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Abstract� We consider numerical methods for the computation and continuation of the three
generic secondaryperiodic solution bifurcations in autonomousordinarydi�erentialequations �ODEs��
namely the fold� the period�doubling �or �ip� bifurcation� and the torus �or Neimark�Sacker� bifur�
cation� In the fold and �ip cases we append one scalar equation to the standard periodic boundary
value problem �BVP� that de�nes the periodic solution	 in the torus case four scalar equations are
appended� Evaluation of these scalar equations and their derivatives requires the solution of lin�
ear BVPs� whose sparsity structure �after discretization� is identical to that of the linearization of
the periodic BVP� Therefore the calculations can be done using existing numerical linear algebra
techniques� such as those implemented in the software auto and colsys�
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�� Introduction� We consider parameterized ODEs of the form

dx

dt
� x� � f�x� ��������

where x � Rn is the state variable� � � Rm represents parameters� and where
f�x� �� � Rn is a �usually nonlinear� smooth function of x and �� Examples of sys�
tems of the form ����� are ubiquitous in mathematical models in physics� engineering�
chemistry� economics� �nance� etc�

The simplest solutions of ����� are the equilibria� that is� solutions of the equation

f�x� �� � 	����
�

An equilibrium �x�� ��� is asymptotically stable if all eigenvalues of the Jacobian
matrix fx�x�� ��� have a strictly negative real part� it is unstable if there is at least
one eigenvalue with a strictly positive real part� In generic one�parameter problems�
i�e�� when m � �� eigenvalues on the imaginary axis appear in two ways� as a simple
zero eigenvalue� or as a conjugate pair �i�� � � 	� of purely imaginary eigenvalues�
The �rst case corresponds to a fold� where two solutions coalesce and annihilate each
other under parameter variation� The second case corresponds to a Hopf bifurcation�
from which periodic solutions emerge� Early papers on the numerical computation of
bifurcations of equilibria are ���� �
	�� and �����

Periodic solutions are solutions for which x�T � � x�	�� for some number T � 	�
The minimal such T is called the period� In generic one�parameter problems� periodic
solutions can bifurcate in several ways that can be characterized by the properties of
the monodromy matrix� The monodromymatrix is the linearized T �shift along orbits
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of ������ evaluated at the point x�	� on the periodic solution� The eigenvalues of this
matrix are called the Floquet multipliers of the periodic solution ��
�� �����

A periodic solution always has a multiplier equal to �� If this multiplier has ge�
ometric multiplicity � then we call the periodic solution regular� The corresponding
eigenvector of the monodromy matrix is the tangent vector to the periodic solu�
tion at the point where the monodromy matrix is computed� If all other multipliers
are strictly inside the unit circle in the complex plane� then the periodic solution is
asymptotically stable� If at least one multiplier has modulus greater than �� then
the periodic solution is unstable� Three generic bifurcations� determined by the mon�
odromy matrix� can occur along a one�parameter family ��curve� or �branch�� of
periodic solutions� namely the fold� the period�doubling �or �ip� bifurcation� and the
torus �or Neimark�Sacker� bifurcation� At a generic fold� the multiplier � has alge�
braic multiplicity 
 and geometric multiplicity �� Generically� a fold corresponds to
a point on the periodic solution branch where the curve turns with respect to the
free parameter� At a period�doubling bifurcation there is a simple multiplier equal
to ��� Generically this indicates a period�doubling of the periodic solution� i�e�� there
are nearby periodic solutions of approximately double period� At a torus bifurcation
there is a simple conjugate pair of complex eigenvalues with modulus �� Generically
this corresponds to a bifurcation of an invariant torus� on which the �ow contains
periodic or quasi�periodic motions�

The aim of this paper is to formulate the computation and continuation of the
three generic periodic solution bifurcation curves as minimally extended BVPs� to
which standard numerical approximation methods as well as convergence theory ap�
ply� Fully extended BVPs for continuing periodic solution bifurcations have been
implemented in auto ��� �see also ���� ������ The latter approach doubles the num�
ber of function components in the case of the period�doubling and fold bifurcations�
and triples it in the case of the torus bifurcation� Fully extended BVPs also yield a
more complicated Jacobian sparsity structure �after discretization� than that corre�
sponding to the underlying periodic BVP� There are e�cient solution techniques for
such sparse linear systems� see� for example� ���� However� these are not very easy
to implement and they are speci�c for each bifurcation� By contrast� the minimal
BVPs proposed in this paper for the period�doubling and fold bifurcations have the
same number of function components as the periodic solution problem� In the torus
case the number of BVP function components is only doubled� The most important
numerical advantage is that only one type of sparse system needs to be solved� namely
that corresponding to the underlying periodic BVP� Conceptually� the approach used
in this paper is similar to the bordering technique for equilibrium bifurcations �����
�����

The paper is organized as follows� Section 
 is devoted to the computation and
continuation of one�parameter branches of periodic solutions to ������ Classical results
on regularity of BVPs de�ning the branches of periodic solutions are proven here for
completeness� Sections � and  present the main results of the paper� Here we
construct functionals that vanish at points of bifurcations of the periodic solutions
and we prove that they are well�de�ned and regular� Section � deals with various
computational issues� including e�cient computation of the de�ning systems and
their derivatives� A numerical example is given in Section ��

�� Computation and continuation of periodic solutions� Numerical con�
tinuation is a technique to compute solution curves to an underdetermined system of
equations� Details can be found in� for example� ���� ���� and ����� It is a basic ingre�
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dient of the numerical bifurcation algorithms implemented in auto ��� and content
����� In this paper we restrict our discussion to issues that are speci�c to the case of
periodic orbits�

To compute a periodic solution of period T of ������ one �rst �xes the period by
rescaling time� Then ����� becomes

x��t� � Tf�x�t�� ����
���

and we look for solutions of period �� that is�

x�	� � x�����
�
�

The period T is one of the unknowns of the problem� In a continuation context we as�
sume that a solution �xk������ Tk��� �k��� is known� and we want to �nd �xk���� Tk� �k�
that we denote by �x���� T� ��� The equations �
��� and �
�
� together do not �x the
solution completely� since any solution can be translated freely in time� that is� if x�t�
is a solution then so is x�t� �� for any �� To �x the solution it is necessary to add a
�phase condition�� In auto ��� and content ���� the integral constraint

Z �

�

x��� �x�k���� � d� � 	��
���

is used to �x the phase� �We use ��� to denote transpose��
The periodic solution is now determined by the equations �
���� �
�
�� �
���� which

together form a boundary value problem with an integral constraint�
In our continuation context� the periodic orbit x�t� and the scalars T and � vary

along the solution branch� In the setting of Keller�s pseudo�arclength continuation
method ��� the continuation equation is

Z �

�

�x�� �� xk���� ��
� �xk���� � d� � �T � Tk��� �Tk�� � ��� �k��� ��k�� � �s��
��

where the derivatives are taken with respect to arclength in the function space� and
should not be confused with the time derivatives in� for example� Equation �
����

A widely used method to discretize the above boundary value problem is the
method of orthogonal collocation with piecewise polynomials� It is used in colsys

�
�� as well as in auto and content� The method is known for its high accuracy ���
and it is particularly suitable for di�cult problems� due to its known optimal mesh
adaptation techniques ����� The numerical continuation of the discretized equations
leads to structured� sparse linear systems ���� To describe these systems it is convenient
to formulate the boundary value problem in terms of operators on function spaces�

Denote by Ck��a� b��Rn� the space of k times continuously di�erentiable functions
de�ned on �a� b� and with values in Rn� Let D be the di�erentiation operator acting
from C���a� b��Rn� to C���a� b��Rn�� Any n� n matrix M �t� smoothly depending on
t � �a� b� de�nes an operator from C���a� b��Rn� into itself by the matrixmultiplication�
�M���t� �M �t���t�� The Dirac evaluation operator at the point t is denoted 	t�

For a given 
 � C���	� ���Rn� we denote by Int� the linear functional from
C���	� ���Rn� into R de�ned by

Int��v� � h
� vi �

Z �

�


��� �v�� � d��
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Suppose we want to compute a periodic solution of ������ i�e�� we want to solve
the system �
���� �
�
�� �
��� and �
�� for �x�t�� T� �� by a Newton�like method� The
Fr�echet derivative operator corresponding to this problem has the form

�
BB�

D � Tfx�x�t�� �� � f�x�t�� �� � Tf��x�t�� ��
	� � 	� 	 	
Intx�

k��
��� 	 	

Int �xk�����
�Tk�� ��k��

�
CCA ��
���

The discrete version of these linear operators is a square matrix that has a large
matrix corresponding to D � Tfx�x�t�� �� in the upper left corner� bordered on the
right by two extra columns and at the bottom by n � 
 extra rows� The big matrix
in the upper left corner is a block band matrix� Systems of this form are solved in
auto by a specially adapted elimination algorithm that computes the multipliers as
a byproduct ����

Consider the fundamental variational equation

X� � Tfx�x�t�� ��X � 	��
���

and the adjoint equation

X� � Tf�x �x�t�� ��X � 	��
���

Denote by  �t� the fundamental matrix solution to �
���� for which  �	� � I� where
I � In�n is the n�dimensional identity matrix� Then  ��� is the monodromy matrix
of the periodic solution� The eigenvalues of  ��� are the Floquet multipliers� and
there is always at least one multiplier that is equal to �� A corresponding eigenvector
is x��	�� For a regular periodic solution the multiplier � has geometric multiplicity ��
Similarly denote by !�t� the fundamental matrix solution to �
���� for which !�	� � I�
One has !�t� � �� �t�������

If v�t� is a vector solution to �
��� with initial values v�	� � v� and w�t� is a vector
solution to �
��� with initial valuesw�	� � w� then the inner product w��t�v�t� � w�

�v�
is independent of time t�

The left and right eigenvectors of the monodromymatrix  ��� for a geometrically
simple eigenvalue � will be denoted p�� q� respectively� It is easily seen that p� �respec�
tively� q�� is also the right �respectively� left� eigenvector of !��� for the eigenvalue ��
Furthermore� q� is a scalar multiple of x

��	��
We now state some basic facts about the linear operator �
��� when linearized

about a regular periodic solution �x�t�� T� ���
Proposition �� If �x�t�� T� �� is a regular periodic solution of �
��� then the

operator

�
D � Tfx�x�t�� ��

	� � 	�

�
� C���	� ���Rn�� C���	� ���Rn� �Rn�
���

has a one�dimensional kernel spanned by  q�� Its range has codimension �� if � �
C���	� ���Rn�� r � Rn then ��� r�� is in the range if and only if h!p�� �i � p��r� In

particular� if r � 	 then ��� 	�� is in the range if and only if h!p�� �i � 	�
Proof� First� let v�t� be in the kernel of �
���� Then v must have the form

v�t� �  �t�v� for a vector v�� Since 	 � �	� � 	��v � v��� � v�	� � � ��� � I�v�� we
infer that v� must be a right eigenvector of  ��� for the eigenvalue ��
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Next� let � � C���	� ���Rn�� r � Rn be given� If ��� r�� is in the range of �
���
then there must exist a v � C���	� ���Rn� for which

v��t� � Tfx�x�t�� ��v�t� � ��t��

The general solution of this linear di�erential equation is

v�t� �  �t�

�
v� �

Z t

�

!��� ���� � d�

�
�

where v� � v�	� is an initial vector� Also� we must have v���� v�	� � r� that is�

� ���� I�v� �  ���

Z �

�

!��� ���� � d� � r�

Such a vector v� can be found if and only if

p��

�
 ���

Z �

�

!��� ���� � d� � r

�
� 	�

that is� if

p��

Z �

�

!��� ���� � d� � p��r � 	�

from which the second result follows� �
Corollary �� If �x�t�� T� �� is a regular periodic solution of �
��� then the

operator

�
	 D � Tfx�x�t�� ��

	� � 	�
Int�



��
���

from C���	� ���Rn� into C���	� ���Rn��Rn�R is one�to�one if and only if h
� q�i 	�
	�

Proposition �� If �x�t�� T� �� is a regular periodic solution of �
��� then the

operator

�
D � Tf�x �x�t�� ��

	� � 	�

�
� C���	� ���Rn�� C���	� ���Rn��Rn�
��	�

has a one�dimensional kernel spanned by !p�� Its range has codimension �� if � �
C���	� ���Rn�� r � Rn then ��� r�� is in the range if and only if h q�� �i � q��r� In

particular� if r � 	 then ��� 	�� is in the range if and only if h q�� �i � 	�
Proof� Similar to the proof of Proposition �� �
Corollary �� If �x�t�� T� �� is a regular periodic solution of �
��� then the

operator

�
	 D � Tf�x �x�t�� ��

	� � 	�
Int�



��
����

from C���	� ���Rn� into C���	� ���Rn��Rn�R is one�to�one if and only if h��!p�i 	�
	�
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Proposition �� Let �x�t�� T� �� be a regular periodic solution of �
���� and let


�� �� � C���	� ���Rn� be such that h
�� q�i 	� 	� h���!p�i 	� 	� Then the operator�
	 D � Tfx�x�t�� �� ��

	� � 	� 	
Int�� 	



��
��
�

from C���	� ���Rn��R into C���	� ���Rn� �Rn �R is one�to�one and onto�

Proof� To prove that the operator is one�to�one� suppose that�
	 D � Tfx�x�t�� �� ��

	� � 	� 	
Int�� 	



�� v

G

�
�

�
� 	
	
	

�
A �

for v � C���	� ���Rn�� G � R� In particular� it follows that�
D � Tfx�x�t�� ��

	� � 	�

�
v �

�
�G��
	

�
�

Since h���!p�i 	� 	� it follows from the last statement in Proposition � that G � 	�
By Corollary � and the assumption that h
�� q�i 	� 	� it follows that v � 	 as well�

To prove that the operator is onto we consider the equation�
	 D � Tfx�x�t�� �� ��

	� � 	� 	
Int�� 	



�� v

G

�
�

�
� �

r

s

�
A ��
����

where � � C���	� ���Rn�� r � Rn� s � R� In particular� the �rst two equations can be
written �

D � Tfx�x�t�� ��
	� � 	�

�
v �

�
� � G��

r

�
��
���

By Proposition � this equation is solvable for v� say� v � vp� if

h!p�� � �G��i � p��r�

that is� if we choose

G � Gp �
h!p�� �i � p��r

h!p�� ��i
�

where� by assumption� the denominator does not vanish� Now

v�t� � vp�t� � c �t�q��

is also a solution of �
���� for any constant c� The third equation in �
���� can now
be written as Z �

�

���� ��vp�� � � c �� �q��d� � s�

By the assumption that h
�� q�i 	� 	 it follows that the third equation is satis�ed if
we take

c �
s �

R �
� 
���� �vp�� �d�R �

� 
���� � �� �q� d�
� �
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Proposition �� Let �x�t�� T� �� be a regular periodic solution of �
���� and let


�� �� � C���	� ���Rn� be such that h
�� q�i 	� 	� h���!p�i 	� 	� Then the operator�
	 D � Tf�x �x�t�� �� 
�

	� � 	� 	
Int�� 	



��
����

from C���	� ���Rn��R into C���	� ���Rn� �Rn �R is one�to�one and onto�

Proof� Similar to the proof of Proposition �� �

�� Test functionals for bifurcations of periodic solutions� For the fold and
Hopf bifurcations of equilibria� several minimally extended systems are discussed in
���� and incorporated in content ��	��

To obtain similar systems in the case of periodic orbits we construct functionals
that vanish at codimension�� bifurcations of periodic solutions� i�e�� at the fold �limit
point�� at the period�doubling ��ip�� and at the torus bifurcation� respectively�

���� A test functional for the fold bifurcation� Let �x�t�� T� �� de�ne a
periodic solution of ������ i�e�� it satis�es �
���� �
�
� and �
���� If the solution corre�
sponds to a fold then the monodromymatrix  ��� has an eigenvalue �� with algebraic
multiplicity 
 and geometric multiplicity �� �A geometrically double eigenvalue ��
corresponds to a higher degeneracy��

Let p� and q� denote the corresponding left and right eigenvectors� which satisfy

� ��� � I�q� � 	� �!��� � I�p� � 	�

� ���� I��p� � 	� �!���� I��q� � 	�

with

p��p� � q��q� � ��

At a generic fold� where the multiplier � has algebraic multiplicity 
� we also have
generalized eigenvectors p� and q� satisfying

� ���� I�q� � q�� �!��� � I�p� � p��

where q� and p� can be chosen so that

q��q� � p��p� � 	�

Note that in the multiplicity�
 case we also have p��q� � p���!���� I��q� � 	�
Proposition �� If �x�t�� T� �� is a regular periodic solution of �
��� then the

operator �
	 D � Tfx�x�t�� �� � f�x�t�� ��

	� � 	� 	
Intf�x������ 	



������

from C���	� ���Rn� � R � C���	� ���Rn� � Rn � R is one�to�one if the multiplier �
has algebraic multiplicity �� If the multiplier � has algebraic multiplicity 
� i�e�� at a
fold� then the operator has a one�dimensional kernel� spanned by the vector�

v

�

�
� C���	� ���Rn��R����
�
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where v�t� � c�
T
 �t��c�q� � �q� � tq���� c� is determined by the condition that

q��

Z �

�

 ��� � �� ��c�q� � �q� � �q��� d� � 	�

and c� is determined by the condition that x��	� � c�q��

Proof� Consider the homogeneous equations

�
	 D � Tfx�x�t�� �� � f�x�t�� ��

	� � 	� 	
Intf�x������ 	



�� v

S

�
�

�
� 	
	
	

�
A ������

From the �rst equation in ����� we have

v�t� �  �t�
h
v� � S

R t
� !

��� �f�x�� �� �� d�
i

�  �t�
h
v� �

S
T

R t
� !

��� �x��� � d�
i

�  �t�
h
v� �

S
T

R t
�
!��� � �� � d� x��	�

i
�  �t�

�
v� �

St
T
x��	�


�

where we used the facts that !��� � �� � � I and x��t� �  �t�x��	�� Above� v� � v�	�
is an initial vector� By the second equation in ����� we have

	 � v��� � v�	� � � ���� I�v� �
S

T
x��	��

that is�

� ���� I�v� � �
S

T
x��	��

Now � ��� � I�x��	� � 	� so that x��	� � c�q�� for some c� � R� c� 	� 	� Thus we
must solve

� ��� � I�v� � �c�
S

T
q������

where q� spans the kernel of  ���� I�
If the multiplier � has algebraic multiplicity � then we must have S � 	� v� � c�q��

and hence v�t� � c� �t�q�� By the third equation in �����

	 �

Z �

�

f��x�� �� ��v�� � d� �
�

T

Z �

�

x���� �v�� � d� �
�

T

Z �

�

�
 �� �x��	�

�
c� �� �q� d��

or

c�c� q
�

�

�Z �

�
 ��� � �� � d�

�
q� � 	�

from which it follows that c� � 	� Thus v�t� � 	� It follows that the operator ����� is
one�to�one�

At a fold the multiplier � has algebraic multiplicity 
� In this case ���� is also
solvable if S is nonzero� namely

v� � �c�
S

T
q� � c�q��
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where c� � R is arbitrary� The third equation in ����� then implies

	 �
R �
� x���� �v�� � d�

�
R �
� x���� � �� ��v� �

S�
T
x��	�� d�

�
R �
� x���� � �� ���c�

S
T
q� � c�q� �

S�
T
c�q�� d�

�
R �
� � �� �x

��	��� �� ���c�
S
T
q� � c�q� �

S�
T
c�q�� d�

� c�q
�
�

R �
�  

��� � �� ���c�
S
T
q� � c�q� �

S�
T
c�q�� d��

from which it follows that

c� �
c�Sq

�
�

R �
�  

��� � �� ��q� � �q�� d�

T q��
R �
�
 ��� � �� � d� q�

� �

Proposition �� Let �x�t�� T� �� be a regular periodic solution of �
��� and con�

sider the operator

M� �

�
	 D � Tfx�x�t�� �� � f�x�t�� ��

	� � 	� 	
Intf�x������ 	



������

from C���	� ���Rn� � R � C���	� ���Rn� �Rn � R� If the multiplier � has algebraic

multiplicity one� then M� is onto� If it has algebraic multiplicity two� i�e�� at a fold�

then the range of M� has codimension � and the vector�
� !p�

�p�
	

�
A � C���	� ���Rn��Rn �R�����

is complementary to the range space�

Proof� Consider a vector ��� � ��� in C���	� ���Rn� �Rn �R� This vector is in
the range of M� if and only if there exist �v� S�� in C���	� ���Rn� �R such that

M�

�
v

S

�
�

�
� �



�

�
A ������

The �rst equation in ����� implies that

v�t� �  �t�

�
v�	� �

Z t

�
!��� ����� � � Sf�x�� �� ��� d�

�
�

The second equation in ����� then implies

 � v��� � v�	� � � ���� I�v�	� �  ���

Z �

�

!��� ����� � � Sf�x�� �� ��� d��

NowZ �

�

!��� �f�x�� �� ��d� �
�

T

Z �

�

!��� �x��� � d� �
�

T

Z �

�

!��� �c� �� �q� d� �
c�

T
q��

So

 � � ���� I�v�	� �
Sc�

T
q� �  ���

Z �

�

!��� ���� � d�������
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If � is an algebraically simple eigenvalue of  ��� then q� is not in the range of � ����I��
For given ��  ����� can be solved for v�	�� S� Moreover� the solution is unique up to
the addition of a scalar multiple of q� to v�	�� SinceZ �

�

�x��� ��� �� �q� d� � c�

Z �

�

� �� �q��
� �� �q� d� 	� 	�

the scalar is determined uniquely by the third equation in ������
If � is an algebraically double eigenvalue of  ���� i�e�� at a fold point� then �����

is solvable if and only if

p�� � p��

Z �

�

!��� ���� � d��

If so� the third equation in ����� again determines the solution uniquely� �
Proposition �� If �x�t�� T� �� is a regular periodic solution of �
��� then the

operator �
	 D � Tf�x �x�t�� �� � f�x�t�� ��

	� � 	� 	
Intf�x������ 	



������

from C���	� ���Rn� � R � C���	� ���Rn� � Rn � R is one�to�one if the multiplier

� has algebraic multiplicity �� If the multiplier � has algebraic multiplicity 
� i�e��
at a fold� then the operator has a one�dimensional kernel� spanned by �!�p�� 	�� �
C���	� ���Rn��R�

Proof� Consider the homogeneous equations�
	 D � Tf�x �x�t�� �� � f�x�t�� ��

	� � 	� 	
Intf�x������ 	



�� w

R

�
�

�
� 	
	
	

�
A �����	�

From the �rst equation in ����	� we have

w�t� � !�t�

�
w� �

R

T

Z t

�

 ��� �x��� � d�

�
�

where w� � w�	� is an initial vector� The second equation in ����	� implies

	 � w����w�	� � �!���� I�w� �
R

T
!���

Z �

�

 ��� �x��� � d��

or

�!���� I�w� � �
R

T
!���

Z �

�

 ��� � �� � d� x��	��

Given R� this equation is solvable for w� if

�Rq��!���

Z �

�

 ��� � �� � d� x��	� � 	�

that is� recalling that x��	� � c�q�� c� 	� 	� and q��!��� � q��� if

c�Rq
�

�

Z �

�

 ��� � �� � d� q� � 	�
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It follows that R � 	� independently of the algebraic multiplicity of the eigenvalue ��
Thus w�t� � !�t�w�� where �!��� � I�w� � 	� so that w� � c�p�� for some c� � R�

From the third equation in ����	� it follows that

	 �

Z �

�

w��� �x��� � d� �

Z �

�

�c�!�� �p��
� �� �x��	� d�

� c� c� p
�
�

Z �

�

!��� � �� � d� q� � c� c� p
�
�q��

If the multiplier � has algebraic multiplicity � then p��q� 	� 	� In this case c� � 	 and
hence w�t� � 	� that is� the operator ����� is one�to�one�

If the multiplier � has algebraic multiplicity 
 then p��q� � 	� and we can choose
c� 	� 	� In this case w� 	� 	� hence w�t� 	� 	� It follows that the operator ����� has a
one�dimensional kernel� �

Proposition 	� If �x�t�� T� �� is a regular periodic solution of �
��� then the

operator

M� �

�
	 D � Tf�x �x�t�� �� � f�x�t�� ��

	� � 	� 	
Intf�x������ 	



�������

from C���	� ���Rn� � R � C���	� ���Rn� � Rn � R is onto if the multiplier � has

algebraic multiplicity one� If the multiplier � has algebraic multiplicity two� i�e�� at a

fold� then its range has codimension � and the vector �	� 	� ��� � C���	� ���Rn��Rn�R
is complementary to the range space�

Proof� Consider a vector ��� � ��� in C���	� ���Rn� �Rn �R� This vector is in
the range of M� if and only if there exist �w�R�� in C���	� ���Rn��R such that

M�

�
w

R

�
�

�
� �



�

�
A �����
�

The �rst equation in ����
� implies that

w�t� � !�t�

�
w�	� �

Z t

�

 ��� ����� � � Rc� �� �q�� d�

�
�

The second equation in ����
� then implies

 � w���� w�	� � �!��� � I�w�	� � !���

Z �

�
 ��� ����� � �Rc� �� �q��d��

We so obtain the equation

�!��� � I�w�	� �  � Rc�!���

Z �

�

 ��� � �� �q� d� �!���

Z �

�

 ��� ���� � d��

This equation for w�	� is solvable if and only if

q�� � Rc�q
�

�

Z �

�

 ��� � �� � d� � q��

Z �

�

 ��� ���� �d��
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The latter equation is solvable uniquely for R� so the previous one is solvable for w�	�
and de�nes it up to the addition of a scalar multiple of p��

Now suppose that �w�R�� solve the �rst two equations in ����
� where w�	� �
w� � rp� and r is arbitrary� The third equation in ����
� then requires

q���w� � rp�� dt � �T�������

If the eigenvalue � of  ��� has algebraic multiplicity �� then this equation has a unique
solution in r and soM� is one�to�one and onto� If it has algebraic multiplicity 
� then
the range of M� has codimension at most �� In this case� for � � 	�  � 	� � � � we
have w� � 	 and ������ has no solution� So the range of M� has codimension � and
�	� 	� ��� is a vector complementary to that range� �

Proposition 
� Let �x�t�� T� �� be a regular periodic solution of �
��� where

 ��� has eigenvalue � with algebraic multiplicity 
� Then there exist v��� w��� v��� w��

� C���	� ���Rn�� w��� v�� � Rn� w��� v��� v��� w�� � R such that

N� �

�
��	

D � Tfx�x�t�� �� � f�x�t�� �� w��

	� � 	� 	 w��

Intf�x������ 	 w��

Intv�� v�� 	



���

and

N� �

�
��	

D � Tf�x �x�t�� �� � f�x���� �� v��
	� � 	� 	 v��

Intf�x������ 	 v��
Intw��

w�� 	



���

from C���	� ���Rn��Rn�R to C���	� ���Rn��Rn�R�R are one�to�one and onto�

For any such choice of the bordering elements we de�ne v� w � C���	� ���Rn� and
S�G�H�R � R by the equations

N�

�
� v

S

G

�
A �

�
BB�
	
	
	
�

�
CCA�����

and

N�

�
� w

R

H

�
A �

�
BB�

	
	
	
��

�
CCA �������

Then in a neighborhood of �x�t�� T� ��� G � 	 if and only if H � 	� Moreover� this

happens if and only if the regular periodic solution corresponds to a fold bifurcation�

Proof� We choose �
v���t�
v��

�
�

�
v�t�
�

�
�

where v is given in the statement of Proposition �� Further we set�
� w���t�

w��

w��

�
A �

�
� !��t�p�

	
	

�
A
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By Propositions � and � N� is one�to�one and onto� We further set�
w���t�
w��

�
�

�
!��t�p�
	

�
�

�
� v���t�

v��
v��

�
A �

�
� 	
	
�

�
A �

By Propositions � and � N� is one�to�one and onto� The last statement in the Propo�
sition is proved by standard arguments� �

���� A test functional for the period�doubling bifurcation� At a generic
period�doubling bifurcation there is an algebraically simple Floquet multiplier equal to
��� The left and right eigenvectors of the monodromymatrix  ��� for the eigenvalue
�� will be denoted by p� and q�� respectively� They are also the right and left
eigenvector� respectively� of !��� for the eigenvalue ���

Proposition ��� If �x�t�� T� �� corresponds to a period�doubling bifurcation then

the operator

�
D � Tfx�x�t�� ��

	� � 	�

�
� C���	� ���Rn�� C���	� ���Rn� �Rn������

has a one�dimensional kernel spanned by  q�� Its range has codimension �� if � �
C���	� ���Rn�� r � Rn then ��� r�� is in the range if and only if h!p�� �i � �p��r� In

particular� if r � 	 then ��� 	�� is in the range if and only if h!p�� �i � 	�
Proof� Similar to the proof of Proposition �� �
Corollary �� If �x�t�� T� �� corresponds to a period�doubling bifurcation then

the operator

�
	 D � Tfx�x�t�� ��

	� � 	�
Int�



�������

from C���	� ���Rn� into C���	� ���Rn��Rn�R is one�to�one if and only if h
� q�i 	�
	�

Proposition ��� If �x�t�� T� �� corresponds to a period�doubling bifurcation then

the operator

�
D � Tf�x �x�t�� ��

	� � 	�

�
� C���	� ���Rn�� C���	� ���Rn��Rn������

has a one�dimensional kernel spanned by !p�� Its range has codimension �� if � �
C���	� ���Rn�� r � Rn then ��� r�� is in the range if and only if h q�� �i � �q��r� In

particular� if r � 	 then ��� 	�� is in the range if and only if h q�� �i � 	�
Proof� Similar to the proof of Proposition 
� �
Corollary �� If �x�t�� T� �� corresponds to a period�doubling bifurcation then

the operator

�
	 D � Tf�x �x�t�� ��

	� � 	�
Int�



�������
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from C���	� ���Rn� into C���	� ���Rn��Rn�R is one�to�one if and only if h��!p�i 	�
	�

Proposition ��� Let �x�t�� T� �� correspond to a period�doubling bifurcation and

let 
�� �� � C���	� ���Rn� be such that h
�� q�i 	� 	� h���!p�i 	� 	� Then the operator�
	 D � Tfx�x�t�� �� ��

	� � 	� 	
Int�� 	



����
	�

from C���	� ���Rn��R into C���	� ���Rn� �Rn �R is one�to�one and onto�

Proof� Similar to the proof of Proposition ��
Proposition ��� Let �x�t�� T� �� correspond to a period�doubling bifurcation and

let 
�� �� � C���	� ���Rn� be such that h
�� q�i 	� 	� h���!p�i 	� 	� Then the operator�
	 D � Tf�x �x�t�� �� 
�

	� � 	� 	
Int�� 	



����
��

from C���	� ���Rn��R into C���	� ���Rn� �Rn �R is one�to�one and onto�

Proof� Similar to the proof of Proposition � �
Proposition ��� Let �x�t�� T� �� be a periodic solution close to a period�doubling

bifurcation� so that the operators M� and M� �de�ned below� from C���	� ���Rn��R

into C���	� ���Rn��Rn�R� are both one�to�one and onto� Let v� w � C���	� ���Rn�� G�
H � R be de�ned by the equations

M�

�
v

G

�
�

�
	 D � Tfx�x�t�� �� ��

	� � 	� 	
Int�� 	



�� v

G

�
�

�
� 	
	
�

�
A ����

�

M�

�
w

H

�
�

�
	 D � Tf�x �x�t�� �� 
�

	� � 	� 	
Int�� 	



�� w

H

�
�

�
� 	

	
��

�
A ����
��

Then G � H� Furthermore� G � 	 if and only if the periodic solution corresponds to a

period�doubling bifurcation� If so� then v�	� is the right eigenvector of the monodromy

matrix for the eigenvalue ���
Proof� Multiplying the �rst equation in ���

� on the left with w��t�� integrating

over the interval �	� ��� and using the last equation in ���
�� we obtain

Z �

�
w�v��� � d� � T

Z �

�
w��� �fx�x�� �� ��v�� � d� � G � 	�

Partial integration of the �rst term� using the second equations in ���

� and ���
���
gives

�

Z �

�

v��� �w��� � d� � T

Z �

�

v��� �f�x �x�� �� ��w�� � d� �G � 	�

Using the �rst equation in ���
�� we get

�hv� ��H
��i �G � 	�

Using the third equation in ���

� we obtain G � H� The other statements in the
Proposition are now obvious� �
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���� A test functional for the torus bifurcation� Let e�i�� 	 � � � � be the
conjugate pair of complex multipliers with modulus �� Furthermore� let p�� p� � Rn

�respectively� q�� q� � Rn� be such that p� � ip� �respectively� q� � iq�� is a left
�respectively� right� complex eigenvector of the monodromy matrix  ���� So

�p� � ip��
H ��� � ei��p� � ip��

H �

 ����q� � iq�� � ei��q� � iq���

!����p� � ip�� � ei��p� � ip���

�q� � iq��
H!��� � ei��q� � iq��

H �

where �p� � ip��H � p�� � ip��� �q� � iq��H � q�� � iq���
In this section it is convenient to extend the de�nition of x�t�� �t�� and !�t� to

the interval �	� 
� by periodicity with period �� and to rede�ne

Int��v� � h
� vi �

Z �

�

��� �v�� � d��

We start with the following result�
Proposition ��� Let �x�t�� T� �� de�ne a periodic solution that is� it satis�

�es �
���� �
�
� and �
���� Let �x�t�� T� �� corresponds to a torus bifurcation through

multipliers e�i�� 	 � � � �� Let � � cos � and consider the operator

�
D � Tfx�x�t�� ��
	� � 
�	� � 	�

�
���
�

from C���	� 
��Rn�� C���	� 
��Rn��Rn� Then

�i� The operator ���
� has a two�dimensional kernel spanned by  �t�q� and

 �t�q��
�ii� The operator ���
� has a range with codim 
� The vectors

�
!p�
	

�
�

�
!p�
	

�
� C���	� 
��Rn��Rn

span a two�dimensional subspace that is complementary to the range of ���
��
Proof� Let v be in the kernel of ���
�� Then v must have the form v�t� �  �t�v�

with v� � R
n� We further have

	 � �	� � 
�	� � 	��v � v�	� � 
�v��� � v�
� � � ��� � ei�I�� ��� � e�i�I�v��

We infer that it is necessary and su�cient that v� is in the span of q�� q��
As a �rst step in the proof of �ii� we consider � � C���	� 
��Rn�� r � Rn and give

a necessary and su�cient condition in order that ��� r�� be in the range of ���
��
First� there must exist a v � C���	� 
��Rn� for which

v��t� � Tfx�x�t�� ��v�t� � ��t��

The general solution of this linear di�erential equation is

v�t� �  �t�

�
v� �

Z t

�

!��� ���� � d�

�
�
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where v� � v�	� is an initial vector� Also� we must have v�	� � 
�v��� � v�
� � r�
that is�

� ����ei�I�� ����e�i�I�v��
� ���

Z �

�

!��� ���� � d� � ����
Z �

�

!��� ���� �d� � r�

This is an equation for v� which is solvable if and only if

�
�pH ���

Z �

�

!��� ���� � d� � pH ����
Z �

�

!��� ���� � d� � pHr�

or� equivalently�

�
�ei�
Z �

�

pH!��� ���� � d� � e�i�
Z �

�

pH!��� ���� � d� � pHr�

If we de�ne the linear functional L by setting

L��� � �
�ei�
Z �

�

pH!��� ���� � d� � e�i�
Z �

�

pH!��� ���� � d�����
��

then we infer that ��� r�� is in the range of ���
� if and only if L��� � pHr�
As a second step in the proof of �ii� we compute L�!p�� and L�!p��� We have

L�!p�� � �
 cos �ei�
Z �

�

pH!��� �!�� �p� d� � e�i�
Z �

�

pH!��� �!�� �p� d�

� ei���
 cos ��cos ��i sin ��

Z �

�

pH!��� �!�� � d��e�i�
Z �

�

pH!����� �!���� �p� d��

Now we note that

!�� � � �p� � !�� �!���p� � !�� ��cos �p� � sin �p��

and

pH!��� � � � � �!�� �!���p�H � �ei�!�� �p�H � e�i�pH!��� ��

Hence

L�!p�� � i sin �ei�
Z �

�

pH!��� �!�� �p d� � �� sin � � i cos �� sin �

Z �

�

k!�� �pk� d��

By a similar argument we �nd that

L�!p�� � �cos � � i sin �� sin �

Z �

�
k!�� �pk�d��

As a third step in the proof of �ii� we show that the range of ���
� has codimension

 by proving that every ��� r�� can be written in a unique way as

�
�

r

�
�

�
��
r�

�
� �

�
	
p�

�
� �

�
	
p�

�
����
��
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with ���� r��
� in the range of ���
� and �� � � R�

Obviously �� � � and r� has to satisfy the conditions

pHr� � L���� r� � r � �p� � �p��

These conditions imply
�

p��p� p��p�
p��p� p��p�

��
�

�

�
�

�
p��r � Re �L����
p��r � Im �L����

�
�

This nonsingular linear system de�nes �� � in a unique way� Next� r� is obviously
de�ned by the requirement r� � r � �p� � �p� and with this choice we have pHr� �
L����

As the fourth and last step to prove �ii� we will show that

�
!p�
	

�
�

�
!p�
	

�
�

also span a two�dimensional space complementary to the range of ���
�� To this end
we decompose

�
!p�
	

�
�

�
!p�
r�

�
� ��

�
	
p�

�
� ��

�
	
p�

�
�

�
!p�
	

�
�

�
!p�
r�

�
� ��

�
	
p�

�
� ��

�
	
p�

�
�

in the decomposition of ���
��� Then ��� ��� ��� �� are de�ned by the matrix equation�
p��p� p��p�
p��p� p��p�

��
�� ��
�� ��

�
�

�
�Re �L�!p��� �Re �L�!p��
Im �L�!p��� Im �L�!p��

�
�

The proof of �ii� is complete if we show that

�
�� ��
�� ��

�

is a nonsingular matrix� or equivalently that
�

�Re �L�!p��� �Re �L�!p��
Im �L�!p��� Im �L�!p��

�

is nonsingular� By the second step this matrix is equal to

�
sin � � cos �
cos � sin �

�
sin �

Z �

�

k!�� �pk�d�����
��

Since sin � 	� 	 ���
�� the proof is complete� �
Proposition ��� Let �x�t�� T� �� de�ne a periodic solution� that is� it satis�

�es �
���� �
�
�� and �
���� Let �x�t�� T� �� correspond to a torus bifurcation through

multipliers e�i�� 	 � � � �� Set � � cos � and consider the operator

�
D � Tf�x �x�t�� ��
	� � 
�	� � 	�

�
���
��
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from C���	� 
��Rn�� C���	� 
��Rn��Rn� Then

�i� The operator ���
�� has a two�dimensional kernel spanned by !�t�p� and

!�t�p��
�ii� The operator ���
�� has a range with codimension 
� The vectors�

 q�
	

�
�

�
 q�
	

�
� C���	� 
��Rn� �Rn

span a two�dimensional subspace that is complementary to the range of ���
���
Proof� Similar to the proof of the preceding Proposition� �
Corollary �� Let �x�t�� T� �� correspond to the torus bifurcation point of a

periodic solution� If � � cos � then the operators�
��	

D � Tfx�x�t�� �� !p� !p�
	� � 
�	� � 	� 	 	
Int	���q� 	 	
Int	���q� 	 	



��� �

and �
��	

D � Tf�x �x�t�� ��  q�  q�
	� � 
�	� � 	� 	 	
Int
���p� 	 	
Int
���p� 	 	



���

from C���	� 
��Rn��R� into C���	� 
��Rn��Rn�R� are both one�to�one and onto�

Proof� Standard�
Proposition ��� Let �x�t�� T� �� be close to a torus bifurcation point of perio�

dic solutions and � close to the value cos � of the torus bifurcation point so that the

operators

M� �

�
��	

D � Tfx�x�t�� �� �� ��
	� � 
�	� � 	� 	 	

Int�� 	 	
Int�� 	 	



��� ����
��

M� �

�
��	

D � Tf�x �x�t�� �� 
� 
�
	� � 
�	� � 	� 	 	

Int�� 	 	
Int�� 	 	



�������	�

from C���	� 
��Rn��R� into C���	� 
��Rn��Rn �R� are both one�to�one and onto�

Let v�� v�� w�� w� � C���	� 
��Rn�� G�H � R��� be de�ned by the equations

M�

�
� v� v�

G�� G��

G�� G��

�
A �

�
BB�
	 	
	 	
� 	
	 �

�
CCA������

M�

�
� w� w�

H�� H��

H�� H��

�
A �

�
BB�

	 	
	 	
�� 	
	 ��

�
CCA����
�



PERIODIC SOLUTION BIFURCATIONS ��

If �x�t�� T� �� is a periodic solution� then G � 	 if and only if H � 	� Moreover�

this happens if and only if �x�t�� T� �� corresponds to a torus bifurcation of periodic

solutions with the multipliers e�i�� where � � cos����
Proof� Standard� �

�� Regularity of the de�ning systems� In this section we prove that� under
natural nondegeneracy and transversality conditions� the test functionals constructed
in the previous section are regular �with respect to the arclength parameter along the
periodic solution branch�� This implies regularity of de�ning systems consisting of the
periodic BVP �
���� �
�
�� �
���� and the vanishing condition for the corresponding
functional� for the two�parameter continuation of the bifurcation�

���� Regularity at a fold bifurcation� The prove the regularity of the test
functional G for the fold bifurcation in Proposition �� we proceed as in the case of the
fold bifurcation of equilibria �����

The computation of periodic orbits is based on the equation

F �X��� � 	����

where X � �x���� T � � C���	� ���R��R� and F �X� � C���	� ���R��Rn �R is given
by

F �X� �

�
� x��t� � Tf�x�t�� ��

x���� x�	�R �
� x

��� �x�k���� � d�

�
A��
�

�see �
���� �
�
�� and �
����� The Fr�echet derivative FX �X��� of this operator �with
xk�� substituted by x upon di�erentiation� is M� as de�ned in ������ By Propositions
� and � the periodic orbit is a fold point if and only if FX is singular� the left and
right singular vectors are then �

� !p�
�p�
	

�
A

and �
v

�

�

given in ���
� and ����� respectively� The fold point is regular if and only if�
� !p�

�p�
	

�
A
�

FXX

�
v

�

��
v

�

�
	� 	�����

Now let � be a scalar parameter� such that �FX F�� is onto at the fold point� Let
s denote arclength along the branch of periodic orbits� We think of X and � as
functions of s so that ���� is an identity in s� By ����� this also de�nes G as a
function of s� Suppose that the fold bifurcation occurs at s � s�� We will prove that
���� is equivalent to Gs�s�� 	� 	�

Taking derivatives of ����� with respect to s we �nd

N�

�
� vs

Ss
Gs

�
A �

�
� �FXXXs � FX��s�

�
v

S

�

	

�
A ����




	 E�J� DOEDEL� W� GOWAERTS� AND YU� A� KUZNETSOV

In this expression �
v

S

�

is a right singular vector of FX � Furthermore� at the fold point �s � 	� Since
FXXs � F��s � 	 it follows that Xs is also a right singular vector of FX � Now by
��� we have Gs�s�� 	� 	 if and only if

FXX

�
v

�

��
v

�

�

is not in the range of M�� this is equivalent to �����

���� Regularity at a period�doubling bifurcation� We have seen that lo�
cally� near a period�doubling bifurcation� the system consisting of �
���� �
�
�� �
����
and G � 	 �where G is given by ���

��� de�nes the set of period�doubling bifurcations
in �x���� T� ���space� if the conditions h
�� q�i 	� 	� h���!p�i 	� 	 hold� We will now
prove that this is a regular system if the appropriate nondegeneracy and transversality
conditions for the period�doubling bifurcation hold�

Let s denote arclength along the curve of periodic orbits so that �x�s��t�� T �s�� ��s��
is a solution of �
���� �
�
�� and �
��� for all s near the bifurcation value s�� Non�
degeneracy implies that �� is algebraically simple eigenvalue of  �s������ so that it
can be continued smoothly� together with its left and right eigenvectors� for nearby
values of s� Speci�cally� we denote by ��s� an eigenvalue of  �s����� with left and
right eigenvectors p�s�� q�s�� that is�

 �s����q�s� � ��s�q�s�� p��s� �s���� � ��s�p��s��
!�s����p�s� � ����s�p�s�� q��s�!�s���� � ����s�q��s��
p�s�� � p�� q�s�� � q��

��s�� � ���

����

The nondegeneracy condition implies that

p��s�q�s� 	� 	�����

for all s su�ciently close to s�� By standard arguments� ���� implies

p��s�q�s��s�s� � p��s� s�s����q�s������

To get an explicit formula for  s�s����� we start from the observation that

�D � T �s�fx�x�s�� ��s��� � 	�

Taking derivatives� and using somewhat simplied notation� we obtain

�D � Tfx� s � �Tfx�s �

Multiplying on the right by an arbitrary vector � � Rn� we have

�D � Tfx� s� � �Tfx�s ��

This is a linear di�erential equation for  s� with solution

 s�s��t�� �  �s��t�

�
� �

Z t

�

!��s��� ��Tfx�s�s��� � �s��� �� d�

�
�
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for some � � Rn� For t � 	 this reduces to

 s�s��	�� �  �s��	���

Since  �s��	� � I�  s�s��	� � 	� this implies that � � 	� so that

 s�s��t�� �  �s��t�

Z t

�

!��s��� ��Tfx�s�s��� � �s��� �� d������

for all � � Rn� From ���� we get

p��s�q�s��s�s� � ��s�p��s�

Z �

�

!��� ��Tfx�s�s��� � �s��� �q�s� d������

The natural transversality condition for the period�doubling bifurcation is �s�s�� 	� 	�
We now show that this is equivalent to Gs�s�� 	� 	� thus establishing regularity�

Proposition �	� The conditions �s�s�� 	� 	 and Gs�s�� 	� 	 are equivalent�

Proof� The equations ���

� are to be considered as identities in s� by taking
derivatives we obtain

�D � Tfx�vs � �Tfx�sv � ��Gs����	�

�	� � 	��vs � 	������

Int��vs � 	����
�

The solution of ���

� at s � s� is given by G�s�� � 	� v�s���t� �  �s���t�q�� Now�
at s � s� ���	� is a linear di�erential equation for vs�s���t� with solution

vs�s���t� �  �s���t�

�
� �

Z t

�

!��s���� ���Tfx�s�s���� �v�s���� � � ��Gs�s��� d�

�
�

for some vector � � Rn� Using ����� we �nd

	 � �I� �s�������� �s�����

Z �

�

!��s���� ���Tfx�s�s���� � �s���� �q����Gs�s��� d��

This equation in � has a solution if and only if

p��s�� �s�����

Z �

�

!��s���� ���Tfx�s�s���� � �s���� �q� � ��Gs�s��� d� � 	�

that is�

p��

Z �

�

!��s���� ���Tfx�s�s���� � �s���� �q� d� � h���!p�iGs�s���

By ���� this implies

��p��q���s�s�� � h���!p�iGs�s���

Since p��q� and h���!p�i are nonzero� this completes the proof� �
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���� Regularity at a torus bifurcation� Again� let s be arclength along the
curve of periodic orbits� so that �x�s��t�� T �s�� ��s�� is a solution of �
���� �
�
�� and
�
��� for all s near the torus bifurcation value s�� We assume that  �s����� has
algebraically simple eigenvalues e�i�� Let ��s� � ���s�� i���s�� p�s� � p��s�� ip��s��
q�s� � q��s�� iq��s� be the smooth continuations of the critical multiplier e

i� and the
corresponding left and right eigenvectors� The natural transversality condition is the
requirement that ��s� crosses the unit circle in the complex plane transversally� i�e��

���s����s�s�� � ���s����s�s�� 	� 	������

Proposition �
� The system consisting of �
���� �
�
�� �
���� and the conditions

G�� � 	�
G�� � 	�
G�� � 	�
G�� � 	�

����

where the Gij are de�ned in Proposition ��� together form a de�ning system with

full linear rank for the torus bifurcation points of periodic solutions if the natural

transversality condition ����� is satis�ed�
Proof� To prove that the system �
���� �
�
���
�������� is a de�ning system

with full linear rank we consider the implicit solution �x�s��t�� T �s�� ��s�� of �
����
�
�
���
���� So G��� G��� G��� G�� are functions of s� � only and we have to prove that

�
BB�

G��s G���

G��s G���

G��s G���

G��s G���

�
CCA

has rank 
� Assume that c�� c� � R are such that

c�Gijs� c�Gij� � 	� �i� j � �� 
�������

We start by noting that pH�s�q�s� 	� 	 in a neighborhood of s � s�� By standard
arguments

�pHq��s � pH s���q������

where for simplicity of notation we have suppressed the dependence on s� To get an
expression for  s��� we start from the identity

�D � Tfx� � 	�

Taking derivatives with respect to s and multiplying with any vector � � Rn we �nd

�D � Tfx� s� � �Tfx�s ��

The solution of this linear di�erential equation in  s� is

 s��t� �  �s��t�

�
� �

Z t

�

!��s��� ��Tfx�s�s��� � �s��� �� d�

�
�
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where � is determined by the initial conditions� Since for t � 	 we have  �	� �
I� s�	� � 	� it follows that � � 	� Choosing � � q we obtain from ����� that

�pHq��s � �pH
Z �

�
!��s��� ��Tfx�s�s��� � �s��� �q d�������

From ������ we infer that

M�

�
	 v�s v�s

G��s G�
s
G��s G��s



� �

�
��	
�Tfx�sv� �Tfx�sv�

	 	
	 	
	 	



��� ������

M�

�
	 v�� v��

G��� G���

G��� G���



� �

�
��	

	 	

v���� 
v����
	 	
	 	



��� ������

Combining ����������� and ����� we obtain

M�

�
	 c�v�s � c�v�� c�v�s � c�v��

	 	
	 	



� �

�
��	

c��Tfx�sv� c��Tfx�sv�

c�v���� 
c�v����

	 	
	 	



��� ���
	�

Hence �
c��Tfx�sv�

c�v����

�
�

�
c��Tfx�sv�

c�v����

�

are both in the range of ���
�� As an essential step in the proof of Proposition �� it
was shown that this implies

c�L��Tfx�sv�� � 
c�p
Hv�����

c�L��Tfx�sv�� � 
c�p
Hv�����

where the linear operator L is de�ned in ���
��� Since v�� v� are in the kernel of ���
�
we have

v��� � �  �� �v��	�� v��� � �  �� �v��	��

Combining the last four formulae we �nd

c�L��Tfx�s q� � 
c�p
H ���q � 
c�e

i��pHq����
��

Now�

L��Tfx�s q� � �
�ei�
Z �

�
pH!��� ��Tfx�s �� �q d� � e�i�

Z �

�
pH!��� ��Tfx�s �� �q d�

� ei��cos � � i sin � � 
 cos ��

Z �

�

pH!��� ��Tfx�s �� �q d�

� e�i�
Z �

�

pH!��� � � ��Tfx�s �� � � �q d��
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Also�

pH!��� � � � � �!�� � � �p�H � �!�� �!���p�H � pH �����!��� � � e�i�pH!��� ��

and

 �� � � �q �  �� � ���q � ei� �� �q�

Hence

L��Tfx�s q� � ei�
i sin �

Z �

�

pH!��� ��Tfx�s �� �q d��

By ����� this implies

L��Tfx�s q� � 
i sin ��p
Hq��s�

Using ��
�� we further obtain


ic� sin ��p
Hq��s � 
c�e

i��pHq��

Dividing by 
�pHq� we obtain

�� sin ���s � i sin ���s�c� � �cos � � i sin ��c��

Taking real and imaginary parts of this complex equality we �nd�
� sin ���s � cos �
sin ���s � sin �

��
c�
c�

�
�

�
	
	

�
�

The determinant of the 
� 
 matrix in this expression is equal to

sin ��cos ���s � sin ���s� � sin ������s � ����s��

By ����� and sin � 	� 	 this implies that c� � c� � 	� which completes the proof� �

�� Computational issues� In this section we discuss computational issues re�
lated to the implementation of our de�ning systems� namely the computation of
the derivatives of the test functionals with respect to the unknowns of the system�
x�t�� �� T � as well as the problem of adapting the de�ning systems along the bifurcation
branch� We also explicitly show the BVPs that must be solved�

���� Fold bifurcation� Proposition � implies that locally� near a fold bifurcation
of periodic solutions� the system consisting of �
���� �
�
�� �
��� and

G � 	������

de�nes the set of fold bifurcation points in �x���� T� ���space� here G is de�ned by
������ Under natural nondegeneracy and transversality conditions� the regularity of
this system was proved in x���

We need the derivatives of G with respect to the unknowns of the system� i�e��
with respect to x���� �� T �

Denoting by z any component of � or T we infer from ����� that

N�

�
� vz

Sz
Gz

�
A �

�
BB�
�Tfx�x�t�� ��zv � �f�x�t�� ���zS

	
Intf�x�������zv

	

�
CCA ����
�
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Numerically we solve a discretized version of this equation� say

Nd
�

�
� vz

Sz
Gz

�
A �

�
BB�
��Tfx�x�t�� ��zv � �f�x�t�� ���zS�d

	
�Intf�x�������zv�d

	

�
CCA ������

where Nd
� is the discretized version of N�� i�e�� a large square matrix with a structure

that can be e�ciently factorized� for example� as in auto�
Note that a large number of linear systems having the same structured matrix

Nd
� must be solved� Moreover� all right hand sides are known before the factorization�

Thus the solution be done in a single factorization process� without storing the factors�
�Nd

� �
T has a block structure that is very similar to Nd

� � If an e�cient solution
strategy for �Nd

� �
T is also developed� then it is possible to avoid solving ����� for all

relevant z� Instead� a single system with �Nd
� �

T is to be solved� In transposed form
it is given by

�w�
�� w

�
�� w�� w��N

d
� � �	� 	� �������

Combining ����� and ���� we �nd

Gz � w�

���Tfx�x�t�� ��zv � �f�x�t�� ���zS�d �w��Intf�x�������zv�d�

Notice that ����� is equivalent to the system

����
���

v��t�� Tfx�x�t�� ��v�t�� Sf�x�t�� �� � Gw���t� � 	�
v��� � v�	� � Gw�� � 	�R �

� v��� �f�x�� �� �� d� � Gw�� � 	�R �
� v��� �v���� � d� � Sv�� � ��

�����

while ������ can be explicitly written as

����
���

w��t� � Tf�x �x�t�� ��w�t��Rf�x�t�� �� �Hv���t� � 	�
w���� w�	� �Hv�� � 	�R �

� w
��� �f�x�� �� �� d� �Hv�� � 	�R �
� w��� �w���� � d� �Rw�� � ���

�����

Discretizations of these systems� for example by orthogonal collocation� result in lin�
earized Newton systems having the same sparsity as the linear systems arising from
�
���� They can therefore be solved using the same numerical linear algebra algo�
rithms�

In practice we need to adapt the auxiliary variables �i�e��w��� w��� w��� v��� v��� v���
v��� v��� w��� and w��� along a computed branch of fold bifurcations of periodic or�
bits� For the bordering rows in N� and N� the natural choice is to take the kernel
vectors of M� and M� respectively� at a previously computed solution point� These
kernel vectors are obtained as a byproduct of solving ����� and ������ For the column
bordering of N� we need a vector not in the range ofM�� By Proposition �� a possible
choice is �

� w��

w��

w��

�
A �

�
� !p�

	
	

�
A �
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which by Proposition � can be derived from the solution of ������ Finally� a bordering
column for N� is given in Proposition ���

� v��
v��
v��

�
A �

�
� 	
	
�

�
A �

Therefore� problems ����� and ����� actually take the following simpli�ed forms�
����
���

v��t�� Tfx�x�t�� ��v�t�� Sf�x�t�� �� � Gw���t� � 	�
v��� � v�	� � 	�R �

� v
��� �f�x�� �� �� d� � 	�R �

�
v��� �v���� � d� � S � �

�����

and ����
���

w��t� � Tf�x �x�t�� ��w�t��Rf�x�t�� �� � 	�
w����w�	� � 	�R �

� w��� �f�x�� �� �� d� �H � 	�R �
� w��� �w���� � d� � ���

�����

���� Period�doubling� By Proposition � period�doubling bifurcations are de�
termined by �
���� �
�
�� �
���� and the condition G � 	� where G is given by ���

��
assuming the conditions h
�� q�i 	� 	� h���!p�i 	� 	 hold� To solve such systems
numerically� we need the derivatives of G with respect to the unknowns of the sys�
tem� i�e�� with respect to x�t�� �� T � These can be approximated by �nite di�erences�
using ���

�� As in the fold case� they can be obtained exactly by solving an �adjoint
problem� to ���

�� In this case the adjoint problem is ���
���

Proposition ��� Let z denote a component of the problem parameter vector ��

or let z denote the period T � on both of which the quantity G in ���

� depends� Let v
and w be obtained from ���

� and ���
��� respectively� Then the derivative of G with

respect to z can be written as

Gz � �

Z �

�

w��� ��Tfx�x�� �� ���zv�� � d��

while the linear part of the variation of G with respect to x 
� x� 	x is given by

	G � �

Z �

�
w��� �Tfxx�x�� �� ���v�� ��	x��� � d��

Proof� By di�erentiating ���

� we obtain

M�

�
vz
Gz

�
�

�
� �Tfx�x�t�� ���zv

	
	

�
A ������

Multiplying the �rst equation in ����� from the left with w�� integrating over the
interval �	� �� and using the third equation in ���
�� we get

Z �

�

w��� �v�z�� � d� �

Z �

�

w��� �Tfx�x�� �� ��vz�� � d� �Gz �

Z �

�

w��� ��Tfx�x�� �� ���zv�� � d��
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By partial integration of the �rst term in this expression and using the second equa�
tions in ���
�� and ����� we obtain

�

Z �

�

v�z �� �w
��� � d� �

Z �

�

v�z�� �Tf
�
x �x�� �� ��w�� � d� � Gz �

Z �

�

w��� ��Tfx�x�� �� ���zv�� � d��

Using the �rst equation in ���
�� we get

�

Z �

�

v�z �� ���
��� �H� d� �Gz �

Z �

�

w��� ��Tfx�x�� �� ���zv�� � d��

By the last equation in ����� the �rst part of the Proposition follows�
The linear parts of the variations of G and v under variation of x satis�es

M�

�
	v

	G

�
�

�
� Tfxx�x�t�� ��v 	x

	
	

�
A �

Similar to the derivation above� this implies the second part of the Proposition� �
Notice that ���

� is equivalent to the system

��
�

v��t� � Tfx�x�t�� ��v�t� �G���t� � 	�
v�	� � v��� � 	�R �

�

���� �v�� � d� � ��

����	�

while ���
�� can be explicitly written as

��
�

w��t� � Tf�x �x�t�� ��w�t� �H
��t� � 	�
w�	� � w��� � 	�R �

� ����� �w�� � d� � ���

������

Discretizations of these systems� for example by orthogonal collocation� result in lin�
earized Newton systems having the same sparsity as the linear systems arising from
�
���� They can therefore be solved using the same numerical linear algebra algo�
rithms�

The natural choice for starting values of 
�� �� is


��t� �  �t�q�� ���t� � !�t�p��

In a continuation context� it is necessary to regularly update 
� and ��� Specif�
ically� v obtained from ���

� can be used to update 
�� and w obtained from ���
��
can be used to update ��� Indeed� after convergence to a period�doubling bifurcation�
v spans the kernel of �

D � Tfx�x�t�� ��
	� � 	�

�
�

and similarly� w spans the kernel of
�

D � Tf�x �x�t�� ��
	� � 	�

�
�
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���� Torus bifurcation� We have proved in Proposition �� that the matrix
equation G � 	 can be used to continue numerically curves of torus bifurcation points�
Some issues require further attention�

First of all� we mention that the BVP for G is de�ned on the interval �	� 
� and
that ��point boundary conditions are involved �at t � 	� �� and 
��

To solve the system �
���� �
�
�� �
���� ���� e�ciently by a Newton�like method�
one needs the derivatives Gijz� where z is T or a component of �� From ������ we
infer that

M�

�
� v�z v�z

G��z G��z

G��z G��z

�
A �

�
BB�
�Tfx�x�t�� ��zv� �Tfx�x�t�� ���zv�

	 	
	 	
	 	

�
CCA����
�

One also needs the derivatives with respect to �� for this we �nd

M�

�
� v�� v��

G��� G���

G��� G���

�
A �

�
BB�

	 	

v���� 
v����
	 	
	 	

�
CCA �������

Numerically we solve the discretized versions of these equations� say

Md
�

�
� v�z v�z

G��z G��z

G��z G��z

�
A �

�
BB�
�Tfx�x�t�� ��zv� �Tfx�x�t�� ���zv�

	 	
	 	
	 	

�
CCA ������

One also needs the derivatives with respect to �� for this we �nd

Md
�

�
� v�� v��

G��� G���

G��� G���

�
A �

�
BB�

	 	

v���� 
v����
	 	
	 	

�
CCA �������

where Md
� is the discretized version of M�� i�e�� a large square matrix of the same

structure as that factored e�ciently in auto�
We again note that a large number of linear systems with the same structured

matrix Md
� has to be solved� All right hand sides are known when the factorization

is done� Thus the solution of all systems can be done during a single factorization
process of Md

� without storing the factors�
�Md

� �
� has a block structure that is very similar to that of Md

� � If an e�cient
solution strategy for �Md

� �
� is also developed� then it is possible to avoid solving �����

for all relevant z and ������� Instead� a single system with �Md
� �

� is to be solved� In
transposed form it is given by

�
w��
� w��

� G�� G��

w��
� w��

� G�� G��

�
Md

� �

�
	 	 � 	
	 	 	 �

�
�������

Combining ����� and ������ we �nd

�
G��z G��z

G��z G��z

�
�

�
w��
� �Tfx�x�t�� ���zv� w��

� �Tfx�x�t�� ���zv�
w��
� �Tfx�x�t�� ���zv� w��

� �Tfx�x�t�� ���zv�

�
�
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if z is T or one of the components of x� �� For � we �nd
�

G��� G���

G��� G���

�
�

�

w��

� v���� 
w��
� v����


w��
� v���� 
w��

� v����

�
�

Next notice that ������ is equivalent to the system

�������������
������������

v�� � Tfx�x�t�� ��v� �G���� � G���� � 	�
v�� � Tfx�x�t�� ��v� �G���� � G���� � 	�

v��	�� 
�v���� � v��
� � 	�
v��	�� 
�v���� � v��
� � 	�R �

� 
���� �v��� � d� � ��R �
�

���� �v��� � d� � 	�R �

� 
���� �v��� � d� � 	�R �
� 
���� �v��� � d� � ��

������

while ����
� can be explicitly written as

�������������
������������

w�
� � Tf�x �x�t�� ��w� �H��
� �H��
� � 	�

w�
� � Tf�x �x�t�� ��w� �H��
� �H��
� � 	�

w��	�� 
�w���� � w��
� � 	�
w��	�� 
�w���� � w��
� � 	�R �

� �
�
��� �w��� � d� � ���R �

� �
�
��� �w��� � d� � 	�R �

� �
�
��� �w��� � d� � 	�R �

� �
�
��� �w��� � d� � ���

������

Discretizations of these systems� for example by orthogonal collocation� result in lin�
earized Newton systems having the same sparsity as the linear systems arising from
�
���� They can therefore be solved using the same numerical linear algebra algo�
rithms�

In a continuation context the vector�functions 
�� 
�� ��� �� should be updated�
This can be done by solving both ������ and ������� Indeed� v�� v� span the two�
dimensional space in which 
�� 
� should be chosen and w�� w� similarly span the
space in which ��� �� should be chosen �some orthogonalization and scaling may be
appropriate��

Finally recall that we compute the torus bifurcation points by using essentially
an overdetermined system� This should necessitate some changes in the elimination
strategy when solving the linear systems�

	� Numerical example� In this section we illustrate the proposed techniques
on a test example� a simple feedback control system of Lur�e type���

�
�x� � x��

�x� � x��

�x� � ��x� � �x� � x� � x���

�����

where � and � are positive parameters� It is well known �see� for example ����� Section
��� that the equilibrium x� � x� � x� � 	 of ����� exhibits at

�� �
�

�
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a supercritical Hopf bifurcation generating a stable periodic solution that exists for
� � ��� This periodic solution undergoes a supercritical period�doubling bifurcation
at �� � 	���	�	
 � � �

A discretized continuation problem �
���� �
�
�� and �
��� for the periodic solu�
tion is coded for the matlab Continuation Toolbox ����� The method of orthogonal
collocation with piecewise polynomials is used� which is similar to one implemented
in auto and is characterized by the number NTST of mesh points and the number
NCOL of collocation points� At each computed point in the solution curve� a discrete
version of ����	� is set up and solved� This gives a value of the test function G to
detect period doubling� A constant bordering function �� is used� while the computed
approximation to v is used to update the bordering function 
�� Figures � and 
 are
produced with NTST��� and NCOL���

Figure � shows the behavior of G as a function of � for � � �� For this value
of �� Hopf bifurcation occurs at �� � �� In the same �gure� the function �� � � is
plotted� where �� is a nontrivial Floquet multiplier of the periodic solution for which
������ � ��� The multipliers are computed via a specially adapted elimination
algorithm from auto� Clearly� G vanishes together with �� � �� Moreover� close
examination of numerical data gives the above bifurcation value �� with � correct
decimal places� Figure 
 shows a family of computed pro�les v�t� along the solution
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Fig� �� Test function G��� and ����� � � for � � ��

curve� A dashed solution corresponds to the bifurcation parameter value ��� Finally�
Figure � presents a two�parameter continuation of the period�doubling bifurcation
curve� which is closed� The continuation is started at one of the PD points in the
one�parameter path of periodic solutions discussed above�

Let us brie�y address an important question of comparison of the proposed
method to continue the period doubling bifurcation and the algorithm based on the
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Fig� �� Cycle and period�doubling branches�

fully extended system� i�e� �
���� �
�
�� and �
���� augmented by��
�

v��t� � Tfx�x�t�� ��v�t� � 	�
v�	� � v��� � 	�R �

�

���� �v�� � d� � ��

that is implemented in auto� The corresponding discretized system is nearly twice
the size as the discretized minimally extended system composed of �
���� �
�
�� �
����
and G � 	� where G is to be computed from ����	�� However� one has to solve an
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extra BVP ������ to calculate the Jacobian matrix of the discretized bordered system�
To make a comparison� both methods were similarly implemented using the standard
sparse matrix solver in the Continuation Toolbox ����� and tested for di�erent number
of mesh and collocation points� The following table shows the execution times required
by the two methods to compute on a ��	 Mhz PC the same number ��		� of points
along the period�doubling curve shown in Figure ��

NTST NCOL minimally extended system fully extended system
�	  �	��� s �

�� s
�	 � ���� s ���� s

	  
���� s ����� s

	 � ����� s ����
 s
�	  �
��� s �	��	 s
�	 � ����	 s �
�	�� s
	  ����	 s ��
��� s
	 � ������ s 
�
��� s

Clearly the bordered system is indeed faster and the di�erence gets bigger when the
number of mesh and collocation points increases� More extensive comparisons will be
reported elsewhere�
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