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FINITE ELEMENT APPROXIMATION
OF A PHASE FIELD MODEL FOR SURFACE DIFFUSION

OF VOIDS IN A STRESSED SOLID

JOHN W. BARRETT, HARALD GARCKE, AND ROBERT NÜRNBERG

Abstract. We consider a fully practical finite element approximation of the
degenerate Cahn–Hilliard equation with elasticity: Find the conserved order
parameter, θ(x, t) ∈ [−1, 1], and the displacement field, u(x, t) ∈ R

2, such that

γ ∂θ
∂t

= ∇ . (b(θ)∇ [−γ ∆θ + γ−1 Ψ′(θ) + 1
2

c′(θ) C E(u) : E(u)] ) ,

∇ . (c(θ) C E(u)) = 0 ,

subject to an initial condition θ0(·) ∈ [−1, 1] on θ and boundary conditions
on both equations. Here γ ∈ R>0 is the interfacial parameter, Ψ is a non-
smooth double well potential, E is the symmetric strain tensor, C is the possi-

bly anisotropic elasticity tensor, c(s) := c0+ 1
2

(1−c0) (1+s) with c0(γ) ∈ R>0

and b(s) := 1 − s2 is the degenerate diffusional mobility. In addition to show-
ing stability bounds for our approximation, we prove convergence, and hence
existence of a solution to this nonlinear degenerate parabolic system in two

space dimensions. Finally, some numerical experiments are presented.

1. Introduction

Integrated circuits contain thin metallic lines (interconnects) that make electrical
contact between different components of the device. These lines are passivated with
a layer of oxide at large temperatures, and during the cooling process large stresses
are induced. Also voids nucleate in the interconnect, and they migrate and change
their shape due to the diffusion of atoms. One of the major failure mechanisms
in modern micro-electronic circuits is that voids cut the whole interconnect and
cause an open circuit. The understanding of how voids migrate is therefore of great
practical interest.

In general, diffusion in the bulk of the interconnect is much slower than that on
the surface of the void. Therefore we will restrict ourselves to the case where diffu-
sion is restricted to the surface of the void or more precisely to a diffuse layer at the
void surface. In this case there are three main driving forces for diffusion: one results
from capillary effects and the other two are due to electromigration and stressmigra-
tion. To formulate the latter two we need to introduce the electric potential φ, the
displacement field u, the symmetric strain tensor E(u) := 1

2 (∇u + (∇u)T ) and the
elastic energy density E(u) := 1

2 C E(u) : E(u). Here C is the possibly anisotropic

Received by the editor April 21, 2004 and, in revised form, January 26, 2005.
2000 Mathematics Subject Classification. Primary 65M60, 65M12, 65M50, 35K55, 35K65,

35K35, 82C26, 74F15.

c©2005 American Mathematical Society
Reverts to public domain 28 years from publication

7



8 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG

elasticity tensor, which we assume to be symmetric and positive definite. The prod-
uct A : B of two matrices A, B ∈ R

d×d is defined as
∑d

i,j=1 Aij Bij . We denote by
V the normal velocity of the void surface, Γ(t), with the normal pointing into the
void and by κ its mean curvature with the sign convention that κ is positive if the
interface is curved in the direction of the normal. Then mass conservation gives

(1.1) V = −∇s . Js on Γ(t) , where Js = −Ds ∇s (−ς κ + E(u) + α φ)

is the mass flux, ∇s . is the surface divergence, ∇s is the surface gradient, Ds is
a constant related to the surface diffusivity and ς is the surface energy density.
Here the first term describes capillary forces, the second describes forces resulting
from changes in the elastic energy and the forcing term α∇s φ is caused by an
electric current in the bulk of the material and this force is related to the “electron
wind” force. The above equations for the surface motion then have to be coupled
to the Laplace equation for the electric potential φ, the quasi-static mechanical
equilibrium equations for u and appropriate boundary conditions. For more details
we refer to [46], [16] and [36].

Let us briefly discuss the influence of the three terms of the mass flux in (1.1).
The first term leads to diffusion of atoms from regions of small mean curvature to
regions of high mean curvature. If only capillary effects were present the length/area
of the void surface would decrease and the voids would become circular/spherical;
see [23] and [24]. The second term leads to diffusion from regions of high elastic
energy to regions of smaller elastic energy, and the third gives rise to diffusion
in the direction opposite to the electric field (this is true if α < 0 and this is
the case for aluminum, which is mainly used for interconnects). The effect of all
three terms can be seen in numerical simulations; see, e.g., [14] and [12, §5]. From
these numerical simulations one notices that the topology of the voids can change.
Therefore numerical methods that depend on the direct parametrization of the void
surface will have difficulties. For an overview on numerical methods for interface
motion and their advantages and disadvantages we refer to [21].

In this paper we study a finite element approximation of a phase field model
for surface diffusion of voids due to capillary effects and stressmigration. We will
not include electromigration since a phase field method for surface diffusion in the
presence of electromigration (and in the absence of stressmigration) was already
analysed in [12]. A phase field model for electromigration of intergranular voids,
i.e., of voids in solids with different grain orientations, will be discussed in [8].
Furthermore, we will present numerical simulations of the combined effect of surface
diffusion, electromigration and stressmigration in a forthcoming paper where we will
also discuss applications to epitaxial growth; see [9].

In a phase field model a diffuse layer is used to describe interfaces or free surfaces.
To model surface diffusion by a phase field model we introduce an order parameter
θ which (away from a small interfacial layer) attains the value −1 in the void and
the value 1 in regions occupied by the metal. In the diffuse interfacial layer θ varies
continuously from −1 to 1. The free energy for the evolution law (1.1) is given by∫

Γ(t)

ς ds +
∫

Ω+(t)

E(u) dx ,

where the first term is the integral of the surface energy density ς over the void
surface and Ω+ is the region occupied by the metal. In phase field models the
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surface energy density ς is now replaced by a Ginzburg–Landau free energy den-
sity ς 2

π [ γ
2 |∇θ|2 + γ−1 Ψ(θ) ], where γ is a small positive parameter related to the

interfacial thickness and Ψ is a free energy density with two global minima at ±1.
In the above, and throughout, we will use for convenience an obstacle free energy
of the form

(1.2) Ψ(s) :=

{
1
2

(
1 − s2

)
if s ∈ [−1, 1],

∞ if s �∈ [−1, 1],

which restricts the order parameter θ to lie in the interval [−1, 1] and also guarantees
that outside a small interfacial layer, θ attains the values ±1; see, e.g., [15].

The elastic energy density also has to take the interfacial layer into account and
is hence given by

(1.3) E(θ, u) := 1
2 c(θ) C E(u) : E(u) ,

where c is an interpolation function given by

(1.4) c(s) := c0 + 1
2 (1 − c0)(1 + s) .

Here c0 = c0(γ) ∈ (0, 1) is small, and we will assume that c0(γ) → 0 as γ → 0.
Hence, c is affine linear with c(−1) = c0 ≤ c(s) ≤ 1 = c(1) for all s ∈ [−1, 1]. Now
the total free energy for the phase field model is given by

J(θ, u) :=
∫

Ω

[ ς 2
π { γ

2 |∇θ|2 + γ−1 Ψ(θ) } + E(θ, u) ] dx

with the possible addition of an integral over the boundary of Ω, depending on the
imposed boundary conditions on u.

Now we define the chemical potential, w, via the first variation of J with respect
to θ:

(1.5) w = δJ
δθ = [ ς 2

π (−γ ∆θ + γ−1 Ψ′(θ)) + 1
2 c′(θ) C E(u) : E(u) ],

which is the diffusion potential for θ. The diffusion equation for θ is then given by

(1.6) γ ∂θ
∂t = ∇ . ( 8

π Ds b(θ)∇w) ,

where

(1.7) b(s) := 1 − s2 ∀ s ∈ [−1, 1]

is a degenerate mobility that is zero outside of the interfacial layer. Hence diffusion
is restricted to the interfacial layer, which is conceptually close to the idea of surface
diffusion where diffusion only takes place on the surface. In fact it was shown
in [18], using formally matched asymptotic expansions, that (in the absence of
elastic effects) the phase field equations as stated above converge, as the interfacial
parameter γ → 0, to motion by surface diffusion.

If we include elasticity and require quasi-static equilibrium, i.e.,

(1.8) ∇ . (c(θ) C E(u)) = 0 ,

we obtain in the limit γ → 0 and c0(γ) → 0 that the zero level sets of θ converge
to a hypersurface Γ(t) that evolves according to the law

V = Ds∆s [−ς κ + 1
2 C E(u) : E(u)] on Γ(t) .

This can be shown using formally matched asymptotic expansions when one com-
bines the approaches of [18], [39] and [25].
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The system (1.5)–(1.8) is a degenerate Cahn–Hilliard equation coupled to an
elasticity system. If C ≡ 0, then (1.5)–(1.8) collapses to the degenerate Cahn–
Hilliard equation without elasticity. Existence of a solution to this fourth-order
degenerate parabolic equation for θ, as b(θ) can take on zero values, can be found in
[22]. Degenerate parabolic equations of higher order exhibit some new characteristic
features which are fundamentally different to those for second-order degenerate
parabolic equations. The key point is that there is no maximum or comparison
principle for parabolic equations of higher order. This drastically complicates the
analysis since a lot of results which are known for second-order equations are proven
with the help of comparison techniques. Related to this is the fact that there is
no uniqueness result known for (1.5)–(1.7) with C ≡ 0. Although there is no
comparison principle, one of the main features of this system is the fact that one
can show existence of a solution with |θ| ≤ 1 if given initial data |θ0| ≤ 1. This is
in contrast to linear parabolic equations of fourth order.

In the case of a constant mobility, i.e., b(θ) ≡ 1, the system (1.5), (1.6) and (1.8)
was studied analytically in [26], [27] and [19]. For a finite element approximation
in this nondegenerate case; see, e.g., [29] and [30].

There is very little work on the numerical analysis of degenerate parabolic equa-
tions of fourth order: for work on the thin film equation, see [4], [47] and [35]; for
thin film flows in the presence of surfactants, see [7]; and for work on degenerate
Cahn–Hilliard systems, see [5], [6] and [3]. In all of these papers, although stability
bounds were proved in one and two space dimensions, the main convergence result
was restricted to one space dimension. However, convergence in two space dimen-
sions of a finite element approximation to the thin film equation has been recently
proved in [34]. This approach was extended in (i) [11] and (ii) [12] to prove conver-
gence in two space dimensions of a finite element approximation to (i) the thin film
equation in the presence of surfactants and repulsive van der Waals forces, and (ii)
the phase field approximation of (1.1) in the absence of stressmigration. It is the
aim of this paper to propose and prove convergence of a finite element approxima-
tion of the degenerate system (1.5)–(1.8) and hence prove existence of a solution
to (1.5)–(1.8). Since in the stressmigration case a term that is quadratic in the
gradient of u — as opposed to linear in φ in the electromigration case — appears
in the chemical potential w (see (1.5)), this makes the convergence analysis in the
presence of stressmigration far more complicated than that of electromigration.

Due to a lack of embedding properties, our convergence analysis is restricted
to two spatial dimensions (i.e., d = 2). For ease of exposition, we will restrict
our presentation throughout to this case. However, the phase field approach and
the corresponding finite element approximation with the basic energy bound (see
(2.67a) below) are easily extended to three spatial dimensions. We adopt the follow-
ing notation throughout. The trace of a tensor A is denoted by Tr(A) := A11+A22,
and the divergence is defined as ∇ .A = (∂A11

∂x1
+ ∂A12

∂x2
, ∂A21

∂x1
+ ∂A22

∂x2
)T ; see, e.g., [17,

Chapter 11]. We will assume throughout for all i, j, k, l ∈ {1, 2} that

(1.9) (i) Cijkl = Cjikl = Cijlk and (ii) Cijkl = Cklij .

Here (i) follows, without loss of generality, from the fact that C maps symmetric
tensors to symmetric tensors; and (ii) follows from the symmetry assumption C A :
B = A : C B. We assume also throughout that C is positive definite; that is, there
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exist constants mC , MC > 0 such that

0 < mC (A : A) ≤ C A : A ≤ MC (A : A) ∀ A ∈ R
2×2 \ {0} .(1.10)

If one further assumes cubic symmetry, then it also follows that C1111 = C2222 and
C2212 = C1112 = 0; see, e.g., [37]. For an isotropic material we obtain that

(1.11) C E(u) = 2µ E(u) + λ Tr(E(u)) I,

where I is the identity tensor, and µ ∈ R>0 and λ ∈ R≥0 are the Lamé moduli. In
what follows, to simplify the presentation, we will set, without loss of generality,
the surface diffusivity Ds = π

8 and the surface energy density ς = π
2 .

In the following we will analyse a finite element approximation of the nonlinear
degenerate parabolic system for a given γ ∈ R>0:

(P) Find functions θ : Ω×[0, T ] → [−1, 1], w : Ω×[0, T ] → R and u : Ω×[0, T ] →
R

2 such that

γ ∂θ
∂t = ∇ . ( b(θ)∇w) in ΩT ,(1.12a)

w = −γ ∆θ + γ−1 Ψ′(θ) + 1
2 c′(θ) C E(u) : E(u) on { |θ| < 1 },(1.12b)

∇θ . ν = b(θ)∇w . ν = 0 on ∂Ω × (0, T ] ,(1.12c)

θ(x, 0) = θ0(x) ∈ [−1, 1] ∀ x ∈ Ω,(1.12d)

∇ . ( c(θ) C E(u)) = 0 in ΩT , c(θ) C E(u) ν = g on ∂Ω × (0, T ] ,
(1.12e)

where Ω is a Lipschitz domain in R
2 with ν the outward unit normal to its bound-

ary ∂Ω, T > 0 is a fixed positive time, and ΩT := Ω × (0, T ]. The function
g ∈ L2(∂Ω) is the given boundary force satisfying the necessary compatibility con-
ditions,

∫
∂Ω

g ds = 0 and
∫

∂Ω
g . (x2,−x1)T ds = 0, for the existence of a solution

u to (1.12e). For simplicity, we will consider

(1.13) g = S ν = C S∗ν ;

where S ∈ R
2×2 is a symmetric tensor and S∗ := C−1 S. Alternatively, one could

prescribe displacement boundary conditions, u = f , on ∂Ω or on parts thereof.
We should note that the solution u to (1.12e) is not unique. This is simply

because

(1.14) E(v) = 0 ∀ v ∈ RM ,

where RM is the space of rigid motions and characterized by RM := {v ∈ H1(Ω) :
v = p+ q (x2,−x1)T , p ∈ R

2, q ∈ R}. Hence one can impose uniqueness for (1.12e)
by seeking u such that

∫
Ω

u . v dx = 0 for all v ∈ RM; see our definition of V̂ p in
(1.18) below.

The basic ingredients of our approach are some key energy estimates. First, we
relate G to b by the identity b(s) G′′(s) ≡ 1. Knowing b, recall (1.7), this identity
determines G up to a linear term. Furthermore we have that G is convex. One can
then derive formally the following energy estimates for (P). Testing (1.12a) with w
and (1.12b) with ∂θ

∂t , combining and noting (1.12c,e) and (1.3) yields that
(1.15)
d
dt

[∫
Ω

[
1
2 γ |∇θ|2 + γ−1 Ψ(θ) + E(θ, u)

]
dx −
∫

∂Ω

g . u ds

]
+γ−1

∫
Ω

b(θ) |∇w|2 dx ≤ 0.
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Testing (1.12a) with G′(θ) and (1.12b) with −∆θ, combining and noting (1.2),
(1.10) and (1.4) yields that

(1.16) γ2 d
dt

∫
Ω

G(θ) dx + 1
2 γ2

∫
Ω

|∆θ|2 dx ≤
∫

Ω

|∇θ|2 dx + 1
32 M2

C

∫
Ω

|E(u)|4 dx .

In order to bound ∆θ in L2(ΩT ), one needs to bound ∇u in L4(ΩT ). This is
the key difficulty when including the elastic effects. This is achieved by using an
L∞(0, T ; W 1,p(Ω)), p > 2, bound for u solving (1.12e) which does not depend on
the choice of θ ∈ L∞(ΩT ); see [26], [28] and Lemma 1.1 together with Remark 2.2
below.

It is the goal of this paper to derive a finite element approximation of (P) that
is consistent with the energy estimates (1.15) and (1.16). In order to derive a
discrete analogue of the energy estimate (1.16), we adapt a technique introduced
in [47] and [35] for deriving a discrete entropy bound for the thin film equation;
see also [12]. However, the key difficulty here in proving convergence of our finite
element approximation, and hence existence of a solution to (P), is the finite element
analogue of the crucial W 1,p(Ω), p > 2, bound for u; see Lemma 2.3 below.

This paper is organised as follows. In §2 we formulate a fully practical finite
element approximation of the degenerate system (P) and derive discrete analogues
of the energy estimates (1.15) and (1.16). In §3 we prove convergence, and hence
existence of a solution to the system (P) in two space dimensions. Finally, in §4 we
present some numerical experiments.

Notation and auxiliary results. Throughout this paper we will make use of the
standard notation for Sobolev spaces, their norms and semi-norms; see, e.g., [12,
§1]. In addition (·, ·) denotes the standard L2 inner product over Ω. Furthermore
we define � η := 1

m(Ω) (η, 1) for all η ∈ L1(Ω).
For later purposes, we recall the following well-known Sobolev interpolation re-

sult, e.g., see [1]: Let q ∈ (1,∞), r ∈ [q,∞) if q ≥ 2 and r ∈ [q, 2q
2−q ] if q ∈ (1, 2);

and µ := 2
q − 2

r . Then the following inequality holds:

(1.17) |z|0,r ≤ C |z|1−µ
0,q ‖z‖µ

1,q ∀ z ∈ W 1,q(Ω) .

For p ∈ [1,∞], we introduce also

(1.18) V̂ p :=
{
η ∈ W 1,p(Ω) : (η, v) = 0 ∀ v ∈ RM

}
and define Ĥ1(Ω) := V̂ 2. We recall the following version of Korn’s inequality:

(1.19) ‖η‖1,p ≤ C |E(η)|0,p ∀ η ∈ V̂ p, p ∈ (1,∞) ;

see, e.g., [41, p. 79] for the case p = 2, or [40] for general p ∈ (1,∞). Furthermore,
the following lemma holds.

Lemma 1.1. There exists a δ ∈ R>0 such that for all p ∈ [2+δ
1+δ , 2 + δ] there is a

β(p) ≥ 1 satisfying

(1.20) |E(z)|0,p ≤ β(p) sup
0�=η∈V̂ q

(E(z), E(η))
|E(η)|0,q

∀ z ∈ V̂ p ,

where 1
p + 1

q = 1. Moreover β is continuous on the interval [2+δ
1+δ , 2+ δ] and β(p) →

β(2) = 1 as p → 2.
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Proof. Let [Lp(Ω)]2×2
sym := {F ∈ [Lp(Ω)]2×2 : F is symmetric}. For z ∈ V̂ p we

define S(F) := (E(z),F) for all F = E(η) with η ∈ V̂ q. S is a continuous linear
functional on a closed subspace of [Lq(Ω)]2×2

sym with

‖S‖ = sup
0�=η∈V̂ q

(E(z), E(η))
|E(η)|0,q

.

The Hahn–Banach theorem and the fact that ([Lq(Ω)]2×2
sym)′ ∼= [Lp(Ω)]2×2

sym imply the
existence of a Gz ∈ [Lp(Ω)]2×2

sym such that

(1.21) (E(z),F) = (Gz,F) ∀ F ∈ [Lq(Ω)]2×2
sym and |Gz|0,p = sup

0�=η∈V̂ q

(E(z), E(η))
|E(η)|0,q

.

Let Q : [Lp(Ω)]2×2
sym → [Lp(Ω)]2×2

sym be the linear operator such that QF = E(fF ),
where fF ∈ V̂ p is such that

(1.22) (E(fF ), E(η)) = (F , E(η)) ∀ η ∈ V̂ q.

We need to show that Q is well-defined and compute the operator norm ‖Q‖p of
Q. The well-posedness of Q for p = 2 follows from (1.19) and the Lax–Milgram
theorem; and in addition, ‖Q‖2 = 1. Moreover, regularity theory implies that there
exists a δ > 0 such that for all p ∈ [2, 2 + δ] if F ∈ [Lp(Ω)]2×2

sym, then it follows that

|QF|0,p ≤ C(p) [ |∇fF |0,2 + |F|0,p ] ≤ C(p) [ |F|0,2 + |F|0,p ] ≤ C(p) |F|0,p .

The first inequality in the above can be shown for example with the help of a method
introduced in [31], which proved local Lp-estimates for gradients of solutions to
elliptic systems. In [26] and [28] this method has been applied to obtain global
Lp-estimates for gradients of solutions to elasticity systems on Lipschitz domains.
The above shows that Q is a bounded linear operator for p ∈ [2, 2 + δ] and that
‖Q‖p ≤ C(p).

We now want to show that Q is also a linear continuous operator on [Lq(Ω)]2×2
sym,

where q is such that 1
p + 1

q = 1 for a p ∈ [2, 2 + δ]. To do so, we approximate
F ∈ [Lq(Ω)]2×2

sym by Fk ∈ [L2(Ω)]2×2
sym such that |F − Fk|0,q → 0 as k → ∞. As

V̂ p ⊂ V̂ 2 it then follows that

(QFk,H) = (QFk,QH) = (Fk,QH) ∀ H ∈ [Lp(Ω)]2×2
sym.

Hence we obtain that

|(QFk,H)| ≤ ‖Q‖p |H|0,p |Fk|0,q =⇒ |QFk|0,q ≤ ‖Q‖p ‖Fk‖0,q .

Taking the weak limit of fFk
in V̂ q, where E(fFk

) = QFk, we obtain that (QF ,H)
= (F ,QH) for all F ∈ [Lq(Ω)]2×2

sym and H ∈ [Lp(Ω)]2×2
sym. Hence Q defined on

[Lq(Ω)]2×2
sym is the dual operator to Q defined on [Lp(Ω)]2×2

sym and therefore ‖Q‖p =
‖Q‖q.

The Riesz–Thorin theorem, see [13], then implies that ‖Q‖p ≤ ‖Q‖1−α
s ‖Q‖α

r for
all 2+δ

1+δ ≤ s ≤ p ≤ r ≤ 2 + δ such that 1
p = (1−α) 1

s + α 1
r and α ∈ [0, 1]. It follows

that log ‖Q‖p is a convex function of 1
p and therefore ‖Q‖p is a continuous function

of p with ‖Q‖2 = 1. Finally, it follows from (1.21) and (1.22) that E(z) = QGz
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and hence |E(z)|0,p ≤ ‖Q‖p |Gz|0,p. Therefore the desired result (1.20) follows from
(1.21) with β(p) = ‖Q‖p. �

We note also for future reference the generalised Young’s inequality

(1.23) r s ≤ 1
p (α r)p+ 1

q (α−1 s)q ∀ r, s ∈ R, α ∈ R>0, p ∈ (1,∞) with 1
p + 1

q = 1 .

Throughout C denotes a generic constant independent of h, τ and ε, which denote
the mesh and temporal discretization parameters and the regularization parame-
ter, respectively. In addition C(a1, . . ., aI) denotes a constant depending on the
arguments {ai}I

i=1. In the technical parts of this paper, we will frequently refer to
a number of previously established results and definitions in order to derive an in-
equality. In each case, the results referred to are quoted in the exact order in which
they need to be applied in the ensuing analysis. Finally, ·(�) denotes an expression
with or without the superscript �.

2. Finite element approximation

We consider the finite element approximation of (P) under the following assump-
tions on the mesh:

(A) Let Ω be a convex polygonal domain. Let {T h}h>0 be a quasi-uniform fam-
ily of partitionings of Ω into disjoint open simplices σ with hσ := diam(σ)
and h := maxσ∈T h hσ, so that Ω =

⋃
σ∈T h σ. In addition, it is assumed

that all simplices σ ∈ T h are right-angled.
Associated with T h is the finite element space Sh := {χ ∈ C(Ω) : χ |σ is linear

∀σ ∈ T h} ⊂ H1(Ω). We introduce also Sh := [Sh]2, Ŝh := Sh ∩ Ĥ1(Ω) and
Kh := {χ ∈ Sh : |χ| ≤ 1 in Ω} ⊂ K := {η ∈ H1(Ω) : |η| ≤ 1 a.e. in Ω}. Let J be
the set of nodes of T h and {pj}j∈J the coordinates of these nodes. Let {χj}j∈J be
the standard basis functions for Sh; that is χj ∈ Kh and χj(pi) = δij for all i, j ∈ J .
The right-angle constraint on the partitioning is required for our approximation of
b(·), (see (2.2) below), but one consequence is that

(2.1)
∫

σ

∇χi .∇χj dx ≤ 0 i �= j, ∀ σ ∈ T h.

We introduce πh : C(Ω) → Sh, the interpolation operator, such that (πhη)(pj) =
η(pj) for all j ∈ J . A discrete semi-inner product on C(Ω) is then defined by
(η1, η2)h :=

∫
Ω

πh(η1(x) η2(x)) dx =
∑

j∈J mj η1(pj) η2(pj), where mj := (1, χj) >

0. The induced discrete semi-norm is then |η|h := [ (η, η)h ]
1
2 , where η ∈ C(Ω). Both

(·, ·)h and | · |h are naturally extended to vector-valued and matrix-valued functions.
We introduce also the L2 projection Qh : L2(Ω) → Sh defined by (Qhη, χ)h = (η, χ)
for all χ ∈ Sh.

We recall from [12, §2] the definition of the regularization Gε ∈ C2,1(R) of G.
Similarly to the approach in [47] and [35], we introduce Ξε : Sh → [L∞(Ω)]2×2

approximating b(·) I, where I ∈ R
2×2 is the identity matrix, such that for all

zh ∈ Sh and a.e. in Ω,
(2.2)

Ξε(zh) is symmetric and positive semi-definite, Ξε(zh)∇πh[G′
ε(z

h)] = ∇zh.

The construction of Ξε can be found in [12, §2]. We note that it is this construction
that requires the right-angle constraint on the partitioning T h.
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In addition to T h, let 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning
of [0, T ] into possibly variable time steps τn := tn − tn−1, n = 1 → N . We set
τ := maxn=1→N τn. For any given ε ∈ (0, 1), we then consider the following fully
practical finite element approximation of (P):

(Ph,τ
ε ) For n ≥ 1 find {Un

ε , Θn
ε , Wn

ε } ∈ Ŝh × Kh × Sh such that

(c(Θn−1
ε ) C E(Un

ε ), E(χ)) =
∫

∂Ω

g .χ ds ∀ χ ∈ Sh,(2.3a)

γ
(

Θn
ε −Θn−1

ε

τn
, χ
)h

+ (Ξε(Θn−1
ε )∇Wn

ε ,∇χ) = 0 ∀ χ ∈ Sh,(2.3b)

γ (∇Θn
ε ,∇[χ − Θn

ε ]) ≥ (Wn
ε + γ−1 Θn−1

ε , χ − Θn
ε )h

− 1
2 (c′(Θn−1

ε ) C E(Un
ε ) : E(Un

ε ), χ − Θn
ε ) ∀ χ ∈ Kh,(2.3c)

where Θ0
ε ∈ Kh is an approximation of θ0 ∈ K, e.g., Θ0

ε ≡ Qhθ0, or Θ0
ε ≡ πhθ0 if

θ0 ∈ C(Ω).

Remark 2.1. We note that in the case C ≡ 0, (2.3b,c) collapses to an approximation
of the degenerate Cahn–Hilliard equation, (1.12a–c) with C ≡ 0. This is the same
as the approximation in [12] in the absence of an electric field. Note that as c′ is
constant, the dependence on Θn−1

ε in (2.3c) is superfluous.

Below we recall some well-known results concerning Sh for any σ ∈ T h, χ, zh ∈
Sh, m ∈ {0, 1}, p ∈ [1,∞], q ∈ [2,∞) and r ∈ (2,∞] :

|χ|1,σ ≤ C h−1
σ |χ|0,σ ;(2.4)

|χ|m,s,σ ≤ C h
−2 ( 1

p− 1
s )

σ |χ|m,p,σ for any s ∈ [p,∞] ;(2.5)

|(I − πh)η|m,q,σ ≤ C h1+ 2
q −m |η|2,σ ∀ η ∈ H2(σ) ;(2.6)

|(I − πh)η|m,r,σ ≤ C h1−m |η|1,r,σ ∀ η ∈ W 1,r(σ) ;(2.7) ∫
σ

χ2 dx ≤
∫

σ

πh[χ2] dx ≤ 4
∫

σ

χ2 dx ;(2.8)

|(χ, zh) − (χ, zh)h| ≤ |(I − πh)(χ zh)|0,1 ≤ C h1+m |χ|m |zh|1 .(2.9)

It is convenient to introduce the “inverse Laplacian” operator G : Y → Z such
that

(2.10) (∇[Gz],∇η) = 〈z, η〉 ∀ η ∈ H1(Ω),

where Y :=
{
z ∈ (H1(Ω))′ : 〈z, 1〉 = 0

}
and Z := {z ∈ H1(Ω) : (z, 1) = 0}. Here

and throughout 〈·, ·〉 denotes the duality pairing between (H1(Ω))′ and H1(Ω),
and its extension to the corresponding spaces of vector-valued functions. The well-
posedness of G follows from the generalised Lax–Milgram theorem and a Poincaré
inequality. As Ω is convex polygonal, we recall the well-known regularity result

(2.11) ‖Gz‖2 ≤ C|z|0 ∀ z ∈ L2(Ω) ∩ Y.

We define Zh := {zh ∈ Sh : (zh, 1) = 0} ⊂ Y h := {z ∈ C(Ω) : (z, 1)h = 0} ⊂ Y .
Then, similarly to (2.10), we introduce Gh : Y h → Zh such that

(2.12) (∇[Ghzh],∇χ) = (zh, χ)h ∀ χ ∈ Sh .
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It is easily established from (2.10), (2.12), {T h}h>0 being a regular partitioning,
(2.11) and (2.9) that

(2.13) ‖(G − Gh)zh‖1 ≤ C h |zh|0 ∀ zh ∈ Sh .

We introduce the “discrete Laplacian” operator ∆h : Sh → Zh such that

(2.14) (∆hzh, χ)h = −(∇zh,∇χ) ∀ χ ∈ Sh.

It follows from (2.8), (2.14), (2.5) and the quasi-uniformity assumption on T h that

|∆hzh|20 ≤ |∆hzh|2h = −(∇zh,∇(∆hzh) ) ≤ |zh|1 |∆hzh|1
≤ C h−1 |zh|1 |∆hzh|0 ≤ C h−2 |zh|21 ≤ C h−4 |zh|20 ∀ zh ∈ Sh.(2.15)

Lemma 2.1. Let the assumptions (A) hold. Then for all zh ∈ Sh we have that

|zh|1,s ≤ C |∆hzh|0 , for any s ∈ (1,∞) ,(2.16a)

|zh|1,4 ≤ C |∆hzh|
1
2
0 |zh|

1
2
1 .(2.16b)

Furthermore

(2.17) |∆h(πhη)|0 ≤ C |η|2 ∀ η ∈ H2(Ω) with ∂η
∂ν = 0 on ∂Ω .

Proof. The proof of (2.16a) can be found in [10, Lemma 3.1], and the proof of
(2.16b) is very similar. It follows from (2.14) and (2.12) that

(2.18) (I − � ) zh = −Gh[∆hzh] ∀ zh ∈ Sh .

We have from (2.18), (1.17), (2.6), (2.5), (2.11) and (2.13) that

|zh|1,4 ≤ |G[∆hzh]|1,4 + |(I − πh)G[∆hzh]|1,4 + |(πhG − Gh)∆hzh|1,4

≤ |G[∆hzh]|
1
2
1 ‖G[∆hzh]‖

1
2
2 + C h

1
2 |G[∆hzh]|2 + C h− 1

2 |(πhG − Gh)∆hzh|1

≤ |G[∆hzh]|
1
2
1 |∆hzh|

1
2
0 + C h

1
2 |∆hzh|0 ∀ zh ∈ Sh .(2.19)

It follows from (2.18), (2.13) and (2.15) that for all zh ∈ Sh

|G[∆hzh]|1 ≤ |Gh[∆hzh]|1 + |(G − Gh)[∆hzh]|1 ≤ |zh|1 + C h |∆hzh|0 ≤ C |zh|1 .

Combining (2.19) and (2.15) yields that

|zh|1,4 ≤ C |zh|
1
2
1 |∆hzh|

1
2
0 + C h

1
2 |∆hzh|0 ≤ C |zh|

1
2
1 |∆hzh|

1
2
0 ∀ zh ∈ Sh ,

and hence the desired result (2.16b).
Finally, it follows from (2.8), (2.14), (2.6), η ∈ H2(Ω) with ∂η

∂ν = 0 on ∂Ω, and
(2.4) that

|∆h(πhη)|20 ≤ |∆h(πhη)|2h = −
(
∇(πhη),∇(∆h(πhη))

)
= −
(
∇η,∇(∆h(πhη))

)
+
(
∇(I − πh)η,∇(∆h(πhη))

)
≤ |∆η|0 |∆h(πhη)|0 + C h |η|2 |∇(∆h(πhη))|0 ≤ C |η|22 ,

and hence the desired result (2.17). �

Similarly to (2.14), we introduce Lh : Sh → Ŝh such that

(2.20) (Lhzh, χ) = −(C E(zh), E(χ)) ∀ χ ∈ Sh.
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We introduce also NC : X → Ĥ1(Ω) and Nh
C : X → Ŝh, where X := {η ∈ (H1(Ω))′ :

〈η, v〉 = 0 ∀ v ∈ RM}, such that

(C E(NC ξ), E(η)) = 〈ξ, η〉 ∀ η ∈ H1(Ω) ,(2.21)

(C E(Nh
C ξ), E(χ)) = 〈ξ, χ〉 ∀ χ ∈ Sh .(2.22)

As C satisfies (1.9) and (1.10), the well-posedness of these operators is easily demon-
strated. As Ω is convex polygonal, we will assume the analogue of (2.11),

‖NC ξ‖2 ≤ C |ξ|0 ∀ ξ ∈ L2(Ω) ∩ X .(2.23)

If C is isotropic, (1.11), then the singularity exponents in NC ξ do not depend
on the Lamé moduli, and (2.23) follows immediately, for example, on combining
[33, Theorem I] and [44, Lemma 3.2]. Unfortunately, if C is anisotropic, then the
singularity exponents depend on the specific form of C and there is no general result
of the type (2.23) in the literature. However, there is also no counterexample. For
any particular material law, C, and domain Ω the singularity exponents in NC ξ can
be computed, see, e.g., [20], and hence the assumption (2.23) can be tested.

We now have the analogues of (2.15), (2.16a) and (2.17).

Lemma 2.2. Let the assumptions (A) hold and, if C is anisotropic, assume that
(2.23) holds. Then for all s ∈ (1,∞) and for all zh ∈ Sh we have that

|E(zh)|0,s ≤ C |Lhzh|0 ≤ C h−1 |zh|1 .(2.24)

Furthermore

(2.25) |Lh(πhη)|0 ≤ C |η|2 ∀ η ∈ H2(Ω) with C E(η) ν = 0 on ∂Ω .

Proof. It follows from (1.19), (1.10), (2.21), (2.22), (2.6) and (2.23) that

C ‖(NC − Nh
C ) ξ‖2

1 ≤ C |E( (NC − Nh
C ) ξ)|20 ≤ (C E( (NC − Nh

C) ξ), E( (NC − Nh
C ) ξ) )

= (C E( (NC − Nh
C ) ξ), E( (I − πh)(NC ξ) ) ) ≤ C |E( (I − πh)(NC ξ) )|20

≤ C |(I − πh)(NC ξ)|21 ≤ C h2 ‖NC ξ‖2
2 ≤ C h2 |ξ|20 ∀ ξ ∈ L2(Ω) ∩ X .

Let zh = (zh − zh
RM) + zh

RM such that zh
RM ∈ RM and zh − zh

RM ∈ Ŝh. Then it
follows from (2.22) and (1.19) that

(2.26) zh − zh
RM = −Nh

C (Lhzh) .

Combining (2.26), (1.17), (2.7), (2.5) and the above-established bound yields for
s ∈ (2,∞),

|E(zh)|0,s = |E(Nh
C (Lhzh) )|0,s ≤ |E(NC (Lhzh) )|0,s + |E((I − πh)NC (Lhzh) )|0,s

+ |E(πh[NC (Lhzh) ] − Nh
C (Lhzh) )|0,s

≤ C ‖NC (Lhzh) ‖2 + C h−(1− 2
s ) |πh[NC (Lhzh) ] − Nh

C (Lhzh)|1 ≤ C |Lhzh|0
and hence the first inequality in (2.24).

It follows from (2.20) and (2.4) that

|Lhzh|20 = −(C E(zh), E(Lhzh)) ≤ C |E(zh)|0 |E(Lhzh)|0
≤ C h−1 |E(zh)|0 |Lhzh|0 ≤ C h−2 |E(zh)|20 ≤ C h−2 |zh|21

and hence the second inequality in (2.24).
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Finally, it follows from (2.8), (2.20), (2.6), η ∈ H2(Ω) with C E(η) ν = 0 on ∂Ω,
and (2.4) that

|Lh(πhη)|20 ≤ |Lh(πhη)|2h = −
(
C E(πhη), E(Lh(πhη))

)
= −
(
C E(η), E(Lh(πhη))

)
+
(
C E((I − πh)η), E(Lh(πhη))

)
≤ C |η|2 |Lh(πhη)|0 + C h |η|2 |∇(Lh(πhη))|0 ≤ C |η|22 .

Hence we have the desired result (2.25). �

We introduce the projection operator P h : W 1,1(Ω) → Ŝh such that

(2.27) (E(z − P hz), E(χ)) = 0 ∀ χ ∈ Sh .

It is crucial for our analysis to prove the following result.

Lemma 2.3. Let the assumptions (A) hold and let δ ∈ R>0 be as defined in Lemma
1.1. Then there exists h0 ∈ R>0 and a β̂ ∈ C( [2+δ

1+δ ,∞) ) such that for all p ∈
[2+δ
1+δ ,∞) and for all h ∈ (0, h0),

(2.28) |E(P hz)|0,p ≤ β̂(p) |E(z)|0,p ∀ z ∈ V̂ p

with β̂(p) ≥ 1 and β̂(p) → β̂(2) = 1 as p → 2.

Proof. We adapt the proof for the Laplacian with homogeneous Dirichlet boundary
conditions given in [17, Chapter 8], which is based on the approach in [42]. As the
proof is long, we break it up into three parts, similarly to [17, Chapter 8].

1. Reduction of (2.28) to the weighted error estimate (2.37). Given T h

and any y ∈ Ω, let σy ∈ T h be such that y ∈ σy. We then introduce δh
y ∈ C∞

0 (Ω)
with supp(δh

y ) ⊂ σy such that

(2.29)
∫

σy

δh
y dx = 1 and ‖δh

y ‖m,∞,σy
≤ C h−(2+m) ∀ m ∈ N .

For i, j ∈ {1, 2}, let f
y,ij

∈ Ĥ1(Ω) be such that

(2.30) (E(f
y,ij

), E(η)) = (δh
y , [E(η)]ij) ∀ η ∈ H1(Ω) .

It follows from (1.14) and (1.19) that (2.30) is well-posed. We have from (2.29),
(2.27) and (2.30) for all y ∈ Ω and for i, j ∈ {1, 2} that

[E(P hz)]ij(y) = (δh
y , [E(P hz)]ij) = (E(f

y,ij
), E(P hz)) = (E(P hf

y,ij
), E(z))

= (δh
y , [E(z)]ij) + (E([P h − I]f

y,ij
), E(z)) ∀ z ∈ H1(Ω) .(2.31)

For any y ∈ Ω and any constant ρ ≥ 1, we introduce the weight function

(2.32) ωy,ρ(x) := ( |x − y|2 + ρ2 h2)
1
2 .

It is easily verified for any α ∈ R that

max
σ∈T h

( sup
x∈σ

[ωy,ρ(x)]α/ inf
x∈σ

[ωy,ρ(x)]α ) ≤ C, |ωα
y,ρ|0,∞ ≤ C max{1, (ρ h)α}(2.33a)

and

| ∂m

∂xm
i

[ωy,ρ(x)]α| ≤ C(α) [ωy,ρ(x)]α−m ∀ x ∈ Ω, ∀ m ∈ N, i ∈ {1, 2},(2.33b)
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where the positive constant C(α) depends continuously on α and is independent of
the choice of y ∈ Ω and ρ ≥ 1. It follows immediately from (2.6) and (2.33a) that
for all σ ∈ T h, α ∈ R, m ∈ {0, 1}, i ∈ {1, 2} and η ∈ H2(σ),
(2.34)∫

σ

ωα
y,ρ

[
∂m

∂xm
i

[(I − πh)η]
]2

dx ≤ C h2 (2−m)

∫
σ

ωα
y,ρ

[(
∂2η
∂x2

1

)2
+
(

∂2η
∂x1∂x2

)2
+
(

∂2η
∂x2

2

)2]
dx.

It follows from (2.31), a Hölder inequality and (2.33a) that for any p ∈ (2,∞),
α > 0 and ρ ≥ 1,

|E(P hz)|0,p ≤ C [ 1 +
(

sup
y∈Ω

∫
Ω

ω−(α+2)
y,ρ dx

) 1
2

Mh
ρ,α ] |E(z)|0,p

≤ C [ 1 + α− 1
2 (ρ h)−

α
2 Mh

ρ,α ] |E(z)|0,p ∀ z ∈ V̂ p ,(2.35)

where

Mh
ρ,α := max

i, j=1, 2
sup
y∈Ω

{∫
Ω

ωα+2
y,ρ |E([I − P h]f

y,ij
)|2 dx

} 1
2

.(2.36)

The goal is to prove the analogue of [17, Lemma 8.2.6]; that is, for appropriate
α > 0 and ρ sufficiently large that there exists an h0 such that

(2.37) Mh
ρ,α ≤ C h

α
2 ∀ h ∈ (0, h0) .

It would then follow from (2.35) and (2.37) that (2.28) holds with β̂(p) = C1 for all
p ∈ (2,∞), for some constant C1. In addition, it would follow from (1.20), (2.27)
and the above bound for p ∈ (2,∞) that for p ∈ [2+δ

1+δ , 2) and for all z ∈ V̂ p,

|E(P hz)|0,p ≤ β(p) sup
0�=η∈V̂ q

(E(P hz), E(η))
|E(η)|0,q

= β(p) sup
0�=η∈V̂ q

(E(z), E(P hη))
|E(η)|0,q

≤ β(p) C1 |E(z)|0,p ,(2.38)

where 1
p + 1

q = 1. As (2.28) trivially holds with β̂(2) = 1 from inspecting (2.27),

it follows that (2.28) holds with β̂(p) = C2 for all p ∈ [2+δ
1+δ ,∞), for some constant

C2. Moreover, the desired result (2.28) holds for all p ∈ [ 2+δ
1+δ ,∞) by applying

the Riesz–Thorin theorem as in Lemma 1.1 to the P h induced mapping that takes
E(z) ∈ [Lp(Ω)]2×2

sym to E(P hz) ∈ [Lp(Ω)]2×2
sym.

2. Reduction of (2.37) to the weighted regularity bound (2.50). Let
Y := {{ξ, ζ} ∈ (H1(Ω))′ × L2(∂Ω) : 〈ξ, v〉 +

∫
∂Ω

ζ . v ds = 0 ∀ v ∈ RM }. Then
N : Y → Ĥ1(Ω) is such that

(2.39) (E(N(ξ, ζ)), E(η)) = 〈ξ, η〉 +
∫

∂Ω

ζ .η ds ∀ η ∈ H1(Ω) .

Let ∂Ω ≡
⋃JB

j=1 ∂jΩ and ∂jΩ∩∂kΩ = ∅ for j �= k; with ν(j) the outward unit normal
to ∂jΩ. In addition, let the largest inner angle ω of the convex polygonal domain Ω
be such that ω ≤ r

2r−1π for some r > 1. Then, similarly to (2.23), on combining [33,
Theorem I], ϕ(z) := sin2(ω z) − z2 sin ω ⇒ ϕ(i z) = ϕ̃(z) := z2 sin2 ω − sinh2(ω z),
and the fact that ϕ̃(z) has no roots such that |Im(z)| ≤ π

ω , apart from the double
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root at z = 0 and the simple roots at z = ±i (see [44, Lemma 3.2]) we have for
p ∈ (1, 2r] that for all {ξ, ζ} ∈ (Lp(Ω) ×

∏JB

j=1 W 1− 1
p ,p(∂jΩ) ) ∩ Y ,

(2.40) ‖N(ξ, ζ)‖2,p ≤ C [ |ξ|0,p +
JB∑
j=1

‖ζ‖1− 1
p ,p,∂jΩ ] ,

provided that the compatibility condition, [33, (1.5)],

(2.41) ζ |∂jΩ . ν(j+1) = ζ |∂j+1Ω . ν(j) at every vertex Sj of Ω

holds (in the integral sense if p = 2).
For fixed y ∈ Ω and i, j ∈ {1, 2}, let e := (I − P h)f

y,ij
∈ Ĥ1(Ω), eA :=

(I − πh)f
y,ij

∈ H1(Ω) and eh := (πh − P h)f
y,ij

∈ Sh. We note that

(2.42) E(η z) = η E(z) + 1
2 [ z ⊗ (∇η) + (∇η) ⊗ z ] ,

where a ⊗ b := a bT for all a, b ∈ R
2. It then follows from (2.42), (2.27), (1.23),

(2.33a,b), (2.34) and (2.4) for any y ∈ Ω, i, j ∈ {1, 2}, α > 0 and ρ ≥ 1 that

(ωα+2
y,ρ E(e), E(e)) = (E(e), E(ωα+2

y,ρ eA) + E( (I − πh)[ωα+2
y,ρ eh] ) )

− 1
2 (E(e), [ e ⊗ (∇ωα+2

y,ρ ) + (∇ωα+2
y,ρ ) ⊗ e ] )

≤ C(α)
[ ∫

Ω

[ ωα+2
y,ρ |E(eA)|2 + ωα

y,ρ |eA|2 ] dx +
∫

Ω

ωα
y,ρ |eh|2 dx

+
∫

Ω

ω−(α+2)
y,ρ |E( (I − πh)[ωα+2

y,ρ eh] )|2 dx
]

≤ C(α)
[ ∫

Ω

[ ωα+2
y,ρ |E(eA)|2 + ωα

y,ρ |eA|2 ] dx +
∫

Ω

ωα
y,ρ |eh|2 dx

]
.(2.43)

Let ψ = N((I − PRM)(ωα
y,ρ e), 0), where PRM : L2(Ω) → RM is such that

(2.44) ((I − PRM)z, η) = 0 ∀ η ∈ RM .

It follows from (1.19), (1.14) and (2.44) that

|v|1 ≤ |(I − PRM) v|1 + |PRM v|1 ≤ C |E((I − PRM) v)|0 + |PRM v|1
≤ C [ |E(v)|0 + |PRM v|0 ] ≤ C [ |E(v)|0 + |v|0 ] ∀ v ∈ H1(Ω) .(2.45)

We have, on noting (2.39) and (2.27), that for all ς > 0,

(ωα
y,ρ e, e) = (E(ψ), E(e)) = (E( (I − πh)ψ ), E(e))

≤ ς (ωα+2
y,ρ E(e), E(e)) + C ς−1

∫
Ω

ω−(α+2)
y,ρ |E( (I − πh)ψ )|2 dx .(2.46)

It follows from (2.34) and (2.32) that∫
Ω

ω−(α+2)
y,ρ |E( (I − πh)ψ )|2 dx ≤ C h2

2∑
k,�=1

∫
Ω

ω−(α+2)
y,ρ | ∂2ψ

∂xk ∂x�
|2 dx

≤ C h2

(∫
Ω

ω−(α+2) r′

y,ρ dx

) 1
r′

‖ψ‖2
2,2r ≤ C(α) ρ−2 (ρ h)

2
r′ −α ‖ψ‖2

2,2r ,(2.47)
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where r is as defined in (2.40) and 1
r + 1

r′ = 1. Next we note that (2.40), (1.17),
(1.19), (2.32), (2.42) and (2.33b) yield, on assuming that α ∈ (0, 2(r−1)

r ),

‖ψ‖2
2,2r ≤ C |(I − PRM)(ωα

y,ρ e)|20,2r ≤ C ‖(I − PRM)(ωα
y,ρ e)‖2

1, 2r
r+1

≤ C |E(ωα
y,ρ e)|20, 2r

r+1
≤ C

(∫
Ω

ω(α−2) r
y,ρ dx

) 1
r
∫

Ω

ω2−α
y,ρ |E(ωα

y,ρ e)|2 dx

≤ C(α) (ρ h)α−2+ 2
r [ (ωα+2

y,ρ E(e), E(e)) + (ωα
y,ρ e, e) ] .(2.48)

Therefore for any fixed α ∈ (0, 2(r−1)
r ), we have for all y ∈ Ω, i, j ∈ {1, 2}, ρ > ρ0(α)

and h > 0 on combining (2.43), (2.46) with ς sufficiently small, (2.47) and (2.48)
that

(2.49) (ωα+2
y,ρ E(e), E(e)) ≤ C(α, ρ)

∫
Ω

[ ωα+2
y,ρ |E(eA)|2 + ωα

y,ρ |eA|2 ] dx .

Hence the desired result (2.37) follows from (2.36), (2.49) and (2.34) if we can show
for any y ∈ Ω, i, j ∈ {1, 2}, α ∈ (0, 1), ρ ≥ 1 and h > 0 that

max
k, �=1, 2

∫
Ω

ωα+2
y,ρ |

∂2f
y,ij

∂xk∂x�
|2 dx ≤ C(α, ρ) hα−2 .(2.50)

3. Proof of (2.50). First, we have from (2.33b) that

max
k, �=1, 2

∫
Ω

ωα+2
y,ρ |

∂2f
y,ij

∂xk∂x�
|2 dx

≤ C(α)
[
|ω

α
2 +1
y,ρ f

y,ij
|22 +
∫

Ω

[ ωα
y,ρ |∇ f

y,ij
|2 + ωα−2

y,ρ |f
y,ij

|2 ] dx

]
.(2.51)

Second, it follows from (2.44), (1.14), (2.42), the symmetry of E(·) and (2.30) that

(I − PRM) (ω
α
2 +1
y,ρ f

y,ij
) ∈ Ĥ1(Ω) solves for all η ∈ H1(Ω),

(E( (I − PRM) (ω
α
2 +1
y,ρ f

y,ij
) ), E(η)) = (E(ω

α
2 +1
y,ρ f

y,ij
), E(η))

= (E(f
y,ij

), E(ω
α
2 +1
y,ρ η)) + 1

2 ( [f
y,ij

⊗∇(ω
α
2 +1
y,ρ ) + ∇(ω

α
2 +1
y,ρ ) ⊗ f

y,ij
], E(η))

− (E(f
y,ij

)∇(ω
α
2 +1
y,ρ ), η)

= −1
2 ( [ei ⊗ ej + ej ⊗ ei]∇δh

y , ω
α
2 +1
y,ρ η)

− (E(f
y,ij

)∇(ω
α
2 +1
y,ρ ) + 1

2 ∇ . [f
y,ij

⊗∇(ω
α
2 +1
y,ρ ) + ∇(ω

α
2 +1
y,ρ ) ⊗ f

y,ij
], η)

+ 1
2

∫
∂Ω

[
[f

y,ij
⊗∇(ω

α
2 +1
y,ρ ) + ∇(ω

α
2 +1
y,ρ ) ⊗ f

y,ij
] ν
]
. η ds .(2.52)

Noting (2.39) and (2.41), and applying the bounds (2.40), (2.33b) and the trace
inequality ‖ · ‖ 1

2 ,∂kΩ ≤ C ‖ · ‖1,Ω to (2.52) yields that

|ω
α
2 +1
y,ρ f

y,ij
|2 ≤ C

[
|ω

α
2 +1
y,ρ ∇δh

y |0 + |ω
α
2
y,ρ ∇f

y,ij
|0 + |ω

α
2 −1
y,ρ f

y,ij
|0

+
JB∑
k=1

‖ [f
y,ij

⊗∇(ω
α
2 +1
y,ρ ) + ∇(ω

α
2 +1
y,ρ ) ⊗ f

y,ij
] ν‖ 1

2 ,∂kΩ

]
≤ C
[
|ω

α
2 +1
y,ρ ∇δh

y |0 + |ω
α
2
y,ρ ∇f

y,ij
|0 + |ω

α
2 −1
y,ρ f

y,ij
|0
]
.(2.53)
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It follows from (2.33b), (2.45), (2.33a) and (2.42) that

|ω
α
2
y,ρ ∇f

y,ij
|0 ≤ C

[
|ω

α
2
y,ρ f

y,ij
|1 + |∇(ω

α
2
y,ρ) f

y,ij
|0
]

≤ C
[
|E(ω

α
2
y,ρ f

y,ij
)|0 + |ω

α
2 −1
y,ρ f

y,ij
|0
]

≤ C
[
|ω

α
2
y,ρ E(f

y,ij
)|0 + |ω

α
2 −1
y,ρ f

y,ij
|0
]
.(2.54)

We have from (2.42) that

(ωα
y,ρ E(f

y,ij
), E(f

y,ij
)) = (E(f

y,ij
), E(ωα

y,ρ f
y,ij

))

− 1
2 (f

y,ij
⊗∇(ωα

y,ρ) + ∇(ωα
y,ρ) ⊗ f

y,ij
, E(f

y,ij
)) .(2.55)

Similarly to (2.52), testing (2.30) with η = ωα
y,ρ f

y,ij
yields that

(2.56) (E(f
y,ij

), E(ωα
y,ρ f

y,ij
)) = −1

2 ( [ei ⊗ ej + ej ⊗ ei]∇δh
y , ωα

y,ρ f
y,ij

) .

Combining (2.51), (2.53), (2.54), (2.55) and (2.56) yields that

(2.57) max
k, �=1, 2

∫
Ω

ωα+2
y,ρ |

∂2f
y,ij

∂xk∂x�
|2 dx ≤ C(α)

[
|ω

α
2 −1
y,ρ f

y,ij
|20 + |ω

α
2 +1
y,ρ ∇δh

y |20
]
.

For p ∈ (1, 2
α ), let Υ = N((I − PRM)ξ, 0), where [ξ]� = sign([f

y,ij
]�) | [fy,ij

]�|2p−1,
� = 1, 2. It follows from (2.44), (2.39), (2.30), (1.17), (2.40) and (2.32) that

|f
y,ij

|2p
0,2p = (ξ, f

y,ij
) = ((I − PRM)ξ, f

y,ij
) = (E(Υ), E(f

y,ij
)) = (δh

y , [E(Υ)]ij)

≤ C |δh
y |0, 2p

p+1
|Υ|1, 2p

p−1
≤ C |δh

y |0, 2p
p+1

‖Υ‖2, 2p
2p−1

≤ C |δh
y |0, 2p

p+1
|(I − PRM)ξ|0, 2p

2p−1
≤ C |δh

y |0, 2p
p+1

|ξ|0, 2p
2p−1

≤ C |δh
y |0, 2p

p+1
|ξ|0,2p ≤ C |δh

y |0, 2p
p+1

|f
y,ij

|2p−1
0,2p ≤ C |δh

y |
2p

0, 2p
p+1

≤ C

(∫
Ω

ω−(α+2)p
y,ρ dx

)
|ω

α
2 +1
y,ρ δh

y |
2p
0 ≤ C(α) (ρ h)2−(α+2)p |ω

α
2 +1
y,ρ δh

y |
2p
0 .(2.58)

Next we have from (2.32) and (2.58) that for p ∈ (1, 2
α ),

(2.59)

|ω
α
2 −1
y,ρ f

y,ij
|20 ≤ C

(∫
Ω

ω(α−2)p′

y,ρ dx

) 1
p′

|f
y,ij

|20,2p ≤ C(α) (ρ h)α− 2
p |f

y,ij
|20,2p ,

where 1
p + 1

p′ = 1. Finally, combining (2.57), (2.59), (2.58), (2.29) and (2.32) yields
that

max
k, �=1, 2

∫
Ω

ωα+2
y,ρ |

∂2f
y,ij

∂xk∂x�
|2 dx ≤ C(α, ρ) h−2 |ω

α
2 +1
y,ρ δh

y |20 ≤ C(α, ρ) h−6 |ω
α
2 +1
y,ρ |20,σy

≤ C(α, ρ) hα−2

and hence the desired result (2.50). �

We now have a discrete analogue of a result similar to (1.20).

Lemma 2.4. Let the assumptions of Lemma 2.3 hold. Then there exists δ1 ∈ (0, δ)
and C(c0, mC , MC) ∈ R>0 such that for all p ∈ [2, 2 + δ1] and for all h ∈ (0, h0),

(2.60) |E(zh)|0,p ≤ C sup
0�=χ∈Ŝh

(c(θh) C E(zh), E(χ))
|E(χ)|0,q

∀ zh ∈ Ŝh, ∀ θh ∈ Kh ,
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where 1
p + 1

q = 1.

Proof. The proof is an extension of the approach in [17, §8.6] for a scalar second-
order linear elliptic equation. Similarly to (2.38), it follows from (1.20), (2.27) and
(2.28) that for all p ∈ [2, 2 + δ], for all h ∈ (0, h0) and for all zh ∈ Ŝh,
(2.61)

|E(zh)|0,p ≤ β(p) β̂(q) sup
0�=η∈V̂ q

(E(zh), E(P hη))
|E(P hη)|0,q

≤ (1 + σ(p)) sup
0�=χ∈Ŝh

(E(zh), E(χ))
|E(χ)|0,q

,

where σ ∈ C( [2, 2 + δ] ), σ(p) ≥ 0 and σ(p) → 0 as p → 2. On recalling (1.4) and
(1.10) we define B(z, η) := ( (I − 1

MC
c(θh) C) E(z), E(η)) for all z ∈ V̂ p, η ∈ V̂ q and

θh ∈ Kh. It follows from (1.10) and (1.4) that

(2.62) |B(z, η)| ≤ (1 − c0 mC
MC

) |E(z)|0,p |E(η)|0,q .

Combining (2.61) and (2.62) yields for all zh ∈ Ŝh and θh ∈ Kh that

(2.63)
[

1
1+σ(p) − (1 − c0 mC

MC
)
]
|E(zh)|0,p ≤ 1

MC
sup

0�=χ∈Ŝh

(c(θh) C E(zh), E(χ))
|E(χ)|0,q

.

Since σ(p) → 0 as p → 2 and σ is continuous, one can choose δ1 ∈ (0, δ) such that
σ(p) ≤ 1

2
c0 mC

MC−c0 mC
for all p ∈ [2, 2 + δ1]. Hence (2.63) yields the result (2.60). �

Remark 2.2. It is now straightforward to establish a global L∞(0, T ; W 1,p(Ω)),
p > 2, bound for u solving (1.12e). Let θ ∈ L∞(ΩT ). Then, similarly to the
proof of Lemma 2.4, it follows from (1.19), (1.20), (1.10), (1.4), (1.12e) and a trace
inequality that for a.a. t ∈ (0, T ),
(2.64)[

1
β(p) − (1 − c0 mC

MC
)
]
|E(u(·, t))|0,p ≤ 1

MC
sup

0�=η∈V̂ q

|
∫

∂Ω
g .η ds|

|E(η)|0,q
≤ C sup

0�=η∈V̂ q

|η|0,1,∂Ω

‖η‖1,q
≤ C.

We introduce for all ε ∈ (0, 1), bε : [−1, 1] → [ε (2 − ε), 1] defined by

(2.65) bε(s) := 1
G′′

ε (s) ≥ 1
G′′(s) = b(s) .

Then the following lemma follows immediately from the construction of Ξε; see [12,
Lemmas 2.2 and 2.3] for details.

Lemma 2.5. Let the assumptions (A) hold and let ‖ · ‖ denote the spectral norm
on R

2×2. Then for any given ε ∈ (0, 1) the function Ξε : Sh → [L∞(Ω)]2×2 satisfies
for all zh ∈ Kh, ξ ∈ R

2 and for all σ ∈ T h,

ε (2 − ε) ξT ξ ≤ min
x∈σ

bε(zh(x)) ξT ξ ≤ ξT Ξε(zh) |σ ξ ≤ max
x∈σ

bε(zh(x)) ξT ξ ≤ ξT ξ ,

(2.66a)

max
x∈σ

‖ [ Ξε(zh) − bε(zh) I ](x)‖ ≤ hσ |∇[bε(zh)] |0,∞,σ ≤ 2 hσ |∇zh |σ | .(2.66b)

In the remainder of this section, we establish stability bounds for the solution of
(2.3a–c) that are needed for our convergence analysis in §3.

Lemma 2.6. Let the assumptions (A) hold and Θn−1
ε ∈ Kh. Then for all ε ∈ (0, 1)

and for all h, τn > 0 there exists a solution {Un
ε , Θn

ε , Wn
ε } to the n-th step of (Ph,τ

ε )
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with � Θn
ε = � Θn−1

ε . {Un
ε , Θn

ε } is unique. In addition, Wn
ε is unique if there exists

j ∈ J such that Θn
ε (pj) ∈ (−1, 1). Moreover, it follows that

J (Θn
ε , Un

ε ) + 1
2

[
γ |Θn

ε − Θn−1
ε |21 + γ−1 |Θn

ε − Θn−1
ε |2h

]
+ 1

2 γ−1 τn (Ξε(Θn−1
ε )∇Wn

ε ,∇Wn
ε ) ≤ J (Θn−1

ε , Un
ε ) ,(2.67a)

where
(2.67b)

J (Θn
ε , Un

ε ) := 1
2 [ γ |Θn

ε |21 − γ−1 |Θn
ε |2h ] +

[∫
Ω

E(Θn
ε , Un

ε ) dx −
∫

∂Ω

g . Un
ε ds

]
≥ J0,

with J0 ∈ R. Furthermore it follows that

γ2 (Gε(Θn
ε ) − Gε(Θn−1

ε ), 1)h + γ2

2 τn |∆hΘn
ε |2h

≤ ε−1 γ2 |Θn
ε − Θn−1

ε |2h + γ τn (∇Wn
ε ,∇[Θn

ε − Θn−1
ε ] )

+ τn [ (∇Θn
ε ,∇Θn−1

ε ) + C |E(Un
ε )|40,4 ] .(2.68)

Proof. As (2.3a) is a linear finite-dimensional system, existence of Un
ε follows from

uniqueness. Given Θn−1
ε ∈ Kh, it follows from (1.4), (1.10) and (1.19) that

(c(Θn−1
ε ) C E(U), E(U)) ≥ c0 (C E(U), E(U)) ≥ c0 mC |E(U)|20 ≥ C ‖U‖2

1 ∀ U ∈ Ŝh.

Hence we have existence and uniqueness of Un
ε ∈ Ŝh solving (2.3a). The existence

and uniqueness results on {Θn
ε , Wn

ε } ∈ Kh × Sh can be shown with the techniques
in [12, Lemma 2.4]. The details are omitted here for the sake of brevity.

It follows from (1.3), (1.10), (1.13), a trace inequality and (1.19) that

J (Θn
ε , Un

ε ) ≥ −1
2 γ−1 m(Ω) +

[∫
Ω

E(Θn
ε , Un

ε ) dx −
∫

∂Ω

g . Un
ε ds

]
≥ −1

2 γ−1 m(Ω) + 1
2 c0 mC |E(Un

ε )|20 − ‖g‖0,∞,∂Ω ‖Un
ε ‖0,1,∂Ω

≥ −1
2 γ−1 m(Ω) + 1

2 c0 mC |E(Un
ε )|20 − C |E(Un

ε )|0 ≥ J0.(2.69)

Furthermore, choosing χ ≡ Wn
ε in (2.3b), χ ≡ Θn−1

ε in (2.3c) and noting the
fact that c′(Θn−1

ε ) [Θn
ε − Θn−1

ε ] = c(Θn
ε ) − c(Θn−1

ε ), as c is affine linear, and the
elementary identity 2 r (r−s) = (r2−s2)+(r−s)2, it follows from (1.3) and (2.69)
that the desired results (2.67a,b) hold.

Choosing χ ≡ πh[G′
ε(Θ

n−1
ε )] in (2.3b), and noting (2.2) yields that

(2.70) γ (Θn
ε − Θn−1

ε , G′
ε(Θ

n−1
ε ))h + τn (∇Wn

ε ,∇Θn−1
ε ) = 0 .

We now apply an argument similar to that in [6, Theorem 2.3]. From (2.3c) we have
for all j ∈ J on choosing χ ≡ Θn

ε + ς χj , Θn
ε ± ς χj , Θn

ε − ς χj ∈ Kh, respectively
for ς > 0 sufficiently small, that

γ (∇Θn
ε ,∇χj) − (Wn

ε + γ−1 Θn−1
ε , χj)h + 1

2 (c′(Θn−1
ε ) C E(Un

ε ) : E(Un
ε ), χj)⎧⎨⎩

≥ 0
= 0
≤ 0

if Θn
ε (pj)

⎧⎨⎩
= −1,
∈ (−1, 1),
= 1.

(2.71)

From (2.14) and (2.1) it follows for all j ∈ J that

(2.72) Θn
ε (pj) = ± 1 =⇒ ±Θn

ε (pj) ≥ ±Θn
ε (pi) ∀ i ∈ J =⇒ ±∆hΘn

ε (pj) ≤ 0.
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Combining (2.71) and (2.72), and noting (2.14), (1.10) and (2.8), yields that

γ2 |∆hΘn
ε |2h = −γ2 (∇Θn

ε ,∇(∆hΘn
ε ) )

≤ −(γ Wn
ε + Θn−1

ε , ∆hΘn
ε )h + γ

2 (c′(Θn−1
ε ) C E(Un

ε ) : E(Un
ε ), ∆hΘn

ε )

≤ (∇[γ Wn
ε + Θn−1

ε ],∇Θn
ε ) + γ2

2 |∆hΘn
ε |2h + C |E(Un

ε )|40,4.(2.73)

It follows from (2.70), [12, (2.8a)] and (2.73) that

γ2 (Gε(Θn
ε ) − Gε(Θn−1

ε ), 1)h + γ2

2 τn |∆hΘn
ε |2h

≤ γ2 (Θn
ε − Θn−1

ε , G′
ε(Θ

n
ε ))h + τn (∇[γ Wn

ε + Θn−1
ε ],∇Θn

ε ) + C τn |E(Un
ε )|40,4

≤ γ2 (Θn
ε − Θn−1

ε , G′
ε(Θ

n
ε ) − G′

ε(Θ
n−1
ε ))h + τn γ (∇Wn

ε ,∇[Θn
ε − Θn−1

ε ] )

+ τn (∇Θn
ε ,∇Θn−1

ε ) + C τn |E(Un
ε )|40,4

≤ ε−1 γ2 |Θn
ε − Θn−1

ε |2h + τn [ γ (∇Wn
ε ,∇[Θn

ε − Θn−1
ε ] )

+ (∇Θn
ε ,∇Θn−1

ε ) + C |E(Un
ε )|40,4 ]

and hence the desired result (2.68). �
Remark 2.3. We note that (2.67a,b) and (2.68) are the discrete analogues of the
energy estimates (1.15) and (1.16), respectively.

Lemma 2.7. Let the assumptions of Lemmas 2.4 and 2.6 hold. Then for all
p ∈ [2, 2 + δ1] and for all h ∈ (0, h0),

(2.74) |E(Un
ε )|0,p ≤ C .

Proof. Similarly to (2.64), it follows from (2.60), (2.3a), (1.13), (1.19) and a trace
inequality that

|E(Un
ε )|0,p ≤ C sup

0�=χ∈Ŝh

|
∫

∂Ω
g .χ ds|

|E(χ)|0,q
≤ C sup

0�=χ∈Ŝh

|χ|0,1,∂Ω

|E(χ)|0,q
≤ C sup

0�=χ∈Ŝh

|χ|0,1,∂Ω

‖χ‖1,q
≤ C

and hence the desired result (2.74). �
On recalling (1.13), we set

(2.75) Ũn
ε := Un

ε − S∗x

as it is easier, by exploiting (2.25), to bound |LhŨn
ε |0 than to bound |LhUn

ε |0; see
the lemma below.

Lemma 2.8. Let the assumptions of Lemmas 2.2 and 2.7 hold. Assuming that
Θn−1

ε = 1 on ∂Ω, it follows that

(2.76) |Lh(Ũn
ε )|0 ≤ C |Θn−1

ε |21,4 .

Moreover, for all h ∈ (0, h0),

(2.77) |E(Un
ε )|40,4 ≤ C(δ1) [ |Θn−1

ε |4−δ1
1,4 + 1 ] .

Proof. For ease of notation, let cn−1 := c(Θn−1
ε ). Assuming that Θn−1

ε = 1 on ∂Ω,
it follows from (1.13) and E(S∗x) = S∗ E(x) = S∗ that∫

∂Ω

g . η ds =
∫

∂Ω

cn−1 (C S∗ν) . η ds = (∇ .(cn−1 C S∗η), 1)

= (cn−1 C E(S∗x), E(η)) + (∇ .(cn−1 C S∗), η) ∀ η ∈ H1(Ω) .(2.78)
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Combining (2.3a), (2.75), and (2.78) yields that

(2.79) (cn−1 C E(Ũn
ε ), E(χ)) = (∇ . (cn−1 S), χ) ∀ χ ∈ Sh .

For the ensuing analysis it is convenient to introduce ũn
ε ∈ Ĥ1(Ω) such that

(2.80) (cn−1 C E(ũn
ε ), E(η)) = (∇ . (cn−1 S), η) ∀ η ∈ H1(Ω) .

Existence and uniqueness of ũn
ε , and the bound

(2.81) ‖ũn
ε ‖1 ≤ C

are easily established on noting (2.78), (1.13), (1.4), (1.10), (1.19) and a trace
inequality.

We now address the H2(Ω) regularity of ũn
ε . If η̂ ∈ H1(Ω), then η := [cn−1]−1 η̂

satisfies, on noting (1.4) and (1.17),

|η|1 ≤ C [ |η̂|1 + |Θn−1
ε |1,2+ς |η̂|0, 2(2+ς)

ς
] ≤ C [1 + |Θn−1

ε |1,2+ς ] ‖η̂‖1, ς > 0,

and hence η ∈ H1(Ω). Choosing η ≡ [cn−1]−1 η̂ in (2.80) yields, on noting (2.42),
that for all η̂ ∈ H1(Ω),

(2.82) (C E(ũn
ε ), E(η̂)) = ([cn−1]−1 ∇ . (cn−1 S) − cn−1 C E(ũn

ε )∇ [cn−1]−1, η̂) .

It follows from (2.82), (2.23), (1.17), (2.81) and (1.4) that

‖ũn
ε ‖2 ≤ C [ |E(ũn

ε )|0,4 |cn−1|1,4 + |cn−1|1 ] ≤ C [ |ũn
ε |

1
2
1 ‖ũn

ε ‖
1
2
2 + 1 ] |cn−1|1,4

≤ C |cn−1|21,4 ≤ C |Θn−1
ε |21,4 .(2.83)

From (1.10), (1.4), (1.19), (2.80), (2.79), (1.9), (2.6) and (2.83) we have that

C1 ‖ũn
ε − Ũn

ε ‖2
1 ≤ (cn−1 C E(ũn

ε − Ũn
ε ), E(ũn

ε − Ũn
ε ) )

≤ (cn−1 C E((I − πh)ũn
ε ), E((I − πh)ũn

ε ) )

≤ C2 |(I − πh)ũn
ε |21 ≤ C3 h2 |ũn

ε |22 .(2.84)

It follows from (2.24) and (2.84) that

|LhŨn
ε |0 ≤ |Lh(Ũn

ε − πhũn
ε )|0 + |Lh(πhũn

ε )|0 ≤ C h−1 |Ũn
ε − πhũn

ε |1 + |Lh(πhũn
ε )|0

≤ C h−1 [ |Ũn
ε − ũn

ε |1 + |(I − πh) ũn
ε |1 ] + |Lh(πhũn

ε )|0 ≤ C |ũn
ε |2 + |Lh(πhũn

ε )|0.
(2.85)

It follows from (2.80) and (1.4) that

(2.86) cn−1 C E(ũn
ε ) ν = 0 on ∂Ω =⇒ C E(ũn

ε ) ν = 0 on ∂Ω.

The desired result (2.76) then follows from (2.85), (2.86), (2.25) and (2.83).
It follows from (2.75) that

(2.87) |E(Un
ε )|40,4 ≤ C [ |E(Ũn

ε )|40,4 + 1 ] .

On noting (2.24), we have for any α ∈ (0, 1) that

(2.88) |E(Ũn
ε )|40,4 ≤ C(α) |E(Ũn

ε )|2+α
0,2+2α |LhŨn

ε |2−α
0 .

Combining (2.87), (2.88), (2.75), (2.74) and (2.76) yields the result (2.77). �
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Lemma 2.9. Let θ0 ∈ K ∩ H2(Ω) with ∂θ0

∂ν = 0 on ∂Ω, and the assumptions (A)
hold. On choosing Θ0

ε ≡ πhθ0 it follows that Θ0
ε ∈ Kh is such that for all h > 0,

(2.89) ‖Θ0
ε‖2

1 + |∆hΘ0
ε|2h + (Gε(Θ0

ε), 1)h ≤ C.

Proof. The desired result (2.89) follows from (2.6), (2.17) and (2.8). �

Theorem 2.1. Let the assumptions of Lemma 2.9 hold. Then for all ε ∈ (0, 1),
h ∈ (0, h0) and for all time partitions {τn}N

n=1, the solution {Un
ε , Θn

ε , Wn
ε }N

n=1 to
(Ph,τ

ε ) is such that � Θn
ε = � Θ0

ε, n = 1 → N , and

γ max
n=1→N

‖Θn
ε ‖2

1 +
N∑

n=1

[
γ |Θn

ε − Θn−1
ε |21 + γ−1 τn (Ξε(Θn−1

ε )∇Wn
ε ,∇Wn

ε )
]

+
N∑

n=2

(c(Θn−1
ε ) C E(Un

ε − Un−1
ε ), E(Un

ε − Un−1
ε ) ) ≤ C

[
1 + ‖Θ0

ε‖2
1

]
≤ C .(2.90)

In addition,

(2.91) γ

N∑
n=1

τn

∣∣∣G[Θ
n
ε −Θn−1

ε

τn
]
∣∣∣2
1

+ γ τ− 1
2

N∑
n=1

|Θn
ε − Θn−1

ε |20 ≤ C
[
1 + ‖Θ0

ε‖2
1

]
≤ C .

Moreover, on assuming (2.23) holds, if C is anisotropic, τn ≤ C τn−1, n = 2 → N ,
and Θn−1

ε = 1 on ∂Ω, n = 1 → N , then

(2.92) γ2 max
n=1→N

(Gε(Θn
ε ), 1)h+

N∑
n=1

τn [ γ2 |∆hΘn
ε |2h+‖Un

ε ‖4
1,4 ] ≤ C(T ) [ 1+ε−1τ

1
2 ] .

Proof. First, it follows from (2.67b), (1.3) and (2.3a) that for n = 2 → N ,
(2.93)
J (Θn−1

ε , Un
ε ) = J (Θn−1

ε , Un−1
ε ) − 1

2 (c(Θn−1
ε ) C E(Un

ε − Un−1
ε ), E(Un

ε − Un−1
ε ) ) .

Summing (2.67a) from n = 1 → k and noting (2.93), (2.67b), (1.3), (1.10), (1.4)
and a trace inequality, yields for k = 2 → N that

J (Θk
ε , Uk

ε) + 1
2

k∑
n=1

[
γ |Θn

ε − Θn−1
ε |21 + γ−1 τn (Ξε(Θn−1

ε )∇Wn
ε ,∇Wn

ε )
]

+ 1
2

k∑
n=2

(c(Θn−1
ε ) C E(Un

ε − Un−1
ε ), E(Un

ε − Un−1
ε ) )

≤ J (Θ0
ε, U

1
ε) ≤ C [ 1 + ‖Θ0

ε‖1 + ‖U1
ε‖2

1 ] .(2.94)

The desired result (2.90) then follows from (2.67a) for n = 1, (2.94) for k = 2 → N ,
(2.67b), (2.8) and the fact that Θn

ε ∈ Kh, n = 0 → N , (2.74), (1.19) and (2.89).
The proof of (2.91) is the same as the proof of [12, (2.43)] and is hence omitted

here. Finally, summing (2.68) from n = 1 → k and noting (2.8), (2.66a), (2.90),
(2.91), (2.89), (2.77), (2.16b), our assumption on τn, and (1.23) yields for any k ≤ N
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that

γ2 (Gε(Θk
ε), 1)h + γ2

2

k∑
n=1

τn |∆hΘn
ε |2h ≤ γ2 (Gε(Θ0

ε), 1)h

+ 4 ε−1 γ2
k∑

n=1

|Θn
ε − Θn−1

ε |20 + tk max
n=0→k

‖Θn
ε ‖2

1 + C
k∑

n=1

τn |E(Un
ε )|40,4

+

[
ε−1

k∑
n=1

τn |[Ξε(Θn−1
ε )]

1
2 ∇Wn

ε |20

] 1
2
[
γ

k∑
n=1

τn |Θn
ε − Θn−1

ε |21

] 1
2

≤ C(T ) [ 1 + ε−1 τ
1
2 ] + C

k∑
n=1

τn |Θn−1
ε |4−δ1

1,4

≤ C(T ) [ 1 + ε−1 τ
1
2 ] + C

k∑
n=2

τn−1 |∆hΘn−1
ε |2−

δ1
2

h ≤ C(T ) [ 1 + ε−1 τ
1
2 ] .(2.95)

Hence the desired result (2.92) follows immediately from (2.95) and (1.19). �

3. Convergence

In this section we will show convergence of the discrete solutions obtained in
Section 2 to a weak solution of problem (P). We will use methods developed in [4],
[34] and [12] to deal with the degeneracy of b. Furthermore, it will be crucial to
show strong convergence of E(Un

ε ) in order to pass to the limit in the nonlinearity
C E(Un

ε ) : E(Un
ε ). Let

Θε(·, t) := t−tn−1
τn

Θn
ε (·) + tn−t

τn
Θn−1

ε (·), t ∈ [tn−1, tn], n ≥ 1,(3.1a)

Θ+
ε (·, t) := Θn

ε (·), Θ−
ε (·, t) := Θn−1

ε (·), t ∈ (tn−1, tn], n ≥ 1.(3.1b)

We note for future reference that

(3.2) Θε(·, t) − Θ±
ε (·, t) = (t − t±n ) ∂Θε

∂t (·, t), t ∈ (tn−1, tn), n ≥ 1,

where t+n := tn and t−n := tn−1. We introduce also τ̄(t) := τn for t ∈ (tn−1, tn] and
n ≥ 1.

Using the above notation, and introducing analogous notation for Wε and Uε,
(Ph,τ

ε ) can be restated as: Find {U+
ε , Θε, W

+
ε } ∈ L∞(0, T ; Ŝh) × C([0, T ]; Kh) ×

L∞(0, T ; Sh) such that∫ T

0

(c(Θ−
ε ) C E(U+

ε ), E(χ)) dt =
∫ T

0

∫
∂Ω

g . χ ds dt ∀ χ ∈ L∞(0, T ; Sh),(3.3a) ∫ T

0

[
γ
(

∂Θε

∂t , χ
)h

+ (Ξε(Θ−
ε )∇W+

ε ,∇χ)
]
dt = 0 ∀ χ ∈ L∞(0, T ; Sh),(3.3b)

γ

∫ T

0

(∇Θ+
ε ,∇[χ − Θ+

ε ]) dt ≥
∫ T

0

(W+
ε + γ−1 Θ−

ε , χ − Θ+
ε )h dt

− 1
2

∫ T

0

(c′(Θ−
ε ) C E(U+

ε ) : E(U+
ε ), χ − Θ+

ε ) dt ∀ χ ∈ L∞(0, T ; Kh).(3.3c)

Lemma 3.1. Let θ0 ∈ K ∩ H2(Ω) with ∂θ0

∂ν = 0 on ∂Ω and � θ0 ∈ (−1, 1). Let
{T h, ε, {τn}N

n=1, }h>0 be such that Ω and {T h}h>0 fulfill assumptions (A), ε ∈ (0, 1)
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with ε → 0 as h → 0 and τn ≤ C τn−1 ≤ C ε2, n = 2 → N . Let Θ0
ε ≡ πhθ0. Then

there exists a subsequence of {U+
ε , Θε, W

+
ε }h, where {U+

ε , Θε, W
+
ε } solve (Ph,τ

ε ),
and functions

(3.4) θ ∈ L∞(0, T ; K) ∩ H1(0, T ; (H1(Ω))′) and u ∈ L∞(0, T ; V̂ 2+δ1
), δ1 > 0,

with θ(·, 0) = θ0(·) in L2(Ω) and � θ(·, t) = � θ0 for a.a. t ∈ (0, T ), such that as
h → 0,

Θε, Θ±
ε → θ weak-∗ in L∞(0, T ; H1(Ω)),(3.5a)

G ∂Θε

∂t → G ∂θ
∂t weakly in L2(0, T ; H1(Ω)),(3.5b)

U+
ε → u weak-∗ in L∞(0, T ; W 1,2+δ1(Ω)),(3.5c)

Θε, Θ±
ε → θ strongly in L2(0, T ; Ls(Ω)),(3.6a)

Ξε(Θ−
ε ) → b(θ) I strongly in L2(0, T ; Ls(Ω)),(3.6b)

c(Θ−
ε ) → c(θ) strongly in L2(0, T ; Ls(Ω)),(3.6c)

U+
ε → u strongly in L2(0, T ; H1(Ω)),(3.6d)

for all s ∈ [2,∞). Moreover, {u, θ} satisfy

(3.7)
∫

ΩT

c(θ) C E(u) : E(η) dx dt =
∫ T

0

∫
∂Ω

g . η ds dt ∀ η ∈ L2(0, T ; H1(Ω)) .

Furthermore, on assuming (2.23) holds, if C is anisotropic, and if

(3.8) Θε = 1 on ∂Ω,

then {θ,u}, in addition to (3.4), satisfy

(3.9) θ ∈ L2(0, T ; H2(Ω)) and u ∈ L4(0, T ; W 1,4(Ω));

and there exists a subsequence of {U+
ε , Θε, W

+
ε }h satisfying (3.5a–c), (3.6a–d) and

as h → 0,

∆hΘε, ∆hΘ±
ε → ∆θ weakly in L2(ΩT ),(3.10a)

Θε, Θ±
ε → θ weakly in L2(0, T ; W 1,s(Ω)), for any s ∈ [2,∞),(3.10b)

Θε, Θ±
ε → θ strongly in L2(0, T ; C0,β(Ω)), for any β ∈ (0, 1),(3.10c)

U+
ε → u weakly in L4(0, T ; W 1,4(Ω)) .(3.10d)

Finally, on extracting a further subsequence, it follows for a.a. t ∈ (0, T ) that

(3.11) Θε(·, t), Θ±
ε (·, t) → θ(·, t) strongly in C0,β(Ω) as h → 0.

Proof. On noting (3.1a,b) and (1.19), the bounds (2.74), (2.90) and (2.91) imply
that

‖U+
ε ‖2

L∞(0,T ;W 1,2+δ1 (Ω)) + ‖Θ(±)
ε ‖2

L∞(0,T ;H1(Ω)) + ‖ [Ξε(Θ−
ε )]

1
2 ∇W+

ε ‖2
L2(0,T ;L2(Ω))

+‖τ̄ 1
2 ∂Θε

∂t ‖2
L2(0,T ;H1(Ω)) + ‖G ∂Θε

∂t ‖2
L2(0,T ;H1(Ω)) + τ− 1

2 ‖τ̄ 1
2 ∂Θε

∂t ‖2
L2(ΩT ) ≤ C.(3.12)

Furthermore, we deduce from (3.2) and (3.12) that

(3.13) ‖Θε − Θ±
ε ‖2

L2(0,T ;H1(Ω)) ≤ ‖τ̄ ∂Θε

∂t ‖2
L2(0,T ;H1(Ω)) ≤ C τ .

Hence on noting (3.12), (3.13), Θε(·, t) ∈ Kh, U+
ε (·, t) ∈ Ŝh, and the compactness

result [12, (1.12a)] we can choose a subsequence {U+
ε , Θε, W

+
ε }h such that the

convergence results (3.4), (3.5a–c) and (3.6a) hold. Then (3.4) and Theorem 2.1
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yield, on noting [12, (1.12b)], our assumption on Θ0
ε and (2.7) that the subsequence

satisfies the additional initial and integral conditions.
The desired results (3.6b,c) follow from (2.66b), (2.5), (3.12), (2.65), (1.7) and

(1.4); see [12, Lemma 3.1] for details.
For any η ∈ L2(0, T ; H2(Ω)), we choose χ ≡ πhη in (2.3a). The desired result

(3.7) then follows from (2.6), a trace inequality, (3.12), (1.4), (3.6c), (3.5c) and a
density result. We have from (3.3a) and (3.7) that∫

ΩT

c(θ) C E(u − U+
ε ) : E(u − U+

ε ) dx dt

=
∫

ΩT

[
c(θ) C E(u − U+

ε ) : E(u) + [c(θ) − c(Θ−
ε )] C E(U+

ε ) : E(U+
ε )
]

dx dt .(3.14)

The desired result (3.6d) then follows from (3.14), on noting (1.4), (1.19), (3.5c)
and (3.6c).

It follows from (2.92), (2.89), (2.8), (3.1a,b) and our assumptions on {τn}N
n=1

and ε that

(3.15) ‖∆hΘ(±)
ε ‖2

L2(ΩT ) + ‖U+
ε ‖4

L4(0,T ;W 1,4(Ω)) ≤ C(T ) .

The desired results (3.9) and (3.10a,d) then follow from (3.15), (2.14), (2.7), (2.9),
(3.12), (3.5a), elliptic regularity as Ω is convex polygonal, and (3.4); see [12, Lemma
3.1] for details. Furthermore, it follows from (3.10a) and (2.16a) that (3.10b) holds
on extracting a further subsequence.

Finally, (3.10c) for Θε follows from (3.10b), (3.5b), [12, (1.12a)] and the compact
embedding W 1,s(Ω) ↪→ C0,β(Ω), where β < 1 − 2

s . To prove the result on Θ±
ε in

(3.10c), we note the following. For any β ∈ (0, 1) and any s̄ ∈ ( 2
1−β , s) it follows on

noting the above compact embedding, (3.13) and (3.10b) that

‖Θε − Θ±
ε ‖L2(0,T ;C0,β(Ω)) ≤ ‖Θε − Θ±

ε ‖L2(0,T ;W 1,s̄(Ω))

≤ ‖Θε − Θ±
ε ‖α

L2(0,T ;H1(Ω)) ‖Θε − Θ±
ε ‖1−α

L2(0,T ;W 1,s(Ω)) ≤ C τ
α
2 ,(3.16)

where α = 2 (s−s̄)
(s−2) s̄ ∈ (0, 1). Combining (3.16), τ → 0 and the established result on

Θε in (3.10c) yields the desired result (3.10c) for Θ±
ε . The final result (3.11) follows

immediately from (3.10c). �

Remark 3.1. The condition θ0 ∈ H2(Ω) with ∂θ0

∂ν = 0 can be relaxed, but it is not
particularly restrictive; see, e.g., [11].

From (3.12), (2.66a), (2.65), (1.7) and (3.11) we see that we can only control
∇W+

ε on the set where Ξε(Θ−
ε ) is bounded below independently of ε, and hence h,

as ε → 0 and h → 0, i.e., on the set where |θ| < 1. Therefore in order to construct
the appropriate limits as h → 0, we introduce the following open subsets of Ω. For
any ρ ∈ (0, 1), we define for a.a. t ∈ (0, T ),

(3.17) Bρ(t) := {x ∈ Ω : |θ(x, t)| < 1 − ρ } .

We have from (3.11) (see [12] for details) that for a.a. t ∈ (0, T ) and any ρ ∈ (0, ρ0),
there exists an h0(ρ, t) such that for all h ≤ h0(ρ, t) there exist collections of
simplices T h

B,ρ(t) ⊂ T h such that

(3.18) Bρ(t) ⊂ Bh
ρ (t) :=

⋃
σ∈T h

B,ρ(t)

σ ⊂ B ρ
2
(t) .
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In addition for a.a. t ∈ (0, T ) and any fixed ρ ∈ (0, ρ̂0), where ρ̂0 := min{ρ0,
1
2}, it

follows from (3.17), (3.11) and our assumption on ε in Lemma 3.1 that there exists
an ĥ0(ρ, t) ≤ h0(ρ, t) such that for h ≤ ĥ0(ρ, t),
(3.19)
1− 2ρ ≤ |Θ±

ε (x, t)| ∀ x �∈ Bρ(t), |Θ±
ε (x, t)| ≤ 1− ρ

2 ∀ x ∈ Bρ(t) and ε ≤ ρ .

Lemma 3.2. Let all the assumptions of Lemma 3.1 hold. Then for a.a. t ∈ (0, T )
there exists a function

w(·, t) ≡ −γ ∆θ(·, t) − γ−1θ(·, t) + 1
2 [c′(θ) C E(u) : E(u)](·, t) ∈ H1

loc({|θ(·, t)| < 1}),
(3.20)

where {|θ(·, t)| < 1} := {x ∈ Ω : |θ(x, t)| < 1}. Moreover, on extracting a further
subsequence from the subsequence {U+

ε , Θε, W
+
ε }h in Lemma 3.1, it follows as h →

0 that

(3.21) Ξε(Θ−
ε )∇W+

ε → H{|θ|<1} b(θ)∇w weakly in L2(0, T ; L2(Ω)),

where H{|θ|<1} is the characteristic function of the set {|θ| < 1} := {(x, t) ∈ ΩT :
|θ(x, t)| < 1}.

Proof. It follows from (3.12) and (2.66a) that

(3.22) ‖Ξε(Θ−
ε )∇W+

ε ‖2
L2(0,T ;L2(Ω)) ≤ C.

Hence (3.22) implies that there exists a function z ∈ L2(0, T ; L2(Ω)), and on ex-
tracting a further subsequence from the subsequence {U+

ε , Θε, W
+
ε }h in Lemma 3.1,

it follows as h → 0 that

(3.23) Ξε(Θ−
ε )∇W+

ε → z weakly in L2(0, T ; L2(Ω)) .

We now identify z.
First, we consider a fixed ρ ∈ (0, ρ0). It follows from (1.7), (2.65), (2.66a), (3.19)

and (3.12) that for a.a. t ∈ (0, T ) and for all h ≤ ĥ0(ρ, t),

ρ (1 − ρ
4 ) |∇W+

ε (·, t)|20,Bρ(t) = b(1 − ρ
2 ) |∇W+

ε (·, t)|20,Bρ(t)

≤ bε(1 − ρ
2 ) |∇W+

ε (·, t)|20,Bρ(t) ≤ |( [Ξε(Θ−
ε )]

1
2 ∇W+

ε )(·, t)|20 ≤ C(t) .(3.24)

From (3.24), (3.18), (2.66a) and (3.19) we have for a.a. t ∈ (0, T ) and for all
h ≤ ĥ0(ρ, t),

|(Ξε(Θ−
ε )∇W+

ε )(·, t)|20,Ω\Bρ(t) ≤ max
x∈Ω\B2ρ(t)

bε(Θ−
ε (x)) |( [Ξε(Θ−

ε )]
1
2 ∇W+

ε )(·, t)|20,Ω\Bρ(t)

≤ C(t) bε(1 − 4 ρ) ≤ C(t) ρ .(3.25)

On noting (3.15) we have for a.a. t ∈ (0, T ) that

(3.26) |∆hΘ+
ε (·, t)|20 + ‖U+

ε (·, t)‖4
1,4 ≤ C(t) .

It follows from (3.26) and (3.6d), on extracting a further subsequence, that for
a.a. t ∈ (0, T ) and as h → 0,

∆hΘ+
ε (·, t) → ∆θ(·, t) weakly in L2(Ω),(3.27a)

U+
ε (·, t) → u(·, t) weakly in W 1,4(Ω) and strongly in H1(Ω) ;(3.27b)
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see [12], as for (3.10a), for details of the former. Combining (2.71), (2.14), (3.1b),
(3.19) and (3.18) yields for a.a. t ∈ (0, T ) and for all h ≤ ĥ0(ρ

4 , t) that on Bρ(t),
(3.28)
W+

ε (·, t) ≡ −γ ∆hΘ+
ε (·, t) − γ−1 Θ−

ε (·, t) + 1
2 (Qh[c′(Θ−

ε ) C E(U+
ε ) : E(U+

ε )])(·, t) .

If v
(h)
i ∈ L4(Ω), i = 1, 2, then for any η ∈ H2(Ω) we have that

(Qh[vh
1 vh

2 ] − v1 v2, η) = (vh
1 vh

2 − v1 v2, η) + ( (Qh − I)[vh
1 vh

2 ], (I − πh)η)

+ [ (Qh[vh
1 vh

2 ], πhη) − (Qh[vh
1 vh

2 ], πhη)h ] .(3.29)

It then follows from (3.29), (2.6), (2.9) and a density argument that for i = 1, 2,

vh
i → vi strongly in L2(Ω) and weakly in L4(Ω),

=⇒ Qh[vh
1 vh

2 ] → v1 v2 weakly in L2(Ω).(3.30)

We then have from (3.28), (3.27a,b), (3.11), (1.4) and (3.30) for a.a. t ∈ (0, T ) that
as h → 0,

W+
ε (·, t) → −γ ∆θ(·, t)−γ−1 θ(·, t)+γ

2 [c′(θ) C E(u) : E(u)](·, t) weakly in L2(Bρ(t)).

This together with (3.24) yields

(3.31) W+
ε (·, t) → w(·, t) weakly in H1(Bρ(t)).

Combining (3.23), (3.31) and (3.6b) yields for a.a. t ∈ (0, T ) that as h → 0,

(3.32) [Ξε(Θ−
ε )∇W+

ε ](·, t) → b(θ(·, t))∇w(·, t) weakly in L2(Bρ(t)).

Repeating (3.24) – (3.32) for all ρ ∈ (0, ρ̂0) yields (3.20) and, on noting (3.25) and
(3.23), the desired result (3.21). �

Theorem 3.1. Let the assumptions of Lemma 3.2 hold. Then there exists a
subsequence of {U+

ε , Θε, W
+
ε }h, where {U+

ε , Θε, W
+
ε } solve (Ph,τ

ε ), and functions
{u, θ, w} satisfying (3.4), (3.9), and (3.20). In addition, as h → 0 the following
hold: (3.5a–c), (3.6a–d), (3.10a–d), (3.11) for a.a. t ∈ (0, T ), and (3.21). Further-
more, we have that {u, θ, w} fulfill θ(·, 0) = θ0(·) in L2(Ω) and satisfy (3.7), (3.20)
and

(3.33) γ

∫ T

0

〈∂θ
∂t , η〉 dt +

∫
{|θ|<1}

b(θ)∇w .∇η dx dt = 0 ∀ η ∈ L2(0, T ; H1(Ω)) .

Proof. We need to prove only (3.33). For any η ∈ H1(0, T ; H2(Ω)) we choose
χ ≡ πhη in (3.3b). The desired result (3.33) then follows from (2.9), the embedding
H1(0, T ; X) ↪→ C([0, T ]; X), (3.12), (2.6), (2.10), (3.5b), (2.66a), (3.21) and the
denseness of H1(0, T ; H2(Ω)) in L2(0, T ; H1(Ω)); see [12, Theorem 3.6] for details.

�

4. Numerical results

Before presenting some numerical results, we briefly state algorithms for solving
the resulting system of algebraic equations for {Un

ε , Θn
ε , Wn

ε } arising at each time
level from the approximation (Ph,τ

ε ). As (2.3a) is independent of {Θn
ε , Wn

ε }, we
first solve the resulting linear equation to obtain Un

ε . To this end we employ a
preconditioned conjugate gradient solver. Then the nonlinear equations (2.3b–c)
are solved, using the same “Gauss–Seidel type” iteration as in [12, §4].
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In order to define the initial shape of the void we introduce the following function.
Given z ∈ R

2 and R ∈ R>0 we define

(4.1) v(z, R; x) :=

⎧⎪⎨⎪⎩
−1 r(x) ≤ R − γ π

2

sin( r(x)−R
γ ) |r(x) − R| < γ π

2

1 r(x) ≥ R + γ π
2

, where r(x) := |x − z|.

(4.1) represents a circular void with radius R. In line with the asymptotics of the
phase field approach (see §1), the interfacial thickness of v is equal to γ π. For the
initial data to (P) we chose θ0 to be either (i) one circle or (ii) two circles; that is,
(4.2)
(i) θ0(x) = v(z, R; x) or (ii) θ0(x) = max{v(z, R; x) + v(z̃, R̃; x) − 1,−1} .

We note that in the absence of elastic stresses both these choices of θ0 are close to
being steady states of (P), provided that in (ii) the two circular voids are sufficiently
far apart, e.g., |z − z̃| > R + R̃ + 2γπ.

Throughout the given domain, Ω = (−L, L) ×(−L, L) is partitioned into right-
angled isosceles triangles such that there are approximately 8 mesh points across
the interface. On using the adaptive finite element code ALBERT 1.0 (see [43]),
we implemented the same mesh refinement strategy as in [12]. In particular, to
improve efficiency we use a modified approximation (P̃h,τ

ε ); see [12, Remark 2.10],
and set Θ0

ε ≡ πhθ0. Now we have to solve for {Θn
ε , Wn

ε } only in the interfacial

region, |Θn−1
ε | < 1. Hence we use a refined mesh with mesh size hf = 2

3
2 L
Nf

in

this interfacial region, and a coarser mesh of mesh size hc = 2
3
2 L
Nc

away from the
interface. Here Nf and Nc are parameters; see [12, §5]. Furthermore, we choose Nf

such that there are always at least approximately 8 mesh points across the interface
in each direction, i.e., hf ≤ 3

√
2

32 γ π.
Throughout this section, we restrict ourselves to isotropic elasticity. Hence the

assumption (2.23) is satisfied and all our theoretical results in this paper apply. If
C is isotropic, (1.11), then it can be described by its nonzero elements

(4.3) C1111 = C2222 = 2 µ + λ, C1122 = λ, C1212 = µ,

where µ ∈ R>0 and λ ∈ R≥0 are the Lamé moduli.
The following computations are inspired by the results in [14, Figures 9 and

10]. It was noticed there that the void evolution depends strongly on the dimen-
sionless parameter Λ = S2

∞ R
β ς , where S∞ is the maximal stress applied externally,

β = µ(2µ+3λ)
µ+λ , R is the initial radius of the void, as in (4.1), and ς is surface energy

density, which without loss of generality is taken as π
2 throughout this paper. Un-

fortunately, the authors did not provide their exact dimensions, but it seems that
there L ≈ 4 R and R ≈ 7 γ. Throughout our experiments we set Ω to be the unit
square, L = 0.5; hence these values correspond to R ≈ 1

8 and γ ≈ 1
56 ≈ 1

18π . In
what follows we set R = 1

8 , S =
(
0 0
0 1

)
for the pure traction boundary condition

(1.13) ⇒ S∞ = 1, and choose γ ∈ { 1
12π , 1

24π , 1
48π}. Finally, let C be defined by (4.3)

with λ = µ = 1
10 Λπ , where Λ ∈ { 1

8 , 1
5 , 1

2}.
First, we conducted the following convergence experiments. Setting c0(γ) = γ2

in (1.4), we repeated the same experiment with decreasing values of γ, i.e., γ =
1

12π , 1
24π , 1

48π . In particular, we set Λ = 1
8 , T = 0.02, τn = τ = (γ 24 π)2 × 10−6,
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Figure 1. (S =
(
0 0
0 1

)
, Λ = 1

8 ) Comparison of zero level sets for
Θε(x, t) at time T = 0.02 for γ = 1

24π and γ = 1
48π .

ε = γ 24 π × 10−5 and used the appropriate refinement parameters Nf = 32
3

1
γπ ,

Nc = Nf

8 . The steady state solutions for this setup agreed very well for the different
values of γ. Hence we are satisfied that the converged solution is very close to the
sharp interface limit. See Figure 1, where we superimpose the steady states for
γ = 1

24π and γ = 1
48π .

For the remaining experiments, we fix ε = 10−5 and set c0 = 10−3 in (1.4).
In our first run, we chose Λ = 1

5 as in [14, Fig. 9]. This yields λ = µ = 1
2π .

The other parameters were chosen as follows: γ = 1
12π , T = 0.02, τn = τ =

1.5×10−5. As initial data we chose (4.2)(i) with z = (0, 0), R = 1
8 . The refinement

parameters were Nf = 128 and Nc = 16. In Figure 2 we plot the zero level sets
for Θε(x, t) at different times. Note that the last plot is a numerical steady state.
Furthermore, the figure contains plots of the principal elastic stress field and the
elastic energy density at time t = T . Here the former is defined as max{|α| :
α is an eigenvalue of c(Θ−

ε ) C E(U+
ε )}, whereas the elastic energy density is defined

as c(Θ−
ε ) C E(U+

ε ) : E(U+
ε ). To simplify matters, both functions were evaluated

at the vertices of the triangulation, where we used an arithmetic average of the
functions’ value on all adjacent triangles. One clearly notices that material is
transported away from regions with high elastic energy density.

To check convergence, we repeated the same experiment with finer discretization
parameters τn = τ = 5× 10−6, Nf = 256, Nc = 32 and the results were graphically
indistinguishable from those in Figure 2.

For a smaller interfacial parameter γ = 1
24π we observe a strikingly different

behaviour; see Figures 3(a) and 3(b). The elliptic shape is no longer stable, and
this leads to the development of a long slit. Here we see that the condition (3.8) need
not always be satisfied in practice. Hence our convergence results for (Ph,τ

ε ) and a
fixed γ would only hold true until the void reaches the boundary of the domain and
the material is separated into two parts. The evolution in this example indicates
that the elastic stresses and the curvature would become singular in the sharp
interface limit. Hence the sharp interface asymptotics, which assumes a bounded
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Figure 2. (S =
(
0 0
0 1

)
, Λ = 1

5 , γ = 1
12π ) Θε(x, t) at times t =

0, 0.02 and elastic stress field and elastic energy density at time
t = 0.02.

curvature, breaks down. These singularities are related to the Asaro–Tiller–Grinfeld
instability; see, e.g., [2], [32] and also [45]. Moreover, it is argued in [38] that a phase
field model can be interpreted as a regularization of the singularities resulting from
these instabilities. In fact there it is claimed that a phase field model might even be
more realistic, since it is not clear that the sharp interface model is still plausible
in situations where it leads to finite time singularities. We note that our results are
in contrast to [14, Fig. 9], where the authors used a larger interfacial parameter γ.
The discretization parameters used for our computation are τn = τ = 2.5 × 10−6

and Nf = 256, Nc = 32.
The next run is for Λ = 1

2 as in [14, Fig.10], i.e., λ = µ = 1
5π . A computation for

γ = 1
12π , T = 4 × 10−5, τn = τ = 5 × 10−7 and refinement parameters Nf = 128,

Nc = 16 can be seen in Figure 4.
Again we can observe a slightly different evolution for a smaller value of γ; see

Figure 5. In particular, the developing cusps appear sharper and less smoothed
out. One can again clearly see that material is transported away from regions with
high elastic energy density. The parameters for this computation were γ = 1

24π ,
T = 10−5, τn = τ = 10−7, Nf = 256 and Nc = 32.

A run with parameters as in Figure 2 but S =
(
0 1
1 0

)
can be seen in Figure 6,

where the last plot is a numerical steady state.
If we choose a smaller interfacial parameter γ = 1

24π , the elastic effect
tends to be more pronounced and the steady state shape is slightly different (see
Figure 7), where we used the same discretization parameters as in Figure 3.
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Figure 3. (S =
(
0 0
0 1

)
, Λ = 1

5 , γ = 1
24π ) Θε(x, t) at t = 0, 1.5 ×

10−4, 1.5 × 10−3, 3 × 10−3, 3.75 × 10−3, 5.25 × 10−3 and elastic
stress field and elastic energy density at time t = 3.75 × 10−3.
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Figure 4. (S=
(
0 0
0 1

)
, Λ= 1

2 , γ = 1
12π ) Θε(x, t) at t=10−5, 4×10−5

and elastic stress field and elastic energy density at time t=4×10−5.
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Figure 5. (S=
(
0 0
0 1

)
, Λ= 1

2 , γ = 1
24π ) Θε(x, t) at t=3×10−6, 10−5

and elastic stress field and elastic energy density at t=10−5.
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Figure 6. (S =
(
0 1
1 0

)
, Λ = 1

5 , γ = 1
12π ) Θε(x, t) at t = 0, 0.02 and

elastic stress field and elastic energy density at time t = 0.02.

-0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0.1 0.2 0.3 0.4 0.5
-0. 5

-0. 4

-0. 3

-0. 2

-0. 1

0

0.1

0.2

0.3

0.4

0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0.1 0.2 0.3 0.4 0.5
-0. 5

-0. 4

-0. 3

-0. 2

-0. 1

0

0.1

0.2

0.3

0.4

0.5

-0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0.1 0.2 0.3 0.4 0.5
-0. 5

-0. 4

-0. 3

-0. 2

-0. 1

0

0.1

0.2

0.3

0.4

0.5

10

20

30

40

50

60

70

80

90

-0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0.1 0.2 0.3 0.4 0.5
-0. 5

-0. 4

-0. 3

-0. 2

-0. 1

0

0.1

0.2

0.3

0.4

0.5

Figure 7. (S =
(
0 1
1 0

)
, Λ = 1

5 , γ = 1
24π ) Θε(x, t) at t = 0, 0.02

and elastic stress field and elastic energy density at time t = 0.02.
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Figure 8. (S =
(
1 0
0 0

)
, µ = 1

2 , λ = 0) Θε(x, t) at t = 10−5, 5 ×
10−5 and elastic stress field and elastic energy density at time
t = 10−5.

The last plot is a numerical steady state, and it is noteworthy that the steady state
is nonconvex in contrast to Wulff shapes, which are minimizers of an anisotropic
surface energy under a volume constraint.

For our last example, we chose C such that C E(u) = E(u), i.e., µ = 1
2 and λ = 0,

and set S =
(
1 0
0 0

)
. Starting with two initially circular voids, the presence of elastic

stresses leads to a vertical split in the material; see Figure 8. We used the following
parameters for (P̃h,τ

ε ): γ = 1
24π , T = 5 × 10−5 and τn = τ = 10−7. As initial

data we chose (4.2)(ii) with z = −z̃ = (0, 0.23), R = R̃ = 0.18. The refinement
parameters were Nf = 256 and Nc = 32.

Further results, including simulations modelling the (combined) effect of sur-
face diffusion, an electric field, grain boundaries and anisotropic elasticity will be
reported on elsewhere (see [9]), where we also discuss applications to epitaxial
growth.
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33. P. Grisvard, Singularités en elasticité, Arch. Ration. Mech. Anal. 107 (1989), 157–180.
MR0996909 (90j:35170)

34. G. Grün, On the convergence of entropy consistent schemes for lubrication type equations in
multiple space dimensions, Math. Comp. 72 (2003), 1251–1279. MR1972735 (2004c:65109)

35. G. Grün and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equa-
tion, Numer. Math. 87 (2000), 113–152. MR1800156 (2002h:76108)

36. M. R. Gungor, D. Maroudas, and L. J. Gray, Effects of mechanical stress on electromigration-
driven transgranular void dynamics in passivated metallic thin films, Appl. Phys. Lett. 73
(1998), 3848–3850.

37. M. E. Gurtin, The linear theory of elasticity, Handbuch der Physik, Vol. VIa/2 (S. Flügge
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