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Abstract 

Rigorous Shadowing of Numerical Solutions 
of Ordinary Differential Ecluations by Containment 
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Doctor of P hilosop hy 

Graduate Department of Cornputer Science 

University of Toronto 

2001 

An esact trajectory of a dynamical system lying close t o  a numerical trajectory is called a 

shadow- PVe present a general-purpose method for proving the existence of finite-time shadows 

of numerical ODE integrations of arbitrary dimension in which some measure of hyperbolicity 

is present and there is either O or  1 espanding modes, or O or 1 contracting modes. Much 

of the rigor is provided automatically by interval arithmetic and validated ODE integration 

software tha t  is freely available. T h e  method is a generalization of a previously published 

containment process tha t  was applicable only to  two-dimensional maps. We estend it to handle 

maps of arbitrary dimension with the  above restrictions, and finally t o  ODEs. The  method 

involves building n-cubes around each point of the discrete numerical trajectory t hrough which 

the  shadow is guaranteed to  pass a t  appropriate times. The  proof consists of two steps: first, 

the  rigorous computational verification of an inductive con ta inmen t  property; and second, a 

simple geometric argument showing t h a t  this property implies the existence of a shadow. The 

cornputational step is almost entirely automated and easily adaptabIe t o  any O D E  problem. 

The rnethod allows for the rescaling of time, which is a necessary ingredient for successfully 

shadowing ODEs. Finally, the method is local, in the sense tha t  it builds the  shadow inductively, 

requiring information only from the  most recent integration step, rather than more global 

information typical of several other methods. The method produces shadows of comparable 

length and distance to al1 currently published results. 

... 
I l l  
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Chapter 1 

Introduction, motivation and 

background 

1.1 Ordinary differential equations 

T h e  subject of ordinary diflerential equations (ODEs) concerns t he  s tudy of solutions t-O equa- 

tions of t he  form 

where y( t )  = (yl( t ) ,  . . . yn(t))* is a n  n-dimensional vector, y r ( t )  = 9, and f : R x Rn + 
Rn = (fi (t, y ( t ) ) ,  . . . : fn(t ,  y(t))T is a vector-valued function. Good introductory t e s t s  on t h e  

subject abound; see for esample Braun  (1953, 1993) for a pleasant and readable undergraduate- 

level introduction. If f depends on  t as above, the  ODE is called nonautonomous; otherwise it 

is called autonomous. T h e  nonautonomous ODE (1.1) can be converted into a n  autonomous 

one by adding one more variable, s a y  y,+i(t). and letting y;,, ( t )  = 1: y,+, (to) = t o ,  then 

substi tuting y,+~ wherever t appears  on t he  right hand side. We will concern ourselves in this 

thesis mostly with autonomous ODEs, keeping in mind t ha t  we can solve t he  nonautonomous 

case either by using the  above substi tution, o r  by straightforward es9ensions to  our algorithms. 

T h e  subject of initial ualne problems (IVPs) for autonomous ODEs concerns t h e  solution of 

where (1.3) is called the  initiui condition. If f is bounded and Lipschitz continuous in a domain 

D1, then the solution to  (1.2,1.3) exists and  is unique while it remains in D (Ascher, Mattheij, 
- - -  

'-4 function f(y) is Lipschitz continuous in a dornian D if V x , y  E D, Ilf(x) - f(y)jl < Cllx - y11 for some 
constant C. 
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and Russell 1988, $3.1). Let y(t ; to,yo) be the solution of (1.2,1.3). Define the tirne-h solution 

operator v h  to  be 

keeping in mind that y(t;  to, x) = y(t - to; O ,  x) for autonomous systems. 

1.1.1 Error andysis of numerical solutions to ODES 

It is not possible, in general, to solve (1.2,1.3) in closed form (Braun 1983, 51.9). In fact, most 

initial value probtems cannot be solved in closed form. Thus, approsimate methods for the 

solution of (1.2,1.3) must be used. We restrïct our discussion to  one-step methods. -4 one-step 

method consists of building an approximation ;jh to p h  for srnall h, and then computing a 

sequence of discrete points y;+~ = Mhi  (yi) representing approximations to ~ ( t ~ + ~ ;  to, yo) where 

titr = t; + hi. See, for example, Dahlquist and Bjorck (1974) or Kahaner, LvIoler, and Nash 

(1989) for ari undergraduate-level introduction, or Hairer, Norsett, and Wanner (1993) for a 

more advanced exposition. We will term such a discrete sequence of points a pseudo-trajectory. 

If the pseudo-trajectory satisfies a local error tolemnce of 6 such that Ilyi+l - ph.(y;)[I -< 6, 
then we wiII cal1 it a 6-pseudo-trujectory. 

The natural first question to  ask about pseudo-trajectories is how accurately they appros- 

imate the exact solution. Several approaches have been developed to  aid in answering this 

question. Forward error anulgsis is the most straightfoward, and refers to the evotution of 

Ily; - y(t;; to, y o )  11-  In general the best bound one can put on this fornard ermr is an esponen- 

tiaI one, 

where S is the local error and L is a bound on the logurithmic n o m  of the Jacobian of f 

(Dahlquist and Bjorck 1974, §§S.1.2, 8.3.6). If L is negative, then the error is uniformly bounded; 

otherwise, the error may be unbounded, and more sophisticated methods of error analysis must 

be used to  gain insight into the value of the numerical solution. If a numerical method of order 

p has a stepsize bounded by h,  then b is O(hpf '), and the right side of equation (1.5) becomes 

O ( e L t h p / ~ )  for time t. 

Backward error anulysis is a general term applied to methods of error analysis that relate the 

pseudo-trajectory to the esact solution of a nearby problem (Corless 1994a). Defect based back- 

ward error analysis requires a piecewise differentiable interpolant x( t )  of the pseudo-trajectory, 

and then defines the defect as 



If for some input tolerance E we can show t h a t  I[S(t)[l 5 E wherever xJ(t)  is defined over the 

whole of the  interpolated solution, then the  interpolated solution is the  esact  solution t o  an 

&-close problem (Corless and Corliss 1992; Corless 1994a). The method of rnodified eqvations is 

a special case of defect analysis in which, given a particular numericat method and a particular 

probIem, we can write down a n  algorithm to  compute S(t) using a series espansion, aithough it 

is extremely tedious. Ahmed and  Corless (1997) have implemented a prototype with t he  aid of 

the  Mapie symbolic manipulation package (Char  1993). 

Defect-based and  other backward error analysis methods modify (1.2) but  leave (1.3) un- 

touched. In contrast, shadowing is a method of backward error analysis in which (1.2) remains 

fixed while (1.3) is alIosved t o  change. In other  words, a shadow is an  esac t  solution t o  (1.2) that  

remains close t o  the  pseudo-trajectory, but t h a t  has slightly different initial conditions than  the 

pseudo-trajectory. Shadowing is t hus best applied t o  systems in which the  governing equations 

a re  extremely well-known, and  virtually a11 error is introduced by imprecise knowledge of initial 

conditions and/or by numerical error in the  computation of the solution. It is less applicable 

t o  systems in which the mathematics only approsimately mode1 the  t ruth .  

1.2 Motivation 

This  thesis was inspired by a s tudy of the  reliability of the  numerical simulation of physical 

systems, particularly simulations of the gravitational n-body probIem. Many physical systems 

under active s tudy today can be modelled using ODEs; however, many of them display sensitz've 

dependence on initial conditions, which means t h a t  two solutions t ha t  are initially close t o  each 

other  tend to  diverge esponentially with time. Since numerical methods introduce srna11 errors 

t h a t  produce a pseudo-trajectory rather than  a n  esac t  solution, i t  is virtually guaranteed t ha t  a 

pseudo-trajectory of such a n  ODE will diverge exponentiaIIy awây from the esact  solution with 

the  same initial conditions. Although this is widely recognized, its impact on the qualitative 

properties of a pseudo-trajectory of an O D E  is not well understood. 

Corless (1994a) argues t h a t  backward error analyses tha t  modify (1.2) a re  often adequate 

because mat hematical modelling always requires approsimation and neglect of small effects: 

One neglects, for esample, the  effect of t he  gravitational attraction of Jupiter on 

one's earthbound esperiment . . . . Similarly, one ignores 'srnall' stochast,ic terms 

in ordinary differential equation models of many phenornena, o r  'smal17 nonautono- 

mous perturbations of physics esperiments (such as the effect of passing trucks). So  

a numerical analysis of methods of solving ODEs  which puts [numerical] errors on 

the  same b a i s  as modelling, measurement, and d a t a  errors would be a completely 

successful analysis . . . . Ive  [have to] s t udy  t he  effects of perturbations, of course, 
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but we have to do this even if we know the  esact solution of the  specified problem. 

[Corless (1994a)I 

Although these are good points, this author is not convinced for the  following reasons. Nu- 

merical errors may be biased in qualitativeiy different ways than natural perturbations, and 

may introduce biases into the numerical solution that cause it t o  behave in a nonphysicaI man- 

ner. Corless (1992b) has himself noted this. For esample, the  perturbations mentioned above 

would not appreciably change the energy of the system under study, whereas spurious energy 

dissipation can be a major problem in long numerical integrations of systems which should 

be conservative (Channell and Scovel 1990; Sanz-Serna 1992). -4lthough symplectic integra- 

tors (Channell and Scovel 1990; Sanz-Serna 1992) and other types of conservative integrators 

(Shadnrick, Bowman, and Morrison 1999) may conserve certain quantities, it is not clear tha t  

they d o  not introduce new biases, such as nonphysical energy transport. Physical systems often 

satisfy properties such as symplecticness, conservation of energy, conservation of phase-space 

volume and conservation of various types of momentum. Many of these are well-conserved 

in real systems that esperience perturbations, but are not iveil-conserved by rnany otherwise 

well-behaved numerical methock2 This has been confirmed with several symplectic maps using 

a fised-timestep 4th-order Runge-Kutta integrator (Channel1 and Scovel 1990), and by this 

author using the n-body problem and comparing a C/8 order Runge-Kutta pair (Enright 1993), 

two ,4dams7s methods (Hindmarsh 1980; Kahaner, MoIer, and  Nash 19S9), and a Bulirsch-Stoer 

method (Press, Teukolsky, Vetterling, and FIannery 1992) t o  the Ieapfrog method, which is a 

2nd-order symplectic method. l n  general, we want to ensure tha t  changing t h e  field represented 

by (1.2) does not affect any quantities of interest (Skeel 1996; Skeel 1999). 

As a subtly different esample, a close encounter between particles in a gravitational n-body 

integration involves forces between the participating particles which are so great that physical 

perturbations frorn other parts of the system are negligible. The  numerical errors introduced 

during the encounter can have a far greater effect than any physical perturbations. Close 

encounters are very hard to  integrate nurnerically with precision, and are well-known to be the 

bane of gravitational n-body integration (Aarseth 1999). 

Despite al1 of this, numerical solutions often appear to mimic with astounding accuracy the 

phenornena they purport to simulate. Simulations of galaxies often cIosely resemble real galaxies 

(see almost any paper on galasy simulation in Clarke and West (1997) o r  -Merritt, Sellwood, and 

* ~ h e  effect on simulations of numerical error can be much greater than actual perturbations, even if thoçe 
perturbations are larger. For example, nearby stars and the GaIavy a t  large exert forces on the SoIar Systern 
that are at least 10-L2 as large as the forces frorn our Sun. It is not difficult to create integrations with numerical 
errors several orders of magnitude srnailer than this, and yet d e s s  these integrations sornehow account for 
symplectic structure or energy conservation, they produce an integration of the Solar System which quickiy and 
clearly diverges fiom the behaviour of the real Solar System. 



Valluri (1999)). Even galaxy collisions can be  modelled in a convincing manner  (Struck 1997). 

More generally, exponential divergence of nearby trajectories irnplies t h a t  a n  initiaIly dense 

ensemble of points wiil disperse into a uniform distribution in a relatively shor t  t ime (SkeeI 

1996; Skeel 1999). This  effect is also seen in numerical simulations of chaotic systems (Merritt 

and Valluri 1996; Merrit t  1999). T h e  natural  question t o  ask is whether these simulations are  

behaving in a fashion similar to real systems, o r  if they only supeficially mimic real systems 

but a r e  in fact behaving incorrectiy a t  a more fundamental  ievel. If this were t he  case, then we 

could be lulIed into a false sense of security whiist o u r  understanding of these systems becomes 

compromised. 

Since shadowing disallows changes in the  mode1 (1.2), some of these kinds of insidious errors 

can be ruled out.  Furthermore, if the  problem (1.2) arises from a purely mathematical  context 

and not a physical one, we may be earnestly interested in the properties of esac t  solutions 

of (1.2), in which case a recouse  t o  shadowing May be the only option. T h e  only rernaining 

question wouId then be whether shadows are  typical of exact soh t ions  chosen at random. 

On the other hand, rigorous shadoiving as presented in this t hesis and elsewhere is estremely 

expensive. Whereas defect controlled methods are  of roughly equal espense compared t o  more 

traditional integration rnethods, rigorous shadowing requires validated O D E  integration, which 

at present tends t o  be several orders of magnitude more expensive in both t ime and rnemory 

t han non-validated met  hods, even for low-dimensional pro blems. 

1.3 Background 

This section covers material t ha t  is required t o  understand later chapters. It may  be omitted by 

those already familiar with the  concepts of interval arithrnetic and validated ODE integration. 

1.3.1 Interval arithmetic 

T h e  proofs t ha t  will be elucidated in Chapter 3 are  computer aided proofs. In particular, they 

reIy on the rigorous cornputational verification of some properties tha t  a re  computed using 

floating-point arithmetic. Floating-point ari thmetic is inesact; it is impractical in general t o  

store the exact result of the  addition of even two machine-representabIe numbers, much less 

compute complicated functions of them, Error analysis is the s tudy of how these floating-point 

errors, and other numerical errors, affect the  results of numerical computations (Dahlquist and 

Bjorck 1974; Hager 1989; Kahaner, Moler, and  Nash 1989). Computational interual arithmetic 

is t he  study of how t o  automatically rnaintain rigorous yet tight bounds o n  t he  errors incurred 

in computations involving floating-point numbers, and  software packages es is t  t o  implement 

computational interval arithmetic algorithrns. In this thesis, we use the packages described in 
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Nedialkov (1999). More background on interva1 arithmetic rnay be found in Moore (1966) and 

Alefeld and  Herzberger (1983) - An upto-date, practical implementation is discussed a t  a very 

abstract  level in Tupper (1996). 

Interval arithmetic packages maintain upper  and lower bounds o n  floating-point computa- 

tions t h a t  are guaranteed t o  enclose the exact value of a cornputation. Let the  syrabol +t 

represent floating-point addition in which t h e  machine rounds up the  anstver (towards +m) to  

t he  closest machine-representable number. Similarly, let +I represent floating-point addition 

in which the  machine rounds dovrn (towards -ou). To  compute a n  interval t h a t  is guaranteed 

t o  enclose the  esact surn of two floating-point numbers a and 6, we compute 

Then the  interval Cc, E] is guaranteed to  enclose the  esac t  sum, a + b. Similarly, we can add two 

intervals c = [c, Z] and d = [ci, 4 by perforrning 

Similar operations can be provided for subtraction, multiplication, and  division, altliough the 

latter two are slightly more complicated. Enterval ari t  hmetic s u  broutines can also be provided 

for computing sin, cos, tan,  log, esp,  and al1 t h e  standard elementary functions. These can 

be irnplernented, for esample, by summing a Taylor series espansion in interval arithmetic and 

then bounding the remainder term in interval arithmetic as well, giving a rigorous bound on 

the  total  error. To obtain a tight bound, however, often requires more sophistication. 

,.Zn interval whose upper and Iower bounds are  equal is calIed a point interval, sometimes 

refered t o  as a thin interual by other authors. Interval vectors and matrices are represented 

by vectors and matrices of intervals. An interval vector may be thought  of as an asis-aligned 

"box" t h a t  represents al1 t he  real numbers inside the box. 

The width of an interval is 
- ~ ( [ a ] )  = n - g. 

An important goal of interval arithmetic packages is t o  keep the width of the  intervals as small 

as possible while still enclosing the exact solution. IF the  width of a n  interval becomes too large: 

virtually no information remains about the  value of the  esact soIution, even though the interval 

encloses t he  esact solution. T h e  midpoint of a n  interval [a] is 

m ([a]) = (d + 6) 

T h e  width and rnidpoint of interval vectors and  matrices are defined component-wise. 



In general, let g : Rn + Etm and let g be an interval arithmetic algorithm that  a t tempts  to  

compute g. Then given any n-dimensional input interval vector [XI, g must either faiL explicitly 

or  produce as output an m-dimensional interval vector [y] sa t i se ing  

-4lthough interval techniques are very powerful, they cannot be used in a blind or na* 

rnanner, and some caveats must be noted. For example, although interval addition and multi- 

plication are associative, the  distributive law does not hold in general. Tha t  is, we can easily 

find three intervals [a], [b], and [cl for which 

Some special cases of the distributive Law hold, for esample if [b][c] > 0: if [a] is a point interval? 

or if both [b] and [cl are symmetric about O (Nedialkov 1999, 52.1). Moreover, the subdistributiue 

law 

[al (Pl + [cl) ç [al Pl + [al [cl 

always holds. In general, interval methods can be tricky, and consequently their use requires 

some degree of sophistication from the user. 

1.3.2 Validated ODE integration 

A validated ODE integrator is an  algorithm that uses, among other things, interval arithmetic 

to  produce an interval vector that ,  in the forward error sense, is guaranteed to enclose the 

esact solution of the initial value problem (l.2,1.3). There are exactly two sources of error in 

numerical integrations: roundoff error, which can be accounted for bÿ interval arithmetic, and 

truncation error, for which we need some theoretical bound on the error in the method. Most 

validated ODE integrators use a Taylor series to approximate ph. in which the remainder term 

computed in interval arithmetic bounds the truncation error (Nedialkov, Jackson, and  Corliss 

1999). An impressive accomplishment in this direction has been the development o f  software 

that can automatically differentiate code Iists and compute Taylor series at run time (Bendtsen 

and Stauling 1996; Bendtsen and Stauling 1997), making it almost trivial t o  autornatically 

generate Taylor se ries. 

If the interval vector representing an  enclosure of a validated integration is an a.6~-aligned 

box a t  time to, its image under the evolution of the ODE is unlikely to  remain ades-aligned 

for time t f to. Many methods have been devised t o  account for this so-calied wrapping 

effect. We use the software developed by Nedialkov (1999). T h e  following description derives 

from Nedialkov (1999) and Nedialkov, Jackson, and Corliss (1999), which may be consulted for 



fur ther  details. The  enclosure of a solution is represented by 

where 9; is a point vector representing t he  approxÏmate solution, [ri] is a n  interval vector 

enclosing t h e  zero vector, -4; is a point matrix providing a linear transformation (rotation, 

scaling, skewing, etc.) t o  [ri] ,  {y;) is a shorthand for Yi  + Ai[ri], p h  is t h e  solution operator 

(1.4), and ph({yi - t } )  is the pointwise application of ph to Thus ,  { y i )  can be thought 

of as  a point vector numerica1 solution Y i  with a Iinearly transformed bounded error  bos  A;[r;] 

around it. In our  implementation, [ri] is evolved using 

where is an  interval approsimation t o  t he  solution of a variational equation frorn ti-1 to  

t i .  Note t h a t  although [Si-L] as used in (1.8) rigorously evolves [ri] t o  maintain enclosure of 

the  solution, in general [Si] does not provide a rigorous bound on  t he  solution of t he  variational 

equation- T h e  first term of (1.8) is responsible for propagating t he  error  frorn t h e  previous step, 

while t h e  second term is the new error introduced at the  current s tep,  with [zi] being derived 

from the  remainder term of the  Taylor expansion for s tep  i and z; being t he  midpoint of [z;]. 

T h e  matr ix  A; is meant t o  provide a linear transformation t o  [ri] t h a t  reduces wrapping, and 

is currently computed by performing a QR factorization 

(where Q; is a n  orthogonal mat r i s  and Ri is a n  upper triangular mat r i s )  and set t ing A; E Qi. 
As a side remark, note tha t  if we were t o  take Ai = m(Si - l )Ai - l ,  then A r L  ( [ ~ i - i ] ~ i - ~ )  

would approsimate the identitx t o  within the  width of [Si-1] tirnes a constant  depending on 

A;' and  Ai-1- In fact, Ai can be any nonsingular matris,  although sorne choices a re  better 

than  others for providing tight enclosures. T h a t  is, any nonsingular choice of A; will produce 

a n  [ri] which is a proper enclosure of t he  solution as long as [ri] is computed with equation 

(1.8). T h e  orthogonalization is perforrned only because empiricaI evidence has demonstrated 

t h a t  t he  condition number of A; has a large effect on the  evolution of t h e  width of [ri] ,  and 

orthogonalizing A; appears t o  reduce this width. Future  analyses m a y  provide better choices 

for A; o r  even entirely different ways of computing [ri] (Nedialkov 1999; Nedialkov, Jackson, 

and  Corliss 1999; Nedialkov and Jackson 2000). 

T h e  encIosures constructed by any  interval arithmetic package a r e  unlikely t o  be optimal. 

T h e  amount  by which they over-estimate the  error is called t he  excess. I t  is worth noting 

t h a t  t h e  excess for the methods used in this thesis is probably qui te  Iarge. For example, this 

au thor  has computed pseudo-trajectories for the  initial value problems discussed in Chapter 



4 using many diverse numerical methods including the three Runge-Kutta methods (i) the 

classic 4th order one (Press, Teukolsky, Vetterling, and Flannery 1992), (ii) one order 5 / 6  pair 

(Hull, Enright, and Jackson 1976), and (iii) one order 7/8 pair (Enright 1993); two Adams 

met hods (Hindmarsh 1980; Kahaner, Moler, and Nash l989) ; and a Bulirsch-Stoer rnethod 

(Press, Teukolsky, Vetterling, a n d  Flannery 1992). In most cases, these integrators al1 agreed 

with each other, and with the approximate solution 9 provided by Nedialkov (1999), to  a 

precision several orders of magnitude higher than the width of [ri]. AIthough al1 of these 

methods are ultimately based o n  local Taylor series approximations, they are algorithmically 

very diverse and we believe they are unlikely al1 to be biased in a similar fashion. Thus, we 

consider this to be strong evidence tha t  the width of [ri] is a gross upper bound on the error, 

and tha t  much further work is needed in the area of providing tight enclosures of solutions to 

IVPs. 

Although packages exist t ha t  can handle the wrapping effect more effectively, they are con- 

siderably more espensive. For esample, if n is the number of equations in the system and k is 

the order of the Taylor series used t o  approximate one integration step, then the computational 

complesity of COSY INFINITY (Berz 1997; Ben and Makino 1998) is ("nk) per step. This is 

a high-degree polynomial if either n or  k is fixed and either is of nontrivial size, and is expo- 

nential if both n and k are allowed t o  grow, whereas the compuational complexity of our code 

is approximately 0 ( A T n k 2 )  (Nedialkov 1999), where N is the  number of operations needed to  

compute the Jacobian of (1.2). 

Finally, it is interesting to note tha t  shadowing can be thought of as a generalization to 

vaIidated ODE integration. Traditional validated ODE integration involves finding a bound 

enclosing the esact solution that  s ta r t s  at t = O at the exact point initial condition given. Since 

numerical solutions are not esact  any time after time zero, it seerns rather artificial to insist 

tha t  they be exact at time zero. Considering that shadows can last many orders of magnitude 

longer than validated ODE integrations3, perhaps it is better t o  Say tha t  nurnerical trajectories 

are  valid approximations of exact trajectories as long as we d o  not require that  they esactly 

satisf'y the initial conditions, and  instead treat time zero on an equaI footing with al1 other 

times (Murdock 1995). 

1.4 Thesis outline 

In Chapter 2, we present a tutorial introduction, a survey of previous work, and some discussion 

of shadowing. Chapter 3 contains the bulk of the original work of the  thesis, detailing our 

3For example, Nediaikov (1999) typ icdy  finds a validated solution of the Lorenz equations lasting about 25 
time units, whereas shadows of the Lorenz system can last for anywhere from hundreds to millions of time units. 
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algorithms and  theorems for proving t h e  existence of shadows. Chapte r  4 contains results 

of our shadouing experirnents and cornparison of ou r  results to previously published work. 

Chapter  5 contains a brief discussion of future  directions for this research. Finally, t he  Glossary 

contains definitions of terms with which t h e  reader may not be familiar. 



Chapter 2 

A brief survey of shadowing results 

Dynamical systems often display sensitive dependence on  initial conditions: a small change 

at any  point in a n  orbit produces a new orbit that  tends t o  esponentially diverge from the  

original one, leading t o  a vastly different solution a short  t ime Iater- Since a numerical method 

introduczs small perturbations arising from roundoff and truncation error,  we must naturallp 

ask what  effect these errors have on  the  validity of numerical solutions. 

2.1 Introduction 

2.1.1 Definitions 

In this thesis, an  orbit is a discrete sequence of points, a solution is a continuous curve. and a 

trajectory more generally refers t o  either an  orbit or  a solution depending upon contest. The  

prefix pseudo- will be used to  deno te  an  approsimate orbit, solution, o r  trajectory, although 

sometimes i t  will be omitted if t h e  meaning is clear frorn t h e  contes<. We assume a weI1- 

scaled problern where al1 macroscopic quantities of interest a r e  of order  unity; [ - 1 denotes the  

magnitude of a scalar, while 11 - II denotes a norm of a vector o r  mat r i s .  We use the m a s  norm 

unless o t  herwise noted. 

Let y : Rn -t Rn be a function. 

In this thesis, p(x) will usualIy be a diffeomorphism representing t h e  one-timestep flow 

through x of the  solution to an  ODE. If the  timestep is fixed, then  9 is the  same function on 

each step,  but if the  timestep is allowed t o  vary, 9 may change from s t e p  t o  s tep  and we will 

introduce a subscript, using vi f o r  s t ep  i. For now, we leave y unsubscripted. For a discrete 

map, 9 may be a simple equat ion,  such as the logistic equation p ( x )  = 1 - 2x2, which maps 

the  interval [-1,1] ont0 itself. 

Definition. T h e  itemted map y'(x) is the  result of repeatedly composing p with itself i 



times, i.e.: pi(x) = u(p(. . .p(x) . . .)). 
i times - - 

Definition. An ezact  orbit of 9 satisfies x;+t = p(xi) , Le., xi = $-'(xj), for  

j 5 i < k. We allow j = -a a n d  k = m. 

Definition. {Yi)& is a Epseudo-orbit o r  noisy orbit for y if Ilyi+i -v(y;)II 5 6 for j 5 i < k, 
where S is called the  noise amplitude. 

For a discrete map, S can be as small as  the  machine epsilon; for both discrete maps a n d  

ODE systems, it is a bound on t he  one-step error. 

Definition. For j 5 i < k, t h e  one-step error made between s t e p  i and s tep  i + 1 of t h e  

pseudo-orbit - is e ;+~  = yiti - y(y i ) .  2-1  

Thus, an  esact trajectory is one  whose one-step errors are  identically zero? and a 6-pseudo- 

orbit is one whose one-step errors satisfy Ileitl 5 6 for j < i 5 k- 
Definition o ~ s h a d o w i n g .  An exact trajectory {xi}kj E-shadows a pseudo-trajectory {yi}:=, 

if [ly; - x;ll 5 E for j 5 i 5 k. 
Definition. The 6'-pseudc+trajectory Z = (zi}fZj is a numerical  shadow of the  6-pseudo- 

trajectory Y = if their one-step errors are  tightly bounded by 6' and 6, respectivel- 

and S' < S. 

In practice, a numerical shadow usually only has smaller e r ror  bounds than the original 

noisy orbit, because in most cases neither orbit has rigorously computed error bounds. To have 

confidence in the value of a numerical shadow, we like its noise to be as small as possible. For a 

map, the  noise should ideaI1y be t h e  machine precision. For an ODE solution, the noise is "as 

smaIl as possible" using some accurate  integrator with its error tolerance set very stringently 

A pleasant introduction to  shadowing is provided by Sanz-Serna a n d  Larsson (l993). 

Definition. The pseudo-orbit has  a glitch at point i = G o  < k if for some relevant 

E there erists an  exact trajectory t h a t  E-shadows {yi)zjl but  no  exact  trajectory esists that  

eshadows  for G > Go (Grebogi, Hammel, Yorke, and Sauer  1990). 

Although rigorously disproving the esistence of shadows of particular numerical trajectories 

is a virtually untouched area of research, the  failure of a particular method to find a shadow is 

often cited as evidence t ha t  an  actual  glitch occurs somewhere in t h e  vicinity of the computed 

end-of-shadow (Grebogi, Hammel, Ib rke ,  and Sauer 1990; Sauer  and Yorke 1991; Dawson, 

Grebogi, Sauer, and Yorke 1994; Sauer, Grebogi, and Yorke 1997; Quinlan and Tremaine 1992; 

Hayes 1995). This conclusion is no t  always valid, however (see t he  discussion fo!lowing Theorem 

2.4, p. 21, in this thesis), and s o  this author  proposes two different ternis. The  term glitch, 

o r  hnrd glitch, should be reserved for the case in which t he  above definition can be verified, 

Le., non-existence of shadows can  be prowed. For example, a function p : -Y + ,Y which maps  

an  interval ont0 itself may produce a numerically generated orbit of t he  iterated map which lies 



outside this interval. If a numerically generated point, Say x i ,  moves more than E away from 

the interval -Y then a glitch is guaranteed. However, the failure of a particular method t o  find 

a shadow is a different matter, and for this case the author proposes t h e  term soft glitch. For 

systems such as the n-body problem, the  notion of a hard glitck cannot be used without proof 

because there is no point in phase space tha t  is unphysical; tha t  is, in a Newtonian, Euclidian 

space, particles can have any position and any velocity. Furthermore, small numerical errors 

are constantly occuring, and if the system is integrated carefully and local errors rernain smaI1, 

there is no obvious point at which one can Say, "this behaviour is nonphysical". One can 

arbitrarily decide, for esample, that  when the total computed energy of t he  numerical solution 

has diverged from the known energy of the system by some chosen amount,  the soIution is no 

longer valid. But this is not the spirit of the term "glitch". The spirit of t he  term seems t o  be 

"a point at which al1 esact trajectories diverge from a numerical one", and currently this can 

only be p r ~ v e d  for simple systems such as the system discussed above. 

A simple esample of a shadow is provided by Quinlan and Tremaine (1992), hereafter referred to 

as QT. Let y" = y, which can be re-written as a pair of first order equations as y' = v, vr  = y, 

where v is velocity. 

Now, assume tha t  y 

t # O. Introducing a 

If y(to) = u( to )  = O for any t o ,  then the exact solution is y = v = O Vt. 

= v = O for t < 0, and assume that  the system is solved esactly for al1 

perturbation of size 4 v  = E at t = O gives the following "noisy" solution: 

r 

-4 shadow of this noisy solution is 

x ( t )  = se t /2 ,  

wliich remains within e/ f l  (in phase space) from y ( t )  for al1 t. 

Nest w offer a proof of an almost "trivial" theorem: if a rnap is contracting, then noisy 

orbits are shadosved. 

Theorem 2.1 (Contracthg map shadowing theorem). Let be a metric space and let 

9 : X -+ ;Y be a continuous, uniturrnly contracting rnap, ie. ,  3 p  < 1  s.t. V x ,  y E S, IIp(x) - 

p(y)lI pllx - yll. Then for every E > O there ezists 6 > O such that every 6-pseudo orbit 

remaining in ,Y is  E-shadowed. 

ProoJ Assume we are given E > O. Let 6 = ~ ( 1 -  p). Suppose { y i } g j  is a 6-pseudo-orbit tha t  

remains in X. Let xj = yj and let xi+i = ~ ( x ; )  for i > j, i.e., {x i )& is an exact orbit. We 

will show by induction on i tha t  Ilxi - yill 2 E for i 2 j. 



Base case: llxj - yjll = O < E, by our  choice of xj- 

Induction step: Assume Ilx; - yill < E for i 2 j. Then 

Remark Notice t h a t  the  closer p is t o  zero, the  more contract ive 9 is, so t ha t  it can 

accomodate a larger noise amplitude 6. 

Remark If y were uniformly espanding, then Rie would expect pseudo-orbits to esponentially 

diverge from each other, and from the  esact  solution. In this case, i t  is F-' t ha t  is contracting, 

and n-e can apply the above theorem in reverse time, as long as y; C X Vi 2 a. 

Another instructive way t o  look at shadowing is in terms of i ts  relation t o  finding the  zero 
N of a function. To wit, let Y = be a 6-pseud+trajectory in Rn, and let E = {ei}i,i 

be the set  of one-step errors ei+i = y;+i - 9(y i ) .  Let g : R(~+')" + R'~" be a function tha t  

takes as input the entire orbit Y and produces an  output which is  t he  set  of one-step errors 

E, i.e., g ( Y )  = E. Since the one-step errors a re  assurned t o  be smal l ,  llE[l is srnall. T h a t  is, 

Y may be close to a zero of g, if one esists. A zero of g would represent an  orbit with zero 

one-step error, i-e., an esact  orbit. This is a n  ideal situation in which t o  appIy a zero-finding 

method such as Newton's method. If the method converges to an  o r b i t  X which is e-dose to  

Y, then X E-shadows Y. This  is the  idea behind reJinement (Grebogi,  Hammel, Yorke, and 

Sauer 1990; Quinlan and Tremaine 1992) wliich will be discussed in more detail below. 

A simple example of a system which is not shadowable (by the  definitions seen thus far-cf. 

$2.2.5) is y" = 0, the solution of which is straight-line motion at cons t an t  velocity vo. Assume 

uo = y'(-m) # O. If noise of size 6 > O in y' is added a t  t = O, t h e n  the  noisy solution has 

veIocity y' = vo for t < 0, and  a diflerent veiocity y' = uo + 6 f o r  t 2 O. It is easy to see 

t ha t  any esac t  solution y( t )  with y f ( t )  = Co for ail t will diverge linearly away from the  noisy 

solution inside at least one of t he  intervals (-00, O) or  (O, m). T h u s ,  no esact  solutior, esists 

tha t  remâins close to the  noisy solution for both t < O and t 2 0. 

2.1.3 Hyperbolicity 

One of the  most important concepts in shadowing is that  of hgperbolicz'ty, which is related t o  

exponential dichotomp. T h e  following definitions are commonly used i n  t h e  shadowing Literature. 

See for example Palmer (1988), o n  which the  following description is based. In this section, we 



will concentrate on maps, keeping in mind t ha t  we can  t rans la te  between maps  and solutions 

of ODES by looking a t  t h e  time-h solution operator v h ( x )  defined in equation (1.4). 

Let 9 : Rn + Rn be a diffeomorphism. Let Dy(x)  be  t h e  Jacobian of p(x), which eicists, is 

unique, and  is invertible since 9 is a diffeomorphisrn. Every orb i t  of 9 has associated with i t  a 

linear difference equation called t h e  linear variational equation, 

A sequence of Jacobians along a n  orbi t  can  be multiplied together  t o  produce a Jacobian of t h e  

cocresponding sequence of applications of t he  rnap, 

T h e  iinear variational equation (2.1) is said to have a n  exponedial dichotomy if there a r e  

positive constants K ,  ÛI and a family of projections Pi such t h a t  

By repeated application of (2.3) mre obtain  the  identity 

This  rneans that  the  projections Pi are  invariant with respect t o  equation (2.1). Tha t  is, if 

{ ~ ~ } f = ~ = j .  is a solution t o  (2.1) such t h a t  zj is in the range (resp. nullspace) of Pj for some j tlien 

z; is in t he  range (resp. nullspace) of Pi for al1 i. Inequalities (2.4-2.5) Say firstly, that  the  Pi 

a r e  bounded (proof: se t  i = j in (2.4)) and  secondly, t h a t  t h e  solutions z; of equation (2.1) 

which lie in the range of Pi decay esponentially in fortvard tirne? while those in the  nullspace 

of Pi decay esponentially in backward t ime (Palmer 1968). 

Definition. -4 trajectory X = {xi = yi(x)}f=j, for sorne x is said t o  be hyperbolic vnder 9 if 

t h e  linear variational equation 

along X has an esponential dichotorny. Equivalently, we Say t h a t  y is hyperbolic along X. 

Definition. A set  S c Rn is said t o  be invariant under 9 if p ( S )  = S. 

Definition. A compact invariant set S is said t o  be hyperbolic under p if every trajectory X 

in S is hyperbolic with the  sarne constants  K,a,  and t h e  projection matrices Pi have a rank 



which is independent of X, Equivalently, w Say that p is  hyperbolic on S ,  or  tha t  S and  

form a hyperbolic system. 

If a system is hyperbolic, then the  angle between the stable and unstable subspaces is always 

bounded away from O (Grebogi, Hammel, Yorke, and Sauer 1990). 

This thesis deals not with hyperbolic systems, but with systerns tvhose pseudo-trajectories are  

shadowable for finite but nontrivial lengths of time even though they are not hyperbolic. For 

this to  occur, a system must display pseudwhyperbolicity. We Say that  a system is pseudo- 

hyperbolic if trajectories of the system tend to  have solutions t o  the variational equation which 

can be split into two classes, one of which tends to espand esponentially, while the other tends 

to  contract esponentially, both simultaneously and for nontrivial lengths of time- This notion 

could be made more formal bi; for esample, attempting to  find the  two classes of solutions 

using the  common methods described in the next section, and  then performing least-squares 

fits of these solutions to  exponential curves. 

2.2 Survey 

2.2.1 Hyperbolicsystems 

Shadowing was first discussed by Anosov (1967) and Bowen (1975), in relation to hype rbok  

systems. Let S and p be the invariant set  and the map of a hyperbolic system, respectively. 

In such systenis, Anosov (1967) proved t h a t  VE > O 3 6 > O such tha t  every infinite-length 

6-pseudo orbit remaining in S is E-shadowed by a true trajectory in S. Bowen (1975) proved 

that  the same result holds if the rnap is required to be hyperbolic only along trajectories in the  

vicinity of the  pseudo-orbit. Palmer (1988) proved a similar theorern along the way tomards 

using the theory of esponential dichotomies to  prove Srnale's Theorem (Srnale 1965, 1967). 

Theorem 2.2 (Hyperbolic set shadowing theorem). Let S be a compact hyperbolic set 

for the CL difleomorphisrn y : Rn -t Rn. Then given a n y  E > O suficiently small there exists 

6 > O such that every doubly-infinite 6-pseudo-orbit in S has a uniqve E-shadowing orbit. 

ProoJ See Palmer (1988), Theorem 3.5. O 

Chow and Van Vleck (1992) proved a similar theorem in the  case that the function 9 is 

allowed t o  change a t  each step. We omit the (rather long and  involved) specifications of t he  

hyperbolicity conditions of the following theorem, except to  note t ha t  when the conditions hold, 

the difference equation 

Z;+I  = Dvi(xi)z i  



has a n  exponential dichotomy for al1 sequences of functions (y;}z0 if x;+r = 9i(xi)-  These 

conditions, of course, tightly restrict the classes of sequences of functions whose orbits can be 

shadowed; othernrise, shadowing of numerical solutions of ODES would be trivial! 

Theorem 2.3 (Random Diffeomorphism Shadowing Lemma). Let M be a smooth com- 

pact k-dimensional Riemannian manifold and let Difl(b1) represent the set o j  al1 diffeomor- 

phisms from to M .  Assume further that the [ornitteal hyperboiicity conditions are satisfied- 

Let (yi)gn=, be a sequence of points in M .  Then for al1 E > O suflciently srnall36 > O such that 

if there exists a sequence of functions {pi E Difl((M)}go satisfying Ilyiti - pi(yi)ll % 6 then 

there exists a unique sequence {xi}z0 such that x;+i = yi(xi) and Ilx; - yill 5 c for al1 i. 

Proof. See Chow and Van Vleck (1992)- [7 

2.2.2 Containment 

For systerns that are not hyperbolic' but whose trajectories display pseudo-hyperbolicity for a 

finite number of iterations of y, we must be satisfied with proving the existence of finite-length 

shadows. The first studies of shadows for non-hyperbolic systerns appear t o  be Beyn (1987) 

and Hammel, Yorke, and Grebogi (1987). Hammel, Yorke, and Grebogi (1988) and Grebogi, 

Hammel, Yorke, and Sauer (1990) (hereafter GHYS) provide the first proof of the existence of 

a shadow for a non-hyperbolic system over a non-trivial length of time. Their method consists 

of two parts. First, they refine a noisy trajectory using an i teratiw method tha t  produces a 

nearby trajectory with less noise. This procedure will be discussed in more detail below. When 

refinement converges to the point t ha t  the noise is of order the machine precision, they invoke 

containment, which can prove the  existence of a nearby esact trajectory. Their method, which 

we now describe, can be applied only t o  two-dirnensional maps. 

Let {yi)ka c R2 be a two-dimensional 6-pseudo-orbit of y for integers a and 6. As i 

increases, orbits separated from each other by a small distance along the espanding direction 

diverge on average away from each other, while orbits separated by a small distance along the 

contracting direction approach each other, on average. The  containment process consists of 

building a parallelogram &fi around each point y; of the pseudo-orbit such tha t  two sides CF' 
are  separated from each other along the contracting direction, while the other two sides E?' 
are  separated along the expanding direction.' In order to  prove the existence of a shadow, the 

image of Mi under 9 must intersect &Ii+;,i such that y (Mi)  makes a "plus sign': 6 t h  

(Figure 2.1). 

'Note that this naming convention is exactly opposite to that of GHYS, because in two dimensions they 
emphasized the direction to which the sides of Mi were parallel. In higher dimensions, the faces of an n-cube are 
not pa rde l  to a unique direction, and it is the direction d o n g  which a face is separated from the centre of the 
n-cube that matters. We change the naming convention now to avoid confusion later. 



Figure 2.1: Containment in two dimensions, reproduced from CHYS. The horizonta1 direction is con- 

tracting, and the vertical direction is espanding. 

T h e  property t h a t  GHYS define as a "plus sign" is 

To  ensure this occurs, GHYS require a bound on the second derivative of p, and the expansion 

and  contraction amounts need t o  be  resolvable by the  machine precision. The  proof of the  

existence of an esact  orbit  t hen  relies on the Following argument.  Let -{O be a continuous curve 

in &.Io connecting the  expanding sides E;' and E$\ Its  image p ( î o )  is then stretched such t ha t  

there is a section of 9(yo) lying wholly within ML, and in particular p(yo) leaves Ml through 

the  expanding çides E:' at both ends.  Let 71 be a section of y(yo) lying wholly within Mi. 

Now look a t  y(-yL) in m. Repeat  this process along the  orbit, producing -[fi- lying tvholly within 

the  final parallelogram MIV. Then  a n y  point lying along --IN, t raced backwards, repcesents an  

esac t  orbit that  stays within Mi, i = IV, N - 1, . . . , 1 ,  0, and we a r e  done (Grebogi, Hammel, 

Yorke, and Sauer 1990). 

Wi th  this picture, there is  a nice geometric interpretation of the  requirement that  the  angle 

between the stable and unstable directions be bounded anray from O: if t he  angle gets too small, 

then t he  parallelogram essentially loses a dimension, and p(lVfi) can not make a "plus sign" 

with Mi+1. Practically speaking, th is  occurs when t he  angle becomes comparable with the  

noise amplitude of the  refined orbit. Hence, the more accurate t h e  orbit ,  t he  longer i t  can be 

shadowed (Grebogi, Hammel, Yorke, a n d  Sauer 1990; Quinian a n d  Tremaine 1992). 

2.2.3 Refinement 

Definition. Refinement (Eiammel, Yorke, and Grebogi 1987, 1988; Grebogi, Hamrnel, Yorke, 

and Sauer 1990; Quinlan a n d  Tremaine 1991,1992; Hayes 1993) is a numerka1 procedure similar 

t o  Newton's Method (and also analogous to  iterative improvement methods For solving linear 



systems (Golub and Van Loan 1991)) that  takes a noisy orbit as input and attempts to  produce 

a nearby orbit with less noise, Le., one with smalIer one-step errors- A refinement iteration 

is successful if before the iteration the trajectory has noise tightly bounded by 6', after the 

iteration it has noise tightly bounded by 6', and 

6' < @ for some practical p E [O, 1). (2.8) 

Otherwise the refinement iteration is unsuccessful. Bere, a "practical" p is one that will allow 

a noisy trajectory to be refined t o  noise levels near the machine precision in a small number of 

refinement iterations, 

The refinement procedure of GHYS is analagous to  Newton's method for finding a zero of 

a function. GHYS presented their method for the two-dimensional case. (The basic idea was 

described on page 14 of this thesis imrnediately following Theorem 2.1.) Assume we have a 

noisy n-dimensional orbit Y = {Yi)~"_,. yi E Rn, and it h a s  a shadow ( x i ) ~ ~ , ,  xi E Rn. Then 

x;+l = ~ ( x ; )  and yi+l = +(yi) = p(y;) + ei+l, where 3 is an  approsimation to 9 with noise 

bounded by 6. Now suppose we approximate the one-step errors e;+l = y;+l - y(y;) using a 

method with noise significantIy tess than 6. Let C; ZE xi - y; represent a correction term tha t  

perturbs y; towards xi. Then 

In the spirit of Newton's method, ive ignore the 0(11&11*) term, and so one refinement iteration 

defines the corrections along the entire orbit: 

For a discrete map, Dp(y;) is just the Jacobian of the map a t  step i. For a system of ODES, 

D9(yi )  is the Jacobian of the solution of the ODE from s tep  i to  step i + 1.2 For simp1icity 

In other words, let 

be the k t -o rde r  ODE- Note that y i + ~  = ~ ( y , )  is the solution of (2.11) using y, as the initial condition and 
integrating f to time t ; + ~ .  The Jacobian Df(y;) measures how y '  changes if y is changed by a smaü amount. 
The  resolvent R(t,+i, fi) is the integral of Df(y) dong the path y(t) ,  and describes how a smail perturbation &y 
of y; a t  tirne t, gets mapped to a perturbation of y;+, at time t i + r .  R(ti+i:  t,) is the solution of the variational 
eauation 

where 1 is the identity matrix. The  reason the arguments to R seem to be reversed is for notationd convenience: 
they satisfy the identity R(t2, to) = R(t2, t ~ ) R ( t l ,  to), and so a perturbation by a t  time to gets mapped to 
a perturbation at time tz by the matrk-matnx and rnatrix-vector multiplication R26y = RiRoSy (Hairer, 
Norsett, and FVanner 1993). Finaiiy, the linear map in the GHYS refbement procedure, if y is the tirne-h 
solution operator for (?.Il), is D p ( y i )  = R(ti+ i, t;). 



of esplanation, uTe assume a n  n = 2 dimensional problem for the remainder of this subsection. 

For a generalization to  arbitrary n, see Quinlan and Tremaine (1992) o r  Hayes (1995). 

If the problern did not display pseudo-hyperbolicity, then the correction terms c; could be 

computed directly from (2.10). But since D p  displays a n  approximate esponential dichotomy, 

it tends to  amplify any numericd errors in c; not lying in the  stable direction. T h u s  computing 

the ci's by iterating (2.10) forward will amplify errors and typically produce nothing but  noise; 

iterating backwards suffers the same problern. Therefore, GHYS split the error and  correction 

terms into components in the  stable (si) and unstable (u;) directions a t  each timestep: 

Since it is not known a priori which direction is unstable a t  each timestep, t he  unstable 

vector uo at tirne to is initialized to  an arbitrary unit vector. The  linearized map is then 

iterated forward with 

Since &(y;) magnifies any component tha t  lies in the unstable direction, and assuming Ive 

are not so unlucky to  choose a uo tha t  lies too  close to  the stable direction, then after a few 

iterations u i  will point roughly in the  unstable direction a t  ti- Similarly, the  stabIe unit direction 

vectors si are computed by initializing SN to  a n  arbitrary unit vector and iterating backward, 

Substituting (2.12) into (2.10) yields 

While Dp(yi )  magnifies errors in the unstable direction, i t  damps them in the stable direction. 

Likewise, D ~ ( Y ; ) - ~  darnps errors in the unstable direction and magnifies errors in the  stable 

direction. Thus the c, terrns should be cornputed backward, and the c, terms forward. Taking 

components of (2.15) in the unstable direction at s tep i + 1, we iterate backward on  

and taking components in the stable direction, we iterate forward on 

The  initial choices for c, and c,, are arbitrary as  long as they are small - smaller than  the  

maximum shadowing distance - because (2.17) damps initial conditions and (2.16) damps final 



conditions. GHYS and QT choose them both as O. This choice is probably a s  good as any, but 

it can be seen here that,  if one shadow exists, there are infinitely many of themS3 Another way 

of looking at these initial choices for c, and c,, is that they "pinch" the growing components 

a t  the end point, and the backward-growing components a t  the initial point, to be small. That 

is, boundary conditions are being forced on the problem so that  the esponential divergence is 

forcibly masked, if possible, rnaliing the solution of (2.10) numerically stable. 

The refinement algorithm of GHYS as originally presented (Hammel, Yorke, and Grebogi 

1987; Harnmel, Yorke, and Grebogi 1988; Grebogi, Harnmel, Yorke, and Sauer 1990) was not 

rigorous; if it worked a t  all, it only produced a new pseud-trajectory with l e s  noise than the 

original. Refinement was made rigorous by Sauer and Yorke (1991) with the folloriring theorem: 

IV Theorem 2.4 (Sauer and Yorke 1991). Let Y = ( Y ~ ) ; = ~  be an n 2 2 dimensiunal 6- 

pseudo-orbit of the map p. -4ssume further that the local stable and unstable subspaces, Si 

and U;, respectively, at each step are known to a tolerance of 6. Let 8i be the angle between the 

stable and unstable subspaces at step i.'l Let IIDp(z)ll 5 rillzII for z E Si, and  let [lDp(z)-'11 f 

t;[lzII for z E Uici Let C o  = Dlv = 0 ,  and recursively define Ci+i = c s ~ 8 ~ + ~  + riCi lor 

i = O. . . . , N  - 1 and Di-r = csc Bi-L + ti-l Di for i = 1, . . . , N .  Let B be a hound on 

D y , D p - L , ~ 2 W ,  and LI2p-'. I f 6 <  & and 

for al1 i = O , .  . . , N ,  then Y has an  E-shadow of 9 such that E = 6- 

The proof of the theorern (see Sauer and Yorke (ENI),  Theorem 3.3) is constructive, in the  

sense that it uses the procedure for refining noisy orbits originally given in Hammel, Yorke: and 

Grebogi (19S8). The essential point of the proof is to show that  under the conditions of the 

t heorem, the iterated application of the refinernent procedure beginning wit h the pseudo-orbit 

resuIts in a sequence of refined pseudo-orbits with decreasing noise Ievel whose limit is an esact 

orbit. Furthermore, t h e  esact orbit is not too far from the original pseudo-orbit. 

Sauer and Yorke (1991) considered this theorem as a justification for t h e  non-rigorous re- 

finement procedure. Conversely, QT argued that if the refinernent algorithm fails then there is 

good reason to believe that no shadow esists, for two reasons. First, from tlie more rigorous 

study of simpler systems, glitches are known to esist and are not just a failure of any particular 

3For any system, even a chaotic one, given any exact orbit of fked length, a small enaugh perturbation in 
the initial condition in any direction produces a s m d  change in the b a i  condition, aithough for chaotic systems 
this perturbation must be exponentidy srnali in the length of the orbit. (IF the perturbation is restricted to the 
stable subspace, then obviously a similar solution will be obtained.) Thus given any exact orbit that 6-shadows 
a noisy orbit, there exist infinitely many exact orbits nearby that also shadow it. However, it may be that aii 
the exact orbits are packed into a space unresolved by the machine precision. 

4Sauer and Yorke (1991) do not specify if Bi  should be an upper or  Lower bound; presumably it is a lower 
bound, since we want the system to be as pseudo-hyperbolic as possible. 



refinement algorithm. Second, QT's results are consistent with a conjecture by GHYS on  the  

frequency of glitches. However, there is no guarantee tha t  refinement converges towards a n  

exact orbit. In fact, even if some refinements a r e  successful, numerical refinernent alone does 

not prove that  a n  exact shadow exists; it onIy proves the  existence of a numerical shadow, 

Le.,  a trajectory with less noise than the original. Hayes (1995) frequently saw cases in which 

the refinement algorithm failed t o  find a numerical shadow for noisy orbits of length N ,  but  

succeeded in finding a numerical shadow for the  superset of length 2 N .  Hence, t h e  algorithm 

failed t o  find a numerical shadow of Iength Ar, even though one clearly exkits. O n  t h e  other  

hand, this author often observed t he  code frorn his Master's thesis "converge" t o  a n  arbi t rary 

precision several orders of magnitude Iess precise than  the machine precision but then fail t o  

converge any further, even though the algorit hm is usually capable of converging very close to  

t he  machine precision. This would seem to imply t h a t  in these cases, refinement can  not reduce 

the  errors any further, implying t ha t  no shadow e-uists. However, t h e  algorithm fails t o  "blow 

up", This leads us to ask t he  question of whether convergence t o  machine precision is enough: 

is i t  possible tha t  refinement, if continued in higher precision, would s top  before converging 

t o  a n  exact orbit (Hayes 1995)? Despite these objections, this au thor  believes t h a t  refinement 

t o  machine precision implies with reasonable probability that  a shadow exists whose length is 

comparable to  t ha t  of the numerical shadow, although this evidence should not b e  taken as 

conclusive. 

This aut hor's Master's Thesis (Hayes 1995) provided empirical evidence t hat  supports  a 

conjecture tha t  shadow lengths in "unsoftened" n-body systerns scale as O ( l / n ) ,  However, 

more careful analysis (Hayes and Jackson 1997) has revealed t ha t  t h e  scaling is much better 

described by a 0 ( l / n 2 )  law. No simple explanation is available for this  scaling, although one 

could conjecture t h a t  there is some relation t o  the  fact t ha t  there a re  0(n2) possible interactions 

between n particles in an  n-body system, and t h a t  these interactions somehow conspire t o  

cause glitches. One  could argue t ha t  the algorithm itself is a t  fault: however, Hayes and 

Jackson (1996) showed tha t  an  artificially created nonlinear pseudo-hyperbolic system with 180 

dimensions was easily shadowed by the refinement algorithm. Furt  hermore, Hayes a n d  Jackson 

(1997) demonst rated tha t  shadow lengths of %oftenedn n-body systems, in which t he  interaction 

between particles is decreased, scale more optimistically even than O ( l / n ) ,  in fact alrnost O(1). 

On the  otlier hand, the  theorem of Sauer and Yorke (1991) also contains a factor of 0 ( l / n 2 )  

in t he  length of shadows, even though their theorem deais with general n-dimesional systems 

in which there is no clear association between dimensions and physical objects like particIes. 

Apparently, al1 one can conclude from this discussion is tha t  high-dimensional shadowing is a n  

area ripe for further study. 

In terms of computational cost, note tha t  a resolvent has 0 ( n 2 )  elements in it, a n d  is gen- 



erally espensive to  cornpute. Hayes (199.5) and Hayes and Jackson (1996) list several optimiza- 

tions t o  the procedure tha t  increase the speed of GHYS/QT refinement by about two orders 

of magnitude. If one is interested in studying high-dimensional systems, a chaotic map would 

be a better test problem than  an  ODE system, because no variational equation integration is 

needed. We note t hat the  GHYS/QT refinement algorit hm is t rivially paralelizable, since the 

computation of each D 9 ( y i )  is completely independent of al1 t he  others. For the same reason, 

i t  also has escellent locality of reference in a serial implementation, so  virtual memory paging is 

minimized. Once the D ~ ( y ; ) ' s  are computed, it may also be worth parallelizing the recurrence 

(2.10) (Jackson and Pancer l99'L). FinalIy, we note tha t  D2 has 0(n3)  elements so, unless 

significant sparsity is present, actually appIying Theorern 2.4 is impractical for any but small 

n. 

Refinement is closely related t o  the problem of noise reduction. Farmer and Sidorowich 

(1991) make the  distinction between observational noise and dynamical noise. The former oc- 

curs when one is observing a physical process, which inherently involves observational noise, 

One can attempt t o  dampen the  noise by applying a technique similar t o  refinement in which 

one searches the  nearby phase space for an esact solution. The basic idea behind their noise- 

reduction scheme is illustrated in figure 2.2. One can further a t t empt  t o  find the closest esact 

solution to the observations using a least-squares constraint, presumably giving a good approx- 

imation to the actual trajectory folIowed by the process."his is in contrast to a numerically 

generated pseudo-trajectory, in urhich the noise is injected into the  dynamics and affects the 

future evolution of the system. Although the problems are  clearly similar, and refinernent can 

be used as  a noise reduction technique, Quinlan and Tremaine (1992) found that  some "tricks7' 

often used when applying noise reduction failed to work when adapted t o  the refinement algo- 

rithm and applied to  the shadowing problem. 

A tangentially related work (Fryska and Zohdy 1992) proved tha t  numerical solutions of 

piecewise linear ODES can sometimes introduce statistical biases, causing numerical solutions 

to  have substantiaIly different statistical properties than the closed-form solution. In an ironic 

twist to  the whole concept of shadowing, they found tha t  the correct statistical properties could 

be recovered by injecting uniformly distributed randorn noise into the numerical solution. T h e  

apparent explanation is t h a t  the injected random noise somehow masks the statistical bias 

introduced by the  numerical method. 

' ~ o t e  that there is no need to make this method rigosous, because it is known that an exact trajeccory elàsts 
near the observed one, namely the exact trajectory that is being obscured by noise. 



Figure 2.2: Schematic representation of the noise reduction technique of Farmer and Sidorowich (1991). 

(a)  T h e  circles represent noisy measurements of a deterministic trajeciory at three different times. (b) 

-4s successive measurements are transported to the same point in time (the middle circle a t  the bottom), 

the associated noise probability distributions distort according to the local derivatives of the dynarnical 

system. The true state should lie somewhere in the intersection of the three regions (the square region 

lying in the intersection of the two ellipses). Averaging the transported measurements a t  time t i  makes 

it possible to produce a better estimate of the true state a t  time t i -  

2.2.4 Results by bounding non-hyperbolicity 

We make the distinction between rigomus results and nonrzgorous results. We cal1 a result 

rigorous if the method used t o  produce it is entirely rigorous from start t o  finish: for esample, 

if a computational component rigorously bounds numerical errors, and then a theorem is used 

to show that the computed properties imply the  existence of a shadow. Some results are 

partially rigorous, in that  floating-point ccmputations without rigorous error bounds are used 

in combination with a theorem; such results could easily be made rigorous with the application 

of interval arithmetic. Finally, non-rigorous results use convincing numerical experiments t o  

infer properties of noisy trajectories and their purported shadows. 

The original results presented in this thesis are rigorous. 

Rigorous results 

The procedures of containment and refinement d o  not make explicit use of the  hyperbolicity 

of the system, although they work only if some measure of hyperbolicity is present (Chow and 

Palmer l99L). In contrast, Chow and Palmer (1991, 1992) make explicit use of the hyperbolicity 



of t he  system, and use the  ideas of  t he  traditional Shadowing Lemma (Anosov 1967; Bowen 

1975; Palmer 1988) t o  estimate how far a shadonr is from a pseudo-orbit. Chow and  PaImer 

(1991) discussed the one-dimensional case, and Hadeler (1996) made explicit the  relationship 

between the one-dimensional case  a n d  Kantorovich's Theorem, which lays o u t  conditions under 

which Newton's method wïil converge- We omit detailed discussio_.i of the  one-dimensional case 

because Iater work by the  s ame  au thors  (Chow and PaImer 1992) subsumes it,  escept to note 

one very interesting fact: Chow a n d  Palmer (1991) proved t ha t  in t h e  one-dimensional case, 

the  shadowing distance not only haç a n  upper bound, but a lower bound a s  well. T h a t  is, they 

proved tha t  the  shadow must maintain  a minimum distance From the  noisy orbit: i t  cannot  

approach the noisy orbit arbitrari ly closely. I t  is not cIear if this result is extendible t o  higher 

dimensions, nor is it clear esac t ly  w h a t  the  significance of this result is: however, i t  is certainly 

interesting. T h e  high-dimensional theorem and its proof by Chow and  PaImer (1992) is so  

concise and elegant t ha t  we now include it in its entirety. 

Let 9 : Rn + Rn be a C2 function and  let {Yi}~-o  be a 6-pseudo-orbit of 9. Given any 

sequence ( h i ) z ~ '  in R-", the  difference equation 

has many solutions. So  the  linear operator  L : R ~ ( ~ ~ ~ ~ )  +- R"" defined for Z = { z i ) ~ ~ , ,  by  

is onto and so has right inverses. Fo r  the  following theorem, we choose any  such right inverse. 

Theorem 2.5 (Chow and Palmer 1992). Let 9 : Rn + Rn be a c2 function and let LW = 

~ u ~ { [ l ~ ~ y ( x ) l l  : x E Rn). Let (Y;}Eo be a 6-pseudo-orbit 01 y with 21~1ll~-'11~6 5 1, where 

L-' is a right inüerse O/ L. Then  there is an exact orbit {xi]z0 of y such that 

Proof- (Chow and Palmer 1992) T h e  sequence {x i )~~ , sa t i s f i e s  xi+l = y(x;),  i = O , .  . . , N- 

I- If we set  xi = y; + z;, we find t h a t  z; satisfies 

w here 

Remark: Equation (2.18) is the analog of the correction term i n  the refinement 

algorithm, equation (2.10) o n  page 19. The first two terms in equation (2.19) rep- 

resent the one-step error at step i, while the last three terms describe the amount of 



nonlinearity in 9, Le., the ~(l lcl l ' )  terrns that Iüere ignored in eqvation (2.9) of the 

refiernent algorithm, which are bounded by fM11~11~. 

So  ou r  task is t o  solve equation (2.18) for a sequence z; such t ha t  for i = O , .  . . , N ,  

Let Z = ( z i ) z 0  E R~("+') and  let llZll t  mas^^-, Ilzil[* Denote by Y the  set  of sequences 

with max norm E, Y = {Z ( 1 1  Zll 5 E}- Y is a compact conves subset of R*("+'). We define 

a mapping T on Y. Note that we can nrrite equation (2.18) as LZ = g(Z) where 

Then we define TZ = L - L g ( ~ ) ,  where L-' is the  given right inverse of L. 

Since t he  gi7s are  continuous, T is a continuous mapping of Y into R " ( . ~ + ~ ) .  U7e show tha t  

T maps Y into itself. First observe t ha t  

where the  middle term is shown equat t o  E by moving E into the  rniddle term and  sotving the  

resulting quadratic equation in S. So T maps  Y into itself. By Brouwer's fised point theorem, 

i t  has a fixed point Z = {zi)tLo=,. Then T Z  = Z and so, since LL-L is the  identity, LZ = g(Z). 

T h a t  is, Z is a solution of equation (2.18) satisfying llzill 5 E for i = O , .  . . , N .  Then x; = y;+z; 

is the  shadow. 0 

Remark 1: It is not actually necessary t o  assume tha t  DZY(x) is bounded over Rn because 

usually Yi would be restricted to  a bounded set  and could be replaced by a bound for 

IIDZs--(x)II over t h a t  se t  (Chow and  Palmer 1992). 

Remark 2: IlL-'II is the ''magnification factor". If 6 is the  local error made in computing 

the  orbit, then II L-l JJS is approxirnately t h e  distance t o  t he  shadow. 

The nes t  s t ep  is t o  choose L-l in such a way tha t  IIL-'IJ is minimized. Not surprisingly, 

the  best L-' t o  choose is one whose components are as aligned as possible with the  s tab le  and  

unstable subspaces at each step, computed in a fashion similar to the refinement algorithm- 

Finally, cornputing a n  upper bound for I I L - ' ( I  involves noting t ha t  even though the orb i t  {xi) 

is not hyperbolic under 9, it may be hyperbolic under c3p for some integer p > 1. IF such a 

p is found, i t  allows esplicit bounds t o  be computed on  the  hyperboIicity constants for the  



orbit {xi} under yP using the ideas of the traditional Shadowing Lemma (Anosov 1967; Bowen 

1975; Palmer 1988), leading to  an  upper bound on IIL-LII. Chow and Palmer demonstrate their 

method on a 6pseudo-orbit of the Hénon map with 6 = 2-" = For a particular orbit 

of N = 333,000 iterates of the map, they find that p = 40 guarantees hyperbolicity of the orbit 

under y p  and that I I  L-'I] 5 113277 = 105. This means that the shadowing distance is about 

10' times the size of the one-step errors, giving a shadow distance of about 

Non-rigorous results 

This "magnification Factor", the ratio between the shadow distance and the local error: is termed 

the "brittleness" of an orbit by Dawson: Grebogi, Sauer, and Yorke ( 1 9 9 4 ) ~ ~  If the brittleness is 

of order the inverse of the machine epsilon or Larger, then al1 accuracy is Lost as the shadowing 

error is comparable to the size of the variables thernselves, They show that if the number of 

positive and negative Lyapunov exponents changes, or if a Lyapunov exponent fluctuates about 

zero, then the brittleness can blow up. The effect of a fluctuating esponent is depicted in Figure 

2.3- Howewr, Dawson, Grebogi: Sauer, and Yorke (1994) make the strong daim that they 

Figure 2.3: Fluctuating Lyapunov esponent in the "vertical" direction, reproduced from Dawson et 

al. (1994). b is the local error, and the vertical direction is initially contracting, but  then becomes 

espanding. (a) an ensemble of trajectories that starts off in an €-bal1 is first cornpressed into a sheet. 

(b) If the local error steps outside this sheet, and then the direction becomes an espanding direction, 

then (c) the numerical trajectory diverges away from al1 esact trajectories that started in the original 

ebal l ,  (d) possibly entering regions of phase space with qualitatively different behaviour than the exact 

trajectories. 

believe this kind of fluctuating Lyapunov esponent is "cornmon" in high dirnensional systems, 

with the only justification apparently being that there are so many dimensions that there must 

be a fluctuating exponent somewhere. Although this argument is not formally compelling: i t  

may have some merit. On the other hand, Hayes and Jackson (1996) demonstrated numerical 

shadowing of a 180-dimensional non-hyperbolic system, although that system was artificially 

constructed to have pseudo-hyperbolicity. 

'The t e m s  "modulus of continuityn and "condition numbern are commonly used in the literature for this 
ratio. 



Systems which possess such f luctuat ing Lyapunov exponents a r e  termed hyperchaofic by 

Sauer, Grebogi, and Yorke (1997). Let z; be the  displacement from the  pseudo-orbit to the  

shadow at s tep i. Sauer, Grebogi, and  Yorke (1997) observe t ha t  t he  evolution of z; with 

i is similar t o  a biased random walk. A glitch occurs when the  random wdk pushes the  

numerical orbit further away from t h e  shadow than the  hyperbolicity can  correct for. They  

mode1 the  random walk formalIy as a Kolmogorov diffusion process and demonstrate  t ha t  t h e  

distribution of shadowing distances using t h i s  mode1 closely resembles âctual shadowing distance 

distributions. Furthermore, they c o m p u t e  how often glitches occur, based on  t h e  behaviour of 

the  fluctuating Lyapunov esponent which is closest t o  zero. They show t h a t  t h e  espected time 

(T) for the  shadowing distance t o  become the  same size as the  variables is proportional t o  

where Xo and  00 are the mean and s t a n d a r d  deviation, respectively, of the  fluctuating Lyapunov 

exponent closest t o  zero. Finally, they  demonstrate  tha t  when the fluctuations a r e  sufficiently 

badly behaved, t he  length of the shadow 5s virtually independent of the  local error  - in other  

words, in a sufficiently badly behaved system,  the  shadow length will never get very long for 

any practical local error. 

Methods have also been developed t o  shadow one-dimensional lattice maps,  typicalIy dis- 

cretizations of partial differential equat ions  (Chow and Van Vleck 1993, 1994b), and  for prob- 

Lems tha t  are  piecewise hyperbolic in which the  number of stabIe dimensions is monotonically 

increasing with time (Chow and Van Vleck lW4a) .  

2.2.5 S hadowing lemmas designed explicitly for ODE systems 

This thesis concerns the problem of shadowing of ODE systems, including the  rescaling of time 

(defined below), which is the  topic of this subsection. 

Introduction 

There is a Fundamental difference between a discrete rnap and a discrete solution t o  a n  ODE. 

Local errors of the  former are restricted t o  being "space like" - there is no notion of the  

passage of time between iterations of t he  map. T h e  latter, horvever, can have errors in space as 

well as time. The  numerical error in the  length of each timestep can accumulate, Ieading the 

numerical solution to have a slightly different time scale than the real system. In t h e  integration 

of periodic o r  almost periodic systerns l ike the  solar system, this is also known as phase error, 

because the  numerical solution may have  a slightly different period t han  the  exact solution. 

Thus,  although the  orbit of a planet rnay be reproduced correctly by the  numerical trajectory, 

the  time at which a real and simuIated planet  pass through a fised plane perpendicular t o  the  



orbit rnay differ. This  is t h e  case even if the  integrator is symplectic (Stuart and  Gonzalez 

1996; Gonzalez a n d  S tua r t  1996). Thus, when attempting t o  shadow a numerical solution of a n  

ODE, i t  rnay b e  necessary t o  'kescale" tirne (Coomes, Koçak, a n d  P a h e r  1994b, 1995a, 1995b; 

Van Vleck 19%). To take this into account, we redefine a shadow of a n  ODE system as follows: 
N 1  Definition of ODE shadowing: A pseudo-trajectory Y = { Y i ) ~ ' = o  with timesteps 

rv-1 - is E-shadowed by a n  exact trajectory X = { x ; ) ~ ~ ~  with t imesteps ( T ~ ) ~ , ~  if xi+i = &(xi), 

where [ly; - x;lf 5 E, and (hi - ril 5 E. 

Remark In t h e  above definition, we assume tha t  E « h;, t h a t  is, the  shadowing distance is 

significantly srnal1er than  t he  timesteps. In practice, this appears  sufficient for the  systems we 

have studied. If th i s  were not the case, the above definition could be modified to  include some 

notion of global tirne error per-unit-step. 

In other words, t he  numerical trajectory is shadowed if i t  closely follows the path of an  e sac t  

solution, but at t ime  t i t  is allowed t o  be a little ahead of o r  behind t he  esact solution. This  

linear growth of t h e  errors is due  t o  a Iack of hyperboiïcity in t h e  direction of the flow in phase 

space (Van Vleck 1995). For large It - toi this can be a significant difference, so  a shadowing 

method which does  not take the  rescaling of time into account is likely t o  grossly underestimate 

the length of t h e  shadow. Coomes, Koçak, and Palmer (199413, 1995a, 1995b) dramatically 

demonstrate this when they show tha t  a rescaling of t ime allows t h e  Lorenz equations t o  be 

shadowed for a lmost  10"ime units, while the  map method, which does not rescale time, finds 

shadows Iasting only 10 t ime units-an astounding increase in  shadow length of a factor of IO"! 

Finally, note  t h a t  the  non-shadotvable esample given in t h e  tutorial (y" = O, page 14) is 

shadowable if t ime  is rescaled. This  matches what our  intuition would Say: as long as we 

care only about  qualitative properties of the soh t ion ,  i t  should not mat ter  if the  numerical 

trajectory traverses the  path a t  a slightly different velocity t h a n  the exact solution, as long as 

the trajectories, taken as a whole, remain near t o  each other.  

Explicit ly rescaling t ime in Newton's met hod 

Errors in time manifest themselves as  errors directed along t h e  direction of y', and so  one way t o  

account for these errors is t o  esplicitly pert.urb t h e  noisy solution along the  y' direction. These 

perturbations t ransla te  back into a rescaling of time. To  this  end,  Van Vleck (1993) proves 

a theorem similar t o  t h a t  of Chow and Van Vleck (1993, 1994b) in which tirne is explicitly 

added t o  the variational equation of the one-step error function. To  wit, if Y = { Y i ) ~ ~ o  is a 

O-pseudo trajectory with associated timesteps { h i ) ~ ~ ~ L ,  then let  z i  = (yi ,  hi) and Z = {zi}go 

and compute t h e  one-step error by g(ZIi  = y;+l - yhi (y;). T h e n  t h e  first variational equation 
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D g ( Z )  : ~ " ( ~ + l )  x R~ _+ R~~~ including t he  effects of t ime is 

where 6 is a user-input parameter controlling the amount of time rescaling which is allowed.' 

More formally, we a re  changing t he  norm with respect t o  which t h e  variation is performed: 

0 = O corresponds t o  the norrn in which variations with respect t o  tirne a r e  not considered at 

a11, whereas B = 1 corresponds t o  t he  norm in which variations with respect t o  t ime are fully 

considered. Choosing 0 E [O, 11 allows t he  scale of variations in time to be  different from the  

scale of variations in space, which is precisely what we need in order to perform a rescaling of 

time. Then  we have the  following theorem- 

Theorem 2.6 (Van Vleck 1995). Gfuen constants 6, c > O and 7 2 O suppose L is an  ap- 

proximation to D g ( Z )  such that 

(i) a right inverse L-' of L satisfies IIL-'[/ 5 C. 

(ii) I l  L-1 - Dg(Z)-lII 5 9 for some right inverse Dg(Z) - I  of D g ( Z )  . 

Assume that ( [g(Z) l j  5 S and let E := 26(q + c ) .  If I I  D g ( Z )  - D g ( W )  I I  5 1/(2(q f c ) )  for 

]IVv- - 211 5 E,  then g has a solution W o f g ( W )  = O such that [IW - 211 5 E.  

Prou) See Van Vleck (1995), Theorem 2 2 ,  which quotes a theorem from Chow, Lin, and Palmer 

(1989).  O 

For problems that  lack hyperbolicity in t he  direction of motion, Van Vleck (1995) demonstrates 

t h a t  non-zero values of 0 are  capable of finding shadows between 10 and  100 times longer than if 

8 = 0,  with shadow lengths for t he  Lorenz system lasting up t o  about 10" t ime units. However, 

good values for 8 must be found by trial and  error, 

Implicit ly rescaling t ime 

Coomes, Koçak, and Palmer (1994b, 1995a) provide the most impressive results t o  date  on 

shadowing numerical solutions t o  ODES. They  detail a rigorous method allowing for the rescal- 

ing of t ime that finds shadows For t he  Lorenz system longer and with a smaller global error 

than  any  other published work (escept this thesis, which matches their resuits). Their method 

relies upon building a hyperplane 31; perpendicular to  f (y;) and containing y;, and  then finding 

a sequence of points xi E 31; such t ha t  x;+l = vT(xi) and Ir; - hi] < E. (See Figure 2.4.) In 

' ~ h i s  is the only place in this thesis where D v  includes a differentiation with respect to hi. It is this term 
which ailows a rescaling of time by dowing an adjustment dong y'. 



Figure 2.4: Pseudo-orbit y; and the shadowing orbit x; in hyperplane Ri (Coornes, Koçak and Palmer 

1994). 

this way. they avoid having to find r; esplicitly, as opposed to Van Vleck (1995) who computed 

the r; explicitly as part of a Newtonk method. The statement of their theorem requires some 

introductory notation. 

Let Y = {y;}:Lo be a 6-pseudo orbit with associated stepsizes {hi}:!LLL- Also suppose that 

we have a sequence { ~ } z ; '  of n x n matrices such that 

Now, let Si be an n x (n - 1) matris chosen so that its colurnns form an almost-orthonormal 

basis for the su bspace orthogonal to f (y;) 

for some positive nurnber SI. Now, we compute (n - 1) x (n - 1) matrices A; satisfying 

Geometrically, Ai is Y;: restricted to the subspace orthogona1 to f (y i )  and t h e n  projected to the 

subspace orthogonal to f ( ~ ; + ~ ) .  Ne?rt, define a linear operator L : ( R ( ~ - ' ) ) ( ~ +  '1 _i ( R ( ~ - ' ) ) ~  

in the following way: If = { ~ i } ~ ~ o  is in (R("- '))( '~+~), then we take LE = { ( L Z ) ; ) ~ ~ ~  where 

The operator L has right inverses and we choose one such right inverse L-'. We now define 

several constants. Let U be a conves subset of Rn containing {yi)zo in its interior. For such 



U, we define 

Mo = sup  Ilf (x) 11, Ml = sup IIDf (x)ll, A42 = SUP [ID2f ( X ) I I -  
xEU xEU xEU 

Then  we define 

Next, we choose a positive number  EO 5 h such 

I \ x  - y;\! < EO, the solution pt (x) is defined and 

define 

h = inf hi, - 
O < i < N -  1 

that  for i = O , .  . . , N  - 1 and al1 x satisfying 

remains in U for O 5 t 5 hi + €0. Finally, we 

Then,  we have the following theorem. 

Theorem 2.7 (Coomes, Koçak, and Palmer 1994b). Let 

If these quantities together with 6, and EO satisfy the ineqzlalities 

then Y is E-shado,wed with shadowing distance 

Proof. See Coomes, Koçak, a n d  Palmer (1994b, 1995a). Cl 

Coomes, Koçak, and Palmer use a Taylor series integration method with interval arithrnetic (see, 

for example, NediaIkov 1999) t u  produce a rigorously bounded locaI error of their numerical 

trajectory, and also require the computation of an  integer p identical t o  the p in Chow and  

Palmer (1992) (cf. p. 26). 



As Coomes, Koçak, and Palmer s ta te ,  "Admittedly, the  staternent of t h e  theorem seems 

rather imposing." T h e  proof, which spans some  9 pages, quotes several o the r  nontrivial the- 

orems and  lemmas from other papers, and  omi t s  many details, also appears imposing t o  this 

author. I t  is also of practical importance t o  note  t h a t  a , k f L ,  and M2 are  bounds on  f and 

its  derivatives over t he  entire convex set  U containing t he  pseudo-trajectory. This makes the  

theorem inapplicable t o  problems which may contain poles in U, such as the  unsoftened gravi- 

tational n-body problem. By contrast: containment only requires bounds over a much smaller 

volume, essentially a (possibly self-intersecting) 'Yu be" containing the pseudo-trajectory and 

its shadow. If t he  requirement t ha t  C' be convex were Rrithdrawn, perhaps this restriction could 

be Lifted. Furtherrnore, the bound on the second derivative of f over U could be  very espensive 

to  compute  if a closed form bound is not available. However, requiring bounds on t he  first 

and second derivatives o f f  is a significant improvement over requiring bounds on  t he  first and 

second derivatives of 9, as required by Theorem 2.4. 

For a local error of about 10-13, Coomes, I ioçak, a n d  Palmer were able to find shadows for 

the  Lorenz system lasting 10' time units: with a shadowing distance of about  IO-'. Adding 

t o  this t he  fact t h a t  their results a re  entirely rigorous, i t  is this author's opinion t h a t  Coomes, 

Iioçak, and  Palmer have the best results in t h e  field thus  far. -4s we will see later, the  results 

of this thesis a re  comparable. 

Perio dic s hadowing 

The  problem of errors in time is esacerbated when atternpting to  shadow periodic solutions of 

ODEs, because any  non-zero error in time is repeated ad infinitum. Thus, a rescaling of time 

is absoiutely necessary t o  shadow periodic solutions of ODEs. 

T h e  idea for shadowing periodic solutions is simple. Given a pseudo-t rajectory {Yi)zo 
nrith timesteps { h i ) E i L ,  we require not only t h a t  the  local error Ilyi+l - phg(yi)ll is small, 

but also t ha t  llyo - phLv (yrv) I I  is small. This gives a periodic pseudo-orbit. Then ,  only minoc 

modifications are  required to non-periodic shadowing theorems to produce a periodic shadowing 

theorem (Van Vleck 1995; Coomes, Koçak, a n d  Palmer 1994a). I t  is also possible t o  use 

refinement-like algorithms to produce accurate pseudo-trajectories from remarkably inaccurate 

ones, allowing one t o  prove the esistence of very long periodic trajectories (Coomes, Koçak, 

and Palmer I W i ) .  

2.2.6 Shadowing conservative integrations 

-4s described in Chapte r  1, rnuch attention has recently been devoted t o  integrators t ha t  preserve 

various quantities such as symplectic s t ructure  (Channel1 and Scovel 1990; Sanz-Serna 1992) 
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and  energy (Stuart and Gonzalez 2996; Gonzalez and Stuart  1996; Shadwick, Bowman, and 

Morrison 1999). Coomes (1997) demonstrates that such integrations are  often shadowable. In 

particular, if A4 is the  submanifold of interest (eg,, symplectic manifold or  energy surface) on 

which the  initial condition y0 lies, then a shadow of the pseudo-orbit Y = exists in 

M ifY has sufficiently small local errer: rernains dose to  JM: avoids the neighborhood of fixed 

points of f ,  and the variational equation d o n g  Y e-shibits sufficient hyperbolicity. This is a 

very significant result for problems in which such submanifolds occur, most notably Harniltonian 

systems. 

2.2.7 Are shadows typicaI of true orbits chosen at random? 

T h e  presence of a shadowing orbit  does not imply that the statistical properties of the numerical 

orbit are  typical of those of t rue  orbits chosen a t  random; the shadowing orbit might be atypical 

(QuinIan and Tremaine 1992). This  observation is perhapa the  most fundamental open question 

remaining for shadowing research- Although it is not directly related to  the work in this thesis: 

it is important enough to  discuss briefly. 

For example, consider the binary shift map x;+l = 22; mod 1. Iteration on  a computer that 

uses binary floating point arithmetic always results in x; = O after a finite (and relatively small) 

number of iterations. Although {xi = 0}g, for some m is a valid esact  orbit? it is highly a t y p  

ical, wit h misleading statistical properties (Farmer and Sidorowich 199 1). Fryska and Zohdy 

(1992) proved that numerical simulation of a simple piecewise linear ODE sometimes produces 

solutions with substantially different statistical properties than  t h e  closed-form solution. This 

idea is taken further by Corless (1994b) (see also Corless 1992a), who studies the Gauss rnap, 

if x = 0, 
G ( x )  = 

x-' mod 1, otherwise. 

This well-known rnap has several properties which make it very interesting, especially from the 

shadowing viewpoint (Corless 1994b) : 

1. T h e  orbit {a;} (where x;+l = G(x;) , i = O . . . oo) of every rationa1 initia1 point 20 goes 

t o  zero in a finite number of iterations. The rationals are dense in [0,1]. 

2. An orbit is ultimately periodic if and only if i t  s ta r t s  from a quaclratic irrational or, 

trivially, a rational initial point. Quadratic irrationals are  roots of quadratics with integer 

coefficients, and are dense in [O,l]. Like the rationals, they are  countabte, and hence of 

measure zero. There are  a n  infinite number of orbits with each period. 

3. The map is ergodic, meaning almost al1 initial points have orbits tha t  a re  dense in [O,lJ. 



4. The  Lyapunov expooent  of this map is, for almost al1 initial points, 7r2/(6 Iog2) - 2.3731, 

but is undefined for rational initial points and is dgerent for each quadratic irrational 

initial point- 

As Corless (1994b) states,  we see tha t  there are "formidable numerical difficuities in simdating 

this map." From point #1, we see that unless our numerica.1 orbit converges t o  zero in a 

finite number of i terations,  it is not representing the properties of t he  exact orbit  starting 

at  our (numerically represented) initial point. Since any numerical orbit  must ultimately be 

periodic, and if Our numerical orbit does not converge to  zero, we see from point #2 that  we 

can only shadow periodic solutions whose initial points are unrepresentable. From point #4 

we see that a numerically computed Lyapunov exponent may be completely unrepresentative 

of almost al1 orbits. Paradosicaily, the numerically computed Lyapunov esponent does give a 

good approsimation t.o t h e  almost-sure value. In fact, a very strong shadowing result can be 

proved (Corless 1992a; Corless 1997). However, from point #2, we see tha t ,  ultimatel~., we 

can shadow only ~ e r i o d i c  orbits,  and thus the shadow tha t  foliows our numerical solution has 

a quadratic irrational initral point, and thus does not have a dense orbit  (point #3) or  the 

"correct" Lyapunov exponent-  The  fina1 resolution of this paradox must account for the fact 

that the true shadowing orb i t  behaves like a typical orbit, even though it is not- An analysis 

of this behaviour is provided by Corless (1994b), based upon G6ra and Boyarsky (1988). 

On the other hand, G 6 r s  and Boyarsky (1988) showed tha t  Iong pseudo-trajectories of a 

one-dimensional map r satisfying so me special properties have densit ies which a p  proach t hat 

of r itself. This is a n  esciting result, and if it can be generalized t o  continuous systems of 

arbitrary dimension, i t  m a y  go a Iong way towards answering this question. 

A weak result concerning this question can be abstracted from Coomes, Koçak, and  Palmer 

(1997). The paper is chiefiy concerned with shaclowing long periodic orbits, and they use the 

Lorenz equations as their esample. Long-term solutions to  the Lorenz system a re  confined 

approximately t o  two disks in three-space (cf. Figure 4.1, p. 68 and $4.1.1, p. 6 i ) ,  and so- 

lutions generally jump bettveen the two disks chaotical1y. If a revolution around one disk is 

labelled 'O7 and a revolution sround the other is labelled ' l ' ,  Coomes, Koçak, and Palmer (1997) 

demonstrated t hat they were able t o  build pseudo-trajectories with an  arbitrary sequence of 

'0's and 'l's, and then prave the existence of periodic shadows For these pseudo-trajectories. 

This eliminates at least o n e  simple kind of bias: if Rie assume tha t  true periodic orbits of the 

Lorenz system chosen at randorn can produce arbitrary sequences of Os and Is, it appears that 

we can build pseudo-trajectories tha t  possess each sequence, and so shadows of the Lorenz 

system are not biased in such  a way as to disallow certain sequences. Palmer and Stoffer (1995) 

demonstrate a similar resuLt for the Hénon map. 

Note tha t  if shadows a r e  generally atypical of true orbits chosen a t  random, then the prop- 
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erties of t h e  original pseudo-trajectories that  produce t h e  shadows are also atypical- Th is  

conclusion would have grave implications for the  vast  quanti t ies of Iiterature over t h e  past 

several decades t ha t  have st udied pro blems numerically. If ot herwise reliable-looking pseudo- 

trajectories are atypical, they must be atypical in a n  extremely subtle way, because researchers 

have been making apparently reliable, self-consistent, peer-reviewed conclusions based o n  nu- 

merical simulations for decades. Considering t ha t  shadowing is only one of many available 

methods of error analysis, i t  would be very surprising ( t o  say  t h e  lest!) if shadows a n d  their 

o t  herwise reIiab1e-looking parent pseudwt rajectories were atypical in a su  bstantial way. This  

does not mean t h a t  t he  problem should not be studied,  o f  course; t he  apparently small  chance 

t h a t  pseudo-trajectories are  substantially atypical i s  balanced by the importance of proving 

t ha t  they a re  not. 

Finally, we would like t o  point o u t  t h a t  similar criticisms can  be levelled against all forms 

of backward error analysis. For esample,  defect analysis says  t h a t  the solution obtained by a 

defect-controlled method is t he  exact  solution t o  a nearby problem in which t he  right-hand- 

side of t he  ODE suffers a small time-varying perturbation.  We can then ask, "1s this slightly 

perturbed problem typical of nearby problems chosen at random?" Or even more pointedly, 

ive can ask if the perturbations are  typical of per turbat ions  suffered by a real-life system? We 

argue in section 1.2 t h a t  the  answer is sometimes "no" . Thi s  criticism can also be levelled a t  

t he  method of modified equations- Even symplectic integrations, which have received much 

attention recently, suffer the  same problem: a solution to a Hamiltonian probIem integrated 

with a symplectic integrator is guaranteed to  be exponentially close to the  e sac t  solution of a 

nearby Hamiltonian problem; but is t ha t  nearby Hamiltonian problem typical of (pertinent)  

nearby Hamiltonian problems cliosen at random? 

This  discussion illustrates t ha t  answering the question,  "-4re shadows typical of exact  solu- 

tions chosen a t  random?" may be a very difficult o n e  t o  answer, and  tha t  t o  be fair, we must 

ask similar questions of other forrns of backward e r ror  analysis. 



Chapter 3 

Cont ainment 

3 1  Introduction 

T h e  method in this thesis relies on  a very simple geometrical argument, which is a generalization 

of the  containment process first introduced by Grebogi, HammeI, Yorke, and  Sauer (1990), 

hereafter refered t o  as GHYS. 

Although containment was the  first method introduced for proving t h e  esistence of finite- 

time shadows of numerical orbits, and  even though it is in this a u t h o r k  opinion the  most 

intuitive and  easily understood method for proving the existence of shadows, i t  has not, to  this 

author7s  knowledge, been pursued beyond its  initial conception. This  thesis fills t h a t  gap, and 

demonstrates that at least in the cases of no more than one contracting o r  expanding dimension, 

containment is about as strong a method as any currently in the literature. 

3.1.1 Chapter outline 

We first present the proofs t ha t  a r e  central t o  the thesis in section 3.2. Forma ,lly, t hese proo 

break into two steps. First, we must prove t h a t  p(Mi) and ,iM;+i satisfy t h e  property analogous 

t o  t he  "plus sign" of GHYS (cf. Figure 2.1 on page 18). We cal1 this property the  (n, k) -1nductiue 

Containment Property (ICP for shor t ) ,  and i t  is formalized in n dimensions for k expanding 

directions and n - k contracting directions in section 3.3. The Inductive Containment Property 

can be proven coniputationally using a validated ODE integrator; tve defer discussion of how to 

prove ICP until section 3.5. Second, nre must show that the  Inductive Containment Property 

implies the  existence of a shadow. We  prove this in n dimensions for t h e  cases t h a t  there are 

either no more than one expanding direction (§3.2.3), or no more than one  contracting direction 

($32.4).  We present our ideas for extending these proofs t o  the  general case in n dimensions in 

section 3.4.2. For now, we assume t h a t  p is simply a map; estending i t  t o  apply effectively to 

ODE integrations requires a modification dealing with the  rescaling of time, which is presented 



in section 3.6. 

3.2 Containment theorems and proofs 

3.2.1 Containment in two dimensions 

For an introduction t o  containment applied to two-dimensional maps, the reader is referred to  

section 2.22, starting on page 1'7. Here we provide a proof of what we cal1 the (2,l)-Inductive 

Containment Theorem, uiz- the two-dimensional case in which one direction is espanding and 

the other is contracting, The proof is more rigorous and forma1 than previous containment 

proofs tha t  have appeared in the literature, and demonstrates some of the ideas used in the 

higher-dimensional proofs that appear in the following sections. Furthermore, previous proofs of 

containment required esplicit a priori bounds on spatial derivatives, whereas our proof requires 

no such bounds.' 

Let Mi be a parallelograrn in Et2 wit h sides oriented in the order E;', C;',  if', CF', for 

i = O , .  . . , N .  We denote the union of a set of faces by listing multiple integers in the superscript. 

Let &,Mi E E ~ T ' U  E:' E:', and &Mi C~T' u c:' c;". Let p : R' -+ R~ be 

a homeomorphism. Let int ,Y represent the interior of X. Then &fi and Mi+L satisfy the 

( 2 , l )  -rnd,~cti~ve Containment Property if 

(1) ( E )  + = 0, and p ( ~ z ~ ' )  and y(~T') are on opposite sides of ~ll,+~, Le., on 

opposite sides of the infinite slab between the Iines containing E$' and ~ 2 ~ .  
(2) 3Qi+', a compact convex set s.t. p(iLI;) c int Qi+', Qi+i n E!+, # 0 for j = &1, and 

Qi+' n ~ 2 '  = 0. 

Let ^/O C Mo be a simple c u v e  joining EF' to E:' and remaining in the interior of &Io, ie . ,  

where A means "and". 

Theorem 3.1 ( (2 , l ) - Induct ive  Containment Theorem) . if fifi and &fi+L satisfy (2 , l ) -  

ICP Vi = 0, . + . , IV - 1, then 

i.e.- yi touches the bovndary of fifi in precisely two places, connecting Er' to E,", and otheruiise 

remains enkirely énséde &fi. 

'of course, our aigorithm (Nedidkov 1999) must compute bounds on derivatives in order to compute enclo- 
sures, but these bounds are no t a priori; they are computed on- the-Ely, and if a bounds check fds, we can always 
try a smaller timestep to compensate. 



3-3- CONTAINMENT THEOREMS AND PROOFS 

Figure 3.1: The image p(M,-) and Mi+l. The solid dark curves at  the bottom and top are ~s(E;')  and 

p ( ~ F L ) ,  respectively. The dashed curves at the left and right are p(CcL)  and p ( ~ T ' )  respectively. 

Proof- By induction on  i. T h e  proof of t h e  base case i = O is immediate, by the  definition of -(o. 

For t he  inductive case, assume 3 simple curve yi s-t. int C int -VIi A y; n ~ ~ 7 '  # 
0 A -/; fi ET' # 0. First, since Qi+1 i s  convex and intersects EZqLl and EC: but not C'cl, 
Qi+l -Mi+' is disconnected into two components, Say ~2~ and  Q:~, and QiÇl encloses W ( ~ , r L )  

and p(Eif'), which are  on opposite sides of lLI,+i wit h p ( ~ t l )  n = 0 ,  by ICP(1). Without  

loss of generality, assume y ( E i )  C Q:+l, j = 311. Now, consider one of t he  components, 

Say Q;;',. I t  contains one of t he  two endpoints of p(-fi) since that  endpoint is a point of 

~ ( E T ' )  C Q;iL, while t he  other endpoint of ~ ( 7 ; )  is in ( s ( ~ F 1 )  C Q c L .  Since -fi is a simple 

curve and  y is a horneomorphism, y(?;) is a simple curve. Now, Q$lL n QQ;f:' = 0, and y(y i )  

connects the  two. Thus,  i;(yi) must cross the  boundary of Q;l1- This boundary consists of 

esactly two contiguous segments, one o f  which is a segment of dQi+1: while the  other is a 

segment of E$:. Since p(yi)  c p(n/I;) C int Qiti , ~ ( e f i )  n aQ;+l = 0 ,  and  so  leaves 

Q Z l  through E;l1. A similar argument  shows tha t  p(-fi) leaves Q Z l  through ~ g ' , .  Thus,  

~(7;) n E,+, # 0 for k = &1. 

Since y(-fi) is a simple curve, by definition there es is ts  a parameterizatioii -/(t) for t E [O, 11 

s.t. ;/([O, 11) = ~ ( 7 ; )  and y(t)  is a horneornorphisrn(Munkres 1975). Let s-' = y(y;)  n E$ and  

s+' = y(-{i) i)n E,'=,. New' s-' and  s+' a r e  disjoint since n EG = 0, they are  compact 

because E;+, and 7i are  compact and p is a horneomorphisrn and the intersection of two 

compact sets  in Rn is compact. Finally, 7-1(s'1) is compact because 7 is a horneomorphism. 

To  prove tha t  there exists a simple curve  y;+' C ~ ( r ; )  S-t. int y;+' C int &fi+l, we need t o  

show t h a t  there exist two points in [O, l] one  each from y-'(s-') and y-'(&'), such t h a t  no 



points frorn either set  are  between them. This will prove t hat there e'rists a simple curve, which 

is a section of p(-fi), that connects EG to  EG without otherwise intersecting h'kli+l. The 

follonring lemma completes the proof. 

1 I V V I  V 1 
w r n m r  r\ r I 

O 1 

Figure 3.2: Schematic representation of the sets y-1 (s- ' )  (dots) and y-' (sf l) ( x  's). 

Lemma 3.2. Let G and R be ('possibh~ infinite) disjoint compact nonempty  subsets of [O? 11. 

Then  39  E G', r E R s-t. the open intemal ( g ,  r )  n (GU R) = 0. 

Proof. Consider the function f (x, y) = lx - y[ over the subset G x R of the plane. f is 
continuous and G x R is compact. Thus, f attains its minimum at some point (g, r) E G x R, 

Le., lg - rl < lgf - rfl  for any other E G, r' E R. Thus, ,El an element of either set between 

g and r ,  so  the open interval (g ,  r )  is disjoint from G U R. rl 

Theorem 3.3 (Shadowing Containment Theorem). Let { M ; ) ~ - ,  6e a seyuence of pnral- 

lelepipeds enclosing a pseudo-trajectory {yi)Eo. Let E be the rnazimurn diameter of Adi over i. 

Let -fi C Mi, y; # 0, i = O, . . . , AT and let y;+l ~ ( y ; ) ,  i = O, . . . , N - 1. Then  3 an E-shadow 

hi of  {yi)~~-,,  i e . ,  lxi -yi[ 5 E ,  i = 0 , .  . . , N. 

Proof. Pick any point x!v E y!v, and recursivery define x; = p - ' ( ~ ~ + ~ ) ,  .i = N -  1, N - 2, . . . : 0. 

Since 9 is a homeomorphism, it is uniquely invertible, and so x; E y;, i = O, . . . , iV since 

Thus, applying Theorem 3.3 t o  an orbit satisfying the (2,l)-Inductive Containment Property 

implies the  existence of a shadow. 

Remark  Note tha t  Theorem 3.3 is independent of the number of dimensions n, and in- 

dependent of the number of espanding and contracting directions, because the only parts of 

the  Inductive Containment Theorem tha t  are used are the conclusions tha t  --/i+l C pOi )  for 

i = 0,1,  ... ,N - 1 and y; c Mi for i = O, ... , N .  As will be seen, the (n, 1) and ( n , n  - 1) 

Inductive Containment Theorems also assert this property. The O-expanding a n d  O-contracting 

directions are handled separately. We conjecture that  the general (n, k)-Inductive Containment 

Theorem will also assert this property, so that  the above Shadowing Containment Theorem is 

applicable to  the  general (n, k) case. 



3.2. CONTA~NMENT THEOREMS AND f ROOFS 

3.2.2 Informa1 description of containment in 3 dimensions 

The process described by GHYS and rigorously proved above is not directly applicable to 

systems with more than 2 dimensions, and GHYS provided no argument for how it couId be 

extended beyond 2 dimensions. We describe the method in 3 dimensions, in which there are 

precisely two interesting cases: 

(i) I expanding direction, and 2 contracting (Figure 3.3). Assume that  the z direction is 

expanding, while the x and y directions are contracting. (We assume, for simplicity of 

exposition and for ease of drawing, that these three directions are roughly orthogonal, 

although in practice they need onIy be resolvable from each other.) Then, analogous to 

the 2 dimensional argument, we draw cubes Mi around the noisy points y;, and require 

that p(!Vfi) maps over so that  9 stretches Mi into a long, thin tube, a segment of 

which lies wholly in iI/[i+l. Then, precisely as in the 2-dimensional case, we introduce 

Figure 3.3: Containment in 3D, case (i): 1 espanding direction and 2 contracting. 

a curve y; that runs approsimately along the espanding (vertical) direction from any 

point on the top of to its bottorn. If y(Mi) maps over Mi+1 as in Figure 3.3, then 

we are guaranteed that a contiguous section of y(y;) lies inside connecting its top 

and bottom along the espanding direction. This becomes y;+i: and by induction 7~ lies 

inside !kflv, and any point x~ on it can be traced backwards t o  a point x; E &fi for 

i = O , l  ,... ,N-1 .  

(ii) 2 expanding and 1 contracting direction (Figure 3.4). Assume now that  the z (vertical) 

direction is contracting, whiIe the x and y directions are expanding. We again draw a 

cube Mi around each noisy point y;, escept now y(Mi) maps over Mi+l so that  y flattens 

Mi into a thin slice, cutting Dliir into 3 pieces, the middle piece of which contains a 

contiguous section of p(Mi). Now, y; must be a surface, whose boundary connects al1 of 

the expanding sides, so that under the mapping, p(-ti) is stretched in al1 the directions 



Figure 3.4: Containment in 3D, case (ii): 2 expanding directions and I contracting. 

i t  has  extent  (both horizontal directions), a n d  is "compressed" along t h e  direct ion i t  has  

measure zero (vertical). Then ,  we a re  guaranteed t h  a t  there is a cont iguous  segment of 

y(yi )  lying wholly in &fi+1 a n d  connecting al1 of i t s  expanding sides. We cal1 this  surface 

Yi+l, a n d  by induction -/,v lies wholly within MLv, a n &  any point o n  ~ , v ,  t r aced  backwards 

t o  a point xi € Mi for i = 0 , I ,  ... , !V - 1. 

I t  seems intuitively clear t h a t  we can replace "cube" w i t h  %cube", "surface" with "man- 

ifold", and  t h e  above argument still applies in arbi t rar i ly  high dimension, T h e  crucial points 

appea r  t o  be t h a t  ni has dimension equal t o  t h e  number  o E  espanding directions, a n d  t h a t  i t s  

border must  "wrap around" al1 t h e  expanding sides of L L ~ ; . ~  

3.2.3 Containment in n dimensions with one expanding direction 

Let Mi be a parallelepiped in Rn with faces Ff , for i = O, . . . , N a n d  j = f 1, . . . , &n, with 

opposite signs in the  superscript representing opposi te  f a c e s  OF a parallelepiped. W i t h o u t  Ioss 

of generality, we assume t h a t  t h e  first direction is  t h e  "expanding" one. W e  will denote  t h e  

union of a se t  of faces by listing al1 of them in t h e  superscript ;  for e sample ,  Ft$l.... .k(n- 1) 

represents t h e  s e t  of al1 the faces of iL. except FFn a n d  qn. Let &fi = FF% FF,~' Fi", 
k2, - - -  ,&7I a n d  dcMi G U;==, 4'' u q+' s Fi . Let p : Rn -+ Rn be a homeomorphism. Let  

int -ri' represent t h e  interior of -Y. T h e n  &fi a n d  sa t i s fy  the (n, 1)-Inductive Containment 

Property (called ICP for short  througliout this section) if' 

(1) cp(ck') fi = 0, and  i?(~;') a n d  p(<+l) a re  o n  opposite sides o f  t h e  infinite s l ab  

between t h e  two hyperplanes containing F$ a n d  ~i'=, , respectively. 

*~iscussion of how the the phrase "wrap aroundn generalizes to higher dimensions is beyond the scope of this 
thesis, although it can be defined preciseIy by means of homotopy theory (see for example blunkres 1975). 



(2) 3Qi+i, a parallelepiped in Rn with faces G!+, parailel to the faces $, of for 

j = &l,-.. ,&n SA- 

(i) d f i / r ; )  C int Qi+i, 

(ii) F*2.--- t + L  .h n Q ; + i = @ , a n d V j ~ { 2  ,..., n } , ~ l a n d ~ & a r e o n o p p o s i t e s i d e s o f t h e  

infinite slab between the two hyperplanes containing ~2~ and G:,, respectively. 

Let C lMo be a simple curve joining F;' to and remaining in the interior of Mo, Le.! 

Theorem 3.4 ((n, 1)-Inductive Containment Theorern). If Mi, Mi+L satisJy ICP Vi = 

O , .  . . , N - 1, then Vi = O , .  . . , AJ 

i-e., 7; touches the bovndary of Mi in precisely turo places, connect iq  F;' to ci+', and otherwise 

remains entirely inside Mi. 

Proof. B y  induction on i. The proof of the base case i = O is immediate, by the definition of -/o. 

For the inductive case. assume 3 a simple curve yi C Fi(-/o) s-t. int -fi c int Mi A yin F;' # 
0 A -fi f i  F:' # 0. From ICP(1) and y ( ~ ; " )  c Q;+l and the fact that Qi+L is convex, 

Figure 3.5: The image p(kli) and .Mi+L for 2 dimensions. The dark curves a t  the bottom and top  are 

p(~F1). The dashed curves at the left and riglit are y(~F2). 

we know that Qi+, intersects both F'G and FL;; and from ICP(2ii), Q;+l does not intersect 
F-k2~- - -  ,f n 

z + l  . Thus, since Q;+l is convex, Q;+l - &..i+l is disconnected by the slab defined in 



ICP(1) into two disjoint components3 Say Qzl and Q:', each containing one of y(@1), by 

ICP(1). Without loss of generaiity, assume cp(<?) c Q:+i, j = I l-  Now, consider one of the  

components, say QZ, I t  contains one of the two endpoints of ~(7;) since t ha t  endpoint is a 

point of p(e- l )  c Q z L ,  while t h e  other  endpoint of ~ ( 7 ; )  is in y(~:l) C Qzl. Since y; is a 

simple curve and  y is a homeornorphism, y ( l i )  is a simple curve. Now, Qzl fi Qcl = 0, and 

~(7;) connects the  two. Thus ,  y(-fi) must cross the boundary of Q$,- This  boundary consists 

of esactly two mutually e?ccIusive patches, one of which is a subset of BQ;+l, the  other a subset 

of F G ~ .  Since ~ ( 7 ; )  c p ( M i )  c i n t  Qi+17 this irnplies p(yi)  Ti dQi+1 = 0, and so ~ ( 7 ; )  leaves 

QZ, through G. A similar argument shows tha t  ~(7;) leaves QZ through FZ. Thus. 

y )  + # 0 j = 1 I t  remains t o  show that  there enists a segment -(i+~ of y(-/i) which 

is a simple curve and  maintains t he  property defined in (3.1)- 

Since y(-/;) is a simple curve,  there esists a pararneterization y ( t )  for t E [O, I] s.t. -/([O, 11) = 

y(?;) and 7( t )  is a horneomorphisrn (Munkres 1975). Let si = y(y i )  n F/+L, j = *1. Now, s-' 

and  sC1 are disjoint since FZ fi = 0, they are compact because <$, for j = Il and -fi are  

compact and 9 is a homeomorphism and  the  intersection of two compact  sets  in Rn is compact. 

Finally, -y-'(s*') a re  compact  because y is a homeomorphism, T o  prove t ha t  there esists a 

simpIe curve -f;+l c y(-/;) s.t. int -/;+L c int  ~b l ;+~ ,  we need t o  show t h a t  there esist two points 

in [O, 11, one each from (s-') and -/-'(sf '), such t ha t  no points from either set are between 

them. This will prove t h a t  there  eicists a simple curve, which is a section of P (Y~)>  that connects 

F; to  F$ without otherwise intersecting aibIi+l. Let G = -y-'(s-') and  R = y-'(s+l) and 

note t ha t  G and R are compact ,  disjoint, non-ernpty subsets of [O, 11. Applying Lemma 3.2 

completes the proof. 17 

Applying Theorem 3.3 proves t h a t  a shadow esists for any  noisy trajectory s.t. Yi E 

Mi, i =  O,... ,fV. 

3.2.4 Containment in n dimensions with one contracting direction 

Remark This case could immediately be proved by applying t he  one-espanding-direction theo- 

rem in backward tirne, since a system with one contracting direction in forsvard time is equivalent 

t o  a system with one espanding direction in backward time. However, we provide a different 

proof because although i t  is not  applicable t o  the general case, we believe a proof of the follotving 

form is more likely t o  be generalizable (cf. section 3-42) .  

Remark In the  one expanding direction case, y is one dimensional; in the  one contracting 

direction case, y is (n  - 1)-dimensional. 

3 ~ h i s  is because F z  m d  F Z 1  are each patches of an n - 1 dimensional hyperplane residing in n dimensions, 
and so they each disconnect any convex set they intersect, as long as that convex set does not intersect their 
boundaries i3F;~: and i3FC1, respectively. 
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Let Mi be a parallelepiped in Rn with faces F:? for i = O, .  . . , N and j = Ad,. . . , k n ,  with 

opposite signs of j representing opposite faces of a parallelepiped. Without loss of generality, 

let the nth direction be the "contracting" one. We will denote the union of a set of faces by 
*l,**- &(n-1) listing a11 of them in the superscript; For esampIe, Fi represents the set of al1 faces 

except e-" and F:". 

Let p : Rn i Rn be a homeomorphism. Let int X represent the interior of X. Then 1M; and 

Mi+1 satisfy the (n, n - 1)-Inductive Containment Property (called ICP for short throughout 

this section) if 

(1) ( * l n l )  n + = 0 and j { ,  - , n - 1 v(q-j) and y(&+') are on op- 

posite sides of the infinite slab between the two hyperplanes containing FZ and 

respectively. 

( 2 )  3Q;+l, a parallelepiped in Rn with faces G:+~ parallel to the faces of for 

j = 3 3  ,... :In s.t. 

(i) y(!K-) c int Q;+1, 

(ii) 6% n Qi+i = 0 and F;;; and FZ are on opposite sides of the infinite slab between 

the two hyperplanes containing Gr-l and Gz, respectively. 

Lemma 3.5. In an n-dimensional cube, the border of each face is contained in the union of 

all the other faces ezcept the one opposite itself. Le., i )~ :  c U F:. 

Proof- Without Ioss of generality: we ivill look at the n-dimensional unit cube C = [O, I ln .  

The border OC of C consists of al1 points p = ( p i , .  . . , pn)T that have pe = O or 1 for some 

k E (1,. . . , n )  and pj E [O, 11 for al1 j E (1,. . . ,n}. A face F of C is defined by assigning 

O or 1 to precisely one of the CO-ordinates pk OF p (with the choice between O and 1 being 

the choice between opposite faces), and freeing al1 the other CO-ordinates pj, j # k to roam in 

[O, 11. Without loss of generality, let pk = O. Note that the associated face F is a hypercube of 

dimension n - 1. Thus, 8 F  consists of al1 points q = (ql ,  . . . , qn)T with qk = O and qj = O or 

1 for j # k. However, if a co-ordinate q j  for some j # k is O o r  1, then in addition to being in 

F, q is in some other face F' of C. Furthermore, Fr can be any face of C escept F or the one 

opposite F by choosing j and q j  E {O: 1) appropriately 0 

Lemma 3.6. Both (? (Frn)  and p(qn) path disconnect F s  from F;? in Mi+L. 

1 n  Since y is a horneo- ProoJ By Lemma 3.5, the border of Fcn is contained in Fi 
*1,..* ,*(n- morphism, the border of p(C-") is contained in y(Fi ')) , which by ICP(1) is disjoint 



Figure 3.6: Schematic representation of the one-contracting-dimension proof in two dimensions. (a) -fi, 

Mi and the faces of ?K. (b) The dark curves a t  the left and right represent F(~51). The dashed curves 

a t  the top and bottom are v(e*2). The proof of Theorem show that no path in cxmects cf: 
to F;: witho-ut intersecting y,-+l = p ( ~ )  n Mi+i. 

from &fi+l. However, by ICP(.Zi), p(q-n) is contained in the slab between GzL and Gzl. 
Since y(<-") is homeomorphic t o  a face of LM;+~ and i t  lies in the  slab between Gsnl and  GZ~ 
of and i ts  border lies outside n/f+l, i t  pa th  disconnects somewhere inside the slab 

between GTTL and Gzl. Furtherrnore, since by ICP(2ii) the slab between GGn1 and Gzl is 

contained in the  slab between F$ and KG, then F s  and FZ must be  path disconnected 

in by y (5-"). The  sarne argument applies t o  y (F:") . O 

Let "/O c filo be a set  constructed such tha t  -fi path-disconnects Mo in such a way tha t  no path 

esists in LW* t ha t  connects Fan t o  F? without intersecting yo. 

Theorem 3 .7 ((n, n - 1) Inductive Containment Theorem). Tf &fi, Mi+l satisfy ICP for 

d l  i = O, . . . , 1V - 1, then 

Proof. By induction on i. The  proof of t h e  base case i = O is immediate, by the  definition 

of *{O- For t h e  inductive case, assume there  esists a set y; 2 s-t. y; c 1LI; and  y; 

path disconrirects F;" from <+" in Mi. Assume t o  t h e  contrary t ha t  there exists a path ,6' in 

1vfi+i from FG to  that  does not intersect p ( y ; )  By Lemrna 3.6, p ( F F n )  and p ( e n )  

each path disconnect 4;; from in Mici Thus,  ,O intersects both p ( c n )  and y ( F z n ) ,  

and connects  the  two, but by assurnption does  not intersect ~(7;). Since /3 c ICP(1) 
*l,..- &(n-1) implies p n p ( F i  ) = 0. Thus, 0 intersects v(B1LI;) only in p(en). Without  loss of 

generaIity, a s s u m e  t h a t  /3 intersects each only once, Le., i t  enters p(M,-) through y ( F F n )  and  
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leaves through (-(F;+"). Thus,  connects p ( F c n )  t o  p ( e n )  without  leaving (?(Mi), and, by 

assumption, mithout intersecting y(y;). However, p is a homeomocphism, and  applying p-' 

t o  p(,il/fi), and 0 ,  we see t h a t  y-'(0) is a path from FFn t o  t h a t  rernains in Mi 

and  does not intersect -{il contradicting our  inductive hypothesis. Thus,  any  pa th  in h/l;+l t ha t  

connects F;;; to  FZ must intersect p(-yi). Let -,i+l = (?(yi) n Mi+l- T h e n  no pa th  exists Frorn 

t o  in &fi+l t ha t  does  not  intersect y;+l. 

Thus,  Yi+' E ~ ( n l i )  and yi+l n h/r;+i # 0 for al1 2. Applying Theorem 3.3 proves t h a t  a shadow 

exists for any noisy trajectory {Yi}zo s.t. y; E Mi. i = O, . . . , lV. 

3.2.5 Containment with zero contracting or expanding directions 

For completeness, we mention t he  trivial cases in which al1 directions a r e  contracting, or  al1 

directions are  espanding, We cal1 these the  (n, O)  and (n?  n )  cases, respectively. The former 

case is entirely triviat, because t he  problem is stable: if p(,II/fi) C P(n/fi) C for al1 i, then 

clearly any  esact solution s ta r t ing  in MO will be in 1M; for al1 i > O. Sirnilarly, if a11 directions 

a re  expanding, then we apply t he  sarne argument in the  reverse direction: if y-l(h&+L) c 
C Mi for a11 i ,  then  any esac t  soIution finishing in !Ul,v, traced backwards, lies in 

Mi For i = 1V - 1, Ar - 2,. . . ,O- 

3.2.6 Discussion 

T h e  four cases ( n :  O): (n, l), (TL, n - L j, and  (n, n) cover all cases when n = 3. T h a t  is, the  

theorems in this thesis can prove the existence of shadows for any n-dimensional system, n 5 3, 

in which some measure of pseudo-hyperbolicity is present. Furthermore,  although the proofs, 

for simplicity, only deal with a single function 9, the induction argument  could just  as easily use 

a diflerent p a t  each step,  s o  t h e  proofs work just as well if each s tep  uses a different function 

9;. In particular, pi could be t h e  ODE time-h; solution operator p h i  from equation 1.4. Thus, 

rnodulo a rescaIing of t ime (which nre discuss later), the  above proofs a r e  vaIid for use in finding 

shadows of noisy trajectories of ODE systems, as well as maps, with up t o  three dependent 

variables. They can also be used in t he  case of n dependent variables, with t h e  restriction 

t ha t  solutions have no more t han  one expanding direction, o r  no more than  one  contracting 

direction. 

Ideally, of course, we would like t o  be able t o  use containment to prove t he  existence ofshad- 

ows for an9 system which displays pseudo-hyperbolicity, regardless of t he  number of espanding 

and  contracting directions; certainly no other  rigorous rnethod currently in t he  literature has 

such restrictions on the  hyperbolicity. Unfortunately, after months of diligent searching, this 

au thor  has been unable t o  prove t h e  general case, even after consulting many other people. 



We tried about a dozen distinct methods of proof of the general case, without success- Ideas 

tha t  appear  promising a t  first alway-s evaporate under closer scrutiny. Despite these failures, 

this author  remains optimistic tha t  a proof of the general case exists. A t  t he  very least, we 

know t ha t  o t  her, completeIy different proofs of high-dimensional shadows e-est, namely t hose of 

Coomes, Koçak, and Palmer. T h e  theorems and proofs presented in this thesis seem so  simple 

and elegant tha t  we are compelled to  believe that  a similar proof must elcist for t he  general 

case. 

3.3 The general Inductive Containment Property 

T h e  essence of the hductive Containment Property can be espIained by looking a t  a simpli- 

fied homeomorphisrn $J : Rn -+ Rn with the following properties. Let x = (xi ,  . . . , x , ) ~  

and let xJz3=. be x with its j t h  component replaced with the value a E R. Let $ = 

( 1  (x) . - , & ( x ) ~ .  Let Il, . . . , k}, k E {1, . . . , n} be the expunding directions. If for all 

x in the  unit cube [O, l]", .S> satisfies 

then + maps the unit cube In = [O, 11" over itself in such a way tha t  in satisfies the  Inductive 

Containment Property with itself. The  rightmost diagrams in Figures 3.3 and 3.4, respectively, 

are  schematic representations of the Inductive Containment Property if n = 3 and fifi = = 

[O, 113 in each Figure. 

Tt is not hard to  see how the Inductive Containment Properties defined in Theorems 3.4 and 

3.7 can be generalized. The Inductive Containment Property is topologicalIy unchanged from 

the above if we compose an arbitrary homeomorphism with +. In particuIar, if 9 = L O $J where 

L is an arbitrary linear transformation, then the Inductive Containment Property can be more 

generally stated as  follows. 

The (n ,  k)-Induct ive C o n t a i n m e n t  Property Let Mi be a parallelepiped in Rn with Faces 

Fi', for i = O , .  . . , N and j = f 1, . . . , &n, with opposite signs in t he  superscript representing 

opposite faces of a parallelepiped. Let the first k directions be the nominally expanding di- 

rections," while the remainder are called nominally contracting directions. We will denote the 
&l, --- ,*(n-1) union of a set of faces by listing a11 of them in the superscript; For esarnple, Fi 

Nominally because they do not expand uniformly for aii time; othenvise the system would be hyperboiic. 



represents the set of al1 faces except Frn and F$". Let 

be the set of expanding faces, and 

be the set of contrac ting faces. Let 9 : Rn -t Rn be a horneomorphism. Let i n t  -i( represen 

the interior of K. Then LI& and Mi+1 satisfy t h e  (n, k)-ïnductiue Containment Property if 

(1) y(BxMi) n = 0 and Vj E (1, .  . . , k), p ( ~ ~ j )  and y ( q + j )  are on opposite sides of 

the infinite slab between the two hyperplanes containing and  cj,, respectively. 

(2) 3QiÇ1 y a parallelepiped in Rn with faces G:+l paralle1 t o  t he  faces <%1 of for 

j = 3 3  ,... ,*n s-t. 

(i) ~ ( f i l i )  C int Q ~ + I ,  

(ii) Q;+l fi = 0 and V j  E {k + 1, - - . , n}, <y< and e2i are on opposite sides of 
+ i  the infinite slab between the two hyperplanes containing G:, and Gi+,, respectively. 

Rernark: ICP(I) is probably stronger tha t  we need, because we d o  not generally care where 

each of the expanding faces maps to, provided that they "pull" t he  border of outside of 

f i + .  A more topologically sophisticated proof might be constructed assuming only t hat 

p(dxMi) n Mi+1 = 0 along with some statement about y(ax,w) "wrapping around" .Mi+1 

in some topological sense. A similar remark may hold for the contracting faces described by 

ICP (2ii). 

3.4 Discussion of containment in the general case 

3.4.1 A sirnplistic linear example 

In this subsection, we present an n-dimensional proof in the case t h a t  (3 is a simple linear 

function. The  intent is to  show tha t  there e?cists an n-dimensional system with a n  arbitrary 

number k of expanding directions tha t  we can shadow using containment. 

Let p > 1, let x = ( z l , .  . . , x , ) ~ ,  and  let y(x) = (pl(x), . . . , p,(~))~, where 



T h a t  is, y(x) is linearly expanding about  the origin in the first k directions, lmearly contracting 

abou t  the  origïn in the remaining directions, and each direction is orthogonal t o  al1 the  others- 

Note aIso tha t  p is clearly hyperbolic along zny exact orbit, and so shadows of pseudo-orbits 

certainly exïst for sufficiently srnail local error- Let &f be the n-dimensional cube centred a t  the  

origin with masimum diameter E > O, Le., &I = [-p, pln where p = ~/(2m, and let fifi = &I 

for al1 i. We want to demonstrate how (n, k)-containment is applied to  this system. 

A cursory giance a t  9 shows tha t  rWi, LVI&~ satisfy the (n, k)-Inductive Containment Property 

under p for al1 i. Let 

70 = { z  E Rn 1 rj E [ - p ,  pl for j E (1.. . . , k), and zj = O for j E {P + 1,. . . , n)),  

a n d  Yi+r = y(-ii) n iW. Non. pick x E -/O. Then clearly, 

Theorem 3.8 (Containment in n dimensions for a linear p). Let y ,  {&fi)go and -io be 

defzned a s  aboue. Then 

Thus {y'(~)}z, is on E-shadow of a n y  pseudo-orbit {yi}E0 o f 9  that rernains in M. 

T Proof. Pick a z = (21, . . . , q) E Mm = $1 such that  y E [-p, pl, j = 1,. . . , k and y = O, j = 

k + 1,. . . , n. Clearly r E M and (? ' (z) )  = 0, for al1 i and for j = k + 1.. . . n, where ( w ) ~  

es t rac ts  the j t h  component of the vector W. Looking a t  the first k (espanding) directions, we 

want first t o  show that z = ~ ~ ( x )  for some x E 70- Pick zj = -$, j = 1, -. - , k, xj = O, j = 

k + 1, . . . n. Clearly x E -{O c LW, since zj E [-p, p] and pm > 1. Then, 

i-m 
( x )  = . , p ze, 0, - .  . , o ) ~  E &il, 

since i j  E [-p, p] and pi-m 5 1 for i 5 m. Since the maximum diameter of Mi is E, and 

y; E 1M; for i = O ? .  . . , m, { ( 3 i ( ~ ) ) ~ o  5-shadows {y;)go. Cl 

Thus, this system satisfies the (n?  k)-Inductive Containment Property, a n d  is shadowable. 

W h a t  remains to  prove is that  the former always implies the  latter. 

-4lthough this argument is not very useful in itself, it is still interesting. Note tha t  we can 

apply an arbitrary homeomorphism t o  the objects in the theorem, producing a theorem that  
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is applicable to t he  general n-dimensional case in which p(y;) n is topologically identical 

t o  Ti- In particular, t he  topological aspects of the argument are unchanped in the  case t ha t  

we can  prove t ha t  y(-{;) never causes d-ti to "loop back" on itself and  intersect Mi+l in a 

manner t h a t  produces topoIogica1 entities often described as "handles", "cars", o r  %ngers3. In 

fact, t h e  original proof of two-dimensional containment (Grebogi, Hammel, Yorke, and Sauer  

1990) contained t he  restriction t h a t  the  first and second spat ia l  derivatives of 9 needed t o  be 

bounded. We shotved in section 3 - 2 1  t ha t  the two-dimensional theorem still holds when such 

restrictions are lifted. I t  seems plausibIe t o  conjecture t ha t  the  sarne could be true in the  general 

n-dimensional case. 

3.4.2 Ideas for proving the general case 

T h e  fundamental reason we believe the general (n: k) case to be  provable is because p is a 

homeomorphism, and thus introduces no holes into y(-{;) t h a t  did not exïst in 7;. SO if a k- 

dimensional Ti "covers" &fi in t he  k expanding directions, and y(iLI;) stretches Mi over 

in those same directions, then ~ ( 7 ; )  will "cover" LK+~ in the  k espanding directions. The  only 

place holes are introduced is where ~ ( 7 ; )  intersects C S ~ . M ~ + ~ ,  at which point fingers, ears, and  

handles may be cu t  off, introducing holes of unknown topology where ~ ( 7 ~ )  meets a,vMi+l. 
Now, recall tha t  BxiK is the  set of espanding faces of Mi, so t h a t  9(a,y1Wi) li)n iLr;+, = 0. 
However, these new holes in y;+~ = y(-/;) n Mi+L are  of no consequence because p(dxh.I;+l) 

in tu rn  lies outside -Mi+*; t he  only par t  of p(y;+l) tha t  is inside \vas also inside kfi+l, 

inside of which there were no holes in -/;+l. Thus, there are  no new holes inside p ( ~ ; + ~ )  n~\/[;+~, 

a n d  by induction, no holes inside any  y; n Mil i = O , .  . . , iV. Even more succinctIy, t he  

only holes in y;+l are  in its border dy;+l G ~ ( 7 ; )  n ax&fi+l, a n d  the Inductive Containment 

Property ensures t ha t  9(8.~;+1) C v(ax-Mi+l) is outside Here, a "hole" may be defined 

as something through which a n  (n - k)-dimensional manifold P can p a s ,  analogous t o  t h e  

simple curve /3 created t o  induce a contradiction in the  proof of  Theorem 3.7. Note tha t  this 

argument does not d a i m  tha t  no holes (fingers, handles, or  ears) eiust in y;; it merely says  

t h a t  they are  of no consequence, because if a hole exists in -ti+l through which a ,B can p a s ,  

then a simiiar hole must have esisted in ri. If we s ta r t  with a yo with no such holes, then a 

contradiction results, and a proof analogous to  that  of Theorem 3.7 IV-ould hold. 

Unfortunately, formalizing this  argument has proved surprisingly difficult. -4 s ta r t  may be 

t o  generalize Lemmas 3.5 and 3.6. 



3.5 Four ways to verify the Inductive Containment Property 

We have devised four different methods of verifying t h a t  the  general Inductive Containment 

Property holds for a given pseudo-trajectory derived from the  numerical solution of an ODE- 

We note in passing t h a t  al1 of these schemes could easily be adapted t o  the  simpler problem 

of maps. Each has strengths a n d  weaknesses, which we will ~ ~ S C U S S .  Each one requires the  use 

of interval arithmetic, o r  a validated ODE integrator (cf. 51.3-2) if p derives from an  ODE. 

T h e  validated ODE integrator t h a t  we use is called VNODE (Nedialkov 1999). VNODE works 

with n-dimensional parallelepipeds, and satisfies the following property: given an n-dimensional 

parallelepiped A and a tirnestep h, VNODE will return an n-dimensional parallelepiped B such 

t ha t  yh(-4) C B, where p h  is t h e  solution operator for the  ODE defined in equation (1.4). For 

the  purposes of this description, nre will denote the output  B as Gh(A), 

lATe will usually omit  the  timestep parameter h; we will talk only of y ,  keeping in mind t ha t  in 

the  induction, y can be different for each step. 

3.5.1 Direct integration of all 272 faces 

The  most direct method of building a pair of parallelepipeds LL[i, Mi+1 satisfying the Inductive 

Containment Property is t o  integrate each face of Mi individually, building Mi+L esplicitly 

to  satisfy the Inductive Containment Property. See Figure 3.7. A separate validated ODE 

integration is performed on each of the  2n  faces of M.., as shown in Figure 3.Ï.a. A face F is 

simply represented by a n  n-dimensional parallelepiped which has zero width in one particular 

dimension. The image of F under y lies inside the  b o s  p ( F ) .  In Figure 3.7.b, the vertical 

direction is depicted as espanding, while t he  horizontal direction is contracting. In the rightmost 

section of the Figure, the  rectangles with thin solid boundaries depict 3 ( F )  fo r  each face F 

of M .  T h e  thin dot ted bos  is t he  boundary of Q;+z, which is a parallelepiped convex hull 

enclosing the  images of al1 the  faces, thus ensuring ICP(2i). A l i + L  (heavy dashed line) is built 

as follows: for the  expanding directions j = f 1,. . . , r t k ,  Fi:, is  aligned one machine number 

inside the  inner boundary of ~(c ' ) ,  thus  enforcing ICP(1). For  the  contracting directions 

j = +(k + 1), . . . , +n, <cl is aligned strictly outside the  boilndary of Q;+i, thus enforcing 

ICP(2ii). Note t h a t  it is probably sufficient if the contracting faces of Micl are  aligned strictly 

outside the  outer boundary of 3(<!), j = f ( b  + 1), . . . , rtn. This  choice would give a slightly 

smaller Mi+1, and thus  tighter containment, although i t  would complicate the  proof of the 

Inductive Containment Theorem slightly. 

As with any shadowing method, the  system becomes hard t o  shadow when it lacks pseudo- 



Figure 3.7: Schematic diagram of the direct 272 face-integration approach to ptoving the Inductive 

Containment Property. (a) -4n enclosure of the image of each individual face is built. (b) From these 

enclosures, Mi+L is buiIt. Qi+1 is a parailelepiped enclosing p ( M i )  by enclosing the enclosures of al1 its 

faces. For simplicity, Mi,  Qi+1 and are al1 drawn a'cis-aligned, although in reality they may be 

arbitrarily oriented (as long as  they are  identicaly oriented). 

hyperbolicity. This means either t h a t  the nominally contracting directions fail to  contract 

enough for us to detect contraction, o r  t he  nominally espanding directions fail to espand enough 

for us t o  resolve the two faces opposite each o the r  in that  direction. In t he  former case, the  width 

of Mi grows in the  contracting directions as i increases, eventually resulting in a shadowing 

distance which grows without bound. In t he  latter case, we cannot  resolve the ttvo opposite 

faces because the bounding boses for their images overlap; see Figure 3.8. 

T h e  direct 272 face integration method was the first method of proving the Inductive Con- 

tainment Property t ha t  we implemented in o u r  code. However, we found tha t  this method 

had several drawbacks. The  most catastrophic problem is t h a t  t h e  current irnplementation of 

VNODE is not designed to  handle parallelepipeds that  have some dimensions initially of zero 

thickness, and thus it is not alwâys capable of providing tight enclosures of t he  images of faces. 

This problem is particulariy bad if t he  initially zero width dimension lies along an expanding 

direction. Then, numerical errors very quickIy compound t o  give a n  enclosure which is useless 

for containment purposes (see Figure  3.9). T h e  amount by which a validated ODE enclosure 

over-estimates the  error is called t h e  "escess". I t  is well-known t h a t  most current implemen- 



Figure 3-23: Hom the 2n direct face integration method can fail when not enough espansion occurs. 

Here, the vertical direction is the nominally espanding direction. 

Figure 3 -9: How the 2n direct face integ~ation met hod actually fails, because the current implernentation 

of VNODE cannot produce tight enclosures of the images of faces. .4gain, the vertical direction is the 

nominally expanding direction. 

tations of validated ODE integration have a large excess. Tt rnay be possible t o  decrease the 

escess for this particular appIication (Nedialkov, persona1 communication), a l t  hough i t  may 

not be worth the effort given t ha t  we introduce below more efficient and accurate  rnethods for 

proving ICP. 

Finally, we note t ha t  the  272 direct face integration method is expensive: i t  requires 272 

validated ODE integrations per shadow step; we will show below tha t  there  esist  ways of 

verifying ICP with fewer validated integrations per shadow step. O n  the  o ther  hand, each of 

the  272 validated integrations is independent of al1 the  others, so  they could be perforrned in 

parallel. 



3.5. FOUR WAYS TO VERIFY THE INDUCTIVE CONTAINMENT PROPERTY 55 

3.5.2 Direct integration of n + 1 corners of Mi 

If a bound similar to  those in Theorern 2.4 (page 21) on the first and second spatial derivatives 

of 9 can be found either analytically or computationally, then we can bound the curvature of 

p ( F )  for a face F of &fi. This alIows us to cornpute an enclosure of p(F) by integrating only 

the corners of F. Furthermore, we can impIicitly get the positions of al1 2" corners of Mi using 

the positions of only n + 1 corners by choosing one corner c as an origin and finding the Iengths 

and directions of the n distinct edges emanating from c. Given the bound on the first and 

second spatial derivatives of p, this allows us  to compute enclosures on a l  '272 faces of ~ ( h f i )  

using only n + 1 validated integrations of the appropriate corners of &fi (Nedialkov, Jackson, 

and Corliss 1999). From this, it is easy to build an Mi+l that satisfies ICP, as shown in Figure 

Figure 3.10: The  direct n + 1 corner integration method of proving ICP. In the depicted 2-dimensional 

case, 3 corners ( c  and the two adjacent to it) are integrated using VIVODE; the top right corner is not 

integrated esplicitly. Qi+l (outer dotted box) is the outer bounding box of p ( M i ) ,  and &+r (inner 

dotted box) is the inner bounding box. -4s before, is aligned so that its expanding faces are strictly 

inside Ri+i, while its contracting sides are strictly outside Qi+1- The sizes of the enclosures of the corners 

are highiy esaggerated; in practice, they can have a diameter approaching the machine precision. 

3.10. In particular, from the  enclosures of the corners and a bound on the derivatives of p, 

we can build parallelepipeds Q;+1 and Ri+I such that C  fi) C Qi+l. Then ,  the faces 

of Mi+l can be chosen to  be strictly outside those of Qif in the contracting directions, and 

strictly inside those of Riti in the espanding directions. 

This method has the disadvantage that the second spatial derivatives need to be computed, 

which can be espensive if done computationally, and tedious if done analytically. On the 

other hand, if the analytical bounds can be computed a prion', they may be computationally 



cheap. The n + i. vaIidated integrations can also be performed cheaply because they are point 

integrations. That is, in equation (1.8) is zero and so, if the vaiidated integrator can 

integrate from ti to  tiSi in one step, which is the expensive part of a validated integration, 

need not be cornputed. The  n + 1 point integrations are also independent, so they  can be done 

in paraliel. Since point integrations are cheap and produce very tight enclosures, if one can 

also produce a priori tight bounds on the first and second spatial derivatives of 9, and these 

bounds are small, then one can efficiently produce very tight enclosures of the faces of y(1Vfi). 

This implies that this method is bot h efficient for small n and IikeIy t o  produce the tightest 

containment boxes of al1 the methods discussed in this thesis, as long as 9 is n o t  too far from 

being linear, and we can compute a priori bounds on the derivatives. This  can  usually be 

arranged by choosing a sufFicientIy small timestep, although too small a tirnestep can lead to  

other complications. We have not pursued this idea beyond this discussion. 

Finally, this met hod also has the advantage that,  if one does not require rigor, then the n + I 
integrations can be done with a non-validated integrator, and a local error estirnate can be used 

to  build Q;+l and This method was actually employed by the author during a very early 

prototyping phase of code development, using LSODE (Hindmarsh 1980) as the non-rigorous 

integrator. The results are beyond t h e  scope of this thesis, but were sufficiently encouraging to 

dernonstrate that containment could work as a method of finding high-dimensional shadows. 

3.5.3 Forward-backward iterative method 

The  above two methods can be used on arbitrary n-dirnensional systems, but require order n 

validated ODE integrations for each containment step. Since validated ODE integrations are 

very expensive, we would like to  find a way to ensure that the Inductive Containment Property 

holds using fewer integrations, especially for large n. The following method demonstrates that 

it is possible to verify ICP using an iterative method that we have found empirically to require 

about 3-4 validated integrations per s tep  on average, independent of n. This met hod rigorously 

verifies ICP in the cases For which we have proven the inductive Containment Theorem. We are 

not sure if it verifies ICP in the general case, and would need to  perform further nrork to ensure 

that  i t  does before using it in the general problem. However, considering tha t  this  method of 

verifying ICP holds is cheaper and easier t o  work with than the previous two methods and that 

it verifies ICP hoIds in esactly the cases for which we can prove the Inductive Containment 

Theorem, we are content to leave further exploration of this method until later. 

In this paragraph, we look at the simple two-dimensional case in which one o f  the directions 

is espanding, while the other is contracting. First, assume that  the only information provided 

by our validated ODE integration is a n  outer bound 3(h/fi) on p(Mi). Then, it Zs not possible 

to verify (2,l)-ICP with only one validated integration, because this information can only 
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prove contraction, not expansion. Refer t o  Figure 3.11. In both Figures 3.11.a and  3-11.b, 

Figure 3 -1 1: Endosure methods prove contraction, but not expansion- 

3(Mi) is a valid enclosure of y(Mi) ,  I n  both Figures, j3(Mi) can be used to  prove t h a t  p(Mi)  

has contracted in t he  horizontal direction. However, enclosure methods cannot directly prove 

expansion, as Figure 3.11.b dernonstratesr although 3(hf i )  is a valid enclosure of p (Mi ) ,  i t  is 

not a very good one, because the  actual  image p(kf i )  of has not espanded in any direction. 

To  solve this problem, we perform two validated integrations. Refer t o  Figure 3.12.a. T h e  

Figure 3.12: (a) The two validated integrations required to prove (2,l)-ICP. (b) A potential problem, 

which is solved by doing a (cheap) point integration of one point on each expanding face, to verify there 

are points of ~ ( 1 % )  on both side of h.ii+l - 

first integration (solid rectangles) is a forward integration t ha t  provides p(,n/fi), which in tu rn  

$ver us  a bound on t he  size of ~ ( 4 4 ~ )  in the  contracting directions (depicted as t h e  horizontal 

direction in the Figure). Now, assume we can find a n  Mi+L which satisfies ICP not Rrith y (Mi )  : 

but  with +(Mi). (If we cannot find such  an  Mi+l, then our  method fails and  we cannot  prove the  

esistence of a shadow beyond s tep  i.) A validated integration backwards (dashed rectangles) is 

then performed on Mi+l, giving Q-' (Micl). If 3-'(.&1i+i) proves t h a t  contraction has occured 

in t he  nominally expanding directions when moving back from M..+I to mli, then we argue t ha t  



expansion in forward t ime has occurred, as follows. Choose any x E Mi - (?-'(LMitl). Since 

x $ $-'(M~+~) > v-l(n.ri+l), this implies ~ ( x )  E v(iWi) - Mi+'. Since F:~ c CIi -3-' (M;+t) ,  

this tells us t ha t  v ( F ' )  n~l''+~ = 0. This is insufficient t o  prove ICP(1) as illustrated in Figure 

3.12-b: perhaps q(~Vf;) is a loose enclosure of P ( ~ M ~ ) ,  a n d  al1 of p(iVfi) is actually on one  side of 

L V I ~ + ~ -  To verify t ha t  t his is no t  t h e  case, we pick one point on  each of 6;" and 4:' a n d  perform 

a validated point integration (which can be done cheaply, as described above) of each t o  t-erify 

t hat  t hey land on  opposite sides of Since there is exactly one espanding direction, iz.fi+i 

cuts  @(iV&) into two disjoint sets,  and  a simpIe continuity argument shows tha t  t h e  two faces 

in their entirety land on opposite sides of Mi+l, thus verifying ICP(1). A similar argument  in 

reverse time shows t ha t  t h e  chosen also verifies ICP (2ii). 

T h e  argument of the  previous paragraph clearly applies just as well in n dimensions when 

there is esactly one espanding direction, for the same reasons t hat Theorem 3.1 is easily trans- 

Çormed into Theorem 3.4. T o  prove that. it also works when there is esactly one contracting 

direction, note tha t  there is a precise syrnmetry between t he  two cases (one espanding us. one  

contracting): if we sirnultaneously reverse the order of { i ~ ~ ) ~ ~ ~  giving Li = MN-; and let 

@ = v-', then the  above a rgument  applies to the  sequence {L;)Z, using as the  homeomor- 

phism. Thus, by symmetry, th is  method is also rigorous in the case t h a t  there is esact ly  one 

contracting direction. 

Figure 3.13: Shortcomings of the  two-integration method: sornetimes it can not prove espansion even 

if the is valid. 

Figure 3.13 demonstrates t h a t  it is possible t o  choose an  t ha t  satisfies ICP, but for 

which it we cannot uerzyy I C P  holds. This occurs when Mi+l is chosen t o  be "almost as large" 

as p(&Ii) in the  espanding directions; then, the  excess when computing 3-L swarnps 

the contraction t ha t  occurs when integrating the espanding direction backwards in time. We 

5We have found empiricaily that  this problern m u t  be very rare, because it has not happened even once 
during our expenments. We suspect that it may be possible to prove ICP without this extra point integration, 
but we have not devoted much thought towards how to avoid it. 



solve this problem by iteratively shrinking in the  nominally expanding directions until 

P-' (Mici) fits inside Mi in those  directions. If we shrin k to size zero in t h e  espanding 

direction without being able to integrate i t  backwards t o  fit inside l;, then  t h e  method fails, and 

we cannot  prove t h e  existence of a shadow past  s tep  i- We have found empirically that ,  when 

t h e  algorithm is succeeding, no more than  2 t o  3 backward Integrations a r e  usually required, 

independent of n. T h e  number  of backwards integrations is occasionally significantly larger, 

when t h e  system encounters a reas  of non-hyperbolicity. 

If t h e  system were hyperbolic, then t h e  nominaiiy espanding directions would always es- 

pand, a n d  the  nominally contracting directions would always contract ,  on  average. However, in 

systems t h a t  are  only pseudo-hyperbolic, t h e  nominaIly espanding directions rnay expand most 

of t h e  time, but not always; a n d  similarly for the  contracting directions. O n e  of the  reasons our  

shadowing method can fail is if a nominally espanding direction contracts  t o o  much or for too  

long a t ime (Figure 3.14). Then ,  t h e  espanding dimensions of M.. c a n  become so small tha t  no 

Mi-, 

Figure 3.14: Example of the nominally espanding direction contracting too much for our integrator to 

prove contraction in the backwards direction. 

backwards integration from &fi+L can fit inside Mi in t h e  nominally espanding directions. 

We note that  this method i s  not parallelizab1e across dimensions in t h e  fashion that  the  

previous two methods are,  so t h a t  a parallel implementation rnay be faster  using one of the  

previous methods, if i t  can overcome the  other  shortcomings mentioned for those methods. 

3.5.4 Single integration method 

There  may be more efficient ways t o  implement the verification of ICP. For  esample, it may 

be possible to  prove both espansion and  contraction using a single forward integration if we 

take advantage of knowledge of t h e  second term in equation (1.8), which essentially tells us how 

much uncertainty is introduced t o  the  boundary of t h e  image of [ri] as a result of new error 

introduced on this s tep ,  both inwards and outwards. This  would alIow us t o  build both t h e  

outer  bound Qif1 on  y(,n/fi) a n d  t h e  inner bound as depicted in Figure 3.10 using only 

one validated integration. Th is  would be a tremendous irnprovement over t h e  current methods 

which al1 require several validated integrations per shadow step. Alternatively, there are other 

implementations of validated ODE integration tha t  we could use t h a t  a r e  more espensive, but  

provide tighter bounds on  t h e  solution. We have not yet  esplored a n y  of these options. 



3.6.1 Informal description 

Containment as presented t h u s  far has put no restrictions on  9 o the r  t h a n  t ha t  it is a home- 

ornorphism. As has also been mentioned, al1 of our  theorems and proofs have been based on 

a single application of 9 ,  a n d  t here is no explicit connection between t h e  9 used at one step,  

and t he  one used on  t he  ne-xt. Thus,  everything said thus  far  is also applicable if we allow 9 

t o  change between steps. I n  particular, at each s tep we could use 9 h t  as defined in equation 

(1.4) with h = hi being t h e  length of the ODE integration timestep taken at s tep  i- The re- 

sulting method for shadowing numerical ODE integrations has been dubbed  t he  Map Method 

by Coomes, Koçak, and Pa lmer  (1994b, 1993a, 1995b). As described in section 2 -25 ,  however, 

ODE integrations suffer f rom errors in time. For systems in which t h e  y' direction lacks even 

pseudo-hyperbolicity, errors in t ime (which manifest themselves in phase space as errors in the  

y' direction) can lead t o  s h o r t  shadowing times t ha t  can b e  dramaticaily increased if time is 

rescaled. In this section, we describe how the rescaling of t ime  can be applied t o  containment. 

Our  idea for rescaling t ime  in containment was inspired in part  by t h e  rescaling of time of 

Coomes, Koçak, and Palmer  (1994b, 1995a) as depicted in Figure 2.4 (although our  proofs are  

profoundly different), and par t ly  by the idea of the Poincaré  section, also known as a Poincaré 

map or  return map. There  a r e  several variations on this idea, but t h e  one  t h a t  concerns us 

is the  following. Assume t h a t  the  solution to an ODE is "almost periodicn, in t he  sense t ha t  

the  solution passes through some ,@en plane 31 approsimately every T t ime units, where 3t is 

approximately perpendicuiar t o  t he  orbit a t  the point the  orbi t  crosses t h e  plane. T h e  Poincaré 

rnap generates t he  sequence of points where the orbit intersects S-1. To accomplish the general 

rescaling of tirne, we modify this idea t o  remove the almost-periodic requirement of the orbit, 

and simpiy place a plane Xi in the  vicinity of the  solution at time t ; ,  placed s o  that  3-1; is 

approximately perpendicular t o  yr( t i ) -  

To facilitate containment,  we must extend the  idea of t h e  Poincaré section t o  encompass 

a srnaIl ensemble of solutions. To t h a t  effect, we wish t o  t ake  a set .!Mi-1 C 3-1;-1, where t he  

diameter of Mi-l is small, a n d  place a plane 3-1; in t he  vicinity of p h i - l  (&fi-1)- Then  we define 

the Poincaré section of t he  set ph,-i (Mi-l) pointwise as follows. Let Ah;-1 bound the time 

interval over which the ensemble p h t _ ,  (i\/l;-l) crosses Ri; Le., 

where we assume tha t  for each x, the  h chosen is unique. T h a t  is, we take the  point-by- 

point Poincaré section of t h e  points in with respect t o  the  plane 3-1;. We cal1 this a 

splash operation, because we imagine t ha t  the points in Mi-l, evolving via p h  for h E [hi-L - 
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Ah;-1, hi-1 + Ah;-L], "splash" through 31; approximately simultaneously, a n d  we assume tha t  

each trajectory intersects 31; precisety once during that interval. See Figure  3.15. 

Figure 3.15: The "splash" operation depicted for a two-dimensional ensemble evolving in a three- 

dimensional configuration space- hfidl is embedded in the pfane and evolves through one tirnestep 

to p h , - L  ( 1 2 f i - 1 ) .  As depicted, the ensemble is about to splash through Ri .  

Our  intent in this endeavor is t o  build our parallelepipeds Mi inside Ri, a n d  then show that  

the  point-by-point Poincaré section a t  ?fi, Le., the splash operation, is a homeomorphism. We 

can then directly apply t he  previously proved containment theorems t o  t h e  n - I-dimensional 

Mi's which are each contained in t he  n - 1-dimensional hyperplane 31;) for a n  ODE system of 

n equations. 

We note that  since rescaling t ime via the  splash operation effectively deletes one dimension 

from the  problern, and o u r  map  containment theorems are  rigorous in th ree  dimensions, this 

means t h a t  the methods presented in this thesis are capable of rigorousIy shadowing ODE 

solutions of up to four dimensions, as long as a rescaling of time is applied. 

3.6.2 Theorem: splash is a homeomorphism 

Refer to Figure 3.16. Let Qi be a parallelepiped. Let l$- be two opposing faces of Q; tha t  

are approximately normal t o  y' inside Qi+17 and let v; be the normal vector t o  these two faces, 



Nith V; pointing from <-' t o  F?'. T h a t  is: v; is approximately parallel to y' inside Qi+r- Let 

D be the distance between 4--' and <+' along v;. Let Zi be the closed infinite slab between 

the two hyperplanes containing and F:', and let the infinite planes be HF' and H:'. Let 

Bi be a parallelepiped with faces parallel t o  Qi satis€ying Qi c Bi C Z;, with two of the faces 

of Bi contained in HF'. Let {f(x) .vi 1 x E Bi} c [uo,vl], and assume O < vo 5 VI .  

Lemma 3.9. If a trajectory remains in  Bi tuhile it is in  Z;, then it remains in  Z; fur at least 

time = D / q  and at most Ë: G D/vo.  

Proof- Let y ( t )  be a trajectory tha t  remains in Bi while it is in 2;. Let z ( t )  = y ( t )  . vi. Since 

O < uo 5 ~ ' ( t )  5 v b  and the width of Bi in the v; direction is D, the ma.ximum time to  cross 

Bi is D/vo, while the minimum time to  cross is D/vl.  0 

Let T(B; )  be a n  enclosure of {f(x) 1 x E Bi)- Let Si be a parallelepiped enclosure of 

(2; n (Qi + hf (B;)) 1 h E [ - ~ f ,  É:]) and assume Si C Bi. 
Remark Si is intended to  enclose how far a trajectory can drift €rom Q; along the direction 

approsimately perpendicular to  y' as it  travels across Zi- This is required because a point in 

Q; may not rernain in Q; when it is "sptashed" ont0 Xi. The following temma formalizes this 

statement. 

Figure 3.16: The objects used in Lemmas 3.9-3.12. Kote chat the Ieft and right sides of Qi, Si, Bi, and 

Zi are al1 in the planes HF' ,  H:', respectively; they have been drawn distinct for illustrative purposes 

only. 

Lemma 3.10. Any trajectory intersecting Q; remains in  Si while in Zi, and thus remains in 

Bi as well. 



Proof. Since Si C Bi, f (Bi) bounds yC f inside Si. Since È: is the  maximum time a trajectory 

remains in Z;, and since Si c Zi: { h f ( ~ i )  1 h E [-c~,E~]::I) encloses the maximum possible 

distance from Q; that a trajectory c a n  travel in time 1~:l while i t  remains in Bi. Thus, since 

Qi C Si Bi, {Q; + ~ Z ( B ; )  ( h E [-dl .$]) encloses the position of any  trajectory y(t) tha t  is 

within time F: of intersecting Qi, u n l e s  y(t) leaves Zi during tha t  time. Intersecting with Z; 

completes the  proof. Cl 

Let R i  be any plane perpendicular t o  vi which intersects Q;. 

Lemma 3.11. E.uey trajectory intersecting Q; intersects Ri  at precisely one point .while it 

crosses Zi. 

ProoJ Let y(t)  be a trajectory t h a t  Entersects Q;. By Lernma 3.10, y( t )  remains in Si C Bi 

nrhile i t  crosses Zi. Let z ( t )  = y( t )  v;. Let the z CO-ordinates of H;': Xi, H:' be z-1, za, r+17 

respectively. While the trajectory remains in Si C Bi, 2 ( t )  2 uo > O, and, since z ( t )  is 

continuous, i t  increases rnonotonically- while y(t) remains in Si, taking on everÿ value between 

and z + ~  precisely once, by the Intermediate Value Theorem. In particular, it takes on the 

value zo precisely once, and thus crosses Ri precisely once. El 

Assume Q; is an enclosure of  AL^;-^). Lemma 3.11 irnplies t h a t  every trajectory through 

Q; crosses 31; precisely once while in S i .  For a point x E _n/f'i,L, let 9;-1 (x) be this unique point 

in xi. Let A?&- = S; n x i .  Cieariy, Mi is an enclosure of pi-l ( _ n / ~ ~ - ~ ) .  

To show that  pi-[ applied to is a homeomorphism, we need to  show it is continuous 

and one-to-one. VVe will prove i t  is continuous beloiv, and by Lernma 3.11, it is a t  svorst 

many-to-one. 

Let st > O be given. 

-4ssumption 1: Assume < < E~ a n d  B distinct x, y E hICi-I s.t. y = pt(x) for Itl < $5'. 

Each of the Asswnptions introduced in this section are  assumed t o  hold throughout the 

remainder of section, once they are  introduced. 

Lemma 3.12. pi-1 applied to ~w-1 z s  one-to-rnany. 

Proof. Assume to the contrary t h a t  t he re  exist distinct x, y E S-t. P~-'(X) = ~ ; - ~ ( y )  = 
z E iGi. Since phi-I (x), vhi-i (y) b o t h  splash to z ,  they are on the  same trajectory, and since 

they are both in Qi, the time-shift betiveen them is 5 2:::. Thus, 3t1, tz s.t. ( î t ,  (x) = z = ptZ(y )  

with Itl - t2 I  5 ci. Then x = yt,_,, (y), contradicting Assurnption 1. 17 

Theorem 3.13. applied to ~ ' k f ~ , ~  is one-to-one. 

Proof. Lemma 3.11 proves that  pi-1 (&Xi-l) is many-to-one, and Lemma 3.12 proves it is one- 

to-many. T hus, it is actually one-to-one. 0 



Assumption 2: pt(x) exists and  is continuous in both t a n d  x for al1 x E and  t s.t, 

pt(x) € Bi- Note t ha t  this is t r u e  as long as f is Lipschitz continuous (Stuart and  Humphries 

1996, Theorem 2-1-12). 

RecaLi t ha t  a fundamental tenet  of the  definition of continuity is t ha t  a function f is contin- 

uous at a point x only if f (y) exists in an  open neighborhood N ( x )  around x, lim f (y) = f (x) , 
Y-tX 

a n d  t h i s  Iimit is the same regardless of the pat h taken by y as i t  approaches x. 

In t h e  following, we assume tha t ,  in order for two things t o  be equal, they must both esist. 

Lemma 3.14. (x)  is cont2nuous for al[ x E Mi,1- 

Proof. Assume to the  contrary t h a t  pi-1 is not continuous at xo E That  is, 

Iim pi-1 (y)  # pi-1 ( X O )  
Y +xo 

is unique for each y, by Theorem 3.13.) This means t ha t  t he  Iimit as y approaches xo  along 

a pa th  remaining in xi is not equal t o  pto(xo), Le., either p h ( y )  is discontinuous a t  ( to ixo) ,  

o r  e i ther  Iim ph(y) o r  pt0(xO) does not esist. This contradicts Assumption '2, and  so 
( ~ . Y ) + ( ~ o F o )  

9;-~(x) is continuous at xo, a n d  is thus  continuous for al1 x E ML-l. CI 

Let  I.Vi be a n  infinite slab with width E > D in t he  vi direction, parallel t o  Zi such t h a t  

Z; c Wi. Let Ci be a parallelepiped with sides paralle1 to  Q;, also with a width of E in t he  v; 

direction, satisfying Mi c Ci c Pt:, where Mi is built inside Ri t o  satisfy ICP with under 

pi-1. Let {f (x) vi 1 x E Ci) C [uo, ul], and assume O < uo 5 u 1- Let P(c~)  be an  enclosure 

of {f(x) [ x E Ci). Let Ti be a parallelepiped enclosure of {Wi Yi (1iLI; + hf(ci ) )  1 h E [ - - E ~ , E ' ] ) ,  

and  assume Ti 5 G. 
Assumption 3: Assume E/ul  > 8,  i -e . ,  the  minimum crossing t ime of Ci is greater than  $. 

Lemma 3.15. 3 distinct x ,y  E &fi s-t. y = yt(x) for Itl < et. 

Proof- Substituting &fi for Qi,  PVi for Zil Ti for Si, and Ci for Bi in Lemmas 3.9-3.11, we see  

t ha t  

1) If a trajectory remains in Ci while it is in W;, then i t  remains in I.Vi for a t  Ieast t ime 

E / u l  and a t  most E/uO. 

'2) A n y  trajectory intersecting Mi rernains in Ti while it is in W;, and  thus remains in Ci. 

3) Every trajectory intersecting DIi intersects Ri a t  precisely one point while it remains in  

Wi, where 31; c Wi and  31; is parallei t o  the  planes enclosing FVi. 



Thus, by point (3), to intersect 71; more  than  once inside h/i;, a t ra jec tory  must, at Ieast, first 

traverse t he  distance from ai t o  Ki, esit and  t hen re-enter Ci, and  traverse t he  distance from 

dCi back t o  t h e  same point on  Xi.  B y  point (l), it takes t ime at least E/u l  to  do so, By 

Assumption 3, E/ul > 8. Thus, no trajectory can intersect !Cfi,  exit  T;, and  then re-enter Ti 

t o  again intersect the  same point of &fi in time less than 8. 0 

Remark I t  is Lemma 3.15 at s t e p  i - 1 tha t  gives us the second pa r t  of Assumption 1 at 

s tep  i. 

Remark T h e  base case of t h e  induction is produced by subst i tut ing Mo for Mi in Lemma 

3-13, after building suitable Wo,Co, a n d  To. 

3.6.3 Algorithmic details 

Algorithmic verification of t he  requirements for the above theorems and  lemmas are  fairly 

straightforward: Q; is simply t he  enclosure of yhi-, (Mi-l)  given to us by VNODE; the size 

of Bi is computed heuristically in a n  effort t o  ensure t ha t  Si C Bi, and  if our  first guess is 

incorrect we simply increase i ts  size until Si C Bi, or  Fail if increasing t h e  size of Bi results in 

O E {f(x) vi 1 x E Bi); z t ,  which is a n  upper bound on the  time error  introduced at  each s tep 

by t he  rescaling of time, rnust currently be pre-chosen by trial and error ,  although this author 

believes t h a t  good, simple heuristics for choosing it probably esist-  T h e  sole complication is 

t o  maintain t he  property t ha t  Q; h a s  a pair of faces approximately normal to  y' inside Q;. 

Recall from section 1.3.2 tha t  VNODE maintains a rotation matr ix  A; which represents the  

orientation of t h e  parallelepiped Qi. Let the  columns of -4 be a:, j = 1 , .  . . , n. We simply 

assign a: t o  be parallel to our best es t imate  of yf( t i ) .  VNODE then ensures t ha t  a:+, evolves 

via t he  variational equation t o  be approsimately paraIIel t o  y f ( t i f  l ) .  T o  account for the slow 

buildup of error  t h a t  would allow a! t o  drift away from y f ( t i ) ,  we reset a! t o  be parallel to the  

computed yJ( t i )  at each timestep. T h i s  corresponds to rotating Q; a b o u t  i ts  centre by a srnall 

angle 8 ,  cornputed by solving 

where af is the  vector computed via evolution of the  ODE from t h e  previous timestep, and 

yr(t;) is t he  value of y' computed directly from the right hand side of t h e  ODE at the current 

timestep. T h e  largest distance a point in Q; d l  move as a result of this  rotation is rû, ivhere 

r is t he  distance of t he  furthest corner in Q; from its centre, Thus,  af ter  rotating Q; by 8 ,  we 

increase i ts  size by rû in al1 directions, thus  ensuring tha t  it still encloses 9 h i - ,  ( IV&-~) .  

A simple variable stepsize algorithm was used: whenever containment of a particular s tep 

succeeds, we increase t he  stepsize by a srnall factor; whenever it fails, we decrease the stepsize 



by a factor of 2. We do not explicitly faii due to srnall stepsize, because too small a stepsize 

results in failures in other parts of the method, for example as depicted in Figure 3-14. 

Finally, nre note that the rescaling of tirne theorems presented in this section are independent 

of the containment results of previous sections, and thus do not need to be modified if and when 

our proofs are estended to cover the general case (C.E. @3.3! 3.4.2). 



Chapter 4 

Results and discussion 

In this Chapter, we will present resu l t s  of our containment method for ODES, compare our 

results to  those of others, discuss s o m e  of the interesting implementation details of our  method, 

and comment on  observations of t h e  behaviour of our  method including how it fails and some 

improvements t h a t  were discovered b y  accident. 

4.1 Quantitative cornparisons with other methods 

4.1.1 The Lorenz system of equations 

T h e  Lorenz equations (Lorenz 1963) , 

define a dissipative dynamical sys te rn  (Le. ,  energy is not conserved) which was originally con- 

structed to be a very simplified weaeher rnodel. I t  can be  shown (Coomes, Koçak, and Palmer 

1995a) that under the  Lorenz equati-ons, the set 

is fortuard invariant, Le., any  solut ion that  is in U at time to remains in U for al1 time t 2 to. 

We, and the authors we compare aga ins t  in this thesis, solve t h e  Lorenz equations using the 

classical pararneter vaIues O = 10, p = 28,B = 8/3 (Lorenz 1963). I t  is easy to show tha t  for 

these parameter values, t he  cube [O, 15J3 lies in U ,  and so  for o u r  experiments we chose initial 

conditions randornly inside this c u b e .  A set  of initial conditions in this  cube will invariably 

produce a solution whose three-dirmensional shape has been dubbed t he  "Lorenz butterfly" 

(Figure 4.1). Schematically, the  Lmrenz butterfly consists of two two-dimensional disks in 
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Figure 4-1: THE "LORENZ BUTTERFLY" . 

three-space with a ubridge7' between them. T h e  two disks together a r e  termed a "chaotic 

attractor",  because solutions tend  t o  remain in t he  disks, but juinp chaotically from one to the  

other  and back again. Solutions Iack pseudo-hyperbolicity in t he  direction of the  Aow (Van 

Vleck 1995; Coomes, Koçak, a n d  PaImer 1994b: 1995a), and so a rescaling of time is required 

t o  shadow them effectively. As should be clear from Figure 4.1 and t he  above description, in 

addition t o  the  y' direction, at any  given point a solution has one contracting direction, which is 

perpendicular to the  disk currently housing the solution, and one expanding direction, directed 

radially from the centre of t h e  disk- Provided a rescaling of t ime is employed, solutions to the 

Lorenz equations display remarkable pseudo-hyperbolicity for estremely long periods of time. 

Thus,  this system is a prime first candidate for testing shadowing methods, 

We will compare ou r  results t o  the only other  published results on shadowing the  Lorenz 

equations using a rescaling of time: Van Vleck (1995), whose results could be made rigorous 

but  currently are not; and  Coomes, Koçak, and Palmer, (1994b, 1995a), whose results are 

completely rigorous. 

First ,  with no rescaiing of time (the "map method"), Van Vleck gives two esamples OF 

shadows with a local error' of abou t  loL"asting 1.04 and 1.38 tirne units; Coomes et al. have 

six esamples with local error of about  10-l3 lasting 9.7, 9.8, 9.9, 9.9, 86; and  126 time units. 

For t his thesis: we have simulated hundreds of shadows with various local errors. W e  have found 

tha t  with local errors of abou t  IO-', containment finds shadows t h a t  last between 1 and 30 time 

units, with a median and mean of about  20. Wi th  local errors of 10-13, we find shadows lasting 

'AH authors other than that of this thesis used constant timesteps, and so the local errors are implicitly 
per-unit-step. The Iocai errors used in the curen t  thesis were normalized to have comparable size per-unit-step, 
even though variable stepsize methods were used both for the validated ODE integration (Nediakov 1999), and 
for choosing the size of shadow steps- 



4.1. QUANTITATIVE COMPARISONS WITH OTHER METHODS 

CKP 10-l3 10-~ 

Hayes 10-l~  IO-^ 

Author local error global error 

w 10-~ 10-5 

Table 4.1: COE~~PARISON OF SHADOW LENGTHS FOR THE LORENZ SYSTEM. 

Map Method Rescaling Time 

1-2 102 - 104 

between 10 and  1000 time units, again with a mean and median about  halfway through tha t  

range. Thus,  i t  appears tha t ,  without a rescaling of time, the  containment method is capable 

of finding shadows that  are about  a n  order of magnitude longer than  o ther  methods. 

With  a rescaling of tirne, Van Vleck gives many examples of shadows (with a local error of 

about  1 0 ~ ~ )  ranging from 102 t o  104 t ime units. Coomes et ai. (with a local error of 10-13) 

give six examples of shadows lasting at least 105 tirne units; they do  not  a t t emp t  finding longer 

shadows, so  in fact their method may  be capable of finding shadows longer than  10% The  

corresponding numbers for containment are  IO* t o  10' for local errors of 1 0 - ~ ,  and  102 to  

alrnost 106 for local errors of 10-'~. T h e  results are  summarized in Table 4.1.~ I t  is clear tha t  

'1 e-6 lengths" 
100000 

"1 e-13 lengths" - . /*-----1 

Figure 4.2: Distribution of shadow lengths computed by containment with a rescaling of time. Each 

Figure shows a sorted list of shadow lengths for 80 simulations of the Lorenz equations. The horizontal 

asis is simply a label for each shadow; the vertical a'us is its Iength, The magnitude of the noise (ie., the 

local error) in the noisy orbits is about 1 0 - ~  in the left graph, and 10-13 in the right. 

containment is at least as powerful as t h e  other methods. I t  is worth noting t h a t  ou r  results 

for local errors of 10-l3 were produced using only a 17th order Taylor series, nhereas  Coomes 

et al. used a Taylor series of 31st order. 

Figure 4.2 shows two sets of results of shadow lengths, including t h e  rescaling of time. The  
- 

'Our attempts to find the longest possible shadows for the latter case have been repeatedly confounded by 
having either workstation or di& crashes while our simdatious were running. The longest shadow we've observed 
is thus 7.7 x 105, even though, had our machines not crashed, the shadows may have been longer. 
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first is for eighty solutions wi th  local error of approximately 10-~, a n d  t h e  second for eighty 

solutions with local error of approximately 1 0 ~ ' ~ .  The  sharp increase in shadow lengths occuring 

just left of centre in the  first Figure is probably due t o  the  fact t h a t ,  o ther  t han  choosing vo 

(cf. Figure 3.16 on page 62) t o  be  paraIlel t o  yt(to),  the  directions of t h e  faces of Mo are  

currently chosen at random. Th i s  means t ha t  we sometimes choose nominally expanding and 

cont racting directions t hat  a re  not sufficient ly close to  the  act ual expanding and  cont racting 

directions. Thus, many shadows fail early on due to  this problem. Howevêr, if ou r  nominally 

chosen directions are  (by Iuck) close enough t o  the actual ones, t hen  we get over this hump t o  

find much longer shadows. There  is probably a more clever way t o  choose t he  initial Mo, but 

we have not yet studied this problern closely. This problem becomes less pronounced as the  

local error decreases, and is virtually absent in the right figure, which has local error b = 10-13- 

In addition, our shadowing distances ( i -e . ,  the rnasimum distance between t h e  shadow and  

the  numerical trajectory) a re  comparable t o  the  above authors: for orbits  with noise 1 0 - ~  and  

10-13, our  method and  those of Van Vleck and Coomes, Koçak a n d  Palmer find shadowing 

distances of approximately IO-' and IO-', respectively. For contain ment,  t hese sizes are based 

on E~ and  the  rnasimum size of Mi over alI il which are  at least i n  par t  user-controlled. For 

Van Vleck and Coomes et al. , t h e  shadowing distances are  computed analytically based upon 

global bounds of various computed quantities. 

4.1.2 Other systems of equations 

We have reproduced the  shadowing esperiments of several other au thors ,  usually getting corn- 

parable results, a s  illustrated in Table 4.2. We discussed results fo r  t he  Lorenz system in t he  

previous section. In this section, we provide results for three other probIems. 

Forced damped pendulum 

We first compare our  results for t he  forced damped pendulum problem, 

y f l+ay '+s iny  = bcost ,  

to  those of Grebogi, Hammel, Yorke, and  Sauer (1990), Sauer a n d  Yorke (1991), and Chow 

and Van Vleck (1994a). These authors use t he  values a = 0.2, b = 2.4 and  a = 1, b = 2.4, with 

initial conditions (y, y') = (0, O), and mention that  they get siïnilar results with other values 

of a, b and initial conditions. We used the  above two values of a, b and various random initial 

conditions in the unit square [O, 112. We convert the second order equat ion t o  two first-order 

equations by assigning yl = y, y2 = y', giving 



4.1. QUANTIT~~TIVE COMPARISONS WITH OTHER METHODS 

Systern Auth. 

Lorenz 

VV 

Hayes 

Pendulum 
sY / 1 0 - ~ ~  10-~  

Hayes 
korced Damped 

6 .c Et L 

10-~  IO-" 10" 

10-~  1 r 5  2.5 x IO-" 103-10" 

~ 0 - l ~  IO-' 2..5x 10-~ 2 7.7 x 10" 

Hayes 1 IO-'' IO-' 1 0 ~ ~  103-3 x 10" 

Comment 

NR 

3 x 104 high machine precision 

cvv 
Hayes 

cvv 
Hayes 

Hayes IO-" 1 0 - ~  
Logistic 
Equation 

IO-= 1 0 - ~  10" 

IO-" IO-"  IO-^ lo3 
IO-l1 10 -~  103 

10-l1 IO-' l o 4  lo3 
Forced van 
der  Pol periodic a t t ractor  

c w  
Hayes 

cvv 
Hayes 

Table 4.2: Comparison of shadow lengths for four systems. For our results, the lengths shown are 

typical results after attempting many trials with the given local and global errors; the  results of others 

are taken from their respective publications. Legend: 6 = local error; E = global space error; ~t = global 

time error (if none is listed for this author, then we did not rescale time); L = shadow length; CKP 

= Coomes, Koçak, and Palmer (1994b, 1995a); SY = Sauer and Yorke (1991); C W  = Chow and Van 

Vleck (1994a); VV = Van Vleck (1995); NR=not rigorous. 

- 
Io-' 5 x 10-' 

- 
IO- '  1 0 - ~  

LO-Ï 5 1 0 - ~  

IO- '  - IO-" 

9 2 2  

9 -22 

18.46 

18.46 

y0 = O - O l f  fised L, NR 

go = IO-', fised L, NR 



Grebogi, Hammel, Yorke, and Sauer (1990) and Sauer and  Yorke (1991) use an estended ma- 

chine precision of l ~ - ~ ~  to generate a trajectory with local truncation error rigorously bounded 

by IO-" per step, which allows them to  find a shadow of length 3 x 10' and rigorous maximum 

distance IO-' from their noisy trajectory- In cornparison, we use standard lEEE7.54 floating- 

point numbers and arithmetic, and obtain a local truncation error of about 10-l5 a t  best, so 

our  shadow distances are significantly less stringent at IO-', and tend to  be shorter, although 

in a few instances we successfully found shadows of length - 3 x 10" Given tha t  Sauer  and 

Erorke used higher precision, we are not surprised that  our  shadows tend t o  be shorter and 

not as close as  theirs. Comparing our results to Chom and Van Vleck (1994a), we see we are 

capable of rigorously proving the existence of a shadow which is doser, but lasts for a shorter 

time, than  they do; on the other hand, our  result is rigorous, whereas theirs is only partially 

rigorous, because they do not rigorously bound numerical errors before applying their theorem. 

The  prirnary problem with shadowing this system appears t o  be the fact tha t  i t  is non- 

autonornous. We currently handle a non-autonomous system bÿ converting it t o  an autonomous 

systern with one component of our solution, 91, representing time: yl (O j = to, y: (t) = 1. This 

has several drawbackç: (1) assuming we can solve the linear systern y' = 1 exactly, the  interval 

representing y1 then accumulates roundoff error and as time progresses, the error in y1 grows; 

(2) this is exacerbated by the minimum absolute error in y-  1 increasing as &rnacht1 where 

is the machine precision; (3) finally, the error in the computation of cos(yl) adds to  t h e  error. 

These drawbacks, however, do not seem t o  adequately explain our poor shadowing resuIts for 

this system- Perhaps the difficulties would vanish if a native procedure for validated integration 

of non-autonomous systems were used, or  if ive used higher precision, as did Sauer and  Yorke 

(199 1). 

Forced van der Pol 

The  forced van der Pol equation, 

is studied by Van Vleck (1995). He defines the parameters implicitly with a = k = a = 2/5: 

where k = P/(2cu) and O = (1 - W ~ ) / Q ,  and uses the initial conditions (x, x') = (0,O). We 

t ry  this initial condition, as well as others chosen randomly in the  unit square [O, 112, and we 

convert the second order equation to two first-order equations by assigning y1 = x ,  y:! = xr, 

giving 

Y: = Y21 



4.2. QUALITATIVE COMPARISONS WITH OTHER METHODS 

y; = P cos(wt) - (y; - l)<ry2 - y1 - 

This equation has a hyperbolic periodic attractor which al1 soiutions approach asymptotically, 

and so  this system is easy t o  shadow. With a local truncation error of 10-~, Van Vleck found 

numerical shadows of length 10" and distance 10-', while we went significantly further, finding 

rigorous shadows lasting 10' and longer with a distance of 1 0 ~ ~ .  Since solutions asymptoti- 

caIly approach a periodic solution that is hyperbolic, we conjecture that containment could be 

maintained indefinitely. 

Logis t ic equat ion 

Finaily, the logistic equation, 

was studied by Chow and Van VIeck (1994a). In this problem, there is an unstable fixed point 

at y = O and a stable fixed point a t  y = 1. Chott' and Van Vleck attempt shadowing two 

solutions, both starting at y(0) = C and integrating until y(T) z 1 - C. If C = 10-~: then 

T F=: 9.22, and if = IO-", then T = 18-46. In both cases, we use a Iocal truncation error of 

6 = IO-'. We find that we easily match their results, noting again that  ours are rigorous, while 

theirs are not. In fact, we find tha t  we can prove the esistence of these shadows for E 106 for 

S down to  about 10-'". 

4.2 Qualitative cornparisons wit h ot her met hods 

Although containment is rigorous, it appears t o  be less robust than non-rigorous methods. For 

example, in two examples o u t  of three, the  non-rigorous results of Chow and Van Vleck (1994a) 

produced shadows tha.t svere about an order of magnitude longer than we could produce using 

containment. In addition, this author's Master's Thesis (Hayes 1995) demonstrated convincing 

evidence tha t  the gravitational n-body problem is shadowable, and yet containment could prove 

the existence of shadows lasting only 1% as long as  those (found nonrigorously) in Hayes (1995). 

Even worse, the VNODE package (Nedialkov 1999) is capable of  providing a validated enclosure 

of an  IVP for the n-body problem which is about ten times as long as the containment-produced 

shadow! Ciearly, if an enclosure of an IVP esists, then a shadow exists for the associated point 

solution for a t  Ieast as Iong. Thus, a t  least for sorne problems, this author's implementation of 

containment is incapable of finding shadows even if they exist. This does not necessarily imply 

t hat the t heorems proved in Chapter 3 are deficient; it pro bably means that our implementation 

for verifying tha t  the Inductive Containment Property holds can be irnproved, for exarnple by 

reducing the escess of the validated numerical integrator. 
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Our  method requires some  a priori guesses; for esample, the  maximum and  minimum sizes 

of the  Mi, and  the  maximum t ime rescaling E~ need t o  be chosen before t h e  algorithm can  run. 

We generally had t o  choose these numbers by trial and error for each problem; if a certain E' did 

not work, for esample, ive often found t h a t  increasing it o r  decreasing t h e  maximum size of  Mi 

would allow us t o  find longer o r  doser  shadows, respectively. Van Vleck's (1995.5) method aIso 

requires some a prion guesswork t o  make a rescaling of tirne work. Although Coomes, Koçak 

and Palmer d o  not discuss their  choice of parameters, it is likely t h a t  they require significant 

guesswork t o  find parameters t ha t  satisfy their theorems as well. Finally, allshadowing rnethods 

currently in the  literature appear  to  require guesswork t o  discover the  number of espanding 

and contracting dimensions, and  t o  choose a local error 6 which is stringent enough to  satisfy 

t heir respective t heorems. 

I t  is also not trivial to see how containment could be parallelized, since each Mi depends o n  

f i  Possibly an iterative rnethod t h a t  guesses al1 the {ilfi}jL, and  then iteratively refines 

them in paraIIel could be constructed; this may also be related t o  two-point boundary value 

problems (Ascher, Mattheij, and Russell 1988). 

Finally, our  method has only been proven to work in three dimensions and  the  o t  her special 

cases noted in Chapter 3. 

On the other hand, containment appears to have several advantages over other  methods. 

a First and foremost, t h e  method of proof is simple and easy t o  understand. Improving 

our results reduces t o  t h e  problern of producing the best possible Inductive Containment 

Property. 

N7e use an  (almost) off-the-shelf validated integrator (Nedialkov 1999) to verify t h a t  I C P  

holds; this integrator is almost as easy-to-use as any standard integrator,  and thus  get t ing 

the code "up and running" on  a new problem usually takes only a few minutes. Another 

advantage of this simplicity is t h a t  i t  requires the user to  have no deeper understanding 

of the system than knowing the  defining equationsS3 

Although the success of containment may depend, of course, upon global properties of 

the system, the  method itself is local. By tha t  ive mean tha t  i t  requires information 

onIy frorn the previous s tep t o  estend the length of the  shadow. Several other  methods 

require computing, storing, and  updating global information such as t h e  extent  of non- 

hyperbolicity (cf. Chow and  Palmer's p parameter (1991, 1992), discussed on  page 2 6 ) .  

%orne may consider this a disadvantage. 



4.3- ~ M P L E ~ I E N T A T I O N  ISSUES 

4.3 Implement ation issues 

In t he  original paper t ha t  described containment, Grebogi, Hammel,  Yorke, and Sauer (1990) 

appear  t o  have used boxes Mi of fixed size, and found t h a t  smaller boxes seemed t o  work 

better. In contrast, our method dynamically grows and shr inks  t he  LM; as i progresses, simply 

in a n  effort t o  maintain t he  Inductive Containment Property. In fact, we find it advantageous 

t o  allow the  espanding dimension of l\/I; t o  be fairly large, t o  allow us to  &absorbY possible 

future non-expansion, in a n  effort t o  avoid the situation depicted in Figure 3.14 (page 59). 

Simultaneously, the  contracting dimension can be relatively small, in order to  avoid t he  opposite 

effect (allowing us t o  "absorb" non-contraction without t h e  nominal contracting dimensions 

becoming too  large). Practically, we find t ha t  ou r  "boxes" can  b e  extremeIy Long and thin: 

typically, they are of length 1 0 - ~ - 1 0 - ~  in the expanding dimensions, and as small as 10-12- 

IO-'" in t he  contracting dimensions. 

Referring once again t o  Figure 3.14 on page 59, we no te  t h a t  when containment fails: the 

"espanding" dimension of &&- has often shrunk t o  a lmost  t he  s a m e  size as the contracting 

dimension, and both can be qu i te  small (say, 10-12), whereas when containment is %orking", 

the  espanding dimension of LM; can be several orders of magni tude Iârger. Tt is interesting to 

note t ha t  this implies t ha t  t he  hardest parts OF a n  orbit to shadow a re  the pIaces where our 

bounds on  t he  distance between t he  noisy and shadow orb i t s  a r e  smallest, Le., where we can 

prove t h a t  they are unusualIy close together. This appears counter-intuitive, b u t  may be reIated 

t o  the one-dimensional resuIt of Chow and Palmer (1991), where they proved that shadows must 

maintain a minimum distance from the noisy orbit. 





Chapter 5 

Future work 

There are several directions in which this research can be  e s t ended -  

First  and Foremost, the  au thor  firrnly believes t h a t  t h e  general  containment theorem (cf. 

83-42) is true, and t ha t  containment can be extended to rigor.ously prove t he  existence of 

periodic shadon-S. Proving both of these results would a d d  a measure  of closure t o  t he  current 

work. 

Second, our  current implementation of ICP is tied intimately t o  the  C++ implementation of 

VNODE (Nedialkov 1999). As such, the only pseudo-trajectories we can shadow are  the ones 

produced by VNODE (cf. t he  ÿ; in equation 1.7, page 8). In can t ras t ,  the refinement code 

of the  author's Master's Thesis (Hayes 199.5) couId be given an9 noisy trajectory on which t o  

perform refinement. Since there is no esplicit dependence of o u s  theorerns on the  algorithm 

tha t  produces pseudo-trajectories, estending our code so i t  can be run on any given pseudo- 

trajectory would be a good practicai improvement. 

Software esists t hat  produces so-called "continuous numerical solutions" t o  ODE problems 

(see for esample Enright 1993). These methods use sophisticated interpolation techniques to  

alIow the  user t o  request the  solution a t  any floating-point t ime t i n  the interval of integration. 

It should not be too difficuIt t o  estend our results t o  produce enclosures of these solutions? 

rather than the  discrete sequence of points which we currently shadow.  

T h e  question of whether shadows are typical of t rue  orbi ts  chosen a t  random is a large open 

question, but we point ou t  t h a t  the same question must be  asked o f  other methods of backwards 

error analysis. A possible s t a r t  would be to  es tend t he  work of G 6 r a  and Boyarsky (1958) t o  

continuous systems in arbitrary dimension, as discussed in  C h a p t e r  2- 

Currently, almost al1 shadowing work of which this au tho r  is a w a r e  consists of tryinp t o  prove 

t ha t  a shadow exists. However, failure to  prove existence does  not imp ly  a shadow does not ex&. 

Trying t o  prove tha t  a shadow does not exist for a pseudo-trajectmry is an interesting problem, 

because i t  would lead naturally t o  the question of, in what sense is a non-shadowable trajectory 



valid? Sorne convincing work has already been done in this direction (Dawson, Grebogi, Sauer, 

and  Yorke 1994; Sauer, Grebogi, and Yorke 1997), although none of i t  is rigorous. Making the 

work rigorous could involve, for esampIe, proving non-hyperbolicity via validated integration 

of t h e  variational equation (which would be  very expensive). 

Note t h a t  i t  may not be possible t o  disprove the  existence of shadows in general for any 

particular system of equations. For esampie,  although we have found t h a t  t h e  n-body problem 

is hard to shadow, and previous work (Quinlan and  Tremaine 1992; Hayes 1995) suggests that  

n-body shadows do  not last forever, there  almost certainly esist pseudo-trajectories of the n- 

body problem which possess infinitely long shadows: eg., any  machine-representable periodic 

orbit  with sufficiently small local noise, o r  even stable non-periodic solutions, a r e  probably 

shadowable indefinitely. 

For  t h e  most  part, the current thesis espounds only a method of producing shadows. It 

would clearly be  interesting t o  s ta r t  applying this method t o  interesting problems. T h e  author, 

for esample,  i s  very interested in determining whether long-term solar sys tem integrations 

(Wisdom a n d  Holman 1991; Wisdom 1992; Sussman and Wisdom 1992; Laskar 1994; Laskar 

1997), or  long-term three-body problem integrations which a re  known t o  be s table  (Gladman 

1993), a r e  shadowable. More generally, t h e  only work of which we are aware t h a t  deals with 

systems with more than a few dimensions is this author's hIaster's thesis; clearly, shadowing 

high-dimensional systems is a n  area ripe for further study. 



Glossary 

arc A topological term tha t  is used to describe what is more commonly calIed a simple c,urüe, 

Formally, an arc, o r  simple, non-closed curue is a one-dimensional space t h a t  is home- 

omorphic to the unit interval [0,1] (Munkres 1975). This implies t ha t  a n  a rc  can be 

parametrized by a variable t E [O, 11. (The  "non-closed" adjective is t o  distinguish it from 

a simple closed curue, which is a curve t h a t  is homeomorpic t o  a circIe,) 

curve a line, either straight, o r  continuously bending; a path. Note t h a t  a curve, by definition, 

is continuous. 

diffeornorphism a homeomorphism whose first derivative is also a homeomorphism. 

ergodicity a rnap is ergodic if almost al1 initial conditions Iead t o  solutions tvhose time distri- 

bution in the limit as t + cm is independent of the initial s ta te ,  

homeomorphism a rnap which is continuous, 1-to-1, and onto. 

simple curve a non-self-intersecting curve. MSO an am. 
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