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NUMERICAL ANALYSIS OF STOCHASTIC SCHEMES IN
GEOPHYSICS*
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Abstract. We present and study the stability, convergence, and order of convergence of a
numerical scheme used in geophysics, namely, the stochastic version of a deterministic “implicit
leapfrog” scheme which has been developed for the approximation of the so-called barotropic vorticity
model. Two other schemes which might be useful in the context of geophysical applications are also
introduced and discussed.
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1. Introduction. Much effort has been invested in studying numerical schemes
for stochastic differential equations of the form

(11) dUt = a(Ut)dt+b(Ut) th,

where U; € R?, a is a function from R? into itself, W is a Wiener process on R™, and
b is a function from R? into R4*™.

For the so-called weak approximation of (1.1), in which the approximation of
the expectation of functions of U is considered, extensive work is due, for example,
to Talay and his collaborators, work relying on probabilistic methods more involved
than those used in this article (see, e.g., [1], [2], [12] and the references therein).

The question of strong approximation of (1.1), in which the approximation of
sample paths of U is desired, has also been much studied. Mil’shtein, in [8], introduced
the scheme

d
Uk =UF +> 69 (U)AW] + a*(U,) At

j=1

ozt

d . 8bk’j2 tnt1 . 3 .
bYW [ - Wi aw,
J1sja,b=1 tn
which converges to U to the order of At in mean-square error. His method involved
the consideration of a functional analytic Taylor series for the infinitesimal generator
of a semigroup corresponding to U and W. Riimelin later investigated a stochas-
tic analogue of Runge-Kutta (RK) schemes in [10], in which he compared them to
Mil’shtein’s scheme. The RK schemes which he derives can be arranged to converge
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to U when the stochastic integral is interpreted in the sense of Itd, Stratonovich,
or in fact for any stochastic calculus whatsoever. However, the issue of the accu-
racy of these RK schemes (which is not the same as in the deterministic case) is not
fully addressed in [10] and is mostly unresolved. In fact, there are indications that
these stochastic RK schemes are of significantly lower orders of accuracy than their
deterministic counterparts (see [3]).

The book by Kloeden and Platen [6] and the companion volume by Kloeden,
Platen, and Schurz [7] offer a systematic investigation of numerical schemes for (1.1)
in both the sense of It6 and of Stratonovich, the two stochastic calculi which in
applications are by far the most useful. Their methods are analytic and are applicable
to proving the convergence of a wide range of numerical schemes, and they derive a
very general scheme (formula (12.6.2) of [6]) which, for various choices of parameters,
includes stochastic analogues of such deterministic schemes as the explicit and implicit
Euler schemes, the Crank—Nicholson scheme, and the leapfrog scheme.

In the geophysics community, an enormous amount of work has been spent in
developing large, complex numerical models of the oceans and atmosphere. The
questions therefore arise: Is it possible to add stochastic numerical noise to these
already existing models in such a way that it is known to what the scheme converges
(e.g., to the Itd or Stratonovich solution of some stochastic differential equation), to
what order they may be expected to converge, etc.? While we certainly do not answer
these complex questions here, we consider a simple “implicit leapfrog” scheme for a
barotropic model (supplied to us by Cecile Penland and Prashant Sardeshmukh) and
demonstrate one way of adding stochastic noise to it so that these questions can be
answered for the resulting stochastic scheme (section 4).

This scheme and the scheme in section 5 have been applied in investigating El
Nino (see [4]). In this paper, the schemes were used for the numerical timestepping
to determine if a linear inverse model of El Nifio (see [9]) can be reconciled with the
observed skew toward warm events in the Pacific. It was found that the observed
skew is well within the range predicted by the model, although the observed trend is
not.

We also propose a stochastic analogue for the deterministic Adams—Bashforth
scheme, using methods similar to those of [6], as an attempt to produce alternate
schemes which are higher order in time (studied in section 3, following the preliminary
results in section 2).

Last, we examine the derivatives of a and b which occur naturally in the above
schemes, and which can prove to be troublesome in certain applications in which these
functions, especially b, are given by physical parametrizations (i.e., by “tables”) and
not by analytic expressions. We consider how these derivatives can be replaced by
finite differences derived from space-discretization while still maintaining the existing
rate of convergence (section 5).

We realize that the results of this article, while very useful in our opinion, are just
some small contribution to an outstanding problem, namely, the numerical analysis
of stochastic differential equations which raise—with more difficulty—the same issues
as in the deterministic case: consistency, convergence, and accuracy. All of these
issues—partly due to the form of the stochastic Taylor formula—are considerably
more difficult than in the deterministic case; in particular, consistency includes here
the issue of the type of stochastic calculus (Itd, Stratonovich, or otherwise) to which
the scheme converges.

In the case of the geoscience scheme, the scheme that we study in section 4
is the closest we could get, at this time, to a scheme actually used in the geo-
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sciences, without any prior information on its consistency, convergence, and accuracy
properties. The version of the Adams—Bashforth scheme studied in section 3 has given
very good numerical results in simulations for simple (one-dimensional) stochastic dif-
ferential equations; see section 6 and forthcoming articles. The numerical example in
section 6 is actually based on a mistake: one of the stochastic processes involved in
the scheme was mistakenly believed to be (and treated as) a Gaussian process; this
did not affect the accuracy of the scheme, which remains at order two as predicted
by the theory. This raises perhaps an interesting probabilistic problem about the ap-
proximation of certain non-Gaussian processes used in numerical schemes. Another
issue of probabilistic nature is raised by the Adams—Bashforth-type scheme studied
in section 3: in several or in high dimensions, a large number of stochastic processes
need to be simulated, which could make the cost prohibitive. It is not excluded that
future probabilistic developments will improve this situation. In particular, the first
author, using some ideas of Gaines and Lyons [5], is trying at this time to develop
methods of generating the needed stochastic increments.

As we have said, there are, of course, a great many mathematical difficulties
which this paper does not address. However, methods involving stochastic noise are
already in common use in numerical simulations for the geosciences and turbulence
(and, no doubt, many other areas in science). As mathematicians, we can attempt
to help these scientists develop the necessary numerical tools, or watch as they do it
themselves.

2. Preliminary results. We consider a stochastic differential equation
(21) dUt = CL(t, Ut)dt+b(t, Ut)th

for U = (uy,...,uq) € RY where a: Rt x RY — RY, b: Rt x RY — R¥>™ and W is
a Wiener process in R™ adapted to a filtration {F;}+>o.

We then have the It6 formula, which states that if F : RT x R¢ — R?, then
F; = F(¢t,U,) satisfies the stochastic differential equation

oF oF 1 .. . 0*F y oF ;
22) dF, = | = 4 d"(F)=— + =b9 (F)b" (F))——— | dt + b7 (F,) —dW7;
(22) dFi= |y T F g + ot FDP R 5 g | 07 (R 5 AW
here we use the Einstein convention for repeated indices.
We use the following notation from [6]: We call a row vector o = (j1, j2, .-, Ji)s

where each j; € {0,1,...,m}, a multi-index of length | = {(«) € {1,2,...}. We also
use v to denote the multi-index of length 0, i.e., £(v) = 0. We define n(«) to be the
number of entries of o which are 0. For adapted, right-continuous functions f, and
stopping times p, 7 such that 0 < p < 7 < T almost surely, we define

f() if £(a) =0,
(23)  L[f()pr =9 Jy T lfOlpsds i 0) 21, jia) =0,
ST Lo [ ()] pa dWL™ i £(0) 2 1, jiyay # 0.

Here a— is a with its final component removed.

We define the spaces H,, as follows.

First, H, is the space of adapted right-continuous stochastic processes f with left
limits such that |f(t) is almost surely finite for each ¢t > 0. Next, H ) contains those
elements of H, such that

(2.4) /0 |f(s)|ds < o0
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almost surely for each ¢ > 0; and H;) for j # 0 contains those elements of H,, such
that

(2.5) /0 |£(s)]?ds < o0

almost surely for each ¢ > 0. Finally, if {(«) > 2, we define H,, recursively as those
elements of H, that satisfy

(2.6) To—[f()]os € Hjya)

almost surely for all ¢ > 0.
We also define the operators

0 0 1, 02

2. 0= = k_Y Zpkiply

@7 T R L

; -0

2. LI =v—

(23) .

and, if f € C"(R* x R% R), where h > £(a) + n(a), we set
C(f if ¢(a) =0,

(2.9) fo = {lef_a it (o) > 1.

Here —a is « with its first component removed.

We note that if f(t,u) = u, then f) = a, f;) = b7, etc. In what follows, unless
explicitly stated otherwise, we will assume that f is this identity function.

A set, A, of multi-indices is said to be a hierarchical set if A # 0, sup,c 4 (o) <
o0, and —a € A whenever o € A — {v}. We then define the remainder set B(.A)
of Aby B(A) = {a|a¢ A and —a € A}. We can now provide a stochastic Taylor
expansion for U satisfying (2.1): If f : RT x R? — R, then, provided the derivatives
and integrals exist,

(2.10) FEUD) =Y Talfalps Ulor + D Talfal-U)]prs

acA acB(A)

where A is some hierarchical set.

Now, for v =0.5,1.0,1.5,..., we set
(2.11) A, = {a U a) +n(a) <2y or l(a) =n(a) =7+ ;} .

We call the stochastic Taylor expansion with A = A, the stochastic Taylor expansion
to order ~.

We will make use of the following lemmas in the succeeding sections. In each of
them, U is the solution to (2.1), and t; = kAt for k =0,1,..., N is an equipartition
of [0, 7], so that tx = T'; we partly rely on [6] for the proofs.

LEMMA 2.1. Suppose Y, is a stochastic process adapted to the filtration F; at the
equipartition (i.e., Y, is JFy, -measurable), the function f satisfies |f(t,x) — f(t,y)|
< K|z —y| for allt € [0,T] and x,y € R, and « is a multi-index with () > 1. Then

m—1 2
EOSHE Z I, [f(tlw Utk) - f(tkv Yk)]tkytk+1
(2.12) - ’“:_01

—Y|2

m

SCAtZE sup |U;
iy 0<m<k
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Proof. For ae = (0), we have

2

m—1
E sup |y (f(tk,Us,) — f(tr, Y2))At
0<m<n k=0
m—1
< At2IEO<su]i m Z |f(te, Us) — f(tes Yi)|?
(2.13) T
<nAPRY KU, — il
k=0
n—1
< K*TAtY E sup |Up, — Y|”.
o 0<m<k
For a = (j),
m—1 2
E sup |y (f(tk, Us,) = f(tr, Y2)) AW,
0<m<n k=0
B 2
<4E Z (tr, Ur,) — f(te, Yi) AW
(2.14) k=0
-1
Z tkHUtk f(tk,Yk)|2At
- n—1
<4K?AtY E sup |Utk —Yi%
k=0 0<m<
For longer a’s, we just repeat the above two arguments as necessary. a

LEMMA 2.2. Suppose the function f satisfies |f(t,z)[*> < K2(1 + |z|?) for all
€[0,T] and z € R, and that o is a multi-index with £(«) > 1. Then

(2.15)
m—1 2
CALRE@O-D1 L E[U2)  if U(a) = n(a)
E Ia SV )ttt — a)+n(a)— ’
0<mn ,; Ot {OAt“ L1+ E[U2) if £(a) # n(a).

Proof. The ideas of this proof are the same as those in the proof of Lemma 2.1,
along with the following bound on the solution U, (see equation (4.5.16) of [6]):

(2.16) E sup |U? < C(1+E[U, ).

to<s<T
If we apply Lemma 10.8.1 of [6] with g(s) = f(s,Us), we have

m—1

Z I, [f(v U‘)]tk,tk+1
k=0

E sup
0<m<n

t'VL
(2.17) CAtQ(Z(“)_l)/ E sup |f(s,Us)|*dt if () = n(a),
to

< to<s<t

A ()1 / E sup |f(s.U)Pdt it f(a) # n(a).

to to<s<t
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Here, the constant C' depends only on the length of the time interval T' — t; and
on «.

We then apply (2.16) and the growth condition on f, and we have the desired
result. 0

LEMMA 2.3. Suppose that the sequence of positive numbers Z,, forn =0,1,... N
satisfies the inequality

(2.18) Z, < C (At > Zi+ Aﬂ>

k=0

for some positive constant C' and some v > 0. Then Zn = O(AtY) as At — 0.
Proof. Set &, = At> o Zy, 80 Zn = 77(&n — &n—1), and we have
<

1

.

(219) (60— 1) < CEu+ CAD
That is,

(2:20) (1-CAE, < &y +CATT
Therefore,

(1= CAH)"E, < (1= CAH 6,1 + (1 — CAHICAPTH,
(1—-CAH)" 1, 1 < (1 - CAH" 26, o+ (1 — CAY)2CAN T,

(1 - CAt)E < CATL,

and, summing,

(1—-CA)" ¢, < (14 (1 —=CAt) +---+ (1 —CA)" ) CAT!
1- (1 CAN"
g( (1—CAH™MAL.

Since (1 — CAt)N — e=¢T as N = T/At — oo, we see that &, < CAt” for some
(different) C. Thus, by (2.18),

(2.22) Zn <Cén+A)<CAY. 0

3. A stochastic Adams—Bashforth scheme. The deterministic Adams—Bash-
forth scheme for the ordinary differential equation ¢’ = F(¢) takes the form
At
(3.1) Onsr = fn + - BF(0) = F(6n 1))

This scheme is order At2. We will derive a stochastic version of this scheme which
maintains the same order.
We begin with the stochastic Taylor expansion to order v = 2.0:

(3.2)
Uira = Up + VAW +alA + L2 1, 5y + LW Lo j) + L al (0

+ DLV, o)+ G LA+ LOL V2 Lo, iy + L7 L2, 0,3)
+ LI LPal, 4,0+ LV LIV, o, 0000 + R5(t)

1
=U; +al + 5L%A2 + MA(t),
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where each coefficient is at the point (¢, U;), and each stochastic integral is from ¢ to

t+ A, A = At. We have also used the Einstein summation convention.
Similarly, for v = 1.5, we have

(3.3) a(t+ A, Ui a) = a+ LPaA + N2(1),

where N&(t) = 1LOL%aA? + LIaAWI + LLial g jy + LI L%al(j 0y + L L2 al j, j,) +
L L Lisal(y, 4, o) + RE5(t), and, for v = 1.0,

(3.4) Loa(t + A, Uisa) = L + P2(t),

where PA(t) = LOLOaA + L1 LOaAW + L L72L0al(;, 4,y + RE,(1).
Combining these results, we get

Ut+A = Ut + [aa(t + A, Ut+A) + (1 — a)a}A
1
(3.5) + (2 - a) [BLa(t + A, Uy n) + (1 — B)L%a]A?
CaANA(H) - <; - a> BAZPA(1) + MA(1).
In particular, if t =¢,,, A = 2At,a = 0,5 = 0, and writing U,, = Uy,,,
(3.6) Unto = Uy + 2a(ty, Up) At 4+ 2L%a(t,, Up ) At? + M?24(t,),

and if t = t,, A = At,a = —3,8=0,

3 5
Un+1 = Un - *a(tn+1, Un+1)At + *a(tn, Un)At
(3.7) 2 2

+ 2L%(t,, U,) At? + gNAt(tn)At + M2 (t,).
Therefore,
Un+2 - Un+1 + (Un+2 - Un) - (Un+l - Un)
3 1
(38) = Un+1 + {2a(tn+1, Un+1) — §a(tn7 Un):| At

- gAtNAt(tn) + (MDYt — MAY(t)),

This leads us to consider the following stochastic Adams—Bashforth (SAB) scheme:

3 1
}/n-i-Q = Y;L-l-l + |:2a'(tTL+17Y;L+1) - 2a(tn7Yn):| At

(3.9) ;
- iAtAn(mu Y;L) + Bn(tvu Yn)v
in which
(3.10) Ap(t,z) = La(t,x) AWI + LI L72a(t, )1, )
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where the random intervals are from time ¢, to t,11, and

By (t,x) =V (t,2) AW + LV (t,2)1 (o ;) + L7 a(t, 2) ;0

+ L)1p (t, x)I(j17j2) + LOL7 b (t, ‘T)I(07j1,j2)

(3.11) o .
+ L7 LOY? (tv w)I(jLO,jz) + LJIL”G’(L x)‘[(jl,jmo)
+ DLV (@), o ge) + LV L2 L0 (6, 2) 1, g deia)

where the random intervals are those from time ¢,, to t,,o minus those from time ¢,
to tn+1 .

We then have the following theorem.

THEOREM 3.1. Suppose that the coefficient functions f, satisfy

(3.12) [fa(t,2) = fa(t,y)| < K|z -y
for all a € Az, t €10,T], and x,y € RY;

(3.13) fea € CY? and fo € Ha
for all a € Ay o UB(Azyp); and

(3.14) [fa(t, )| < K(1+ |z])

for all a € Ay g UB(Az0), t €[0,T], and x € RY. Choose At < 1 and set N = T/At,
and define t,, = nAt forn =1,...,N. Suppose that Yy is some (nonrandom) initial

condition and that some appropriate numerical scheme is used to generate Y7 such
1
that E[|Uy, — Y1|? | Fo]z < CAt?. Then

-

(3.15) IE[ sup |U;, — Yo|? | FO} < CAE.
0<n<N

Proof. First, we note that

3 1
Un+2 = Un+1 + |:2a(tn+1Un+1) - §a(tn7 Un):| At

(3.16)
3
— 5Amn(tm Upn) + By (tn,Un) + Ry,
where
3 L.oos0 2 073 70
Ry = SAL | L L0(tn, Un) A + L LY a(tn, Un)I(0.5) + L7 L(tn, Un) ;.09

+ L L2 L5 a(ty, Un)Ij, jo.js) + RiL(tn) | + R3G (tn) — RS (tn).
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If we iterate (3.9) and (3.16), we arrive at

n—2

3 1
U,=U; + Atkzzo |:2a(tk+1, Uk+1) — 2a(tk,Uk)}

n—2 n—2 n—2
3

— SAEY At U) + Y Bilti, Un) + Y B
k=0

(3.17) Ly h=0 h=0

3 1
Yn = Y1 + At kz_o [2a(tk+17Yk+1) - 50,@]€7 Yk):|

n—2 n—2

3
— §At ;Ak(tk,yk) + kZ_OBk(tk, Yk).

Set ¢, = U, — Y,. Then

n—2
Cn=0C+ At};} B(a(tkﬂ, Uk+1) — a(tiyr, Yigr)) — %(a(tk, Uk) — a(ty, Y))

n—2
3
(3.18) — At ;(Ak(tk, Ur) — Ag(tr, Vi)
n—2 n—2
+ Z(Bk(tm Uk) — Bi(tk, Yi)) + Z Ry,.
i=0 k=0

Set Zn = ]E[SUPogmgn |Cm|2 |"F0]
Then we have

m—2 2
zns(’(E[lmzlfoHAt?E sup. 112 altisn, Usin) = altirs, Vi) W
0<m<n k=0
_ _— 2
FAPE| s |3 al )~ atin, )| |7
| Osm=n| 1 2h
i m—2 2

+A’E| sup (La(te, Uy) — Lia(ty, Vi) AW}, ]:0]
0<m<n

k=0 Terms
_ from
2 = 1752 T Ay,
+APE| sup | Y (L'LPa(ty, Uy) — L' L2a(te, Ye)) 1y gy | | Fo
_Ogmgn k=0 ’
m—2 2
+ E|l su Iy [ fa(te,Ur) — fo(ty, Y F
ZA* OSmI;n I;J [f (tr, Uk) = /. (k k)]tk.,thrZ ’ Terms
QLE, 2 =
from
m—2 Bk
+ > E| sup | I [falts, Uk) — Jalti: Ye)lyy 40, ’-7'-0
aed; LO0Sm=n]r=o
m—2 2
+E| sup Ry, ‘.7-'0 .
0<m<n k=0
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We go term-by-term:

m—2 2
At2E sup Z a(tk+1, Uk—i—l) - a(tk+1, Yk+1) ‘ fo]
0<m<n k—0
m—2
< At’n E| sup Z la(tyi1, Upt1) — altysr, Yesr)| ’fo]
0<m<n k=0
n—2
(3.19) < TAtE lz |a(tks1, Uks1) = altisr, Yra) ‘70]
n_2k 0
< CAtZE [|Uk+1 — Yk+1‘2 | .7:0]
k=0
n—1
< CALY  Z.
k=0
Similarly,
m—2 2 n—1
(3.20) AR | sup a(ty, Uk) — a(tg, Yi) ‘ Fo| < CAt Z Zy,.
0<m<n | 7 k=0

Next, we consider the terms from Aj. From Lemma 2.1 with o = (j),

m—2 2
A’E| sup (Lja(tk,Uk) — Lja(thk))AWf;ﬁtHl ',7:0]
(3.21) =M=l k=o
< CAt Z Z,
k=0

and from Lemma 2.1 with o = (j1, j2),
m—2
(L' L2a(ty, Uy) — L L a(te, Yi) )Ly oyt taes

k=0
n—1

2
)
< CAt Z Z.

k=0

Now, we consider the terms from Bj. For o € Aj (i.e., o € A2, l(a) # n(a)),
2

A’E| sup

0<m<n

(3.22)

m—2 n—1
(323) E sup D Talfalte, Ur) = folti: Yi)l,, 4, . ‘]—"0 < CAtY 7.
Osmsn|i—o k=0

The other terms from Bj are similar. This leaves only the terms from Rj. From
Lemma 2.2 with o = (0),

m—2 2
AtE| sup LL%(t,, U,)At? ‘ Fo
o<m<n k=0
(324) n—2 2
< At'E| sup L°La(t,,U,) ‘ Fo
0<m<n b—0

< CAH(1+ |Ug)?).
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For o = (07.])7 (]7 0)7 (j13j27j3)7 by Lemma 2.2

m—2 2
APE| sup 1, laq(tg, U, ‘.7:
(3'25) 0<m<n kZ:O [ ( k k)}tk7tk+1 0

< CAt(1 + |Ug|?), since £(a) + n(a) = 3.
If « € B(A7) (here v = 1.5 or 2.0), we have by Lemma 2.2,

2

m—2
(3.26) E 0<su;i Z I, [a(, U‘)]tk,tkﬂ ‘]-'0] < C+ |UgH)At?.
SMEN | k=0
Therefore, we have
m—2 2
(3.27) E| sup Z Ry ‘J—"o < O+ |Ug») At
0<m<n k=0
So, overall, we see that
n—1
(3.28) Zn <C | Zy+ (1+|Uo) At + ALY Z,
k=0
The result then follows from Lemma 2.3. ]

Remark 3.1. If we truncate A,, and B,, to
(3.29) Ap(t,x) = La(t, ) AWY
and
Bu(t, ) =V (t,2) AW + LV (t,2)I (0 ) + L a(t, z) ;0

(3.30) o e
+ LI1p2 (t, ‘r)I(]th) + LIV [72p3 (t, x)I(jth,h),

the same proof will show that the convergence is now to order At?. We note that
although the order At?> SAB scheme seems to have no obvious advantages over the
standard At? strong one-step explicit scheme (as in [6]), the order At? SAB scheme
does have an advantage over the order At3 strong one-step explicit scheme in that
the former lacks the terms involving the second derivative of a which are present in
the latter.

Remark 3.2. It can be shown that the scheme

3 1
Yn+2 = YnJrl —+ *a(thrl, Yn+1) — ia(tn,Yn) At

(3.31) 5 2

— §AtAn(tn7 Y,) + Bn(tn, Ya),
in which
(3.32) An(t,x) = La(t, ) AW,

where the random intervals are from time ¢, to t,11, and
By(t,x) =V (t, ) AW + LoV (t,2) L0 5) + L7 a(t, z)1;,0)

(3.33) o
+ L2 (t, @)1, )
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where the random intervals are those from time ¢,, to ¢, o minus those from time ¢,
to ty41, converges to the Itd solution in the weak sense to order 2. As can be seen, this
scheme is considerably simpler than the strong scheme, and it avoids the difficulties
with generating the higher-order moments that the strong scheme has.

4. A stochastic “implicit leapfrog” scheme. The barotropic vorticity model
supplied to us by Cecile Penland and Prashant Sardeshmukh of the National Oceanic
and Atmospheric Administration in Boulder, Colorado (see [11]), takes the form

o _

(4.1) =

—V - (0¢) + S —ré& — kVAE,

where ( = V2 + f = €+ f and v = k x V. Here, ( is the total vorticity, v is
the velocity vector, f is the Coriolis term, S is a (deterministic) forcing, r and k are
constants, and ¢ is the local vorticity.

The numerical scheme they provided for this uses spherical harmonics, and, writ-
ing F for —V - (v(), the equation becomes

2
(4.2 Gen=Eresy—rep —n | e
Then the scheme has two steps. First, a leapfrog step,
(4.3) Gt + At) = G (t — At) + 2AL[F (t) + Sp (1)),
followed by an implicit step,

{m(t + At)
1+ 2At [r+/<; ["““)r] |

(4.4) ¢ (t+ At) =

a2

If we simplify notation and write a; for F + S and as for —r — kV4E, we see that
this is just an “implicit leapfrog” scheme

(4.5)

Y (t+ At) = Y(t — At) + 2Atay (1, Y (1)),
{Y(t + At) =Y (t + At) + 2Atax(t + AL, Y (t + At))

for the equation

(4.6) dU (t) = [a1(t, U(t)) + a2(t, U(t))] dt.
Therefore, we consider a stochastic differential equation of the form
(4.7 dU; = (a1(t,Uy) + aa(t, Uy)) dt + b(t, Uy) dWs.

Note that we have simply added a general diffusion term to the deterministic differ-
ential equation (4.6).
We will consider the scheme

{Yn+2 == Yn + 2(11 (tn—i-la Y;'L+1)AtL + Mn(Yn) + Mn+l(Yn+1)a

4.8
(48) Yiio =Yoo + 2a0(tnt2, Yayo)At,
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THEOREM 4.1. Suppose that the coefficient functions f, satisfy

(4.10) [falt,z) = fa(t,y)| < K|z -y
for alla € Ay, t €10,T], and x,y € RY;
(4.11) foa€CY? and fo € Ha
for alla € Ao UB(A1); and
(4.12) |fa(t,2)] < K(1+ |z])
foralla € A1 gUB(A1p), t €1[0,T], and x € R?. Choose At <1 and set N = T/At,
and define t, = nAt forn = 1,...,N. Suppose that some appropriate numerical
scheme is used to generate Yy such that E[|Uy, — Y1|? | Fo]z < CAt. Then

1

2
(4.13) E| sup |Up, —Y,]*|Fo| <CAL

0<n<N

Proof. We note first that, by 1t6’s formula (i.e., the Taylor expansion with v =
0.0), the solution U to (4.7) satisfies the following equations (where for notational
simplicity we have written U, for U, ):

a1 (tnt1, Un 1) = a1(tn, Un) + RGG™ (tn);
(4.14) ag(tny2, Unia) = ag(tn, Up) + RS (t,);
a2(tnr2, Unt2) = 2(tni1, Ung1) + RO (tng1)-
Therefore we have
Uni2 = Up + (Un+2 = Upg1) + (Uny1 — Uy)
=U, + [b(tnt1, Un+1) AWyp1 + a1 (tng1, Unt1) At
(4.15) + a2 (tns1, Uns1) At + 06 (tng1, Uns1)I(1,1) 41
+ R (b 1)] + [b(tn, Un) AW, + as (tn, U ) At
+ as(tn, Un) At + 0V (t, Un)I(11).0 + R0 ().
After substituting (4.14) into this, we see that
Uny2 = [Un + 201 (tns1, Ung1) At + My (Up) + M1 (Up41)]

(4.16)
+ 2az(tnr2, Unt2) At + Ry;
here
1) Ry = R (t) + REY(tns1) — AHRGG (tn)

+ RSV (tn) + R (tng)]-

If we iterate (4.16), we arrive at

(n/2] [n/2]
Un = Un* + 2At Z ap (t2k—1+n*7U2k—1+n*) + Z a2(t2k+n*a U2k+n*)
k=1 k=1
4.18
( ) n—1 [n/2]
+ Z Mn(Un) + Z R2kf2+n*§
k=n* k=0

here n* is 0 if n is even and 1 if n is odd.
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Similarly, we have for Y

[n/2] [n/2]
Yn - Yn* + 2At Z al(t2k71+n* 3 Y2k71+n*) + Z a2(t2k+n* 3 Yik+n*)
(419) k=1 k=1

n—1
+ ) My(Y,).
k=n*

Let us set Z,, = E[supg<,,<,, |[Um — Yin|? | Fo]. Then, by subtracting (4.19) from
(4.18) and then squaring and taking expectations, we find

Zn < CE| sup Zg,++ AtzAim + AtQA;m
0<m<n
(4.20) - . ,
+ < > Mi(Ux) - Mk(Yk)> + ( > R%_Hm*) ]:o]-
k=m* k=0
In (4.20),
[n/2]
(4.21) Ay = Z a1 (t2k—14n*, Uzk—14n+) — a1(t2k—14n", Y2k—14n~)
k=1
and
[n/2]
(4.22) Agm = Z az(t2k+ns Usktn=) — a2(t2ktnxs Yok4ns)-
k=1

We then have the following estimates (where we omit the dependence on ¢ when
it is clear):

[m/2]
m
AtQE[ sup A%,m] < APE| sup [*} Z [a1(Usk—14n+) — a1(Yak—14n+)])°
0<m<n 0<m<n =1
(4.23) < KAPRE| Y (U = Yi)?| < KTALY  Z.
k=1 k=1
Similarly,
(4.24) AtQE{ sup A2 n] < KTAtY 7.
0<m<n ’ =1

There are two terms in Mj. For the first one, from Lemma 2.1, with « = (1), we
obtain

m—1

(4.25) E| sup

0<m<n

[b(Uk) — b(Y5)| AW,

k=m* k=0

2 n
] < CAtY 7.

The second term is similar, with o = (1,1).
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Finally, we show a representative term from the remainder R. From Lemma 2.2,

with a = (1,0),
tht1
/ / L(U,.) dr dW,
tk tk

The remaining terms from R give similar bounds.
Taking all of these estimates into account, we have the inequality

2
1 < CAP(1+UR).

(4.26) E l sup

0<m<n

Z +AtZZk + At?
k=0

(4.27) Zy <K

Therefore, from Lemma 2.3, we see that

(4.28) E| sup |U,—Y,|?

o<n<N

—0(AY). O

Remark 4.1. 1t is possible to show that the scheme
Yoo = Yo + 201 (tni1, Y1) At 4 b(t,, Vi) AW,
(4.29) +b(tnt1, Yor1) AWy,
Yiio = Yogo 4 2a0(tnio, Ynyo) At

converges to the It6 solution in the weak sense to order 1. Again, it can be seen that
the weak scheme is simpler than the strong scheme to the same order. However, we
also note that the weak order 1 Stratonovich scheme

?n+2 Y + 2@1( n+1, n+1)At + bb,( n+1, n+1)(AWn+1)
(430) +b(tn,Y;L)AM/n + b( n+1, n+1)AWn+1a

Yoio = Vogo + 2a2(tni2, Yogo) At

is not appreciably simpler than the strong order 1 Stratonovich scheme

(4 31) ?n+2 =Y, + 2a1(tn+17 Yn+1)At + Mn(Yn) + Mn+1(Yn+l)a
Yoyo = Yoyo 4 2aa(tnio, Yoyo)At,
where
1
(4.32) M, (y) = b(tn, y) AW, + 5bb’(tn, ) (AW,)2

5. Discretization of spatial derivatives by finite differences. It sometimes
happens in applications that the functions a and b may only be known empirically
(i.e., in tables) rather than analytically. In such cases, analytic derivatives of these
functions can be difficult to obtain. It is therefore useful to replace these derivatives by
discrete approximations. As a first example, consider this modification of Mil’shtein’s
scheme:

Vi =YF+ Z VI (Y, ) AW + aF (V) At

1 N NN N
(5.1) + Z A0 (V) (872 (Vo o Azef) = 0572 (V) [, o) s

J1,J2,¢=1
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where e’ is the vector (0,...,0,1,0,...,0), with 1 in the ¢th position, and we have
chosen Az > 0. We have also suppressed the dependence of a and b on time to
simplify notation.

We then have the following theorem.

THEOREM 5.1. Suppose that a and b have the regularity required for Mil’shtein’s
scheme to converge to the solution U to order At. Then

1

(5.2) E[ sup |U, —Yn|2] = O(max{At, AzAt3}).
0<n<N

Note that if we want to maintain the order of convergence of Mil’shtein’s scheme,

we need that Az = O(At2).
Proof. We denote Mil’shtein’s scheme by Y and recall that it satisfies

1
2
(5.3) E [ sup |Y, — UnQ} = O(Ab).
0<n<N
First, we see that (using Einstein’s summation convention on repeated indices)

y75+1 - er+1 = er - Yf + (bk’j (Yn) - ka(Yn))AWg + (ak(ffn) - ak(Yn))At
N 1 N NN
(5.4) + {b"ﬁ (Yn)ﬂ(bk*” (Y, 4+ Aze’) — b2 (Y,,))

abF-32
92’ (Yn):| I(jl,jg),n'

€T

_ phn (Yy)

Iterating this, we have

n—1 n—1
YE—YE=VF =Y+ (M (V) - (V)AWY + ) (0P (Vi) — aF (V7)) At
i=0 i=0
n—1 1
5.5 bEI (Vi) — (072 (V; + Aze?) — bP92(Y;
(5.5 N e R N )
. obk:I2
_ bf,Jl(Yi) P (Yl)} I(j1,j2),i'
Set
(5.6) Z,=E [ sup |V, — Y,ﬂ .
0<m<n
We then have the estimates
m—1 2
E | sup (b9 (V;) — b3 (v;)) AW/
0=m=n | =,
n—1 2
AR || (0M(Y) = R (Vi) AW
1=0
n—1 ] .
<AE |3 [0 (V) - b5 (v, PAt
=0
n—1
< CAt Z Z;,

=0
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and
m—1 . 2 n—1 R
E | sup (a*(V;) — a"(V0))At| | < APnE |y |a" (Vi) - a* (V)
0<m<n 0 i—0
n—1
< CAt Z Z;,
i=0
and, finally,

m—1
o1 N N
E| sup [y |67 ()= "7 (Y; + Aze’) — b5 (Y;
ngn l_o[ (Yo) 1 1077 ) (¥3)]

o Obk ?
- bz’jl(Yi) 92° (Yl)] I(j17j2)7i ]
n—1 . 2
< CA) E b (Y-)i[b’wz (Y; + Aze’) — 0P92(V;)] — 59 (Y;) oy,
— ZZO 1 Al’ 1 3 K3 axz K3
oA e I e AN . b
< CAS E b9 (Y, ) — b (Y Y;
< OO 3B [V () T () — 0 00) P )
+ COAF? nfb@m (Vi)? i(b’w (Vi + Azet) — b72(Y;)) — vtz (Y3) 2
ZZO 1 A,]j (3 1 axé 1
n—1
< CAP D Z; + CAtAZ”,
=0
Therefore, altogether we have
n—1
(5.7) Zn, < CALY " Z + CAtAL?,
k=0
and an application of Lemma 2.3 implies that
3
(5.8) ]E[ sup |Yn—Yn|2] = O(AzAt?). O
0<n<N

We can apply a similar idea to the SAB scheme. That is, if we replace A, and

. 3 . . . . .
B, in the order Atz scheme (see Remark 3.1) by, for instance (with, again, Einstein’s
summation convention in effect),

(5.9) Ap(t,x) = b (¢, x)ﬁ[a(t, z + Azer) — a(t, z)| AW,

where eF = (0,...,0,1,0,...,0), with the 1 in the kth position, and
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1

B N AW
n(t, ) =0 (¢, 2) AW +At

(07 (t + At,x) — b (t,2)]L(0,4),n

1 :
+a"(t, ) 5V (b + Aze®) =V (t,2)]L0,5),n

+ ¥, )b (8, x) [V (t,x + Ax(e’ +e°)) — b (t,x + Ax(e — €b))

8Az?
— VW (t,x + Ax(e’ — ")) + V7 (t,z — Azx(e + 64))]1(0

3)m

4 1. .
kj1 2 k\ _ pi2 _ k
+0 (t7x)2Ax[b] (t,x + Aze”) = V2 (t,x — Axe”)]I

J1,32)sm

. 1
+ bk] (t7 17) FLE [a(t7 T+ Al’ek) - a(t7 x)]l(j,O),n

k1j1 kaj2 A ki _ pkajga2 (4 _ A k1
+b (t,x)4Ax2[b (t, x4+ Aze™) — b¥72(t — x + Aze™)]
[bj3 (t7 T+ A],‘ek2) —b? (t7 r — Axekl)]l(jl’jz,jz);n
, , 1
k ks,
R (1,2 (1, 2)

[bj3 (t,z + Aac(ek1 + ekZ)) — s (t,x + Ax(ekl — ]’”))
— b3 (t,x + Aar:(ek2 — ekl)) + bs (t,z — Aac(ek1 + ekQ))]I(j17j27j3),n,

we could then prove that this scheme converges to order max{At?, Atz Az} in a
similar fashion.

6. Numerical simulation. The object of this section is to test numerically the
accuracy of the scheme of section 3 and compare it to the theoretical result above
(i.e., O(At?) accuracy) and to the accuracy of the Euler and Mil’shtein schemes
(respectively, O(At2) and O(At)). All the numerical results below are consistent
with the theoretical ones.

We consider the following equation:

(6.1) dX; = B%sinh X, cosh® X, dt + ( cosh® X, dW,

with g = 1—10 and X = % This has the exact solution

(6.2) X; = arctanh(8W; + tanh Xj),

respectively. This can be easily verified using It6’s formula and is just one of many
possible examples listed in [6].

We computed approximate solutions Y,, using the Euler and Mil’shtein schemes
and the SAB scheme from section 3. Then we computed the following error:

(6.3) e= \/E ( sup | X, — Yn|2>.
0<n<N

To estimate the mean value needed, we used 500 sample trajectories.

In Figure 6.1, the order of each scheme is given by the slope of the corresponding
line. So we can see that the orders are % for Euler, 1 for Mil’shtein, and 2 for the
SAB of section 3.
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-8t 4

log(error)
1
>
T
L

— SAB
— - Euler
- —  Milshtein

18 1 1 1 1 1 1
6.4 6.2 -6 -5.8 -5.6 54 -5.2 -5 4.8 4.6
log(time step)

F1G. 6.1. Results obtained with the stochastic equation (6.1).

Note that for the SAB scheme, the stochastic integral I(o 1 1) (which is difficult
to generate) was approximated by a normal law. The results tend to show that this
does not affect the accuracy (at least in these two cases). We will try to improve this
point, which seems to raise interesting probabilistic questions, as already mentioned
in the introduction.
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