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Abstract. In this paper, we focus on the representation of a divergence-free vector field, defined,
on a connected nonsimply connected domain Ω ⊂ R

3 with a connected boundary Γ, by its curl and
its normal component on the boundary. The considered problem is discretized with H(curl)- and
H(div)-conforming finite elements. In order to ensure the uniqueness of the vector potential, we
propose a spanning tree methodology to identify the independent edges. The topological features
of the domain under consideration are analyzed here by means of the homology groups of first and
second order.
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1. Introduction. In numerical magnetostatics, an important task is the dis-
cretization of the magnetic induction field u, verifying the following equations:

curl u = ω in Ω,(1)

divu = 0 in Ω,(2)

u · nΓ = g on Γ,(3)

where Ω is an open subset of R
3, Γ is its boundary, nΓ is the outward going normal to

Γ, ω is a given current density, and g is a scalar function defined on Γ. A conforming
or nonconforming discretization that respects (2) is difficult to obtain with the finite
element method [19]. On the other hand, a way to exactly satisfy (2) is to represent
u in terms of a vector potential, i.e., a field p such that

u = curl p.(4)

The vector p is not unique but defined up to the gradient of a scalar function. A
classical way to ensure the uniqueness of p is to prescribe a gauge condition such as
the Coulomb gauge

divp = 0(5)

and suitable boundary conditions. Moreover, different choices of boundary conditions
for the vector field p are possible, and we refer to [3, 4] for existence and uniqueness
results. The vector potential is just a tool for representing the field u and must be
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easily computable under some constraints on u. In this paper, we choose to fix the
current density ω and the magnetic induction flux g across the entire boundary. We
remark that, if (2) and (3) are satisfied, then the mean value of the function g across
the boundary of Ω is necessarily equal to zero; i.e.,

∫
Γ

g dΓ = 0. The chosen problem
can be also read in the framework of fluid dynamics: for a given vorticity ω in Ω and
mass inflow g across the boundary Γ of Ω, we look for a velocity field u that satisfies
(1) and (3) in the incompressible case, i.e., under the constraint (2).

We restrict ourselves to the previous problem in a nonsimply connected three-
dimensional domain with a connected boundary. For the analysis of the mixed for-
mulation of a similar problem in simply connected domains with a nonconnected
boundary, see [10].

Concerning the outline of the paper, in section 2, after recalling classical results
on vector fields, we split the linear problem in Ω into a homogeneous problem in Ω
(i.e., g = 0) and a problem on the boundary of Ω (i.e., g �= 0). Then a concrete
construction method of a vector potential p from only the data ω and g is presented.
In the discretized problem, the compatibility between these two subproblems requires
that the discrete field pm associated with a meshm in Ω has a tangential component on
each point of the boundary. The major difficulty is the definition of a “good” discrete
space which guarantees the existence of the discrete potential. We start with a short
introduction on the homology groups in sections 3 and 4. Then in sections 5 and 6,
we adapt the discrete gauge initially proposed by a team of the École Polytechnique
[10, 28] to the case of simply connected domains Ω ⊂ R

3. Developing the problem
presented in [11] in more detail, we generalize in section 7 to the case of proposed
nonsimply connected domains. We finally end in section 8 by a short overview on the
adopted algorithms and their application in the case where Ω is a torus.

Let us introduce some notation. We consider Ω as a connected bounded domain
of R

3, with a connected regular boundary Γ. The scalar product between two vectors
a, b defined in Ω is denoted by a ·b, whereas their vector product is denoted by a×b.
The tangential component of a vector v on Γ is πu = (nΓ × u)× nΓ, and we have a
Green formula for regular vector fields u and v that reads∫

Ω

v · curl u =

∫
Ω

curl v · u +

∫
Γ

(nΓ × v) · u.(6)

The following operators are defined on Γ as in [9] as follows:
• the surface gradient, gradΓu, and surface curl, curlΓu, of a scalar function

u defined on Γ: curlΓu = gradΓu× nΓ;
• the surface curl, curlΓv, and surface divergence, divΓv, of a tangential vector
function v defined on Γ: divΓv = curlΓ(nΓ × v).

By duality, these operators are also defined for a scalar t or vector w distributions on
Γ as follows:

〈gradΓt,v〉Γ = −〈t,divΓv〉Γ ∀v,
〈curlΓt,v〉Γ = 〈t, curlΓv〉Γ ∀v,
〈curlΓw, u〉Γ = 〈w, curlΓu〉Γ ∀u,
〈divΓw, u〉Γ = 〈w, gradΓu〉Γ ∀u.

Here, the duality product 〈·, ·〉Γ of two vectors is the scalar product on Γ [9]:

〈w,v〉Γ =

∫
Γ

w · v.
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The Sobolev spaces L2(Ω), H1(Ω) are Hilbert spaces with their natural norms
||.||0,Ω and ||.||1,Ω, respectively [1]. Following [15], we define

H(div,Ω) = {u ∈ L2(Ω)3 |divu ∈ L2(Ω)},
H(curl,Ω) = {u ∈ L2(Ω)3 | curl u ∈ L2(Ω)3},

and associated norms ||.||div,Ω and ||.||curl,Ω. We also need to introduce

H(div0,Ω) = {u ∈ H(div,Ω) |divu = 0},
H0(div,Ω) = {u ∈ H(div,Ω) |u · nΓ = 0},
H0(curl,Ω) = {u ∈ H(curl,Ω) |u× nΓ = 0},
L2

0(Ω) = {u ∈ L2(Ω) | ∫
Ω

u = 0},
C1,1(Ω) = {u ∈ C1(Ω) |gradu is a vector of Lipschitz functions}.

In a few words, a domain Ω is of class C1,1 if it admits a representation through a
C1,1(Ω) map [15]. Note that the boundary of such a domain has a normal vector
almost everywhere. In the following, given a space S, the notation dim [S] denotes
the dimension of S. If S is a set, its cardinality, i.e., the number of its elements, is
denoted by #S.

2. The continuous problem. We are interested in the following problem: given
g ∈ L2

0(Γ) and ω ∈ H(div0,Ω), find u ∈ H1(Ω)3 satisfying

curl u = ω in Ω,
divu = 0 in Ω,
u · nΓ = g on Γ.

(7)

If Γ is smooth, the continuous problem can be easily analyzed, but the finite
elements to discretize it are quite complicated [19, 10]. If Γ is polyhedric, then there
are specific difficulties in studying the continuous problem [2, 7], but the finite elements
are classical. We recall the main results of regularity for the solution of (7); these
results depend on the regularity of the domain Ω. The first result is proven in [2, 15].

Proposition 2.1. Assume that the bounded domain Ω is of class C1,1 or a convex
polyhedron. Then we have the following continuous embedding:

{v ∈ L2(Ω)3 | curl v ∈ L2(Ω)3, divv ∈ L2(Ω), v · nΓ ∈ H1/2(Γ) } ↪→ H1(Ω)3;

as a consequence, problem (7) has a unique solution, in the sense of distributions, that
belongs to H1(Ω)3.

The solution u of problem (7) is computed as a sum of two functions that are
solutions of two simpler problems, i.e., u = u0+ û, where û is a divergence-free lifting
in Ω of a function ûΓ defined on Γ such that

ûΓ · nΓ = g, divΓûΓ = 0,(8)

and u0 satisfies

curl u0 = ω − curl û in Ω,
divu0 = 0 in Ω,
u0 · nΓ = 0 on Γ .

(9)
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Note that, thanks to the introduction of a vector potential, (2) is exactly verified,
whereas (1) is satisfied in the sense of distributions. Thanks to a trace result proved in
[5], problem (7) is well-posed even in nonconvex polyhedra of R

3 (such as a discretized
torus).

Proposition 2.2. Let Γi, i = 1, . . . , L, be the faces of the boundary Γ of a
bounded polyhedron Ω. There exists a real number s > 1/2 such that for any function
g ∈ H1/2(∂Γi), i = 1, . . . , L, problem (8) has a unique solution û ∈ Hs(Ω)3. In
addition, for any ω ∈ H(div0,Ω), problem (9) has a unique solution u0 ∈ Hs(Ω)3.

We end this section by recalling and applying general results on vector fields
defined on a regular bounded domain Ω of R

3. We refer to [2, 3] and to their included
references for the results. Let us introduce the following spaces:

XT (Ω) = {v ∈ L2(Ω)3 |divv ∈ L2(Ω), curl v ∈ L2(Ω)3, v · nΓ ∈ H1/2(Γ)},
XN (Ω) = {v ∈ L2(Ω)3 |divv ∈ L2(Ω), curl v ∈ L2(Ω)3, v × nΓ ∈ H1/2(Γ)3},
HT (Ω) = {v ∈ L2(Ω)3 |divv = 0, curl v = 0, v · nΓ = 0 on Γ},
HN (Ω) = {v ∈ L2(Ω)3 |divv = 0, curl v = 0, v × nΓ = 0 on Γ},
PT : XT (Ω)→ HT (Ω) orthogonal projection operator,

PN : XN (Ω)→ HN (Ω) orthogonal projection operator,

W 1(Ω) = {w ∈ H1(Ω)3 |divw = 0, w × nΓ = 0,
∫
Γ
w · nΓ dΓ = 0}.

Theorem 2.3 (Hodge decomposition). For a given u ∈ L2(Ω)3, we have two
possible decompositions:

(i) u = gradφ+ curlw + θ

with θ ∈ HT (Ω) and a unique (φ, w) verifying φ ∈ H1(Ω) ∩ L2
0(Ω), w ∈W 1(Ω);

(ii) u = gradψ + curl p+ η

with η ∈ HN (Ω) and a unique (ψ, p) verifying ψ ∈ H1
0 (Ω) and

p ∈ H1(Ω)3, divp = 0, p · nΓ = 0, PTp = 0.

The decomposition (i) (resp., (ii)) of a field u is into three orthogonal components
of the type gradφ (resp., gradψ) plus curlw (resp., curl p) plus a vector lying in
HT (Ω) (resp., HN (Ω)).

Theorem 2.4 (Foias, Temam [12]). Let u ∈ L2(Ω)3 and p ∈ H(curl,Ω) such
that u = curl p; then PNu = 0.

If a vector u admits a representation in terms of a vector potential p, i.e., u =
curl p, it clearly satisfies the condition divu = 0. Moreover, for any vector u of the
form (ii), Theorem 2.4 yields PNu = 0, a condition which precludes flow problems
with sources and sinks, as remarked in [10]. Finally, since the scalar ψ ∈ H1

0 (Ω), we
have ψ = 0. The vector potential p is then the right tool to represent the field u
solution of the considered problem.

In the next section, we recall the main properties of the finite elements we are
going to use to discretize p. These finite elements are H(curl,Ω)-conforming, and by
consequence, the field u will be approximated byH(div,Ω)-conforming finite elements.
Throughout the paper, we treat the three-dimensional case.
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Fig. 1. Example of oriented p-simplex, p = 0, . . . , 3.

3. Meshing the domain with cellular complexes. Given a domain Ω ⊂ R
3

with boundary Γ, a simplicial mesh m in Ω is a tessellation of Ω by tetrahedra, under
the condition that any two of them may intersect along a common face, edge, or node
but in no other way. We denote by Nm, Em, Fm, and Tm (nodes, edges, faces, and
tetrahedra, respectively) the sets of simplices of dimension 0 to 3 thus obtained, and
by Nm, Em, Fm, and Tm their cardinalities. The importance of simplicial meshes
lies in the fact that any triangulated domain is homeomorphic to one in which the
triangles are flat and the edges straight. Properties on the mesh will hold for the
domain, as we are going to present in the following.

First we need to underline some combinatorial properties of the simplicial mesh.
Let M(r, s) denote the set of matrices A whose elements are A(i, j) with 1 ≤ i ≤ r
and 1 ≤ j ≤ s. In addition to the list of nodes and their positions, the mesh data
structure also contains incidence matrices, saying which node belongs to which edge,
which edge bounds which face, etc. [6, 14]. There is a notion of orientation for
the simplex as in Figure 1 that has to be taken into account to define the incidence
matrices. In short, an edge is not only a two-node subset of Nm but an ordered
such set, where the order implies an orientation. Let e = {", n} be an edge of the
mesh oriented from the node " to n. We can define the incidence numbers Ge,n = 1,
Ge,
 = −1, and Ge,k = 0 for all nodes k other than " and n. These numbers form a
rectangular matrix G ∈M(Em, Nm), which describes how edges connect to nodes. A
face f = {", n, k} has three vertices which are the nodes ", n, k. Note that {n, k, l}
and {k, l, n} denote the same face f , whereas {n, l, k} denotes an oppositely oriented
face, which is not supposed to belong to Fm if f does. An orientation of f induces an
orientation of its boundary. So, with respect to the orientation of the face f , the one
of the edge {l, n} is positive, and the one of {k, n} is negative. Then we can define
the incidence number Rf,e = 1 (resp., −1) if the orientation of e matches (resp., does
not match) the one on the boundary of f , and Rf,e = 0 if e is not an edge of f . These
numbers form a matrix R ∈ M(Fm, Em). Finally, let us consider the tetrahedron
t = {k, l,m, n} positively oriented if the three vectors {k, l}, {k,m}, and {k, n} define
a positive frame. (t′ = {l,m, n, k} has a negative orientation and does not belong to
Tm if t does.) A third matrix D ∈M(Tm, Fm) can be defined by setting Dt,f = ±1 if
face f bounds the tetrahedron t, with the sign depending on whether the orientation
of f and of the boundary of t match or not, and Dt,f = 0 in case f does not bound
t. For consistency, we attribute an orientation to nodes as well. Implicitly, we have
been orienting all nodes the same way (+1) up to now. Note that a sign (−1) to node
n changes the sign of all entries of column n in the above G. It can be easily proven
that RG = 0 and DR = 0 [6].

We now define the mixed finite elements we use [6, 23, 24, 26]: they are scalar
functions or vector fields associated to all the simplices of the mesh m. We start by
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denoting ϕn the only continuous, piecewise affine function, which is equal to 1 at n
and to 0 at other nodes. We set W 0

m = span {ϕn |n ∈ Nm}. The degree (zero in
this case) of the elements of W 0

m refers to the dimension of the simplices they are
associated with (i.e., nodes) and not to the degree of ϕn as a polynomial. To the edge
e, let us associate the vector field we of the form a×x+b in each tetrahedron t ∈ Tm;
the two vectors a and b are determined by imposing that the circulation of we along
e ∈ t is 1 and 0 along the other edges of t. We denote W 1

m = span {we | e ∈ Em}.
Similarly, W 2

m = span {vf | f ∈ Fm} with vf the vector of the form ax + b in each
tetrahedron t ∈ Tm; the scalar a and the vector b are determined by imposing that
the flux of vf across the face f ∈ t is 1 and 0 across the other faces of t. Finally, we
introduce W 3

m = span {µt | t ∈ Tm}, where µt is the only scalar whose integral over t
is 1 and 0 over the other tetrahedra.1

Note that, given two adjacent tetrahedra t and t′ sharing a face f , the function ϕn

and both the tangential component of we and the normal component of vf are contin-
uous across f , whereas the function µt is not. Thanks to these continuity properties,
W 0

m ⊂ H1(Ω), W 1
m ⊂ H(curl,Ω), W 2

m ⊂ H(div,Ω), and W 3
m ⊂ L2(Ω). The spaces

W p
m, p = 0, 1, 2, 3, have finite dimension given by Nm, Em, Fm, Tm, respectively, and

they play the role of Galerkin approximation spaces for the latter functional spaces.
The properties introduced so far concern the spaces W p

m taken one by one. There
are properties of the structure made of the spaces W p

m when taken together. We know
that the following inclusions hold:

gradW 0
m ⊂W 1

m, curlW 1
m ⊂W 2

m, divW 2
m ⊂W 3

m.

It is natural to ask when the sequence

{0} −→W 0
m

grad−→ W 1
m

curl−→W 2
m

div−→W 3
m −→ {0}

is exact at levels 1 and 2, i.e., when it happens that

ker(curl;W 1
m) = gradW 0

m, ker(div;W 2
m) = curlW 1

m,

where

ker(curl;W 1
m) := W 1

m ∩ ker(curl), ker(div;W 2
m) := W 2

m ∩ ker(div).

At levels 0 and 3, we lose the property of exactitude for the previous sequence be-
cause, at level 0, the gradient operator is not injective, and, at level 3, the divergence
operator is not surjective. The Poincaré lemma states that, when the domain Ω is
contractible [14], the image fills the kernel in both cases. This is not the case with Ω
nonsimply connected; for example, we have in fact that grad (W 0

m) is a proper sub-
set of ker(curl;W 1

m). This tells us something about the topology of Ω; namely, the

1Given the nodes n, l,m, k, the edge e = {l,m}, the face f = {l,m, k}, and the tetrahedron
t = {i, j, k, l}, the generators of the spaces W p

m, p = 0, 1, 2, 3, respectively, can also be defined as
follows (λn is the barycentric coordinate associated to n):

ϕn = λn, we = λl gradλm − λmgradλl,

vf = 2 (λl gradλm × gradλk + λm gradλk × gradλl + λk gradλl × gradλm),

µt = 6 (λi gradλj × gradλk · gradλl + λj gradλk × gradλl · gradλi

+λk gradλl × gradλi · gradλj + λl gradλi × gradλj · gradλk) = [vol(t)]−1.
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presence of b1 “loops,” where b1 = dim [ker(curl;W 1
m)/grad (W 0

m)] is the Betti num-
ber of dimension 1 of the domain. Solenoidal fields which are not curls indicate the
presence of b2 “holes,” where b2 = dim [ker(div;W 2

m)/curl (W 1
m)] is the Betti number

of dimension 2 of the domain. These are global topological properties of the meshed
domain; they do not depend on the mesh that is used to compute them, but they are
intrinsic to the considered domain Ω. The sequences are thus an algebraic tool by
which the topology of Ω can be explored (and this was Whitney’s concern [31]).

The connection between the vector field picture and the cohomological picture in
the electromagnetic context has also been considered more recently in [22, 30].

4. Chains, boundary homomorphism, and homology groups. Let m be
the simplicial mesh on Ω ⊂ R

3. A p-chain c is an assignement to each simplex of
dimension p in m of a number α, and we denote by Cp(m) the set of all p-chains.
The set Cp(m) has a structure of an abelian group with respect to the addition of
p-chains; two p-chains are added by adding the corresponding coefficients.

To give an example, let us consider a path of edges of the mesh m to go from a
point n1 to a point n2; it is an oriented line. Assigning an integer αe equal to +1
or −1 when the edge e belongs to the path and its orientation is in agreement or in
disagreement with that of the path and 0 for all edges e that do not belong to the
path, we define a 1-chain. A circuit is a line plus a way to run along it; so, when
the line is made of oriented edges, we need to tell the positive direction along each
edge, which is precisely what the chain coefficient αe does. We remark that “chain”
is a more general concept than “path,” “circuit,” etc. In our case, we assume that all
coefficients αi are relative integers.

The next concept is the boundary operator ∂p : Cp(m) → Cp−1(m), p > 0. By
definition, we have

∂1(e) =
∑

n∈Nm

Ge,n n, ∂2(f) =
∑
e∈Em

Rf,e e, ∂3(t) =
∑

f∈Fm

Dt,f f.

Note that ∂p is represented by a matrix that is Gt, Rt, or Dt depending on the
dimension p > 0. We remark, in particular, that ∂p+1 ◦ ∂p = 0, i.e. the boundary of
a boundary is the zero chain.

We will say that a p-chain c is closed if ∂pc = 0. Nontrivial closed p-chains are
called p-cycles and constitute the subspace Zp(m) = ker(∂p;Cp(m)). A p-chain c is
a boundary if there is a (p + 1)-chain γ such that c = ∂p+1 γ. The p-boundaries
constitute the subspace Bp(m) = ∂p+1 Cp+1(m). Both Zp(m) and Bp(m) are abelian
groups with respect to the addition of p-chains. Boundaries are cycles, but not all
cycles are boundaries; we have in fact that Bp(m) ⊂ Zp(m).

The quotient space Hp(m) = [Zp(m)/Bp(m)] is the homology group of order p
of the mesh m, and the Betti number bp is equal to dim [Hp(m)]. In particular, we
have that b0 = dim [ker(grad;W 0

m)] is the number of connected components of Ω, and
b3 = dim [div(W 3

m)] is the number of connected components of Γ minus one.
Our concern is to determine the cycles that are not boundaries for p = 1 and 2, i.e.,

to computate the generators of H1(m) and H2(m). Triangulating a domain reduces
the calculation of Hp(m) to a finite procedure (in section 8, we present an algebraic
algorithm to define a basis of Hp(m), p = 1 and 2); the remarkable thing is that
homology groups, in spite of being defined via triangulation, do measure something
intrinsic and geometrical (they are topological invariants; i.e., they depend on the
domain up to a homeomorphism) that does not depend on the mesh. The homology
groups of a surface have a direct link with the possibility of representing curl-free
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(resp., divergence-free) vectors as gradients (resp., curls). This link is a determinant
in the construction of numerical algorithms for solving given problems in terms of
scalar or vector potentials, as we are going to see. A key tool in this construction is
the Euler–Poincaré characteristic of Ω and its boundary Γ [14].

Remark 4.1. Given a connected domain Ω, the Euler–Poincaré characteristic of
Ω is the integer

χ(Ω) = Nm − Em + Fm − Tm,(10)

where Nm, Em, Fm, and Tm denote, respectively, the number of nodes, edges, faces,
and tetrahedra of the mesh m discretizing Ω.

Remark 4.2. Given a connected orientable surface Γ, the Euler–Poincaré charac-
teristic of Γ is the integer

χ(Γ) = NΓ
m − EΓ

m + FΓ
m,(11)

where NΓ
m, EΓ

m, and FΓ
m denote, respectively, the number of nodes, edges, and triangles

of the mesh mΓ discretizing Γ.
The Euler–Poincaré characteristic is linked to the homology groups’ dimension as

follows:

χ(Γ) = bΓ0 − bΓ1 + bΓ2 , χ(Ω) = b0 − b1 + b2 − b3,

where bΓi , i = 0, 1, 2 (resp., bi, i = 0, 1, 2, 3), are the Betti numbers of Γ (resp.,
Ω). The major point is that these numbers, and consequently the Euler–Poincaré
characteristic, are topological invariants. For more details on the subject, see [29].

5. Some discrete spaces and tools. Let us consider a triangulation m of Ω,
its restriction mΓ to the boundary Γ of Ω. Let us define the following two functional
spaces on Ω and their analogues on the boundary Γ:

W 2
m,0 = {v ∈W 2

m |v · nΓ = 0 on Γ }, W 2
mΓ = {πv |v ∈W 2

m},
W 1

m,0 = {v ∈W 1
m |v × nΓ = 0 on Γ }, W 1

mΓ = {πv |v ∈W 1
m}.

Note that W 1
mΓ is the restriction to Γ of the space W 1

m in the sense that its vectors are
associated to the mesh edges belonging to mΓ. Similarly, the space W 2

mΓ , also known
as the Raviart–Thomas element space, is the restriction to Γ of W 2

m. Its vectors ve

are tangential to Γ and, in each triangle f ∈ mΓ, are determined by imposing that
the flux of ve across the edge e ∈ f is 1 and 0 across the other edges of f . Vectors of
the space W 2

mΓ are adapted to represent flux densities that are tangential to Γ.
We look for a discrete approximation um of u on the mesh m of the form

um = curl pm(12)

with um (resp., pm) lying in W 2
m (resp., W 1

m). The uniqueness of the potential pm is
automatically satisfied if we choose pm ∈ W 1

m and we add a gauge condition. In the
following, a linear space for the discrete potential pm is proposed; we treat the gauge
condition in an entirely algebraic way and obtain the so-called axial gauge [16].

To define the discrete space of the vector potential, we need some details on the
graph defined in the set of vertices of m by the mesh edges. For a general reference
on graph theory, we suggest [14].
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β
γ

e

Fig. 2. In the given mesh m, the thick dark edges compose the spanning tree T , and the dashed
ones compose the corresponding cotree Em \ T . The coedge e closes a circuit together with the tree
edges β and γ.

A set T of edges of the mesh m such that C1(T ) does not contain any cycle is
called a tree. A tree is a spanning tree if there is no strictly larger tree containing
it. The set of all left-over edges, i.e., Em \ T , is called the associated cotree, and its
elements are the coedges with respect to T . Coedges thus furnish a basis for 1-cycles
in the sense that, given a coedge e, there is a unique way to assign an integer αε to
each edge ε of the tree in order to get a closed 1-chain: ∂(e +

∑
ε∈T αε ε) = 0. In

short, one says that each coedge e ∈ Em \ T “closes a circuit” Ce in conjunction with
edges of the tree. (An example is given in Figure 2, where Ce = {e} ∪ {β} ∪ {γ}.)

Remark 5.1. For a given mesh m of the domain Ω, the number of edges contained
in a spanning tree T can be expressed in terms of the Betti numbers of the domain
by means of the following formula (with easy recursive proof):

#T = b1 + (Nm − b0).(13)

For contractible domains, we have #T = Nm − 1. For noncontractible ones, the
spanning tree is enriched with additional edges to take into account that there are
1-cycles that do not bound a surface (b1 �= 0). (The enriched spanning tree has been
called a “belted spanning tree” in [6].)

Now, we explain how to use trees and cotrees to define the proper approximation
space to solve the considered problem. In the following sections, T (resp., T Γ) always
represents a spanning tree on Ω (resp., Γ).

6. Approximation of the problem in the simply connected case. We are
interested here in solving problem (7); the domain Ω and its boundary Γ are assumed
to be connected and simply connected. We thus assume that Ω is a sphere (up to a
homeomorphism). The nonsimply connected case is addressed in the next section.

6.1. Lifting the boundary condition for a sphere. As in [10], given T Γ and
g ∈ L2

0(Γ), we construct a vector ûΓ
m in W 2

mΓ such that divΓ û
Γ
m = 0, ûΓ

m ·nΓ = g face
by face on Γ, we show that ûΓ

m is unique, and we define û ∈W 2
m as the divergence-free

lifting of ûΓ
m in Ω. Problem (8) is thus well-posed.

Proposition 6.1. Let us consider a triangulation m of Ω, its restriction mΓ to
the boundary Γ of Ω, and a spanning tree T Γ in mΓ. Let Γ be a sphere and g ∈ L2

0(Γ).
There is a unique divergence-free vector ûΓ

m ∈W 2
mΓ of the form

ûΓ
m =

∑
e∈EΓ

m\T Γ

ûe curlwe, we ∈W 1
mΓ ,(14)
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τ

nΓ

Σ

νC

C

C

Fig. 3. Due to the simple connectedness of Γ, any circuit C in mΓ bounds a surface Σ ⊂ Γ.

that satisfies ∫
f

ûΓ
m · nΓ =

∫
f

g ∀ f ∈ FΓ
m.(15)

Proof. Let us introduce the two spaces ker(divΓ;W
2
mΓ) and

V(T Γ) = span {we |we ∈W 1
mΓ , e ∈ EΓ

m \ T Γ}.
The curl operator is well defined as V(T Γ)→ ker(divΓ;W

2
mΓ).

The curl mapping V(T Γ) → ker(divΓ;W
2
mΓ) is injective. Let us consider the

vector p̂Γ
m ∈ V(T Γ) of the form

p̂Γ
m =

∑
e∈EΓ

m\T Γ

ûewe.

Let α ∈ EΓ
m \T Γ be a given coedge, and let C ⊂ {α}∪T Γ be the associated cycle;

then we have ∫
C

p̂Γ
m · τC = ûα

∫
α

wα · τC = ûα,

where τC is the tangential vector to C.
On the other hand, since Γ is simply connected, C is the boundary of a surface

Σ contained in Γ. On Γ, the normal νC and tangential τC vectors to C are linked to
nΓ through the relation νC × τC = nΓ (see Figure 3). By definition, we have that

(curl p̂Γ
m) · nΓ = curlΓ(πp̂

Γ
m) = divΓ(p̂

Γ
m × nΓ).

The Stokes theorem and the previous tools yield

ûα =

∫
C

p̂Γ
m · τC =

∫
C

(p̂Γ
m × nΓ) · νC =

∫
Σ

divΓ(p̂
Γ
m × nΓ) =

∫
Σ

(curl p̂Γ
m) · nΓ.

If curl p̂Γ
m = 0, then ûα = 0 for all α ∈ EΓ

m \ T Γ, yielding p̂Γ
m = 0.

Let W be the space composed of vectors in ker(divΓ;W
2
mΓ) verifying (15) with

g ∈ L2
0(Γ). The linear spaces V(T Γ) and W have the same dimension. On one hand,

we have dim [V(T Γ)] = EΓ
m − (NΓ

m − 1) thanks to Remark 5.1, and on the other
hand, dim [W ] = FΓ

m − 1. Due to the fact that the Euler–Poincaré characteristic for
a spherical surface is 2, Remark 4.2 yields

EΓ
m −NΓ

m + 1 = FΓ
m − 1.

Given a spanning tree T Γ and a scalar function g ∈ L2
0(Γ), there is a unique

divergence-free vector of the form (14) and verifying (15).
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Fig. 4. In this two-dimensional example, the thick dark edges constitute the set EΓm, the dashed
edges define E�

m, and the light ones compose E intm . Note that here EB
m is empty but it is not always

the case with more general three-dimensional meshes m.

6.2. Interior problem for a sphere. At this point we can write

um = ûm +
∑
e∈?

uecurlwe,

where ûm is the solution of problem (8) in the sense given in Proposition 6.1 and the
symbol “?” in the previous sum is there on purpose to indicate that we do not know
yet to which set of internal coedges we have to extend the sum. We remark that

Em = EΓ
m ∪ E int

m ∪ E
m ∪ EBm,

where E
m is the set of mesh edges having only one extremity on Γ, E int
m is the set of

mesh edges having both extremities in Ω, and EBm is the set of mesh edges interior to
Ω but with both extremities on Γ (see the example in Figure 4).

We denote T int a spanning tree contained in E int
m and T 
 a subset of E
m composed

of one edge since Γ is connected, linking T int to T Γ and

U0
m = (E int

m ∪ E
m ∪ EBm) \ (T int ∪ T 
).

In the next proposition, we prove that problem (9) is well-posed at the discrete
level. In particular, given T int ∪ T 
 and a function ω ∈ ker(div;W 2

m), we construct a
divergence-free vector u0

m ∈W 2
m such that curl u0

m = ω−curl ûm in Ω and u0
m·nΓ = 0

face by face on Γ, and we show that u0
m is unique.

Proposition 6.2. Let us consider a triangulation m of Ω and a spanning tree
T int ∪ T 
 in m \mΓ. Let us suppose that Ω is a sphere and ω ∈ ker(div;W 2

m). There
exists a unique divergence-free vector u0

m ∈W 2
m,0 of the form

u0
m =

∑
e∈U0

m

u0
e curlwe, we ∈W 1

m,(16)

that satisfies

curl u0
m = ω − curl ûm in Ω,(17)

where ûm is the divergence-free lifting in Ω of ûΓ
m defined in Proposition 6.1.

Proof. Let us introduce the two spaces ker(div;W 2
m,0) and

V(T int, T 
) = span {we |we ∈W 1
m , e ∈ U0

m}.
The curl operator is well defined as V(T int, T 
)→ ker(div;W 2

m,0).
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The curl mapping V(T int, T 
)→ ker(div;W 2
m,0) is injective. The proof given for

Proposition 6.1 is the same with p0
m ∈ V(T int, T 
) of the form

p0
m =

∑
e∈U0

m

ûewe.

The linear spaces V(T int, T 
) and ker(div;W 2
m,0) have the same dimension. Be-

cause #T int = (Nm −NΓ
m − 1), #T 
 = 1, on one hand we have

dim [V(T int , T 
)] = Em − EΓ
m − (Nm −NΓ

m − 1 + 1).

On the other hand, because dim [W 2
m] = Fm and dim [W 2

m,0] = Fm − FΓ
m, we get

dim [ker(div;W 2
m,0)] = Fm − FΓ

m − (Tm − 1).

Note that we have Tm − 1 independent relations since divv = 0 and Ω is simply
connected, as it is proved in Lemma 4.2 of [10]. By using the Euler–Poincaré charac-
teristics and Remarks 4.1 and 4.2, we get

Em − EΓ
m − (Nm −NΓ

m)− (Fm − FΓ
m − (Tm − 1))

= −(Nm − Em + Fm − Tm) + (NΓ
m − EΓ

m + FΓ
m)− 1

= −1 + 2− 1 = 0.

The present proof can also be carried out at an algebraic level. Proposition 6.2
states that, given T int∪T 
, ω ∈ ker(div;W 2

m), and ûm the divergence-free lifting in Ω
of ûΓ

m defined in Proposition 6.1, there is a unique divergence-free vector u0
m ∈W 2

m,0

of the form (16). Moreover, its coefficients u0
e, e ∈ U0

m, on the chosen basis, are the
components of the solution of the linear system∑

e∈U0
m

u0
e

∫
Ω

curlwe · curlwγ =

∫
Ω

ω ·wγ −
∫

Ω

ûm ·wγ ∀ γ ∈ U0
m.(18)

The matrix

A =

(∫
Ω

curlwe · curlwγ

)
e,γ∈U0

m

has full rank; it is in fact the mass matrix for the chosen basis {curlwe | e ∈ U0
m}

(defined on the coedges) of the space ker(div;W 2
m,0). Note that A is a symmetric and

positive definite sparse matrix so that the linear system (18) can be solved iteratively
by using a conjugate gradient method, as first done by Roux [28].

Remark 6.3. Note that E int
m and E
m can be empty. In this case, there is no interior

spanning tree (T int ∪ T 
) and U0
m = EBm. As Nm = NΓ

m, Remarks 4.1 and 4.2 yield
again

(#U0
m =) Em − EΓ

m = Fm − Fm
m − (Tm − 1) (= dim [ker(div;W 2

m,0)]).

A similar remark can be done in the nonsimply connected case.
The function

um = ûm +
∑
e∈U0

m

u0
e curlwe(19)

is then the approximated solution of problem (7). It is natural to ask whether the
computed solution depends on the chosen spanning tree. The answer is no, as we
state in the next subsection.
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6.3. Independence on the spanning tree. We remark that the solution does
not depend on the adopted spanning tree if ω ∈ ker(div;W 2

m). Let us consider two
boundary and interior spanning trees as well as two sets of mesh edges:

T Γ
1 , T1 = T int

1 ∪ T 

1 , U0

m,1 = (E int
m ∪ E
m ∪ EBm) \ T1,

T Γ
2 , T2 = T int

2 ∪ T 

2 , U0

m,2 = (E int
m ∪ E
m ∪ EBm) \ T2.

Let ui
m be the solution associated with EΓ

m \ T Γ
i on the boundary and with U0

m,i at

the interior (i = 1, 2). Let us denote vm = u1
m − u2

m. We will prove that vm = 0.
On the boundary we consider vm =

∑
e∈EΓ

m
va curlwe; since u

1
m·nΓ = u2

m·nΓ = g
on Γ, we have ∫

f

vm · nΓ = 0 ∀ f ∈ FΓ
m.

Thus vm · nΓ = 0 on Γ, since the family {curlwe |we ∈ W 1
m, e ∈ EΓ

m \ T Γ
i }, i = 1 or

2, is a basis for the space span {curlwe |we ∈W 1
m, e ∈ EΓ

m}.
In the interior, because ω ∈ ker(div;W 2

m), we can write that

ω =
∑
e∈Em

ωe curlwe, we ∈W 1
m.

We have that, for all wγ ∈W 1
m with γ ∈ U0

m,1 or γ ∈ U0
m,2,∫

Ω

ω ·wγ =
∑
e∈Em

ωe

∫
Ω

we · curlwγ .

The family {curlwγ |wγ ∈W 1
m , γ ∈ U0

m,i }, i = 1or 2, is a basis for ker(div;W 2
m), so

we have that for all γ ∈ E int
m ∪ E
m ∪ EBm and not only for all γ ∈ U0

m,i,∫
Ω

ω ·wγ =
∑
e∈Em

ωe

∫
Ω

we · curlwγ .

Remarking that for all γ ∈ E int
m ∪ E
m ∪ EBm∫
Ω
u1
m · curlwγ =

∫
Ω
ω ·wγ ,∫

Ω
u2
m · curlwγ =

∫
Ω
ω ·wγ ,

we have that, for all γ ∈ E int
m ∪ E
m ∪ EBm,∫

Ω

vm · curlwγ = 0.

That together with vm ∈ ker(div;W 2
m) implies vm = 0.

As we have seen, the final solution does not depend on the particular spanning
tree to gauge the potential. In practice, however, the efficiency of the method does
via the dependence on the particular tree of the condition number of the “stiffness”
matrix A in (18). This dependence is not too dramatic anyway, as underlined by the
numerical tests presented in the appendix of [10].
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1C
2C

Fig. 5. Two disjoint loops C1 and C2, an example of generators of the first homology group
H1(mΓ) of the torus surface Γ.

7. Approximation of the problem in the nonsimply connected case.
In the following, we turn our attention to the case where Ω and its boundary are
nonsimply connected. As an example of such a situation, we assume that Ω is a torus,
up to a homeomorphism. For the torus, we have χ(Γ) = 0 and χ(Ω) = 0. Note that Γ
is an “empty” torus, while Ω is a “full” torus. Let us look at the differences between
the simply connected and nonsimply connected cases.

7.1. Lifting the boundary condition for a torus. Let SΓ denote the belted
spanning tree on the torus boundary, i.e., SΓ = T Γ ∪{Π1,Π2}, where T Γ is the usual
spanning tree without loops and Π1, Π2 are two suitable edges of EΓ

m. In particular,
denote C1 and C2 two disjoint loops of Γ, as presented in Figure 5, and we have that

T Γ ∪ {Π1} contains a loop homologous to C1,
T Γ ∪ {Π2} contains a loop homologous to C2.

Note that, with respect to the simply connected case, the spanning tree on the surface
has been enriched according to dim [H1(m

Γ)] (two edges in the case of the torus
surface), as explained in Remark 5.1. Thanks to these added edges, the circuits
associated to all remaining coedges do bound a surface contained in Γ, and this is a
property that will be exploited during the proof of the following proposition. See [27]
for a method to build up a belted spanning tree.

Proposition 7.1. Let us consider a triangulation m of Ω, its restriction mΓ

to the boundary Γ of Ω, and a spanning tree SΓ in mΓ. Let Γ be a torus, and let
g ∈ L2

0(Γ). There is a unique divergence-free vector û
Γ
m ∈W 2

mΓ of the form

ûΓ
m =

∑
e∈EΓ

m\SΓ

ûe curlwe, we ∈W 1
mΓ ,(20)

that satisfies ∫
f

ûΓ
m · nΓ =

∫
f

g ∀ f ∈ FΓ
m.(21)

Proof. The proof is similar to the proof of Proposition 6.1. We introduce the two
spaces ker(divΓ;W

2
mΓ) and

V(SΓ) = span {we |we ∈W 1
mΓ , e ∈ EΓ

m \ SΓ}.
The curl operator is well defined as V(SΓ)→ ker(divΓ;W

2
mΓ).

The curl mapping V(SΓ)→ ker(divΓ;W
2
mΓ) is injective. Let us consider the vector

p̂Γ
m ∈ V(SΓ) of the form

p̂Γ
m =

∑
e∈EΓ

m\SΓ

ûewe.
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1C

α C

Σ

Fig. 6. When the circuit C is homologous to one of the two independent loops, say, C1, it does
not bound any surface. In this case, we have to consider the loop C ∪ C1 that bounds a (lateral, in
this case) surface Σ.

Let α ∈ EΓ
m \ SΓ be a given coedge, and let C ⊂ {α} ∪ SΓ be the associated cycle.

It can happen either that C is the boundary of a surface Σ (in this case we repeat
exactly the proof for the simply connected case) or that C is homologous to one of
the two fundamental loops, say, C1, and so it does not bound a surface. To overcome
the problem, we have to consider the loop C ∪C1; now, this loop does bound a surface,
and we denote by Σ the corresponding surface (see Figure 6).

We have then ∫
C∪C1

p̂Γ
m · τC∪C1 = ûα

∫
α

wα · τC∪C1 = ûα,

where τC∪C1 is the tangential vector to C ∪ C1. We then conclude that ûα = 0 by
following the same steps of the proof for Proposition 6.1.

Let W again be the space composed of vectors in ker(divΓ;W
2
mΓ) verifying (21)

with g ∈ L2
0(Γ). The linear spaces V(SΓ) and W have the same dimension. On one

hand, we have dim [V(SΓ)] = EΓ
m − (NΓ

m − 1 + 2) thanks to Remark 5.1, and on the
other hand, dim [W ] = FΓ

m−1. Due to the fact that the Euler–Poincaré characteristic
for an empty torus is 0, the equality

EΓ
m −NΓ

m − 1 = FΓ
m − 1

follows from Remark 4.2.

7.2. Interior problem for a torus. Let C1 be the loop that does not bound
any surface of Ω, and let C2 be the one that bounds a surface Σ2 when considered in
Ω (see Figure 5). The flux condition∫

Σ2

u · nΣ =

∫
∂Σ2

p · τC2 �= 0

yields πp not identically null. In this case, to solve problem (9) we need to “reactivate”
one of the two edges Π1,Π2 excluded in problem (8) and precisely the one associated
with the loop that bounds when we pass from Γ to Ω. In any other case, the degree
of freedom associated to Π2 is zero. In the following, we take into account the more
general case where πp �= 0 and we assume that Π∗

2 = supp(πp). The degree of
freedom associated to this particular edge is equal to the flux of the field u across
the transversal section of the torus. For this feature, from now on, we call Π∗

2 the
“flux edge.” Denoting by T int the usual spanning tree without loops, we have S int =
T int ∪ {Π1}, and the set U0

m is now defined as follows:

Ũ0
m = (E int

m ∪ E
m ∪ EBm ∪ {Π∗
2}) \ (S int ∪ T 
).
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Proposition 7.2. Let us consider a triangulation m of Ω, together with a span-
ning tree S int ∪ T 
 in m. Let us suppose that Ω is a torus and ω ∈ ker(div;W 2

m).
There exists a unique divergence-free vector u0

m ∈W 2
m,0 of the form

u0
m =

∑
e∈Ũ0

m

u0
e curlwe we ∈W 1

m,(22)

that satisfies

curl u0
m = ω − curl ûm in Ω,(23)

where ûm is the divergence-free lifting in Ω of ûΓ
m defined in Proposition 7.1.

Proof. Let us introduce the two spaces ker(div;W 2
m,0) and

V(S int, T 
) = span {we |we ∈W 1
m, e ∈ Ũ0

m}.
The curl operator is well defined as V(S int, T 
)→ ker(div;W 2

m,0).

The curl mapping V(S int, T 
) → ker(div;W 2
m,0) is injective. The proof given for

Proposition 7.1 is the same with p0
m ∈ V(S int, T 
) of the form

p0
m =

∑
e∈Ũ0

m

ûewe.

The linear spaces V(S int, T 
) and ker(div;W 2
m,0) have the same dimension. In

fact, we have

dim [V(S int, T 
)] = Em − EΓ
m + 1− (Nm −NΓ

m − 1 + 1 + 1),

dim [ker(div;W 2
m,0)] = Fm − FΓ

m − (Tm − 1)− 1.

Note that now, for the presence of “one hole” in Ω, the equation divu = 0 gives
only Tm independent conditions. The two are coincident since the Euler–Poincaré
characteristic for the “full” torus and its surface is 0.

Once again, the present proof can also be carried out at an algebraic level. Propo-
sition 7.2 states that, given S int ∪ T 
, ω ∈ ker(div;W 2

m), and ûm the divergence-free
lifting in Ω of ûΓ

m defined in Proposition 7.1, there is a unique divergence-free vector
u0
m ∈ W 2

m,0 of the form (22). Moreover, its coefficients u0
e, e ∈ Ũ0

m, on the chosen
basis, are the components of the solution of the linear system∑

e∈Ũ0
m

u0
e

∫
Ω

curlwe · curlwγ =

∫
Ω

ω ·wγ −
∫

Ω

ûm ·wγ ∀ γ ∈ Ũ0
m.(24)

The matrix

Ã =

(∫
Ω

curlwe · curlwγ

)
e,γ∈Ũ0

m

again has full rank, but it is no more sparse due to the presence of the basis function
associated to {Π∗

2}.
The function

um = ûm +
∑
e∈Ũ0

m

u0
e curlwe(25)

is then the approximated solution of problem (7) in the nonsimply connected case.
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C2i1

C2i Σ i

Fig. 7. Two disjoint loops C2i−1 and C2i, 1 ≤ i ≤ κ, example of generators of the first homology
group of the ith “empty” torus belonging to the surface of the sum of κ tori.

7.3. Case of the sum of κ tori. The theory that we have presented can be
generalized to a domain Ω that is the sum of κ tori, with the integer κ ≥ 1. We have
that

χ(Γ) = 1− 2κ+ 1 = 2(1− κ), χ(Ω) = 1− κ.

For problem (8), we have to consider

SΓ =

(
T Γ ∪

κ⋃
i=1

{Π2i−1,Π2i}
)

,

where T Γ is the usual spanning tree without loops and {Π2i−1, Π2i} for 1 ≤ i ≤ κ is
one pair of suitable edges of EΓ

m. In particular, denoting by C2i−1 and C2i two disjoint
loops as presented in Figure 7, we have that

T Γ ∪ {Π2i−1} contains a loop homologous to C2i−1,

T Γ ∪ {Π2i} contains a loop homologous to C2i.

The spanning tree on the surface has been enriched according to dim [H1(m
Γ)] that

is now 2κ, as explained in Remark 5.1. The proof of Proposition 7.1 for problem
(8) does not change globally; concerning the dimension of the approximation and
approximated spaces, we have now

dim [V(SΓ)] = EΓ
m − (NΓ

m − 1 + 2κ), dim [W ] = FΓ
m − 1.

The two coincide thanks to the Euler–Poincaré characteristic of Γ.
Similarly, for 1 ≤ i ≤ κ, let C2i−1 be the loop that does not bound any surface

of Ω, and let C2i be the one that bounds a surface Σi when considered in Ω (see
Figure 7). For problem (9) we need to “reactivate” one of the two edges Π2i−1,Π2i

excluded in problem (8) and precisely the one associated with the loop that bounds
a surface when we pass from Γ to Ω. So, because Π∗

2i = supp (πp), the flux edges,
1 ≤ i ≤ κ, with the vector p as in section 7.2, and denoting by T int the usual spanning
tree without loops, we have

S int =

(
T int ∪

κ⋃
i=1

{Π2i−1}
)

,
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and the set U0
m is now defined as follows:

Ũ0
m =

(
E int
m ∪ E
m ∪ EBm ∪

κ⋃
i=1

{Π∗
2i}
)
\ (S int ∪ T 
).

The proof of Proposition 7.2 for problem (9) is unchanged; the dimension of the
approximation and approximated spaces is now

dim [V(S int, T 
)] = Em − EΓ
m + κ− (Nm −NΓ

m − 1 + κ+ 1),

dim [H0(div0,m)] = Fm − FΓ
m − (Tm − 1)− κ,

and the two coincide thanks to the Euler–Poincaré characteristic of Ω and Γ.
Remark 7.3. Another existing strategy to deal with potential problems in non-

simply connected domains relies on the introduction of “cuts” in the domain. The big
difficulty with this method is the construction of cuts and understanding where they
should be introduced. Kotiuga [21] and coworkers have provided a correct definition
of a cut, a constructive algorithm, and an implementation of it (see [18], for example).

The “belted tree” approach proposed in this paper allows us to achieve knowledge
of the topological features of the considered domain if this is not given a priori. This
knowledge is a preliminary step to the introduction of cuts.

8. Algorithmics and a simple example. From a practical point of view, the
determination of the set U0

m for simply connected domains is standard, and we refer
to [28] for a procedure to construct a particular spanning tree.

This is not the case for the nonsimply connected case. The problem is now to
find out the independent loops in order to select explicitly the flux edges previously
introduced. We have, in particular, to select the loops that bound a surface when we
pass from the boundary to the interior. This question can be summarized by saying
that we look for generators of H1(m) starting from those of H1(m

Γ).
In section 8.1, we present the algebraic tools, and we explain how to use them in

section 8.2. The very first results for a torus are presented in section 8.3. We remark
that only the computation of a basis for H1(m) is useful to our purpose of solving
problem (24). In any case, a basis for H2(m) can be computed with the same tools,
and at the end of section 8.2 we give a few indications of how to proceed with it. See
[20] for another type of algorithm.

8.1. An integer QR factorization. In this section, we present a matrix de-
composition to compute a set of generators of the homology groups of order p = 1
and 2 of Ω ⊂ R

3. The same algorithm has been used in [25] to detect mesh defects.
The basic idea is to make an integer QR factorization of the matrices Gt, Rt, and Dt.
Given a matrix A ∈ M(r, s), we compute a nonsingular unimodular matrix Q (i.e.,
det(Q) = ±1) and a permutation matrix P such that R = QAP is upper triangular.
As shown later, the two matrices Q and P are obtained as products of a certain num-
ber of local matrices Qi,j and Pi,j and exhibit the row and column rank deficiency of
A [8]. The key point of the algorithm is the following property [17]: given a matrix
A ∈M(r, s) with integer elements, we have

Zr = ker (At) ⊕ range (A), Zs = ker (A) ⊕ range (At).(26)

To defineQ and P, we need two elementary operations. First is the transformation
π1 of a vector v = (εi, εj)

t into the vector ṽ = (1, 0)t. To this purpose, let us introduce
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the elementary matrices

Qel
i,j =

(
εi 0
−εi εj

)
, (Qel

i,j)
−1 =

(
εi 0
εj εj

)

and the matrix

Qi,j(", q) =




δ
,q, " �= i , j, q �= i , j,

Qel
i,j(1, 1), " = i, q = i,

Qel
i,j(1, 2), " = i, q = j,

Qel
i,j(2, 1), " = j, q = i,

Qel
i,j(2, 2), " = j, q = j.

In our case, ε2i = 1, and the vector ṽ = π1(v) = Qel
i,jv. Second, we need the permu-

tation π2 of a vector’s components, i.e., the transformation of a vector v = (εi, εj)
t

into the vector ṽ = (εj , εi)
t. To this purpose, we have ṽ = π2(v) = Pel

i,jv, where Pel
i,j

is a permutation matrix; moreover, we introduce a matrix Pi,j defined similarly to
Qi,j (using Pel

i,j instead of Qel
i,j). We remark that (Pel

i,j)
−1 = Pel

i,j , owing to the fact

that Pel
i,j is a permutation matrix and that (Qi,j)

−1 is defined as Qi,j (using (Qel
i,j)

−1

instead of Qel
i,j). In the following, Ir denotes the identity matrix of dimension r > 0.

Now we describe the adopted procedure to build up Q and P for a given matrix
A ∈M(r, s).

Procedure. We set Q = Q0 ∈ M(r, r), P = P0 ∈ M(s, s). We loop on the
column index j, 1 ≤ j ≤ s:

1. We define Vj = {i |min{j, r} ≤ i ≤ min{s, r}, A(i, j) �= 0}, and we put k
equal to the cardinality of Vj , i1 equal to the smallest integer in Vj , and i2
equal to the smallest integer in Vj \ {i1}.

2. In case k = 0, let Pj,z be the matrix of the transformation π2 that permutes
the jth column of A with the zth one. The zth column is chosen to be the first
column, starting from the last one in A, for which there exists a row index s
such that A(s, z) �= 0. If the index z exists, P ←− P Pj,z, A←− APj,z, and
we go back to step 1; otherwise we stop the procedure.

3. In case k �= 0 but A(j, j) = 0, we apply a partial pivot strategy. Let Qj,i1 be
the matrix of the transformation π2 that permutes the jth row with the i1th
one; then Q ←− Qj,i1 Q, A←− Qj,i1 A, i1 ←− j, and we go to step 4.

4. In case k ≥ 2 and A(j, j) �= 0, let Qel
i1,i2

be the matrix of the transformation
π1 applied to the vector (A(i1, j), A(i2, j))

t, and let Qi1,i2 be the associated
matrix; then Q ←− Qi1,i2 Q, A←− Qi1,i2 A, and we go back to step 1.

5. In case k = 1 and A(j, j) �= 0, then j ←− j + 1, and we go back to step 1.
Starting with Q0 = Ir and P0 = Is, at the end of the procedure, the matrix A has
been replaced by R, an upper triangular one. If this new matrix R does not contain
zero rows, then dim [range(R)] = r. Otherwise, dim [ker(Rt)] = r − dim [range(R)].
We remark that the procedure converges and its computational cost is similar to that
of a QR decomposition by using Givens transformations.

8.2. Computation of homology group generators. Now, the question is
how we can use the previous procedure to compute the generators of Hp(m) for p = 1
and 2. To compute a set of generators for H1(m), we proceed as follows.

(i) We apply the procedure with A = Rt, Q0 = IEm , and P0 = IFm , and we
get two invertible matrices QR and PR such that RR = QR Rt PR is upper
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Fig. 8. An example of surface discretization for the torus.

triangular. The 1-cycles which bound a surface belong to the image of the
matrix Rt that is also the image of RR.

(ii) We define G̃t = GtQ−1
R . In this way we make a change of basis for the

1-chains. Looking at G̃t, we see immediately from the presence of nc zero
columns that the corresponding columns of Q−1

R represent vectors that belong
to the kernel of Gt. If dim [range (Rt)] = dim [ker (Gt)], then any 1-cycle
bounds. In the other case, we apply the procedure with A = G̃t, Q0 = INm

,
and P0 = IEm−nc . We then obtain two invertible matrices QG̃ and PG̃ such

that RG̃ = QG̃ G̃t PG̃ is upper triangular.
(iii) The rows in PG̃, corresponding to zero rows in RG̃, represent the vectors that

complete the kernel of Gt. In fact, we are looking for c such that Gt c = 0.
This is equivalent to G̃t v = 0, where v has zero in the first nc components
and, in the last Em − nc, any row in PG̃ corresponding to a new zero row
in RG̃. Then the components of c = Q−1

R v are the coefficients of a 1-chain
generator of H1(m).

To determine the generators of H2(m), it is sufficient to perform parts (i), (ii),
and (iii) with Dt at the place of Rt and Rt at the place of Gt.

8.3. Numerical results on the torus. As an application, we consider the case
of a torus. We discretize it by means of a mesh m of 596 tetrahedra and 179 nodes.
The discretization of Ω induces a discretization of the surface, denoted mΓ, composed
of 288 triangles and 144 nodes (see Figure 8).

We apply the procedure presented in section 8.2 to the matrices Rt and Gt of the
surface Γ. At this point we have a basis for the 1-cycles of the mesh mΓ that are not
boundaries, i.e., a basis for H1(m

Γ) (see Figures 9 and 10). Note that the loops C1
and C2 run around the two “holes” of the torus surface.

We want now to make evident the loop that bounds a surface when considered as
1-cycles of the mesh m in Ω. In other terms, in the set of the two computed generators
for H1(m

Γ), we look for the one that generates H1(m).
Let c be an element of H1(m

Γ) and vc the vector whose components are the
coefficients of c for the edges e ∈ EΓ

m and zero for e ∈ Em \ EΓ
m. We apply the

procedure to the matrix Rt associated to the mesh m in Ω, and we transform it into
an upper triangular matrix of the form RR = QR Rt PR. Finally, we consider the
vector wc = Q−1

R vc. If wc = 0, then the 1-chain c is homologous to zero in Ω (see
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Fig. 9. Wireframe representation of the loop C2, one of the two generators of the first homology
group of the torus surface.

Fig. 10. Wireframe representation of the loop C1, one of the two generators of the first homology
group of the torus surface.

Figure 9); if wc �= 0, then the 1-chain c is also a generator of H1(m) (see Figure 10).
In our case, the loop C1 is detected to be the element of a basis for H1(m). Note that
the adopted procedure can be optimized in several ways, such as, for example, by
looking for those generators with the minimum number of edges or faces, by applying
the procedure to suitable portions of the whole meshes, and by using a suitable data
format [13].

The two loops C1 and C2 are used as follows. For the lifting of the boundary
condition, the set SΓ of “null degrees of freedom” is a belted spanning tree obtained
by adding to the standard spanning tree T Γ two edges, Π1 ∈ C1 and Π2 ∈ C2, chosen in
an arbitrary way, with Π1 �= Π2. These two edges correspond to nonzero components
in the vector wc of the coefficients of the 1-chains c that generate H1(m

Γ).
For the interior problem, the set of active edges Ũ0

m is obtained by adding a flux
edge Π∗

2 to the set U0
m, the latter selected with the algorithm devoted to a simply

connected domain. We conclude by remarking that Π∗
2, the edge that has to be

reactivated when passing from the boundary to the interior to solve problem (24),
can be chosen to be any edge e ∈ EΓ

m for which the corresponding coefficient in the
1-chain c is nonzero.
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9. Conclusions. In this paper, we have studied the representation of a solenoidal
vector field in terms of a vector potential. The considered problem has been split into
two parts—a lifting problem of the boundary condition and an internal problem with
homogeneous boundary conditions.

The edge elements are a natural tool to compute vector potentials. On the other
hand, the gauge condition, which is necessary to ensure the potential uniqueness, is
taken into account in a fully discrete way and expressed in terms of a suitable set of
active mesh edges (active in the sense that the associated degree of freedom is a priori
different from zero).

According to the authors’ knowledge, the problem of the computation of the
vector potential is well understood for three-dimensional bounded domains which are
connected and simply connected, even with a connected but nonsimply connected
boundary. Here, we have presented a method to compute the vector potential for
three-dimensional bounded domains which are connected but nonsimply connected,
with a connected boundary. The case of three-dimensional bounded domains which
are nonsimply connected with a nonconnected boundary has not been considered in
the present work.
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polyèdre, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), pp. 679–684.

[6] A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity,
Edge Elements, Academic Press, New York, 1998.

[7] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equation
II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math.
Methods Appl. Sci., 24 (2001), pp. 31–48.

[8] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88/89 (1987), pp. 67–82.
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phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), pp.
29–63.

[13] L. Formaggia, personal communication, Ecole Polytechnique Féderale de Lausanne, Lausanne,
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Tübingen, Tübingen, Germany, 2001.

[21] P. R. Kotiuga, An algorithm to make cuts for magnetic scalar potentials in tetrahedral meshes
based on the finite element method, IEEE Trans. Magnetics, 25 (1989), pp. 4129–4131.

[22] C. Mattiussi, An analysis of finite volume, finite element, and finite difference methods using
some concepts from algebraic topology, J. Comput. Phys., 133 (1997), pp. 289–309.
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