in which we are interested whether we need to know ΣED or
whether knowledge of ΣL is sufficient.

4.3. Computed Lyapunov spectrum. The third spectrum we consider is
what we will call the computed Lyapunov spectrum, since it is close to what tradi-
tionally has been approximated. Its definition rests on the transformation of (2.3)
to upper triangular form via an orthogonal change of variables; see (2.7) and (2.8).
Consider the upper triangular system Ṙ = BR. We define the computed Lyapunov
spectrum, written ΣCL, as

ΣCL :=

n⋃
j=1

[λijj , λ
s
jj ], λijj = lim inf

t→∞
1

t

∫ t

0

Bjj(s)ds, λsjj = lim sup
t→∞

1

t

∫ t

0

Bjj(s)ds.

(4.4)

5. The Lyapunov and computed Lyapunov spectra. In this section we
prove that for upper triangular systems, integral separation of the diagonal elements
implies that the Lyapunov spectrum, ΣL, and the computed Lyapunov spectrum, ΣCL,
coincide. We prove this by constructing a bounded Lyapunov transformation that
transforms the upper triangular system to a diagonal system given by the diagonal of
the upper triangular system.

Theorem 5.1. For an upper triangular system Ṙ = BR with B smooth and
bounded, integral separation of the diagonal of B implies ΣL = ΣCL.

Proof. The proof is by induction. Write B in block form and define a transfor-
mation T1 using the same blocking:

B =


 b11 b12 B13

0 b22 B23

0 0 B33


 and T1 =


 1 x 0

0 1 0
0 0 I


 .(5.1)

We want to take x such that

T−1
1 BT1 − T−1

1 Ṫ1 =


 b11 0 B13 − xB23

0 b22 B23

0 0 B33


 .(5.2)

To obtain this, we take x satisfying{
ẋ = b11x− xb22 + b12,
lim

T→∞
x(T ) = 0;(5.3)
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524 LUCA DIECI AND ERIK S. VAN VLECK

that is,

x(t) = − lim
T→∞

∫ T

t

exp

(
−
∫ s

t

(b11(τ)− b22(τ))dτ

)
b12(s)ds.(5.4)

Since the diagonal elements of B are integrally separated (see (3.3)), we have

−
∫ s

t

(b11(τ)− b22(τ))dτ ≤ −a(s− t) + d, a > 0, s ≥ t,(5.5)

which implies that x is bounded and the transformed coefficient matrix is bounded.
Now we assume that the matrix function B has been progressively diagonalized

in its first p columns so that the transformed coefficient matrix has the form

B =


B11 B12 B13

0 bp+1,p+1 B23

0 0 B33


 ,(5.6)

where B11 : t → R
p×p is diagonal, and B12 : t → R

p×1, B13 : t → R
p×(n−p−1),

B23 : t → R
1×(n−p−1) are all continuous and bounded. Consider the transformation

Tp and transformed coefficient matrix of the form

Tp =


 Ip x 0

0 1 0
0 0 In−p−1


 , T−1

p BTp−T−1
p Ṫp =


B11 0 B13 − xB23

0 bp+1,p+1 B23

0 0 B33


 ,

(5.7)
where we require that x satisfies

ẋ = B11x− xbp+1,p+1 +B12 = (B11 − bp+1,p+1I)x+B12(5.8)

and limT→∞ x(T ) = 0. Then, since B11 is diagonal,

x(t) = − lim
T→∞

∫ T

t

exp

(
−
∫ s

t

(B11(τ)− I · bp+1,p+1(τ))dτ

)
B12(s)ds .

Since B12 is bounded and the diagonal of B is integrally separated, we have that x is
bounded and Tp is Lyapunov. Since Lyapunov transformations preserve the Lyapunov
spectrum, the result follows.

The following corollary is an immediate consequence of the above proof and The-
orems 3.6 and 3.7.

Corollary 5.1. Given an upper triangular system Ṙ = BR with B smooth,
bounded, and with integrally separated diagonal, then there exists an integrally sepa-
rated fundamental matrix solution.

As a partial converse to Theorem 5.1 we have the following.
Theorem 5.2. Suppose the system Ṙ = BR, with B bounded, continuous and

upper triangular, has an integrally separated fundamental matrix solution R. Then for
all ε > 0 there exists a permutation π such that |λsπ(i)−lim supt→∞

1
t

∫ t

0
Bii(s)ds| < ε.

Proof. Consider the system Ḋ = diag(B)D and let λi(D) = lim supt→∞
1
t

∫ t

0
Bii(s)ds.

Let L be the Lyapunov transformation defined by L = diag(ηi−1, i = 1, . . . , n) for
η ≥ η0 > 0. Then L−1B(t)L− L−1L̇ = diag(B(t)) + E(t), where E(t) is the strictly
upper triangular function of entries Eij(t) = ηj−iBij(t), for i = 1, . . . , n − 1 and
j = i + 1, . . . , n. Since L is Lyapunov, and stability of the exponents is preserved
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COMPUTING SPECTRAL INTERVALS 525

under Lyapunov transformations, then, for ε > 0 as given in the statement of the
theorem, there exists δ = δ(ε) such that supt |E(t)| < δ implies |λsi − λ′i| < ε, where
{λ′i}ni=1 denote the Lyapunov exponents of Ḋ = diag(B)D.

We claim that there exists a permutation π such that λ′i = λπ(i)(D). Let Π denote

a permutation matrix such that D̂ = ΠDΠT defines an ordering such that χ(D̂11) ≥
χ(D̂22) ≥ · · · ≥ χ(D̂nn). Notice that D̂ satisfies

˙̂
D = B̂DD̂, where B̂D = Π diag(B)ΠT

and χ(D̂ii) = χ(D̂ei) = χ(Π diag(B)ΠT ei) = χ(diag(B)eπ(i)). To complete the claim,

we need to show that the diagonal fundamental matrix solution D̂ is normal. By the
Lyapunov construction of a normal basis, there exists a unit upper triangular matrix
C such that D̂ · C is normal, but since setting C = I minimizes the sum of the
characteristic exponents of the columns, we have that D̂ is normal.

Remark 5.1. The Lyapunov exponents of Ḋ = diag(B)D are not necessarily
stable. The ordering of the Lyapunov exponents is not necessarily preserved; hence
the need for the permutation π.

6. Sacker–Sell spectrum and Lyapunov spectral intervals. In this section
we state and prove results relating the Sacker–Sell spectrum, ΣED, the Lyapunov
spectrum, ΣL, and the computed Lyapunov spectrum, ΣCL. The following lemma
shows that if a system has exponential dichotomy, then the principal matrix solution
and an orthogonal projection may be assumed.

Lemma 6.1. Suppose the linear system (2.3) admits an exponential dichotomy
for some fundamental matrix solution. Then it also admits an exponential dichotomy
for the principal matrix solution. Moreover, the projection P may be taken to be an
orthogonal matrix.

Proof. Assume that (2.3) admits an exponential dichotomy for a fundamental
matrix solution X(t) ≡ X(t;X0) with X(0) = X0. Then X(t;X0) = X(t, I)X0 and

X(t;X0)PX−1(s;X0) = X(t; I)(X0PX
−1
0 )X−1(s; I),

X(t;X0)(I − P )X−1(s;X0) = X(t; I)(X0(I − P )X−1
0 )X−1(s; I).

(6.1)

Let P̃ = X0PX
−1
0 and observe that P̃ 2 = P̃ , so P̃ is a projection and hence we have

that the principal matrix solution admits an exponential dichotomy.

Let S = range(P̃ ) and let V denote an orthonormal basis for S so that P1 = V V T

is the unique orthogonal projection onto S. From [9, pp. 16–17], it follows that the
principal matrix solution admits an exponential dichotomy with orthogonal projection
P1.

The following is essentially in [30], but we give a different proof.

Theorem 6.2. The computed Lyapunov spectrum is contained within the Sacker–
Sell spectrum.

Proof. Consider Ẋ = A(t)X with principal matrix solution X and the shifted
system Ẋλ = [A(t) − λI]Xλ with fundamental matrix solution Xλ. Fix λ such that
Xλ has exponential dichotomy. Then there exists a projection P , constants α, β > 0
and K,L ≥ 1 such that

‖Xλ(t)PX−1
λ (s)‖ ≤ Ke−α(t−s), t ≥ s,

‖Xλ(t)(I − P )X−1
λ (s)‖ ≤ Leβ(t−s), t ≤ s.(6.2)

By Lemma 6.1, the projection P can be chosen orthogonal and there exists an or-
thogonal matrix U such that UTPU = P1, where P1 is a diagonal matrix with entries
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526 LUCA DIECI AND ERIK S. VAN VLECK

either 0 or 1. Thus,

‖Xλ(t)UP1U
TX−1

λ (s)‖ ≤ Ke−α(t−s), t ≥ s,
‖Xλ(t)U(I − P1)UTX−1

λ (s)‖ ≤ Leβ(t−s), t ≤ s,(6.3)

or equivalently,

e−λ(t−s)‖W (t)P1W
−1(s)‖ ≤ Ke−α(t−s), t ≥ s,

e−λ(t−s)‖W (t)(I − P1)W−1(s)‖ ≤ Leβ(t−s), t ≤ s,(6.4)

where W (t) = X(t)U satisfies Ẇ = A(t)W . Let Π denote a column permutation
such that Z = WΠ implies χ(Z1) ≥ · · · ≥ χ(Zn), where Zi denotes the ith column of
Z. Decompose Z as Z(t) = Q(t)R(t), where Q(0) = Z(0) = UΠ and R(0) = I, and
notice that χ(R1) ≥ · · · ≥ χ(Rn). For this ordering of growth rates of the columns
of R the Lyapunov construction of a normal basis (see Theorem 2.3) takes the form
R(t) C, where C is a unit upper triangular matrix so the Lyapunov construction does
not change the diagonal elements of R.

In terms of R, the exponential dichotomy relationship for the shifted system is

‖Rλ(t)P2R
−1
λ (s)‖ ≤ Ke−α(t−s), t ≥ s,

‖Rλ(t)(I − P2)R−1
λ (s)‖ ≤ Leβ(t−s), t ≤ s,(6.5)

where P2 = ΠTP1Π. Recall that the computed Lyapunov spectrum is defined as⋃
j [λ

i
jj , λ

s
jj ], where

λsjj = lim sup
t→∞

1

t
ln(Rjj(t)) and λijj = lim inf

t→∞
1

t
ln(Rjj(t)).(6.6)

Assume that rank of P , hence of P1 and P2, is m. In (6.5) set s = 0 so we have
|Rλ(t)P2| ≤ Ke−αt. Since P2 is a permutation matrix (plus rows and columns of 0’s),
Rλ(t)P2 is a matrix containing m columns of Rλ(t) and n −m zero columns. Thus,
there must be m columns of R for which λsjj − λ = χ(Rjj)− λ ≤ χ(R•,j)− λ ≤ −α,

while for n −m rows of R−1 we have −λikk + λ = χ(R−1
kk ) + λ ≤ χ(R−1

k,•) + λ ≤ −β.

Thus, for m indices j we have λijj ≤ λsjj ≤ λ−α < λ and for n−m indices k we have

λ < λ+ β ≤ λikk ≤ λskk. Hence, λ /∈ ⋃
j [λ

i
jj , λ

s
jj ].

Theorem 6.3. Assume that for a linear homogeneous n-dimensional system the
Sacker–Sell spectrum is given by n disjoint intervals. Then there exists a fundamental
matrix solution with integrally separated columns.

Proof. Write the Sacker–Sell spectrum as
⋃n

i=1[ai, bi], and for i = 1, . . . , n − 1
choose λi = (ai+1+bi)/2. Obviously λi /∈ ΣED, and there exists a fundamental matrix
solution Xλi that has exponential dichotomy. Using the argument from Theorem 6.2,
there exists a projection Pi of the form Pi = ( 0 0

0 I ) and Ki, Li, αi, βi > 0 such that

Kie
−αi(t−s) ≥ ||Xλi

(t)PX−1
λi

(s)|| ≥ |Xλi(t)PX
−1
λi

(s)Xλi(s)Pc|
|Xλi(s)Pc|

=
‖Xλi(t)Pc‖
‖Xλi(s)Pc‖

=
‖Xj(t)‖
‖Xj(s)‖ · e

−λi(t−s)
(6.7)

for t ≥ s, and c = ej , j = i+ 1, . . . , n, and

Lie
βi(t−s) ≥ ||Xλi(t)(I − P )X−1

λi
(s)|| ≥ ‖Xλi(t)(I − P )X−1

λi
(s)Xλi(s)(I − P )c‖

‖Xλi(s)(I − P )c‖
=
‖Xλi(t)(I − P )c‖
‖Xλi(s)(I − P )c‖ =

‖Xj(t)‖
‖Xj(s)‖ · e

−λi(t−s)

(6.8)
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COMPUTING SPECTRAL INTERVALS 527

for t ≤ s, and c = ej , j = 1, . . . , i. Then

‖Xi(t)‖
‖Xi(s)‖ ·

‖Xi+1(s)‖
‖Xi+1(t)‖ ≥

1

Li
eβi(t−s) · 1

Ki
eαi(t−s) =

1

LiKi
e(αi+βi)(t−s) .(6.9)

Repeating for all i = 1, . . . , n− 1, and taking a = mini{αi +βi} and d = mini{ 1
LiKi
},

completes the proof.
Example 6.1. As a counterexample to a converse of Theorem 6.3, consider the

diagonal system with ẋ1 = (cos(ln t)+sin(ln t))x1 and ẋ2 = (−1+cos(ln t)+sin(ln t))x2

so that ΣCL = ΣL = [−1, 1] ∪ [0, 2]. Then, because of Theorem 6.2, the Sacker–Sell
intervals overlap, but

|x1(t)|
|x1(s)| ·

|x2(s)|
|x2(t)| = et−s, t ≥ s,(6.10)

so that x1 and x2 are integrally separated.
Even in the case of stable Lyapunov exponents, in general, the Lyapunov and

computed Lyapunov spectra are contained in the Sacker–Sell spectrum (see [30]).
The following example modeled after one of Perron (see [1, Ex. 4.4.1]) clarifies this
fact and it will be important in order to understand how we may approximate ΣED.

Example 6.2. Consider the linear differential equation ẋ = c(t)x, c(t) = sin(ln(t))+
cos(ln(t)), for t ≥ t0 > 0. The exact solution is x(t) = exp(t sin(ln(t)))κ0, κ0 =
x(t0) exp(−t0 sin(ln(t0))), and it is easily seen that the Lyapunov and computed Lya-
punov spectra coincide and are given by the interval [−1,+1]. Since the problem is
scalar, this Lyapunov spectrum is necessarily stable.

We will show that [−1, 1] ⊂ ΣED, that is, that there are values of λ > 1, and
λ < −1, for which the shifted system does not have exponential dichotomy. Consider
λ > 1; the case λ < −1 is similar. Then, to have exponential dichotomy in the shifted
system means that there exist constants α > 0 and K ≥ 1 such that

e−λ(t−s)e

∫ t

s
c(r)dr

= xλ(t)x−1
λ (s) ≤ Ke−α(t−s), t ≥ s ≥ t0, λ > 1 .(6.11)

We rewrite this in the equivalent form

eλt

eλs
e

∫ s

t0
cdτ

e

∫ t

t0
cdτ
≥ 1

K
eα(t−s)(6.12)

and consider the diagonal system

Ẋ =

(
λ 0
0 c(t)

)
X .(6.13)

Thus, to have exponential dichotomy is the same as asking that the principal matrix
solution of this system be integrally separated with constants 1

K < 1 and α > 0. This
is equivalent to the requirement that∫ t

s

(λ− c(τ))dτ ≥ a(t− s)− d, t ≥ s, a > 0 , d ≥ 0 ,(6.14)

which, in general, is not true. Let λM = eπ/2+e−π/2

eπ/2−e−π/2 = coth(π/2). If the functions λ
and c were integrally separated, then we should have∫ t

s

(λ− sin(ln(τ))− cos(ln(τ)))dτ ≥ a(t− s)− d ,
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528 LUCA DIECI AND ERIK S. VAN VLECK

or

λ(t− s)− (t sin(ln(t))− s sin(ln(s))) ≥ a(t− s)− d .
Now, consider the following sequences for t and s:

tk = exp(2kπ + π/2), sk = exp(2kπ − π/2).(6.15)

Then, along these sequences we would need to have

λe2kπ(eπ/2 − e−π/2)− e2kπ(eπ/2 + e−π/2) ≥ ae2kπ(eπ/2 − e−π/2)− d
or

a(eπ/2 − e−π/2) ≤ λ(eπ/2 − e−π/2)− (eπ/2 + e−π/2) + de−2kπ.

Thus, for 1 < λ < λM and k sufficiently large, λ(eπ/2 − e−π/2) − (eπ/2 + e−π/2) +
de−2kπ < 0, and so no positive a exists and the system cannot have exponential
dichotomy for 1 < λ < λM , where λM ≥ 1.09. A similar argument for λ < −1 leads
us to consider the diagonal system

Ẋ =

(
c(t) 0
0 λ

)
X ,(6.16)

so that having exponential dichotomy is equivalent to integral separation of the prin-
cipal matrix solution of (6.16) or (which is the same) to∫ t

s

(c(τ)− λ)dτ ≥ a(t− s)− d, t ≥ s , a > 0 , d ≥ 0 .(6.17)

Similarly to the above, we now obtain that we cannot have exponential dichotomy
for −1.09 ≤ λ < −1. Therefore, [−1.09, 1.09] ⊆ ΣED. This argument can be easily
improved by replacing π/2 in the definition of tk and sk in (6.15) with ω ≈ 1.25 (find ω
to maximize coth(ω)·sin(ω) so that ω is the positive root of cos(ω)·sinh(ω)−2 sin(ω) =
0). This shows that [−1.1187, 1.1187] ⊆ ΣED.

For the sake of completeness, we point out that in [16] we actually prove that—for
this example—ΣED = [−√2,

√
2]. We will use this fact in Example 9.1.

7. The SVD. To approximate Lyapunov exponents, an alternative to QR-based
techniques is based on the SVD of a fundamental matrix solution. This approach
has been used in [19, 20, 23]. Here we explore the feasibility of this approach, in
particular, the role of integral separation in this case. So, we will assume that we
have an integrally separated fundamental matrix solution X with ordered growth
rates: χ(X1) > · · · > χ(Xn).

Techniques based on the SVD need to assume that X admits a smooth SVD for all
t ≥ t0: X(t) = U(t)Σ(t)V T (t), where UTU = I, V TV = I,Σ = diag(σi, i = 1, . . . , n)
and U, V,Σ are all Cp functions, p ≥ 1. Unlike the QR factorization ofX, the existence
of such a smooth SVD is not obvious except in the case where the singular values stay
distinct. Still, some results are known: (i) If X is analytic, then the factors U, V,Σ
exist and are analytic (see [4]); (ii) if X ∈ Cp, p ≥ 1, then there exist smooth U, V, Σ
as long as the singular values do not coalesce with too high a degree of contact (in
general, U and V lose some degree of differentiability, while Σ stays Cp; see [11]
for a precise statement); (iii) generically (i.e., for a generic one-parameter family of
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COMPUTING SPECTRAL INTERVALS 529

nonsingular Cp functions X), then U, V,Σ are Cp, and in fact the σi singular values
are distinct for all t (see [11]).

To make some progress, let us henceforth assume that a smooth (at least C1)
SVD of X exists. Let G = UTAU for all t. We notice that since X = UΣV T for all
t, and all factors are smooth, then we must also have

Ẋ = AUΣV T = U̇ΣV T + U Σ̇V T + UΣV̇ T ,

so that by letting H = UT U̇ and K = V T V̇ , and noticing that H and K must be
skew-symmetric, one must have

Σ̇ = GΣ−HΣ + ΣK ,

and so we must have

σ̇i = Giiσi → σi(t) = σi(s)e

∫ t

s
Gii(τ)dτ

, i = 1, . . . , n .(7.1)

In [19, 20] under the assumption of distinct singular values, the authors derived
differential equations for U and Σ, integrated these numerically, and then set2

λi = lim sup
t→∞

1

t
ln(|σi(t)|) , i = 1, . . . , n .(7.2)

Under the assumption of distinct singular values, the differential equations describing
the evolution of U, V,Σ have been derived many times before (e.g., see [32]) and are

U̇ = UH, V̇ T = −KV T , Σ̇ = DΣ,(7.3)

where D = diag(G), HT = −H, KT = −K and, for i �= j,

Hij =
Gijσ

2
j +Gjiσ

2
i

σ2
j − σ2

i

, Kij =
(Gij +Gji)σiσj

σ2
j − σ2

i

.(7.4)

On the other hand, from the SVD of X the Lyapunov exponents may be obtained
as

χ(Xi) = lim sup
t→∞

1

t
ln ||Σ(t)V T (t)ei|| .(7.5)

Here, we explore the “equivalence” between (7.2) and (7.5) and at the same time
validate the methods based upon differential equations for the U, V , and Σ factors. We
will do this under the assumption that D, the diagonal of G, is integrally separated:∫ t

s

(Gkk(τ)−Gk+1,k+1(τ))dτ ≥ a(t− s)− d,(7.6)

a > 0, d ∈ R, t ≥ s, k = 1, 2, . . . , n− 1.

For some of the results here, we can assume also the following condition (simply (7.6)
with s = 0) that is weaker and easier to verify than (7.6):

2In fact, in [19, 20], it was assumed that the λi’s existed as limits.
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530 LUCA DIECI AND ERIK S. VAN VLECK

∫ t

0

(Gk,k(τ)−Gk+1,k+1(τ))dτ ≥ at− d,(7.7)

a > 0, d ∈ R, t ≥ 0, k = 1, . . . , n− 1.

Lemma 7.1. For all t, let X = UΣV T be a Cp SVD of X, p ≥ 1. Let G = UTAU
satisfy (7.7). Then, for t sufficiently large, we eventually have

σk(t) > σk+1(t), k = 1, . . . , n− 1.(7.8)

Proof. Take k = 1, . . . , n− 1. From (7.1) and (7.7), we have

σk(t) =
σk(0)

σk+1(0)
σk+1(0)e

∫ t

0
Gkk(τ)dτ

≥ σk(0)

σk+1(0)
σk+1(0)e

∫ t

0
Gk+1,k+1(τ)dτ

eate−d .

That is,

σk(t) ≥
[
σk(0)

σk+1(0)
eate−d

]
σk+1(t), t ≥ 0 .

Now, let tk be sufficiently large so that the term in brackets is greater than 1. Re-
peating the argument for all k = 1, . . . , n− 1 gives the result.

Based upon Lemma 7.1, as long as (7.7) holds, we may as well assume that
all singular values are distinct, and ordered, for all times t ≥ 0. In particular, the
differential equations (7.3) with H and K defined by (7.4) hold. Having done this,
we now show the equivalence between (7.2) and (7.5).

Theorem 7.2. Under the assumption (7.6), we have χ(Xi) = lim supt→∞
1
t ln(|σi(t)|).

Proof. Let X = UΣV T be rewritten as X = UP , P = ΣV T , so that

Ṗ = (UTAU − UT U̇)P,(7.9)

and since U is a Lyapunov transformation χ(Pi) = χ(Xi). Consider also the system for
Σ given in (7.3). We want to show that χ(Σii) = χ(Pi). If we rewrite the differential
equations for P using the differential equations for Σ and V , then Ṗ = (D−ΣKΣ−1)P.

Let E = ΣKΣ−1, so for i > j, Eij = Kij
σi

σj
and thus

Eij = (Gij +Gji)
1

σ2
j

σ2
i

− 1
.(7.10)

We have

σ2
j

σ2
i

=
σ2
j (0)

σ2
i (0)

exp

(
2

∫ t

0

(Gjj(τ)−Gii(τ))

)
dτ ,(7.11)

and since (7.6) holds, then
σ2
j

σ2
i

→∞ and thus Eij → 0 as t→∞ for i > j. Obviously,

we also have Eii = 0 for all i. Finally, for j < i, Eji = Kji
σj

σi
= −Kij

σj

σi
. But

Kij
σj
σi

=
(Gij +Gji)

1− σ2
i

σ2
j

,
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COMPUTING SPECTRAL INTERVALS 531

and now 1− σ2
i

σ2
j

does not go to ∞, and hence in general Eji does not approach 0 as t

approaches infinity. So, we write

E = low(E) + upp(E),

where upp(E) is the strictly upper triangular part of E and low(E) is the strictly
lower triangular part of E, and consider the system

Ṗ = (D − upp(E))P .(7.12)

Since low(E) → 0 as t → ∞, and the exponents of the P system (7.9) are stable,
then the Lyapunov exponents of the P system and of the P system (7.12) are the
same by Theorem 3.2. In other words, χ(Pi) = χ(P i) for i = 1, . . . , n. Finally, with
assumption (7.6) we can apply Theorem 5.1 to obtain

χ(P i) = χ(P ii) = χ(Σii), i = 1, . . . , n.(7.13)

Remark 7.1. From the proof of Theorem 7.2, it is apparent that for the Lyapunov
exponents of the systems (7.9) and (7.12) to coincide it suffices to assume (7.7).
However, the stronger condition (7.6) was needed to prove χ(P i) = χ(P ii).

When (7.7) holds, and a fortiori when (7.6) holds, we have the following result.
Lemma 7.3. Let (7.7) hold. Then, the orthogonal matrix function V (t)→ V , as

t→∞, where V is a constant orthogonal matrix.
Proof. Recall that V satisfies V̇ T = −KV T , where K is defined in (7.4), Kij =

(Gij + Gji)
σiσj

σ2
j
−σ2

i

for i �= j, and Kii = 0 for all i. We claim that, under assumption

(7.7), Kij → 0 exponentially fast as t→∞. For i > j, we have

Kij = (Gij +Gji)
σi(0)

σj(0)

exp(
∫ t

0
(Gjj(τ)−Gii(τ))dτ)

exp(2
∫ t

0
(Gjj(τ)−Gii(τ))dτ)− σ2

i
(0)

σ2
j
(0)

= (Gij +Gji)
σi(0)

σj(0)

[
1

exp(
∫ t

0
(Gjj(τ)−Gii(τ))dτ) + σi(0)

σj(0)

(7.14)

+
σi(0)

σj(0)

1

exp(2
∫ t

0
(Gjj(τ)−Gii(τ))dτ)− σ2

i
(0)

σ2
j
(0)

]
,

and so by (7.7) we have that for i > j, Kij → 0 exponentially fast, as t → ∞. By
skew-symmetry, the same holds true also for i < j. The result now follows from [10,
Thm. 2, p. 90].3

Remark 7.2. Lemma 7.3 may be used indirectly to determine if (7.7) holds, a fact
which was apparently used in [19].

The condition (7.6) is very similar to the condition (3.3) on the diagonal of the
upper triangular coefficient matrix B obtained when finding the QR factorization of a

3Theorem 2 of [10] is concerned with the system Ẋ = (A + B(t))X when A is constant
with simple eigenvalues λi and associated eigenvectors ξi, i = 1, . . . , n, and B is continuous
such that

∫∞
t0

‖B(t)‖dt < ∞. In such a case, the cited theorem states that X converges to

diag(eλ1t, . . . , eλnt)[ξ1, . . . , ξn]C, where C is a constant invertible matrix. However, the result and
the proof in [10] hold true by just requiring that A is diagonalizable (not necessarily with distinct
eigenvalues). We have used this fact with A = 0.
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532 LUCA DIECI AND ERIK S. VAN VLECK

fundamental matrix solution. In fact, these two conditions lead to similar outcomes.
The following is the QR analogue of Lemma 7.3.

Lemma 7.4. Consider the upper triangular system Ṙ = BR, where B is bounded
and continuous, and assume that the diagonal of B is integrally separated, as in (3.5).
Then, R→ diag(R)Z as t→∞, where Z is a constant upper triangular matrix with
1’s on the diagonal.

Proof. Write R = DZ, where Z = D−1R, and D = diag(R). Then D satisfies
Ḋ = diag(B)D and Z satisfies Ż = EZ, where E = D−1(B − diag(B))D. Then,

Eij = Bij · Rjj

Rii
for i < j and Eij = 0 for i ≥ j. Now,

Rjj

Rii
=
Rjj

Rii
(0) e

∫ t

0
(Bjj−Bii)dτ .

Let j = i+k for some k = 1, . . .. The diagonal of B is integrally separated (see (3.5)),
and so ∫ t

0

(Bjj −Bii)dτ ≤ −k(at− d) ,

from which Eij → 0 exponentially fast as t→∞, and the result follows.
Remark 7.3. We notice that the assumption of integral separation (7.7) (or (7.6))

does not preclude singular values from coinciding at some (early) time t, in which
case the computation of the factors U, V,Σ remains by and large unexplored territory.
Indeed, if one chooses to use the SVD technique for approximating the Lyapunov
exponents, even if (7.7) (or (7.6)) is satisfied, it is probably advisable to integrate for
X for awhile prior to writing down and integrating the differential equations for the
factors U , Σ, and V .

8. Numerical techniques. We only outline the continuous QR technique (see
[8, 12, 13, 14, 21]), which is the one we used for the experiments in the next section.

Consider the linear homogeneous problem

ẋ(t) = A(t)x(t).(8.1)

The key task is to find Q which transforms the upper left p× p (p ≤ n) corner of A,
B = QTAQ − QT Q̇, to upper triangular form. From B, one can then approximate
p Lyapunov exponents using (2.9) if the system is regular or the spectral intervals in
the case where the system is not regular.

To find Q, one writes p columns of a fundamental matrix solution of (8.1) as
X = QR, whereQ is an n×p orthonormal function (i.e., for all t ≥ 0: QT (t)Q(t) = Ip),
and R is a p×p upper triangular function with positive entries on the diagonal. Upon
differentiating X = QR, we have

AQR = Ẋ = Q̇R+QṘ or AQ = Q̇+QṘR−1.(8.2)

Let B denote the upper triangular function ṘR−1 and set S(Q) = QT Q̇, which is
skew symmetric. Then

QTAQ = S(Q) +B ,(8.3)

and since S(Q) is skew symmetric and B is upper triangular, we have

S(Q)ij =




(QTAQ)ij , i > j,
0, i = j,

−(QTAQ)ji, i < j.
(8.4)
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COMPUTING SPECTRAL INTERVALS 533

Then, from (8.2), the equation for Q is

Q̇ = AQ−QB = AQ−Q(QTAQ− S(Q)) = (I −QQT )AQ+QS(Q).(8.5)

Initial conditions for Q are obtained from a QR factorization of the initial conditions
for X (and the most typical choice is to take X(0) = ( Ip

0 )).
To repeat this reasoning relative to a trajectory of a nonlinear problem, one must

integrate

ẋ = f(x), x(0) = x0 ,(8.6)

and then use A(t) = Df(x(t)) in (8.2).
Once we have the triangular function B, we can compute the p Lyapunov ex-

ponents from (2.9) if the system is regular. Alternatively, one may (in principle)
compute λsjj (and λijj) in ΣCL, j = 1, . . . , p, from

lim sup
t→∞

1

t

∫ t

0

Bjj(s)ds and lim inf
t→∞

1

t

∫ t

0

Bjj(s)ds , j = 1, . . . , p .(8.7)

Regardless of whether the B-system is regular, we found it convenient to work with
the variables νj(t) =

∫ t

0
Bjj(s)ds so that we end up with the differential equations

ν̇j = Bjj , νj(0) = 0, j = 1, . . . , p,(8.8)

from which the exponents may be approximated as limits (or lim sups and lim infs)
of

1

t
νj(t), j = 1, . . . , p .

At this point, the skeleton of the method is clear: for nonlinear problems, integrate
(8.6), (8.5), and (8.8); for linear problems, integrate just (8.5) and (8.8).

8.1. Numerical implementation. When approximating (8.5) numerically it
is important to maintain Q orthonormal. Several choices are possible to achieve this;
e.g., in [13, 3] techniques are discussed to directly integrate (8.5), whereas in [8, 21]
a continuous Gram–Schmidt procedure is proposed. We have used the technique de-
scribed in [14, 15]. The idea of this technique is to locally decompose Q in a way
analogous to the numerical linear algebra context using elementary Givens rotations
or Householder reflectors. Integration for these elementary factors can be done adap-
tively, and we refer to [15] for details.

So, in the end, the differential equations (8.6), (8.5), and (8.8) are all integrated
with adaptive time stepping, controlled by the tolerance values TOLX, TOLQ, TOLL,
respectively. The basic integrator in all cases is our implementation of the Dormand–
Prince 4/5 embedded Runge–Kutta pair modeled after the pattern adopted in [15],
to which we again refer for details.

8.2. Testing integral separation. It is clearly desirable to infer whether the
system has integral separation. This is needed to gain some confidence in the answers
one obtains (since it implies stable exponents), and also (see below) to obtain a com-
putational procedure to approximate ΣED. We have used the following construction
which is motivated by Steklov function considerations. Recall that, given a continuous
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534 LUCA DIECI AND ERIK S. VAN VLECK

bounded function f , the Steklov function or Steklov average of f with step H > 0 is
defined as (see [1, Def. 5.4.1] and [5])

fH(t) =
1

H

∫ t+H

t

f(τ)dτ.(8.9)

Now, consider two bounded functions f1 and f2 (presently, think of them as
diagonal elements of the upper triangular coefficient matrix B), and suppose we want
to know if they are integrally separated:∫ t

s

(f1(τ)− f2(τ))dτ ≥ a(t− s)− d, a > 0, d ∈ R, t ≥ s.(8.10)

The importance of Steklov functions resides in the fact that (8.10) can be inferred
from the Steklov average of the difference f1− f2. This is the content of Lemma 5.4.1
in [1].

Lemma 8.1. Let f1 and f2 be two bounded functions. Then, f1 and f2 are
integrally separated, i.e., (8.10) holds if and only if for sufficiently large H their Steklov
functions are separated, i.e.,

fH1 (t)− fH2 (t) =
1

H

∫ t+H

t

(f1(τ)− f2(τ))dτ ≥ a > 0, t ≥ 0 .(8.11)

In practice, to check (8.11) will require a careful choice ofH. We refer to Examples
9.1 and 9.2 for practical considerations.

8.3. Numerical computation of spectral intervals. In the case in which the
system is not regular, it would be clearly desirable to approximate ΣCL and/or ΣL.
Furthermore, it is clearly of interest to be able to approximate ΣED in the case in which
the system does not have point spectrum (i.e., the Sacker–Sell intervals reduce to single
points, the Lyapunov exponents of the system). As far as we know, the computational
task of approximating spectral intervals has not been previously undertaken. This is
most likely because in many problems the Lyapunov exponents appear to exist as
limits (see Remark 3.1) and also because the numerical approximation of spectral
intervals is an even more delicate task than approximation of Lyapunov exponents of
regular systems. Naturally, this is due to the asymptotic nature of the quantities being
computed. Further, for ΣCL, there is the added difficulty that lim sups and lim infs
must be approximated, which is more complicated than approximating limits. And,
for ΣED, it is the uniformity (i.e., for all t ≥ s) in the definition of exponential
dichotomy which causes additional difficulties. These difficulties notwithstanding,
below we present the strategies we have adopted to approximate spectral intervals. In
what follows, we will restrict our attention to triangular systems: Ṙ = B(t)R, where
B is an upper triangular continuous and bounded function. As previously remarked,
this restriction is no loss of generality. In order to further validate the results of the
procedures to approximate the spectral intervals, we need to restrict our attention to
triangular functions B whose diagonal is integrally separated.

8.3.1. Approximating ΣCL. To approximate the lim inf and lim sup in the
definition of ΣCL, we reason as follows. Let b(t) be a given diagonal element of the

upper triangular transformed coefficient matrix B. Let λ(t) = 1
t

∫ t

0
b(s)ds. Recall

that

λ+ = lim
τ→∞ sup

t≥τ
λ(t) and λ− = lim

τ→∞ inf
t≥τ

λ(t) .
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COMPUTING SPECTRAL INTERVALS 535

So, if we let

g(τ) = sup
t≥τ

1

t

∫ t

0

b(s)ds and h(τ) = inf
t≥τ

1

t

∫ t

0

b(s)ds ,

then for every ε > 0 there exists τ(ε) such that τ ≥ τ(ε) implies |g(τ)− λ+| < ε and
|h(τ)−λ−| < ε. In our experiments, we mimic this definition on a finite interval. For
given T > 0, we specify a value τ0, T > τ0 > 0, and compute

gf (T, τ0) = sup
T≥t≥τ0

1

t

∫ t

0

b(s)ds and hf (T, τ0) = inf
T≥t≥τ0

1

t

∫ t

0

b(s)ds ,(8.12)

which will provide approximations to λ+ and λ−.

8.3.2. Approximating ΣED. Our approach to approximation of ΣED is moti-
vated by the relationship between exponential dichotomy and integral separation as
was seen in Example 6.2. We develop a procedure for approximating ΣED for diagonal
systems, or for any system that is reducible to a diagonal system through a Lyapunov
transformation. For example (see the proof of Theorem 5.1), our procedure applies
to triangular systems whose diagonal is integrally separated.

So, consider ẋ = D(t)x, where D = diag(Bjj , j = 1, . . . , n) and where we may
think of the Bjj ’s as the diagonal entries of the upper triangular function B. For each
j = 1, . . . , n, we consider the diagonal planar systems (cf. (6.13) and (6.16))

ẏj =

(
λ 0
0 Bjj(t)

)
yj and ẏj =

(
Bjj(t) 0

0 λ

)
yj .(8.13)

Following the argument relating exponential dichotomy and integral separation in
Example 6.2 (see (6.14) and (6.17)), we obtain the following result.

Lemma 8.2. Consider the diagonal system ẋ = D(t)x, D = diag(Bjj , j =
1, . . . , n). Then, for each j = 1, . . . , n, the Sacker–Sell spectrum corresponding to
the jth diagonal element is given by the interval

Λj = {λ ∈ R : (8.13) are not integrally separated} .(8.14)

As a consequence of Lemma 8.2, we have (cf. [16]) the following theorem.
Theorem 8.3. The Sacker–Sell spectrum of the diagonal system ẋ = D(t)x,

D = diag(Bjj , j = 1, . . . , n), is given by

ΣED =

n⋃
j=1

Λj ,(8.15)

where Λj is defined in (8.14), j = 1, . . . , n.
To obtain a computational procedure for ΣED out of Theorem 8.3, we rely on

Steklov functions. Indeed (recall Lemma 8.1), the systems in (8.13) are integrally
separated if and only if for H > 0 sufficiently large the Steklov differences of λ and
Bjj , respectively, Bjj and λ, are positive for all t.

Now, given any H > 0, for j = 1, . . . , n, consider

αH
j = inf

t

1

H

∫ t+H

t

Bjj(s)ds and βHj = sup
t

1

H

∫ t+H

t

Bjj(s)ds.(8.16)
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536 LUCA DIECI AND ERIK S. VAN VLECK

We will use [αH
j , β

H
j ] to approximate the jth spectral interval of ΣED, j = 1, . . . , n.

The following result justifies our approach on an infinite time interval.
Theorem 8.4. Consider ẋ = D(t)x, where D = diag(Bjj , j = 1, . . . , n). For

j = 1, . . . , n, let αH
j and βHj be given as in (8.16). Let H > 0 be given. Then, for each

j = 1, . . . , n, Λj ⊆ [αH
j , β

H
j ]. Moreover, for H > 0 sufficiently large, [αH

j , β
H
j ] ⊆ Λj

and hence [αH
j , β

H
j ] = Λj, j = 1, . . . , n.

Proof. First, assume that H > 0 is arbitrary and that λ > βHj for some j =
1, . . . , n. Then, there exists aj > 0 such that

∫ t+H

t

(λ−Bjj(τ))dτ ≥ ajH ∀t .(8.17)

We want to show that λ and Bjj are integrally separated functions. That is, we need
to show that for all t, s, t ≥ s, there exists a > 0 and d ∈ R such that

∫ t

s

(λ−Bjj(τ))dτ ≥ a(t− s)− d.(8.18)

We will verify (8.18) with a = aj and d = dj := 2H(|λ| + maxt |Bjj(t)|). Because
of (8.17), (8.18) holds for all t and s with t = s +H. Consider the case of t, s, with
t < s+H. Then, rewrite

∫ t

s

(λ−Bjj(τ))dτ =

∫ s+H

s

(λ−Bjj(τ))dτ −
∫ s+H

t

(λ−Bjj(τ))dτ ,

and thus
∫ s+H

t
(λ−Bjj(τ))dτ ≤ (|λ|+ maxt |Bjj(t)|)(s+H − t) ≤ dj , so that

∫ t

s

(λ−Bjj(τ))dτ ≥ ajH − dj ≥ aj(t− s)− dj .

Next, let t, s, with t > s+H. Then, for some integer k > 1, we have t = s+ kH + σ,
σ ∈ [0, H). Therefore,

∫ t

s

(λ−Bjj(τ))dτ =

k∑
j=0

∫ s+(j+1)H

s+jH

(λ−Bjj(τ))dτ −
∫ s+(k+1)H

s+kH+σ

(λ−Bjj(τ))dτ ,

and thus (using (8.17) and the previous argument used when t < s+H) we get

∫ t

s

(λ−Bjj(τ))dτ ≥ aj(k + 1)H − dj ≥ aj(t− s)− dj ,

and (8.18) follows. Therefore, λ and Bjj(t) are integrally separated, and so λ /∈ Λj .
A similar proof for λ < αH

j establishes that Λj ⊆ [αH
j , β

H
j ] for any given H > 0.

Assume now that λ /∈ Λj . Then λ and Bjj(t) and/or Bjj(t) and λ are integrally
separated. Suppose that λ and Bjj(t) are integrally separated; the argument for
Bjj(t) and λ integrally separated is similar. Then there exists a > 0 and d ∈ R such
that for all t, s, with t ≥ s, we have

∫ t

s

(λ−Bjj(τ))dτ ≥ a(t− s)− d.(8.19)
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COMPUTING SPECTRAL INTERVALS 537

Choose H > 0 large enough so that a− d/H > a/2. Thus, for all t,

1

H

∫ t+H

t

(λ−Bjj(s))ds ≥ a− d/H > a/2,(8.20)

and so λ > βHj . A similar proof for Bjj(t) and λ integrally separated implies that

λ < αH
j , and thus λ /∈ [αH

j , β
H
j ]. Therefore, for H > 0 sufficiently large, [αH

j , β
H
j ] =

Λj .
On a finite time interval, our computational procedure to approximate ΣED mim-

ics Theorem 8.4. Given H > 0, and T > t0 > 0, we let b(t) be a diagonal element
Bjj(t), for some j = 1, . . . , n, of the triangular coefficient matrix B, defined on the
time interval [0, T ]. We compute the Steklov averages of b with respect to the given

H: bH(t) := 1
H

∫ t+H

t
b(τ)dτ , for T −H ≥ t ≥ t0. Next, we compute

bH = sup
T−H≥t≥t0

bH(t) and bH = inf
T−H≥t≥t0

bH(t)(8.21)

and use these as approximations to [αH
j , β

H
j ] in (8.16).

9. Examples and numerical results. We first consider a linear example for
which the Lyapunov exponents do not exist as limits; in this case, we approximate the
spectral intervals. Then, we approximate the Lyapunov exponents for two nonlinear
systems, i.e., the exponents associated with linearization about computed trajectories;
in both cases considered, the Lyapunov exponents appear to exist as limits. Thus,
we attempt verifying integral separation of the diagonal of the transformed triangular
problem in order to infer stability of the Lyapunov exponents: in one case we are
successful, in another we are not.

In all examples below, integration for Q is carried out with QRINT (see [15]) using
Jacobi rotations (the so-called θ-method in QRINT).

Example 9.1. Consider a planar linear problem ẋ = A(t)x with continuous spec-
trum, where A(t) is defined by

A11(t) = (2 sin(τ(t)) + α) cos2(θ(t)) + cos(τ(t))− sin(τ(t))− α− β cos(θ(t)) sin(θ(t)),

A12(t) = (2 sin(τ(t)) + α) cos(θ(t)) sin(θ(t))− θ̇(t) + β cos2(θ(t)),

A21(t) = (2 sin(τ(t)) + α) cos(θ(t)) sin(θ(t)) + θ̇(t)− β sin2(θ(t)),

A22(t) = −(2 sin(τ(t)) + α) cos2(θ(t)) + cos(τ(t)) + sin(τ(t)) + β cos(θ(t)) sin(θ(t)),

and τ(t) = ln(t + 1). This problem is designed so that the orthogonal change of
variables Q and the upper triangular coefficient matrix function B are

Q(t) =

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)
and B(t) =

(
B11(t) β

0 B22(t)

)
,

where B11(t) = cos(τ(t)) + sin(τ(t)) and B22(t) = cos(τ(t))− sin(τ(t))− α. It is not
hard to explicitly obtain the spectral intervals (recall the result for Example 6.2): we
have ΣL = [−1, 1] ∪ [−α − 1,−α + 1] and ΣED = [−√2,

√
2] ∪ [−α − √2,−α +

√
2].

For our experiments we choose β = 1, θ(t) = ωt, and α = 4. Integration for Q was
done with local error tolerance 10−5.

In Table 9.1, we report on results of experiments to approximate ΣL. We approx-
imate all integrals in (8.12) with the composite trapezoidal rule on data sampled at
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Table 9.1
Example 1. Approximation of ΣL.

T τ0 [λ−
1 , λ+1 ] [λ−

2 , λ+2 ]
1.E4 1.E2 [-1.0191, 1.0004] [-4.9774, -2.9998]
1.E6 1.E2 [-1.0191,1.0004] [-5.0002,-2.9998]
1.E6 1.E4 [-1,0.94871] [-5.0002,-3]
1.E7 1.E4 [-1,1] [-5.0002,-3]

Table 9.2
Example 1. Approximation of ΣED (t0 = 0).

T H [αH
1 , βH

1 ] [αH
2 , βH

2 ]
1.E7 1.E4 [−1.4063, 1.4142] [−5.4142,−2.5861]
1.E7 1.E5 [−1.2576, 1.4127] [−5.4141,−2.6191]
1.E8 1.E4 [−1.4142, 1.4142] [−5.4142,−2.5858]
1.E8 1.E5 [−1.4142, 1.4127] [−5.4141,−2.5858]

integer times. In the table we specify the values T , τ0, and report on the approx-
imations (at 5 digits) for the two spectral intervals making up ΣL. In spite of the
crudeness of the quadrature rule, quite clearly ΣL is approximated very well.

In Table 9.2 we report on calculations to approximate ΣED. In the table, we
vary quantities in the procedure outlined in section 8.3; see (8.21). In particular,
we vary the final time, T , and the length of the Steklov averages, H. The initial
time for which the Steklov averages are maximized/minimized is fixed at t0 = 0, and
the approximations we obtain to [αH

j , β
H
j ] for j = 1, 2 are recorded to 5 digits. Our

calculations are based upon data from the diagonal of B that we have sampled using a
large step size of h = 10. The Steklov averages are approximated with the composite
trapezoidal rule. The results point out the difficulty in finding an appropriate value
for H: simultaneously, one would need H large enough so that the endpoints of the
intervals in ΣED are approximated accurately, yet not so large with respect to the
final time T that little data are sampled.

Example 9.2 (Lorenz equation). Our next example is the Lorenz equation
 ẋẏ
ż


 =


 σ(y − x)
ρx− xz − y
xy − βz


 .

We consider the parameter values σ = 16, β = 4.0, and ρ = 45.92 and the initial
condition (x(0), y(0), z(0)) = (0, 1, 0). In Table 9.3, we summarize some results which
are typical. Error control is done on the trajectory x, on Q, and on ν (see (8.8)).
Apparently, the Lyapunov exponents exist as limits: the linearized problem appears
to be regular.

Based upon the results in Table 9.3, we observe that (1) there is an obvious
relation between the number of steps taken and the length of integration (recall that
we are integrating with variable step size). This suggests that we are tracing “alike
trajectories” on the Lorenz attractor; (2) with all the imperfections of finite precision
arithmetic, the Lyapunov exponents are clearly converging towards λ1 ≈ 1.5, λ2 = 0,
and λ3 ≈ −22.5.

In order to infer stability of the exponents, we have verified if the linearized system
enjoys integral separation. As far as we know, this is the first attempt of this type,
on the Lorenz system or otherwise. We use the construction outlined in section 8.2
on the transformed, triangular problem. So, we have to check if the three functions
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Table 9.3
Example 2. TOLX=TOLQ=TOLL=1.E-6.

tend Steps λ1 λ2 λ3
1.E2 8.6E3 1.415 3.E-2 −22.466
1.E3 8.6E4 1.4892 4.64E-3 −22.494
1.E4 8.6E5 1.499 4.64E-4 −22.499
1.E5 8.6E6 1.5027 4.07.E-5 −22.5027
1.E6 8.6E7 1.5024 7.6E-6 −22.5024

0 100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5

10

15

20

25

Fig. 9.1. b11 − b22.

b11, b22, b33 are integrally separated. As it turns out, the first two functions are the
hard ones (the third is more clearly integrally separated): Figure 9.1 shows (b11−b22)
on [0, 100], and clearly b11 and b22 are not separated. So, we check if (8.11) holds forH
sufficiently large. In practice, to form bH11 and bH22, we approximate the integral by the
composite trapezoidal rule. We look for H in the range [1, 20] and, for t ∈ [0, 10000],
the value H = 20 gave sufficient separation; see Figure 9.2. We conclude that, on
the given interval, and subject to the limitations of finite precision computation, the
diagonal of the transformed triangular system is integrally separated, and thus so is
the linearized system, and the Lyapunov exponents are stable.

The next example highlights the difficulties in inferring integral separation of the
diagonal of B for problems with close exponents, even when the Lyapunov exponents
appear to exist as limits and to be stable.

Example 9.3. This example is adapted from one in [18] (used also in [13] and then
[3]). We have a ring of oscillators with an external force proportional to the position
component of the limit cycle of the van der Pol oscillator:

ÿ + α(y2 − 1)ẏ + ω2y = 0,
ẍi + diẋi + γ[Φ′(xi − xi−1)− Φ′(xi+1 − xi)] = σyδi1 , i = 1, . . . , n .

(9.1)

Above, Φ(x) = (x2/2)+(x4/4) is the single well Duffing potential, α, ω, γ, σ are scalar
parameters, xi is the displacement of the ith particle, di is the damping coefficient, and
we have periodic boundary conditions to be used in the expressions for Φ′ (x0 = xn
and xn+1 = x1). For our experiments, we set n = 5 and set α = 1, ω = 1.82, γ = 1,
and σ = 4. We set di = 0.25 for i odd and di = 0.15 for i even. Initial conditions
are taken as y(0) = 0, ẏ(0) = −2, xi(0) = ẋi(0) = 1, i = 1, . . . , n. Error control is
performed on x, Q, and ν.

From the results summarized in Table 9.4, we observe good convergence for the
four exponents on which we report. However, inferring integral separation, although
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Fig. 9.2. bH11 − bH22.

Table 9.4
Example 3. TOLX=TOLQ=TOLL=TOL.

tend TOL Steps λ1 λ2 λ3 λ4
1000 1.E-4 15214 1.8E-3 8.3E-4 -9.72E-2 -9.99E-2
5000 1.E-4 78599 4.9E-4 1.5E-4 -9.80E-2 -9.86E-2
10000 1.E-4 157372 2.1E-4 4.5E-5 -9.82E-2 -9.83E-2
1000 1.E-6 34911 1.7E-3 8.7E-4 -9.74E-2 -9.99E-2
5000 1.E-6 115135 4.2E-4 1.7E-4 -9.81E-2 -9.86E-2
10000 1.E-6 364206 1.4E-4 8.4E-5 -9.82E-2 -9.84E-2
1000 1.E-8 84584 1.7E-3 8.7E-4 -9.74E-2 -9.99E-2
5000 1.E-8 222556 4.2E-4 1.7E-4 -9.81E-2 -9.86E-2
10000 1.E-8 883292 1.4E-4 8.4E-5 -9.82E-2 -9.84E-2

perhaps possible, is quite difficult because of the clustering of the exponents. To
illustrate, with tend = 1000 and TOL = 1.E − 6, at 2 digits the 12 approximate
exponents are

1.7E− 3, 8.7E− 4, −9.7E− 2, −1.0E− 1, −1.0E− 1, −1.0E− 1,
−1.1E− 1, −1.1E− 1, −1.1E− 1, −1.2E− 1, −2.1E− 1, −1.0E0.

(9.2)

We attempted to verify if the linearized problem was integrally separated, but failed.
To be precise, on the interval [0, 1000], the value of H = 100 was sufficient to establish
positivity of the Steklov differences bH22 − bH33, bH10,10 − bH11,11, and bH11,11 − bH12,12, and
hence integral separation of the respective diagonal entries of B, but all other Steklov
differences were oscillating about 0 (even for larger values of H), therefore precluding
us from inferring integral separation of the linearized problem. This highlights that,
for a problem with close (or identical) exponents, it will be necessary to develop block
analogues of QR techniques and associated criteria to infer integral separation (in a
block sense).

10. Conclusions. In this paper we have blended theoretical studies on stability
of Lyapunov exponents with computational techniques which target the Lyapunov
exponents. Stability of the exponents is equivalent (in the case of distinct exponents)
to having an integrally separated fundamental matrix solution. We have assumed that
the system was integrally separated and further explored what conditions are needed
to validate popular numerical methods, in particular those based on the QR and
SVD of fundamental matrix solutions. We also explored the implications of integral
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separation on approximation of three different spectra of linear systems: first, ΣED,
of Sacker and Sell based upon exponential dichotomy; second, ΣL, that naturally
generalizes Lyapunov’s upper and lower exponents to a spectrum; and third, ΣCL,
based on the diagonal elements of the upper triangular coefficient matrix B that
is obtained through an orthogonal change of variables. In general, the Sacker–Sell
spectrum is larger than the other two spectra, while under the assumption of integral
separation of the diagonal of B we have that ΣL = ΣCL. We also showed how to
approximate ΣED when the diagonal of B is integrally separated.

Future work will need to address several issues which we did not resolve in the
present paper. In no particular order, we believe the following will be worthwhile
investments:

1. Careful implementation and analysis of continuous SVD techniques.
2. Block analogues of QR and SVD techniques for the case of nondistinct expo-

nents.
3. Refined implementation and study of techniques to approximate ΣED along

the lines of the approach we laid down in section 8.3 and used in Example
9.1.

4. More thorough study of techniques to approximate Steklov averages, and
further exploitation of the power of this tool.
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