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ABSTRACT. In this article, we establish optimality of the Bramble-Pasciak-Xu (BPX)
norm equivalence and optimality of the wavelet modified (or stabilized) hierarchical ba-
sis (WHB) preconditioner in the setting of local 3D mesh refinement. In the analysis of
WHB methods, a critical first step is to establish the optimality of BPX norm equivalence
for the refinement procedures under consideration. While the available optimality results
for the BPX norm have been constructed primarily in the setting of uniformly refined
meshes, a notable exception is the local 2D red-green result due to Dahmen and Kunoth.
The purpose of this article is to extend this original 2D optimality result to the local 3D
red-green refinement procedure introduced by Bornemann-Erdmann-Kornhuber (BEK),
and then to use this result to extend the WHB optimality results from the quasiuniform
setting to local 2D and 3D red-green refinement scenarios. The BPX extension is reduced
to establishing that locally enriched finite element subspaces allow for the construction
of a scaled basis which is formally Riesz stable. This construction turns out to rest not
only on shape regularity of the refined elements, but also critically on a number of ge-
ometrical properties we establish between neighboring simplices produced by the BEK
refinement procedure. It is possible to show that the number of degrees of freedom used
for smoothing is bounded by a constant times the number of degrees of freedom intro-
duced at that level of refinement, indicating that a practical implementable version of the
resulting BPX preconditioner for the BEK refinement setting has provably optimal (lin-
ear) computational complexity per iteration. An interesting implication of the optimality
of the WHB preconditioner is the a priori H1-stability of the L2-projection. The exist-
ing a posteriori approaches in the literature dictate a reconstruction of the mesh if such
conditions cannot be satisfied. The theoretical framework employed supports arbitrary
spatial dimension d ≥ 1 and requires no coefficient smoothness assumptions beyond
those required for well-posedness in H1.
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1. INTRODUCTION

In this article, we analyze the impact of local mesh refinement on the stability of mul-
tilevel finite element spaces and on optimality (linear space and time complexity) of
multilevel preconditioners. Adaptive refinement techniques have become a crucial tool
for many applications, and access to optimal or near-optimal multilevel preconditioners
for locally refined mesh situations is of primary concern to computational scientists. The
preconditioners which can be expected to have somewhat favorable space and time com-
plexity in such local refinement scenarios are the hierarchical basis (HB) method [9], the
Bramble-Pasciak-Xu (BPX) preconditioner [16], and the wavelet modified (or stabilized)
hierarchical basis (WHB) method [35]. While there are optimality results for both the
BPX and WHB preconditioners in the literature, these are primarily for quasiuniform
meshes and/or two space dimensions (with some exceptions noted below). In particular,
there are few hard results in the literature on the optimality of these methods for vari-
ous realistic local mesh refinement hierarchies, especially in three space dimensions. In
this article, the first in a series of two articles [2] on local refinement and multilevel pre-
conditioners, we first assemble optimality results for the BPX norm equivalence in local
refinement scenarios in three spacial dimensions. Building on the extended BPX results,
we then develop optimality results for the WHB method in local refinement settings.
The material forming this series is based on the first author’s Ph.D. dissertation [1] and
comprehensive presentation of this article can be found in [3, 4, 5, 6].

Through some topological or geometrical abstraction, if local refinement is extended
to d spatial dimensions, then the main results are valid for any dimension d ≥ 1 and for
nonsmooth PDE coefficients p ∈ L∞(Ω). Throughout this article, we consider primarily
the d = 3 case. But, when the abstraction to generic d is clear, we simply state the
argument by using this generic d.

The problem class we focus on here is linear second order partial differential equations
(PDE) of the form:

−∇ · (p ∇u) + q u = f, u = 0 on ∂Ω. (1.1)

Here, f ∈ L2(Ω), p, q ∈ L∞(Ω), p : Ω → L(<d,<d), q : Ω → <, where p is a
symmetric positive definite matrix function, and where q is a nonnegative function. Let
T0 be a shape regular and quasiuniform initial partition of Ω into a finite number of d
simplices, and generate T1, T2, . . . by refining the initial partition using red-green local
refinement strategies in d = 3 spatial dimensions. Denote as Sj the simplicial linear C0

finite element space corresponding to Tj equipped with zero boundary values. The set of
nodal basis functions for Sj is denoted by Φ(j) = {φ(j)

i }
Nj
i=1 where Nj = dim Sj is equal

to the number of interior nodes in Tj , representing the number of degrees of freedom
in the discrete space. Successively refined finite element spaces will form the following
nested sequence:

S0 ⊂ S1 ⊂ . . . ⊂ Sj ⊂ . . . ⊂ H1
0 (Ω).

Let the bilinear form and the functional associated with the weak formulation of (1.1)
be denoted as

a(u, v) =

∫
Ω

p ∇u · ∇v + q u v dx, b(v) =

∫
Ω

f v dx, u, v ∈ H1
0 (Ω).

We consider primarily the following Galerkin formulation: Find u ∈ Sj , such that

a(u, v) = b(v), ∀v ∈ Sj. (1.2)
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The finite element approximation in Sj has the form u(j) =
∑Nj

i=1 uiφ
(j)
i , where u =

(u1, . . . , uNj)
T denotes the coefficients of u(j) with respect to Φ(j). The resulting dis-

cretization operator A(j) = {a(φ
(j)
k , φ

(j)
l )}Njk,l=1 must be inverted numerically to deter-

mine the coefficients u from the linear system:

A(j)u = F (j), (1.3)

where F (j) = {b(φ(j)
l )}Njl=1. Our task is to solve (1.3) with optimal (linear) complexity

in both storage and computation, where the finite element spaces Sj are built on locally
refined meshes.

Optimality of the BPX norm equivalence with generic local refinement was shown by
Bramble and Pasciak [14], where the impact of the local smoother and the local pro-
jection operator on the estimates was carefully analyzed. The two primary results on
optimality of the BPX norm equivalence in the local refinement settings are due to Dah-
men and Kunoth [19] and Bornemann and Yserentant [12]. Both works consider only
two space dimensions, and in particular, the refinement strategies analyzed are restricted
2D red-green refinement and 2D red refinement, respectively. In this paper, we extend
the framework developed in [19] to a practical, implementable 3D local red-green refine-
ment procedure introduced by Bornemann-Erdmann-Kornhuber (BEK) [11]. We will
refer to this as the BEK refinement procedure.

HB methods [9, 7, 37] are particularly attractive in the local refinement setting be-
cause (by construction) each iteration has linear (optimal) computational and storage
complexity. Unfortunately, the resulting preconditioner is not optimal due to condition
number growth: in two dimensions the growth is slow, and the method is quite effec-
tive (nearly optimal), but in three dimensions the condition number grows much more
rapidly with the number of unknowns [26]. To address this instability, one can employ
L2-orthonormal wavelets in place of the hierarchical basis giving rise to an optimal pre-
conditioner [23]. However, the complicated nature of traditional wavelet bases, in partic-
ular the non-local support of the basis functions and problematic treatment of boundary
conditions, severely limits computational feasibility. WHB methods have been devel-
oped [34, 35] as an alternative, and they can be interpreted as a wavelet modification
(or stabilization) of the hierarchical basis. These methods have been shown to optimally
stabilize the condition number of the systems arising from hierarchical basis methods on
quasiuniform meshes in both two and three space dimensions, and retain a comparable
cost per iteration.

There are two main results and one side result in this article. The main results es-
tablish the optimality of the BPX norm equivalence and also optimality of the WHB
preconditoner—as well as optimal computational complexity per iteration—for the re-
sulting locally refined 3D finite element hierarchy. Both the BPX and WHB precon-
ditioners under consideration are additive Schwarz preconditioners. The BPX analysis
here heavily relies on the techniques of the Dahmen-Kunoth [19] framework and can be
seen as an extension to three spatial dimensions with the realistic BEK refinement proce-
dure [11] being the application of interest. The WHB framework relies on the optimality
of the BPX norm equivalence. Hence, the WHB results are established after the BPX
results.

The side result is the H1-stability of L2-projection onto finite element spaces built
through the BEK local refinement procedure. This question is currently under intensive
study in the finite element community due to its relationship to multilevel precondition-
ing. The existing theoretical results, due primarily to Carstensen [18] and Bramble-
Pasciak-Steinbach [15] involve a posteriori verification of somewhat complicated mesh
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conditions after local refinement has taken place. If such mesh conditions are not sat-
isfied, one has to redefine the mesh. However, an interesting consequence of the BPX
optimality results for locally refined 2D and 3D meshes established here is H1-stability
of L2-projection restricted to the same locally enriched finite element spaces. This re-
sult appears to be the first a priori H1-stability result for L2-projection on finite element
spaces produced by practical and easily implementable 2D and 3D local refinement pro-
cedures.

Outline of the paper. In §2, we introduce some basic approximation theory tools used
in the analysis such as Besov spaces and Bernstein inequalities. The framework for the
main norm equivalence is also established here. In §3, we list the BEK refinement condi-
tions. We give several theorems about the generation and size relations of the neighboring
simplices, thereby establishing local (patchwise) quasiuniformity. This gives rise to an
L2-stable Riesz basis in §3.1; one can then establish the Bernstein inequality. In §4, we
explicitly give an upper bound for the nodes introduced in the refinement region. This
implies that one application of the BPX preconditioner to a function has linear (optimal)
computational complexity. In §5, we use the geometrical results from §3 to extend the
2D Dahmen-Kunoth results to the 3D BEK refinement procedure by establishing the de-
sired norm equivalence. While it is not possible to establish a Jackson inequality due to
the nature of local adaptivity, in §6 the remaining inequality in the norm equivalence is
handled directly using approximation theory tools, as in the original work [19]. In §7, we
introduce the WHB preconditioner as well as the operator used in its definition. In §8,
we state the fundamental assumption for establishing basis stability and set up the main
theoretical results for the WHB framework, namely, optimality of the WHB precondi-
tioner in the 2D and 3D local red-green refinements. The results in §8 rest completely on
the BPX results in §5 and on the Bernstein inequalities, the latter of which rest on the ge-
ometrical results established in §3. The first a priori H1-stability result for L2-projection
on the finite element spaces produced is established in §9. We conclude in §10.

2. PRELIMINARIES AND THE MAIN NORM EQUIVALENCE

The basic restriction on the refinement procedure is that it remains nested. In other
words, tetrahedra of level j which are not candidates for further refinement will never
be touched in the future. Let Ωj denote the refinement region, namely, the union of the
supports of basis functions which are introduced at level j. Due to nested refinement
Ωj ⊂ Ωj−1. Then the following hierarchy holds:

ΩJ ⊂ ΩJ−1 ⊂ · · · ⊂ Ω0 = Ω. (2.1)

In the local refinement setting, in order to maintain optimal computational complexity,
the smoother is restricted to a local space S̃j , typically

Sfj ⊆ S̃j ⊂ Sj, (2.2)

where Sfj := (Ij− Ij−1) Sj and Ij : L2(Ω)→ Sj denotes the finite element interpolation
operator. Degrees of freedom (DOF) corresponding to Sfj and S̃j will be denoted byN f

j

and Ñj respectively where f stands for fine. (2.2) indicates that N f
j ⊆ Ñj , typically, Ñj

consists of fine DOF and their corresponding coarse fathers.
The BPX preconditioner (also known as parallelized or additive multigrid) is defined

as follows:

Xu :=
J∑
j=0

2j(d−2)
∑
i∈Ñj

(u, φ
(j)
i )φ

(j)
i . (2.3)
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Success of the BPX preconditioner in locally refined regimes relies on the fact the BPX
smoother acts on a local space as in (2.2). As mentioned above, it acts on a slightly
bigger set than fine DOF (examples of these are given in [13]). Choice of such a set
is crucial because computational cost per iteration will eventually determine the overall
computational complexity of the method. Hence in §4, we show that the overall compu-
tational cost of the smoother is O(N), meaning that the BPX preconditioner is optimal
per iteration. We would like to emphasize that one of the the main goals of this paper,
as in the earlier works of Dahmen-Kunoth [19] and Bornemann-Yserentant [12] in the
purely two-dimensional case, is to establish the optimality of the BPX norm equivalence:

c1

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2
≤ ‖u‖2

H1 ≤ c2

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2
, (2.4)

where Qj is the L2-projection. We note that in the uniform refinement setting, it is
straight-forward to link the BPX norm equivalence to the optimality of the BPX precon-
ditioner:

c1(Xu, u) ≤ ‖u‖2
H1 ≤ c2(Xu, u),

due to the projector relationships between the Qj operators. However, in the local refine-
ment scenario the precise link between the norm equivalence and the preconditioner is
more subtle and remains essentially open.

The rest of this section is dedicated to setting up the framework to establish the main
norm equivalence (2.4) which will be formalized in Theorem 2.1 at the end of this sec-
tion. We borrow several tools from approximation theory, including the modulus of
smoothness, ωk(f, t,Ω)p, which is a finer scale of smoothness than differentiability. It
is a central tool in the analysis here and it naturally gives rise to the notion of Besov
spaces. For further details and definitions, see [19, 29]. Besov spaces are defined to be
the collection of functions f ∈ Lp(Ω) with a finite Besov norm defined as follows:

‖f‖qBsp,q(Ω) := ‖f‖qLp(Ω) + |f |qBsp,q(Ω),

where the seminorm is given by

|f |Bsp,q(Ω) := ‖{2sjωk(f, 2−j,Ω)p}j∈bN0‖lq ,
with k any fixed integer larger than s.

Besov spaces become the primary function space setting in the analysis by realizing
Sobolev spaces as Besov spaces:

Hs(Ω) ∼= Bs
2,2(Ω), s > 0.

The primary motivation for employing the Besov space stems from the fact that the char-
acterization of functions which have a given upper bound for the error of approximation
sometimes calls for a finer scale of smoothness that provided by Sobolev classes func-
tions.

The Bernstein inequality is defined as:

ωk+1(u, t)p ≤ c (min{1, t2J})β‖u‖Lp , u ∈ Sj, j = 0, . . . , J, (2.5)

where c is independent of u and j. Usually k = degree of the element and in the case
of linear finite elements k = 1. Here β is determined by the global smoothness of the
approximation space as well as p. For Cr finite elements, β = min{1 + r + 1

p
, k + 1}.

Let θJ be defined as follows.

θj,J := sup
u∈SJ

‖u−Qju‖L2

ω2(u, 2−j)2

, θJ := max {1, θj,J : j = 0, . . . , J} . (2.6)
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Following [19] we have then

Theorem 2.1. Suppose the Bernstein inequality (2.5) holds for some real number β > 1.
Then, for each 0 < s < min{β, 2}, there exist constants 0 < c1, c2 <∞ independent of
u ∈ SJ , J = 0, 1, . . ., such that the following norm equivalence holds:

c1

θ2
J

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2
≤ ‖u‖2

H1 ≤ c2

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2
, u ∈ SJ . (2.7)

Proof. See [19, Theorem 4.1]. �

We would like to elaborate on the difficulities one faces within the local refinement
framework. In order Bernstein inequality to hold, one needs to establish that the under-
lying basis is L2-stable Riesz basis as in (3.8). This crucial property heavily depends
on local quasiuniformity of the mesh. Hence, Bernstein inequality is established in §5
through local quasiuniformity and L2-stability of the basis in the Riesz sense.

A Jackson-type inequality cannot hold in a local refinement setting. This poses a
major difficulty in the analysis because one has to calculate θJ directly. The missing
crucial piece of the optimal norm equivalence in (2.7), namely, θJ = O(1) as J → ∞,
will be shown in (6.12) so that (2.4) holds. This required the operator Q̃j to be bounded
locally and to fix polynomials of degree 1 as will be shown in §6.

3. THE BEK REFINEMENT PROCEDURE

Our interest is to show optimality of the BPX norm equivalence for the local 3D
red-green refinement introduced by Bornemann-Erdmann-Kornhuber [11]. This 3D red-
green refinement is practical, easy to implement, and numerical experiments were pre-
sented in [11]. A similar refinement procedure was analyzed by Bey [10]; in particular,
the same green closure strategy was used in both papers. While these refinement pro-
cedures are known to be asymptotically non-degenerate (and thus produce shape regular
simplices at every level of refinement), shape regularity is insufficient to construct a sta-
ble Riesz basis for finite element spaces on locally adapted meshes. To construct a stable
Riesz basis we will need to establish patchwise quasiuniformity as in [19]; as a result,
d-vertex adjacency relationships that are independent of shape regularity of the elements
must be established between neighboring tetrahedra as done in [19] for triangles.

We first list a number of geometric assumptions we make concerning the underlying
mesh. Let Ω ⊂ <3 be a polyhedral domain. We assume that the triangulation Tj of
Ω at level j is a collection of tetrahedra with mutually disjoint interiors which cover
Ω =

⋃
τ∈Tj τ . We want to generate successive refinements T0, T1, . . . which satisfy the

following conditions:

Assumption 3.1. Nestedness: Each tetrahedron (son) τ ∈ Tj is covered by exactly one
tetrahedron (father) τ ′ ∈ Tj−1, and any corner of τ is either a corner or an edge midpoint
of τ ′.

Assumption 3.2. Conformity: The intersection of any two tetrahedra τ, τ ′ ∈ Tj is either
empty, a common vertex, a common edge or a common face.

Assumption 3.3. Nondegeneracy: The interior angles of all tetrahedra in the refine-
ment sequence T0, T1, . . . are bounded away from zero.

A regular (red) refinement subdivides a tetrahedron τ into 8 equal volume subtetrahe-
dra. We connect the edges of each face as in 2D regular refinement. We then cut off four
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FIGURE 1.

subtetrahedra at the corners which are congruent to τ . An octahedron with three paral-
lelograms remains in the interior. Cutting the octahedron along the two faces of these
parallelograms, we obtain four more subtetrahedra which are not necessarily congruent
to τ . We choose the diagonal of the parallelogram so that the successive refinements al-
ways preserve nondegeneracy [1, 10, 27, 38]. A sketch of regular refinement (octasection
and quadrasection in 3D and 2D, respectively) as well as bisection is given in Figure 1.

If a tetrahedron is marked for regular refinement, the resulting triangulation violates
conformity A.3.2. Nonconformity is then remedied by irregular (green) refinement. In
3D, there are altogether 26 = 64 possible edge refinements, of which 62 are irregular.
One must pay extra attention to irregular refinement in the implementation due to the
large number of possible nonconforming configurations. Bey [10] gives a methodical
way of handling irregular cases. Using symmetry arguments, the 62 irregular cases can
be divided into 9 different types. To ensure that the interior angles remain bounded away
from zero, we enforce the following additional conditions. (Identical assumptions were
made in [19] for their 2D refinement analogue.)

Assumption 3.4. Irregular tetrahedra are not refined further.

Assumption 3.5. Only tetrahedra τ ∈ Tj with L(τ) = j are refined for the construction
of Tj+1, where L(τ) = min {j : τ ∈ Tj} denotes the level of τ .

One should note that the restrictive character of A.3.4 and A.3.5 can be eliminated by
a modification on the sequence of the tetrahedralizations [10]. On the other hand, it is
straightforward to enforce both assumptions in a typical local refinement algorithm by
minor modifications of the supporting datastructures for tetrahedral elements (cf. [22]).
In any event, the proof technique (see (6.8) and (6.9)) requires both assumptions hold.
The last refinement condition enforced for the possible 62 irregularly refined tetrahedra
is stated as the following.

Assumption 3.6. If three or more edges are refined and do not belong to a common face,
then the tetrahedron is refined regularly.

We note that the d-vertex adjacency generation bound for simplices in <d which are
adjacent at d vertices is the primary result required in the support of a basis function so
that (3.6) holds, and depends delicately on the particular details of the local refinement
procedure rather than on shape regularity of the elements. The generation bound for
simplices which are adjacent at d−1, d−2, . . . vertices follows by using the shape regu-
larity and the generation bound established for d-vertex adjacency. We provide rigorous
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generation bounds for all the adjacency types mentioned in the lemmas to follow when
d = 3. The 2D version appeared in [19]; the 3D extension is as described below.

Lemma 3.7. Let τ and τ ′ be two tetrahedra in Tj sharing a common face f . Then

|L(τ)− L(τ ′)| ≤ 1. (3.1)

Proof. If L(τ) = L(τ ′), then 0 ≤ 1, there is nothing to show. Without loss of generality,
assume that L(τ) < L(τ ′). Proof requires a detailed and systematic analysis. To show
the line of reasoning, we first list the facts used in the proof:

(1) L(τ ′) ≤ j because by assumption τ ′ ∈ Tj . Then, L(τ) < j.
(2) By assumption τ ∈ Tj , meaning that τ was never refined from the level it was

born L(τ) to level j.
(3) Let τ ′′ be the father of τ ′. Then L(τ ′′) = L(τ ′)− 1 < j.
(4) L(τ) < L(τ ′) by assumption, implying L(τ) ≤ L(τ ′′).
(5) By (2), τ belongs to all the triangulations from L(τ) to j, in particular τ ∈ TL(τ ′′),

where by (3) L(τ ′′) < j.
f is the common face of τ and τ ′ on level j. By (5) both τ, τ ′′ ∈ TL(τ ′′). Then, A.3.2

implies that f must still be the common face of τ and τ ′′. Hence, τ ′ must have been
irregular.

On the other hand, L(τ) ≤ L(τ ′) − 1 = L(τ ′′). Next, we proceed by eliminating the
possibility that L(τ) < L(τ ′′). If so, we repeat the above reasoning, and τ ′′ becomes
irregular. τ ′′ is already the father of the irregular τ ′, contradicting A.3.4 for level L(τ ′′).
Hence L(τ) = L(τ ′′) = L(τ ′)− 1 concludes the proof. �

By A.3.4 and A.3.5, every tetrahedron at any Tj is geometrically similar to some tetra-
hedron in T0 or to a tetrahedron arising from an irregular refinement of some tetrahedron
in T0. Then, there exist absolute constants c1, c2 such that

c1 diam(τ̄) 2−L(τ) ≤ diam(τ) ≤ c2 diam(τ̄) 2−L(τ), (3.2)

where τ̄ is the father of τ in the initial mesh. The lemma below follows by shape regu-
larity and (3.1).

Lemma 3.8. Let τ, τ ′ and ζ, ζ ′ be the tetrahedra in Tj sharing a common edge (two
vertices) and a common vertex, respectively. Then there exist finite numbers V and E
depending on the shape regularity such that

|L(τ)− L(τ ′)| ≤ V, (3.3)
|L(ζ)− L(ζ ′)| ≤ E. (3.4)

Consequently, simplices in the support of a basis function are comparable in size as
indicated in (3.5). This is usually called patchwise quasiuniformity. Furthermore, it
was shown in [1] that patchwise quasiuniformity (3.5) holds for 3D marked tetrahedron
bisection by Joe and Liu [24] and for 2D newest vertex bisection by Sewell [30] and
Mitchell [25]. Due to the restrictive nature of the proof technique (see (6.8) and (6.9)), we
focus on refinement procedures which obey A.3.4 and A.3.5. However, due to the strong
geometrical results available for purely bisection-based local refinement procedures, it
should be possible to establish the main results of this paper for purely bisection-based
strategies.

Lemma 3.9. There is a constant depending on the shape regularity of Tj and the quasi-
uniformity of T0, such that

diam(τ)

diam(τ ′)
≤ c, ∀τ, τ ′ ∈ Tj, τ ∩ τ ′ 6= ∅. (3.5)
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Proof. τ and τ ′ are either face-adjacent (d vertices), edge-adjacent (d − 1 vertices), or
vertex-adjacent, and are handled by (3.1), (3.4), (3.3), respectively.

diam(τ)

diam(τ ′)
≤ c 2|L(τ)−L(τ ′)| diam(τ̄)

diam(τ̄ ′)
(by (3.2))

≤ c 2max{1,E,V } γ(0) (by (3.1), (3.4), (3.3) and quasiuniformity of T0)

�

3.1. L2-stable Riesz basis. Since patchwise quasiuniformity is established by (3.5), we
can now take the first step in establishing the norm equivalence in section 5. In other
words, our motivation is to form a stable basis in the following sense [29].

‖
∑
xi∈Nj

uiφ
(j)
i ‖L2(Ω) h ‖{volume1/2(supp φ

(j)
i ) ui}xi∈Nj‖l2 . (3.6)

The basis stability (3.6) will then guarantee that the Bernstein inequality (2.5) holds. For
a stable basis, functions with small supports have to be augmented by an appropriate
scaling so that ‖φ(j)

i ‖L2(Ω) remains roughly the same for all basis functions. This is
reflected in volume(supp φ

(j)
i ) by defining:

Lj,i = min{L(τ) : τ ∈ Tj, xi ∈ τ}. (3.7)

Then
volume(supp φ

(j)
i ) h 2−dLj,i .

We prefer to use an equivalent notion of basis stability; a basis is called L2-stable Riesz
basis if:

‖
∑
xi∈Nj

ûiφ̂
(j)
i ‖L2(Ω) h ‖{ûi}xi∈Nj‖l2 , (3.8)

where φ̂(j)
i denotes the scaled basis, and the relationship between (3.6) and (3.8) is given

as follows:
φ̂

(j)
i = 2d/2Lj,i φ

(j)
i , ûi = 2−d/2Lj,i ui, xi ∈ Nj. (3.9)

Then (3.8) forms the sufficient condition to establish the Bernstein inequality (2.5). This
crucial property helps us to prove Theorem 8.2.

Remark 3.10. The analysis is done purely with basis functions, completely indepen-
dent of the underlying mesh geometry. Furthermore, our construction works for any
d-dimensional setting with the scaling (3.9). However, it is not clear how to define face-
adjacency relations for d > 3. If such relations can be defined through some topological
or geometrical abstraction, then our framework naturally extends to d-dimensional local
refinement strategies, and hence the optimality of the BPX and WHB preconditioners can
be guaranteed in <d, d ≥ 1. One such generalization was given by Brandts-Korotov-
Krizek in [17] and in the references therein.

4. LOCAL SMOOTHING COMPUTATIONAL COMPLEXITY

In [11], the smoother is chosen to act on the local space

S̃j = span
[⋃
{φ(j)

i }
Nj
i=Nj−1+1

⋃
{φ(j)

i 6= φ
(j−1)
i }Nj−1

i=1

]
.

Other choices for Ñj are also possible; e.g., DOF which intersect the refinement region
Ωj [2, 14]. The only restriction is that Ñj ⊂ Ωj . For this particular choice, Ñj = {i =

Nj−1 + 1, . . . , Nj}
⋃
{i : φ

(j)
i 6= φ

(j−1)
i , i = 1, . . . , Nj−1}, the following result from [11]
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establishes a bound for the number of nodes used for smoothing (those created in Ωj

by the BEK procedure) so that the BPX preconditioner has provably optimal (linear)
computational complexity per iteration.

Lemma 4.1. The total number of nodes used for smoothing satisfies the bound:
J∑
j=0

Ñj ≤
5

3
NJ −

2

3
N0. (4.1)

Proof. See [11, Lemma 1]. �

A similar result for 2D red-green refinement was given by Oswald [29, page 95]. In the
general case of local smoothing operators which involve smoothing over newly created
basis functions plus some additional set of local neighboring basis functions, one can
extend the arguments from [11] and [29] using shape regularity.

5. ESTABLISHING OPTIMALITY OF THE BPX NORM EQUIVALENCE

In this section, we extend the Dahmen-Kunoth framework to three spatial dimensions;
the extension closely follows the original work. However, the general case for d ≥ 1
spatial dimensions is not in the literature, and therefore we present it below.

For linear g, the element mass matrix gives rise to the following useful formula.

‖g‖2
L2(τ) =

volume(τ)

(d+ 1)(d+ 2)
(
d+1∑
i=1

g(xi)
2 + [

d+1∑
i=1

g(xi)]
2), (5.1)

where, i = 1, . . . , d+ 1 and xi is a vertex of τ , d = 2, 3. In view of (5.1), we have that

‖φ̂(j)
i ‖2

L2(Ω) = 2dLj,i
volume(supp φ̂

(j)
i )

(d+ 1)(d+ 2)
.

Since the min in (3.7) is attained, there exists at least one τ ∈ supp φ̂
(j)
i such that

L(τ) = Lj,i. By (3.2) we have

2Lj,i h
diam(τ)

diam(τ̄)
. (5.2)

Also,

volume(supp φ̂
(j)
i ) h

E∑
i=1

diamd(τi), τi ∈ supp φ̂
(j)
i . (5.3)

By (3.5), we have
diam(τi) h diam(τ). (5.4)

Combining (5.3) and (5.4), we conclude

volume(supp φ̂
(j)
i ) h E diamd(τ). (5.5)

Finally then, (5.2) and (5.5) yield

2dLj,ivolume(supp φ̂
(j)
i ) h E

1

diamd(τ̄)
.

E is a uniformly bounded constant by shape regularity. One can view the size of any
tetrahedron in T0, in particular size of τ̄ , as a constant. The reason is the following:
A.3.4 and A.3.5 force every tetrahedron at any Tj to be geometrically similar to some
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tetrahedron in T0 or to a tetrahedron arising from an irregular refinement of some tetra-
hedron in T0, hence, to some tetrahedron of a fixed finite collection. Combining the two
arguments above, we have established that

‖φ̂(j)
i ‖L2(Ω) h 1, xi ∈ Nj. (5.6)

Let g =
∑

xi∈Nj ûiφ̂
(j)
i ∈ Sj . For any τ ∈ Tj we have that

‖g‖2
L2(τ) ≤ c

∑
xi∈Nj,τ

|ûi|2‖φ̂(j)
i ‖2

L2(Ω), (5.7)

where Nj,τ = {xi ∈ Nj : xi ∈ τ}, which is uniformly bounded in τ ∈ Tj and j ∈
bN0. By the scaling (3.9), we get equality in the estimate below. The inequality is a
standard inverse inequality where one bounds g(xi) using formula (5.1) and by handling
the volume in the formula by (3.2):

|ûi|2 = 2−dLj,i |g(xi)|2 ≤ c 2−dLj,i2dLj,i‖g‖2
L2(τ). (5.8)

Now, we are ready to establish that our basis is an L2-stable Riesz basis as in (3.8). This
is achieved by simply summing up over τ ∈ Tj in (5.7) and (5.8) and using (5.6). L2

stability in the Riesz sense allows us to establish the Bernstein inequality (2.5).

Lemma 5.1. For the scaled basis (3.9), the Bernstein inequality (2.5) holds for β = 3/2

Proof. (5.6) with (5.7) and (5.8) assert that the scaled basis (3.9) is stable in the sense
of (3.8). Hence, (2.5) holds by [29, Theorem 4]. Note that the proof actually works
independently of the spatial dimension. �

6. LOWER BOUND IN THE NORM EQUIVALENCE

The Jackson inequality for Besov spaces is defined as follows:

inf
g∈SJ
‖f − g‖Lp ≤ c ωα(f, 2−J)p, f ∈ Lp(Ω), (6.1)

where c is a constant independent of f and J , and α is an integer. In the uniform re-
finement setting, (6.1) is used to obtain the lower bound in (2.7). However, in the lo-
cal refinement setting, (6.1) holds only for functions whose singularities are somehow
well-captured by the mesh geometry. For instance, if a mesh is designed to pick up the
singularity at x = 0 of y = 1/x, then on the same mesh we will not be able to recover a
singularity at x = 1 of y = 1/(x− 1). Hence the Jackson inequality (6.1) cannot hold in
a general setting, i.e. for f ∈ W k

p . In order to get the lower bound in (2.7), we focus on
estimating θJ directly, as in [19] for the 2D setting.

To begin we borrow the quasi-interpolant construction from [19], extending it to the
three-dimensional setting. Let τ ∈ Tj be a tetrahedron with vertices x1, x2, x3, x4.
Clearly the restrictions of φ̂(j)

i to τ are linearly independent over τ where xi ∈ {x1, x2, x3, x4}.
Then, there exists a unique set of linear polynomials ψτ1 , ψ

τ
2 , ψ

τ
3 , ψ

τ
4 such that∫

τ

φ̂
(j)
k (x, y, z)ψτl (x, y, z)dxdydz = δkl, xk, xl ∈ {x1, x2, x3, x4}. (6.2)

For xi ∈ Nj and τ ∈ Tj , define a function for xi ∈ τ

M
(j)
i (x, y, z) =

{ 1
Ei
ψτi (x, y, z), (x, y, z) ∈ τ

0, (x, y, z) 6∈ supp φ̂
(j)
i

, (6.3)
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where Ei is the number of tetrahedra in Tj in supp φ̂
(j)
i . By (6.2) and (6.3), we obtain

(M
(j)
k , φ̂

(j)
l ) =

∫
Ω

M
(j)
k (x, y, z)φ̂l(x, y, z) dxdydz = δkl, xk, xl ∈ Nj. (6.4)

We can now define a quasi-interpolant, in fact a projection onto Sj , such that

(Q̃jf)(x, y, z) =
∑
xi∈Nj

(f,M
(j)
i )φ̂

(j)
i (x, y, z). (6.5)

As remarked earlier, due to (6.3) the slice operator term Q̃j − Q̃j−1 will vanish outside
the refined set Ωj defined in (2.1). One can easily observe by (5.6) and (6.4) that

‖M (j)
i ‖L2(Ω) h 1, xi ∈ Nj, j ∈ bN0. (6.6)

Letting Ωj,τ =
⋃
{τ ′ ∈ Tj : τ ∩ τ ′ 6= ∅}, we can conclude from (5.6) and (6.6) that

‖Q̃jf‖L2(τ) = ‖
∑

xk∈Nj,τ

(f,M
(j)
l )φ̂

(j)
k ‖L2(τ) ≤ c‖f‖L2(Ωj,τ ). (6.7)

We define now a subset of the triangulation where the refinement activity stops, mean-
ing that all tetrahedra in T ∗j , j ≤ m also belong to Tm:

T ∗j = {τ ∈ Tj : L(τ) < j, Ωj,τ ∩ τ ′ = ∅, ∀τ ′ ∈ Tj with L(τ ′) = j}. (6.8)

Due to the local support of the dual basis functions M (j)
i and the fact that Q̃j is a projec-

tion, one gets for g ∈ SJ :

‖g − Q̃jg‖L2(τ) = 0, τ ∈ T ∗j . (6.9)

Since Q̃j is a projection onto linear finite element space, it fixes polynomials of degree
at most 1 (i.e. Π1(<3)). Using this fact and (6.7), we arrive:

‖g − Q̃jg‖L2(τ) ≤ ‖g − P‖L2(τ) + ‖Q̃j(P − g)‖L2(τ)

≤ c ‖g − P‖L2(Ωj,τ ), τ ∈ Tj \ T ∗j . (6.10)

We would like to bound the right hand side of (6.10) in terms of a modulus of smooth-
ness in order to reach a Jackson-type inequality. Following [19], we utilize a modified
modulus of smoothness for f ∈ Lp(Ω)

ω̃k(f, t,Ω)pp = t−s
∫

[−t,t]s
‖∆k

hf‖
p
Lp(Ωk,h) dh.

They can be shown to be equivalent:

ω̃k+1(f, t,Ω)p h ωk+1(f, t,Ω)p.

The equivalence in the one-dimensional setting can be found in [20, Lemma 5.1].
For τ a simplex in <d and t = diam(τ), a Whitney estimate shows that [21, 28, 33]

inf
P∈Πk(<d)

‖f − P‖Lp(τ) ≤ cω̃k+1(f, t, τ)p, (6.11)

where c depends only on the smallest angle of τ but not on f and t. The reason why
Q̃j works well for tetrahedralization in 3D is the fact that the Whitney estimate (6.11)
remains valid for any spatial dimension. Tj \ T ∗j is the part of the tetrahedralization Tj
where refinement is active at every level. Then, in view of (3.5)

diam(Ωj,τ ) h 2−j, τ ∈ Tj \ T ∗j .
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Taking the inf over P ∈ Π1(<3) in (6.10) and using the Whitney estimate (6.11) we
conclude

‖g − Q̃jg‖L2(τ) ≤ cω̃2(g, 2−j,Ωj,τ )2.

Recalling (6.9) and summing over τ ∈ Tj \ T ∗j gives rise to

‖g − Q̃jg‖L2(Ω) ≤ cω̃2(g, 2−j,Ω)2 ≤ c̃ ω2(g, 2−j,Ω)2,

where we have switched from the modified modulus of smoothness to the standard one.
Since Qj is an orthogonal projection, we have the following:

‖g −Qjg‖ ≤ ‖g − Q̃jg‖.
Using the above inequality with (2.6) one then has

vJ = O(1), J →∞. (6.12)

7. THE WHB PRECONDITIONER

In local refinement, HB methods enjoy an optimal complexity of O(Nj − Nj−1) per
iteration per level (resulting in O(NJ) overall complexity per iteration) by only using
degrees of freedom (DOF) corresponding to Sfj . However, HB methods suffer from
suboptimal iteration counts or equivalently suboptimal condition number. The BPX de-
composition Sj = Sj−1 ⊕ (Qj − Qj−1)Sj gives rise to basis functions which are not
locally supported, but they decay rapidly outside a local support region. This allows for
locally supported approximations, and in addition the WHB methods [34, 35, 36] can be
viewed as an approximation of the wavelet basis stemming from the BPX decomposi-
tion [23]. A similar wavelet-like multilevel decomposition approach was taken in [32],
where the orthogonal decomposition is formed by a discrete L2-equivalent inner prod-
uct. This approach utilizes the same BPX two-level decomposition [31, 32]. The WHB
preconditioner is defined as follows:

Hu :=
J∑
j=0

2j(d−2)
∑
i∈N fj

(u, ψ
(j)
i )ψ

(j)
i , (7.1)

where ψ(j)
i = (Q̃j− Q̃j−1)φ

(j)
i . The WHB preconditioner uses the modified basis (where

as the BPX preconditioner uses the standard nodal basis) where the projection operator
used is defined as in (7.5). In the WHB setting, these operators are chosen to satisfy the
following three properties [5]:

Q̃j |Sj = I, (7.2)

Q̃jQ̃k = Q̃min{j,k}, (7.3)

‖(Q̃j − Q̃j−1)u(j)‖L2 h ‖u(j)‖L2 , u
(j) ∈ (Ij − Ij−1)Sj. (7.4)

As indicated in (2.2), the WHB smoother acts on only the fine DOF, i.e. N f
j , and

hence is an approximation to fine-fine discretization operator; A(j)
ff : Sfj → S

f
j , where

Sfj := (Q̃j − Q̃j−1)Sj and f stands for fine. On the other hand, the BPX smoother acts
on a slightly bigger set than fine DOF, N f

j ⊆ Ñj typically, union of fine DOF and their
corresponding coarse fathers.

The WHB preconditioner introduced in [34, 35] is, in some sense, the best of both
worlds. While the condition number of the HB preconditioner is stabilized by inserting
Qj in the definition of Q̃j , somehow employing the operators Ij − Ij−1 at the same time
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guarantees optimal computational and storage cost per iteration. The operators which
will be seen to meet both goals at the same time are:

Q̃k =
J−1∏
j=k

Ij +Qa
j (Ij+1 − Ij), (7.5)

with Q̃J = I . The exact L2-projection Qj is replaced by a computationally feasible
approximation Qa

j : L2 → Sj . To control the approximation quality of Qa
j , a small fixed

tolerance γ is introduced:

‖(Qa
j −Qj)u‖L2 ≤ γ‖Qju‖L2 , ∀u ∈ L2(Ω). (7.6)

In the limiting case γ = 0, Q̃k reduces to the exact L2-projection on SJ by (7.2):

Q̃k = Qk Ik+1Qk+1 . . . IJ−1QJ−1 IJ = QkQk+1 . . . QJ−1 = Qk.

Following [34, 35], the properties (7.2), (7.3), and (7.4) can be verified for Q̃k as follows:
• Property (7.2): Let u(k) ∈ Sk. Since (Ij+1− Ij)u(k) = 0 and Iju(k) = u(k) for k ≤ j,

then [Ij +Qa
j (Ij+1 − Ij)](u(k)) = u(k), verifying (7.2) for Q̃k. It also implies

Q̃2
k = Q̃k. (7.7)

• Property (7.3): Let k ≤ l, then by (7.7)

Q̃kQ̃l = [(Ik +Qa
k(Ik+1 − Ik)) . . . (Il−1 +Qa

l−1(Il − Il−1)) Q̃l]Q̃l = Q̃k. (7.8)

Since Q̃ku ∈ Sk and Sk ⊂ Sl, then by (7.2) we have

Q̃l(Q̃ku) = Q̃ku. (7.9)

Finally, (7.3) then follows from (7.8) and (7.9).
• Property (7.4): This is an implication of Lemma 7.1.
For an overview, we list the corresponding slice spaces for the preconditioners of in-

terest:
HB: Sfj = (Ij − Ij−1)Sj,
BPX: Sfj = (Qj −Qj−1)Sj,
WHB: Sfj = (Q̃j − Q̃j−1)Sj = (I −Qa

j−1)(Ij − Ij−1)Sj, Q̃j as in (7.5).

The WHB smoother only acts on the fine DOF. Then, in the generic multilevel pre-
conditioner notation, the WHB preconditioner can be written in the following form:

Bu :=
J∑
j=0

B
(j)−1

ff (Q̃j − Q̃j−1)u. (7.10)

Bff is chosen to be a spectrally equivalent operator to fine-fine discretization operator
A

(j)
ff . Since the smoother and property (7.4) both rely on a well-conditioned A(j)

ff , we
discuss this next.

7.1. Well-conditioned A(j)
ff . The lemma below is essential to extend the existing results

for quasiuniform meshes [34, Lemma 6.1] or [35, Lemma 2] to the locally refined ones.
S(f)
j = (Ij − Ij−1)Sj denotes the HB slice space.

Lemma 7.1. Let Tj be constructed by the local refinements under consideration. Let
Sfj = (I − Q̃j−1)S(f)

j be the modified hierarchical subspace where Q̃j−1 is any L2-
bounded operator. Then, there are constants c1 and c2 independent of j such that

c1‖φf‖2
X ≤ ‖ψf‖2

X ≤ c2‖φf‖2
X , X = H1, L2, (7.11)
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holds for any ψf = (I − Q̃j−1)φf ∈ Sfj with φf ∈ S(f)
j .

Proof. The Cauchy-Schwarz like inequality [8] is central to the proof: There exists δ ∈
(0, 1) independent of the mesh size or level j such that

(1− δ2)(∇φf ,∇φf ) ≤ (∇(φc + φf ),∇(φc + φf )), ∀φc ∈ Sj−1, φ
f ∈ S(f)

j . (7.12)

(1− δ2)‖φf‖2
L2
≤ c|φc + φf |2H1 (by Poincare inequality and (7.12)). (7.13)

Combining (7.12) and (7.13): (1−δ2)‖φf‖2
H1 ≤ ‖φc+φf‖2

H1 . Choosing φc = −Q̃j−1φ
f ,

we get the lower bound: (1− δ2)‖φf‖2
H1 ≤ ‖ψf‖2

H1 .

Let Ωf
j denote the support of basis functions corresponding to N f

j . Due to nested
refinement, triangulation on Ωf

j is quasiuniform. One can analogously introduce a tri-
angulation hierarchy where all the simplices are exposed to uniform refinement: T fj :=

{τ ∈ Tj : L(τ) = j} = Tj|Ωfj . Hence, T fj becomes a quasiuniform tetrahedralization

and the inverse inequality holds for Sfj . To derive the upper bound: The right scaling is
obtained by father-son size relation, and by the inverse inequalities and L2-boundedness
of Q̃j−1, one gets

‖ψf‖2
H1 ≤ c022j‖ψf‖2

L2
≤ c022j

(
1 + ‖Q̃j−1‖L2

)2

‖φf‖2
L2
≤ c22j‖φf‖2

L2
.

The slice space S(f)
j is oscillatory. Then there exists c such that ‖φf‖2

L2
≤ c2−2j‖φf‖2

H1 .

Hence, ‖ψf‖2
H1 ≤ c‖φf‖2

H1 . The case for X = L2 can be established similarly. �

Using the above tools, one can establish that A(j)
ff is well-conditioned. Namely,

c122j ≤ λfj,min ≤ λfj,max ≤ c222j, (7.14)

where λfj,min and λfj,max are the smallest and largest eigenvalues of A(j)
ff , and c1 are and c2

both independent of j. For details see [34, Lemma 4.3] or [35, Lemma 3].

8. THE FUNDAMENTAL ASSUMPTION AND WHB OPTIMALITY

As in the BPX splitting, the main ingredient in the WHB splitting is the L2-projection.
Hence, the stability of the BPX splitting is still important in the WHB splitting. The
lower bound in the BPX norm equivalence is the fundamental assumption for the WHB
preconditioner. Utilizing a local projection Q̃j , BPX lower bound was verified earlier
for 3D local red-green (BEK) refinement procedure. The same result easily holds for the
projection Qj . Dahmen and Kunoth [19] verified BPX lower bound for the 2D red-green
refinement procedures.

Before getting to the stability result we remark that the existing perturbation analysis
of WHB is one of the primary insights in [34, 35]. Although not observed in [34, 35],
the result does not require substantial modification for locally refined meshes. Let ej :=

(Q̃j −Qj)u be the error, then the following holds.

Lemma 8.1. Let γ be as in (7.6). There exists an absolute c satisfying:
J∑
j=0

22j‖ej‖2
L2
≤ cγ2

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2
, ∀u ∈ SJ . (8.1)

Proof. [34, Lemma 5.1] or [35, Lemma 1]. �
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We arrive now at the primary result, which indicates that the WHB slice norm is opti-
mal on the class of locally refined meshes under consideration.

Theorem 8.2. If there exists sufficiently small γ0 such that (7.6) is satisfied for γ ∈
[0, γ0), then

‖u‖2
WHB =

J∑
j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2

h ‖u‖2
H1 , u ∈ SJ . (8.2)

Proof. Observe that

(Q̃j − Q̃j−1)u = (Q̃j −Qj)u− (Q̃j−1 −Qj−1)u+ (Qj −Qj−1)u (8.3)
= ej − ej−1 + (Qj −Qj−1)u.

This gives
J∑
j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2
≤ c

J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2

+ c
J∑
j=0

22j‖ej‖2
L2

≤ c(1 + γ2)
J∑
j=0

22j‖(Qj −Qj−1)u‖2
L2

(using (8.1))

≤ c‖u‖2
H1 .

Let us now proceed with the upper bound. The Bernstein inequality (2.5) holds for
Sj [1, 19] for the local refinement procedures. Hence we are going to utilize an inequality
involving the Besov norm ‖ · ‖B1

2,2
which naturally fits our framework when the moduli

of smoothness is considered in (2.5). The following important inequality holds, provided
that (2.5) holds [29, page 39]:

‖u‖2
B1

2,2
≤ c

J∑
j=0

22j‖u(j)‖2
L2
, (8.4)

for any decomposition such that u =
∑J

j=0 u
(j), u(j) ∈ Sj , in particular for u(j) =

(Q̃j − Q̃j−1)u. Then the upper bound holds due to H1(Ω) ∼= B1
2,2(Ω). �

Remark 8.3. The following equivalence is used for the upper bound in the proof of
Theorem 8.2 on uniformly refined meshes [35, Lemma 4].

c1‖u‖2
H1 ≤ inf

u=
∑J
j=0 u

(j), u(j)∈Sj

J∑
j=0

22j‖u(j)‖2
L2
≤ c2‖u‖2

H1 .

Let us emphasize that the left hand side holds in the presence of the Bernstein inequality
(2.5), and the right hand side holds in the simultaneous presence of Bernstein and Jack-
son inequalities. However, the Jackson inequality cannot hold under local refinement
procedures (cf. counter example in section 6). That is why we can utilize only the left
hand side of the above equivalence as in (8.4).

Now, we have all the required estimates at our disposal to establish the optimality
of WHB preconditioner for 2D/3D red-green refinement procedures for p ∈ L∞(Ω).
We would like to emphasize that our framework supports any spatial dimension d ≥ 1,
provided that the necessary geometrical abstractions are in place.
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Theorem 8.4. If BPX lower bound holds and if there exists sufficiently small γ0 such that
(7.6) is satisfied for γ ∈ (0, γ0), then for B in (7.10):

(Bu, u) h ‖u‖2
H1 .

Proof. B(j)
ff is spectrally equivalent toA(j)

ff . SinceA(j)
ff is a well-conditioned matrix, using

(7.14) it is spectrally equivalent to 22jI . The result follows from Theorem 8.2. �

An extension to multiplicative WHB preconditioner is also possible under additional
assumptions. These results will not be reported here.

9. H1-STABLE L2-PROJECTION

The involvement of Q̃j in the multilevel decomposition makes it the most crucial ele-
ment in the stabilization. We then come to the central question: Which choice of Q̃j can
provide an optimal preconditioner? The following theorem sets a guideline for picking
Q̃j . It shows that H1-stability of the Q̃j is actually a necessary condition for obtaining
an optimal preconditioner.

Theorem 9.1. [34, 35]. If Q̃j induces an optimal preconditioner, namely for u ∈ SJ ,∑J
j=0 22j‖(Q̃j − Q̃j−1)u‖2

L2
h ‖u‖2

H1 , then there exists an absolute constant c such that

‖Q̃ku‖H1 ≤ c ‖u‖H1 , ∀k ≤ J.

Proof. Using the multilevel decomposition and (7.3), we get:
Q̃ku =

∑k
j=0(Q̃j − Q̃j−1)u. Since Q̃j induces an optimal preconditioner, there exist two

absolute constants σ1 and σ2:

σ1‖u‖2
H1 ≤

J∑
j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2
≤ σ2‖u‖2

H1 , ∀u ∈ SJ . (9.1)

Using (9.1) for Q̃ku:

‖Q̃ku‖2
H1 ≤

1

σ1

k∑
j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2
≤ 1

σ1

J∑
j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2
≤ σ2

σ1

‖u‖2
H1 .

�

As a consequence of Theorem 9.1 we have

Corollary 9.2. L2-projection restricted to Sj , Qj|Sj : L2 → Sj , is H1-stable on 2D and
3D locally refined meshes by red-green refinement procedures.

Proof. Optimality of the BPX norm equivalence on the above locally refined meshes was
already established. Application of Theorem 9.1 withQj proves the result. Alternatively,
the same result can be obtained through Theorem 9.1 applied to the WHB framework.
Theorem 8.2 will establish the optimality of the WHB preconditioner for the local re-
finement procedures. Hence, the operator Q̃j restricted to Sj is H1-stable. Since Q̃j is
none other than Qj in the limiting case, we can also conclude the H1-stability of the
L2-projection. �

Our stability result appears to be the first a priori H1-stability for the L2-projection
on these classes of locally refined meshes. H1-stability of L2-projection is guaranteed
for the subset Sj of L2(Ω), not for all of L2(Ω). This question is currently undergoing
intensive study in the finite element and approximation theory community. The exist-
ing theoretical results, mainly in [15, 18], involve a posteriori verification of somewhat
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complicated mesh conditions after refinement has taken place. If such mesh conditions
are not satisfied, one has to redefine the mesh. The mesh conditions mentioned require
that the simplex sizes do not change drastically between regions of refinement. In this
context, quasiuniformity in the support of a basis function becomes crucial. This type of
local quasiuniformity is usually called as patchwise quasiuniformity. Local quasiunifor-
mity requires neighbor generation relations as in (3.1), neighbor size relations, and shape
regularity of the mesh. It was shown in [1] that patchwise quasiuniformity holds also for
3D marked tetrahedron bisection [24] and for 2D newest vertex bisection [25, 30]. These
are then promising refinement procedures for which H1-stability of the L2-projection
can be established.

10. CONCLUSION

In this article, we examined the Bramble-Pasciak-Xu (BPX) norm equivalence in the
setting of local 3D mesh refinement. In particular, we extended the 2D optimality result
for BPX due to Dahmen and Kunoth to the local 3D red-green refinement procedure in-
troduced by Bornemann-Erdmann-Kornhuber (BEK). The extension involved establish-
ing that the locally enriched finite element subspaces produced by the BEK procedure
allow for the construction of a scaled basis which is formally Riesz stable. This in turn
rested entirely on establishing a number of geometrical relationships between neighbor-
ing simplices produced by the local refinement algorithms. We remark again that shape
regularity of the elements produced by the refinement procedure is insufficient to con-
struct a stable Riesz basis for finite element spaces on locally adapted meshes. The
d-vertex adjacency generation bound for simplices in <d is the primary result required
to establish patchwise quasiuniformity for stable Riesz basis construction, and this result
depends delicately on the particular details of the local refinement procedure rather than
on shape regularity of the elements. We also noted in §3 that these geometrical proper-
ties have been established in [1] for purely bisection-based refinement procedures that
have been shown to be asymptotically non-degenerate, and therefore also allow for the
construction of a stable Riesz basis.

We also examined the wavelet modified hierarchical basis (WHB) methods of Vas-
silevski and Wang, and extended their original quasiuniformity-based framework and
results to local 2D and 3D red-green refinement scenarios. A critical step in the ex-
tension involved establishing the optimality of the BPX norm equivalence for the local
refinement procedures under consideration, as established in the first part of this article.
With the local refinement extension of the WHB analysis framework presented here, we
established the optimality of the WHB preconditioner on locally refined meshes in both
2D and 3D under the minimal regularity assumptions required for well-posedness. An
interesting implication of the optimality of WHB preconditioner was the a priori H1-
stability of the L2-projection. Existing a posteriori approaches in the literature dictate a
reconstruction of the mesh if such conditions cannot be satisfied.

The theoretical framework established here supports arbitrary spatial dimension d ≥ 1,
and therefore allows extension of the optimality results, theH1-stability of L2-projection
results, and the various supporting results to arbitrary d ≥ 1. We indicated clearly which
geometrical properties must be re-established to show BPX optimality for spatial dimen-
sion d ≥ 4. All of the results here require no smoothness assumptions on the PDE
coefficients beyond those required for well-posedness in H1.

To address the practical computational complexity of implementable versions of the
BPX and WHB preconditioners, we indicated how the number of degrees of freedom
used for the smoothing step can be shown to be bounded by a constant times the number
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of degrees of freedom introduced at that level of refinement. This indicates that practical
implementable versions of the BPX and WHB preconditioners for the local 3D refine-
ment setting considered here have provably optimal (linear) computational complexity
per iteration. A detailed analysis of both the storage and per-iteration computational
complexity questions arising with BPX and WHB implementations can be found in the
second article [2].
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