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Abstract. Consider a model eigenvalue problem with a piecewise constant coefficient. We split
the domain at the discontinuity of the coefficient function and define the multidomain variational
formulation for the eigenproblem. The discrete multidomain variational formulations are defined
for Legendre–Galerkin and Legendre-collocation methods. The spectral rate of convergence of the
approximate eigensolutions is proven for the Legendre–Galerkin method. The minmax principle is
used for the convergence analysis.

The Legendre-collocation, Chebyshev-collocation, Legendre-collocation penalty, and Chebyshev-
collocation penalty methods are also defined by using the multidomain approach, and their numerical
results applied to the eigenproblem are demonstrated. The spectral convergence for the eigenvalues
and eigenfunctions is confirmed for all the multidomain spectral techniques presented here.
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1. Introduction. We consider Maxwell’s equations governing the electromag-
netic wave propagation in periodically structured dielectric arrays cast as an eigen-
value problem. The dielectric function corresponding to the periodic arrays is repre-
sented by a periodically piecewise constant function.

The electromagnetic wave propagation in a periodic dielectric medium was first
studied by Rayleigh in 1887, identifying the fact that there exists a narrow frequency
gap prohibiting light propagation through one-dimensional periodic twinning planes.
In 100 years later, the concepts of omnidirectional forbidden frequency gaps in two
and three dimensions were introduced, leading to many subsequent developments in
the fabrication, theory, and application of electromagnetic wave propagation to optical
fibers [14], [3], [15], [23]. Computation has become a primary tool for carrying out
frequency gap calculation for various periodic dielectric structures.

Numerous numerical studies have focused on predicting the forbidden eigenfre-
quencies accurately by solving Maxwell’s equations in the frequency domain [1], [6],
[17], [16]. However, numerical analysis has been lacking, and high-order methods have
not been applied to such problems yet.

In [18], Fourier–Galerkin and Fourier-collocation methods are applied to a single
domain, and their theoretical and numerical convergence studies for the eigensolutions
are demonstrated. As a result of the presence of the discontinuity in the coefficient
function in a single domain, the solution is only in H2

p , and the rates of convergence
of the eigensolutions by Fourier methods are between second order and third order.
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In this paper, we apply domain decomposition techniques for spectral methods.
We obtain spectrally accurate eigensolutions by using multidomain Legendre and
Chebyshev approximations. Implementations in two dimensions are extended in [19].

In the multidomain approach, we split the domain into subdomains in order for
the discontinuous coefficient function to be smooth in each subdomain, so that the
solutions are infinitely smooth in each subdomain. Then we reformulate the problem
in multidomain variational form. The finite-dimensional space for each subdomain
is defined by the Legendre polynomials of finite degrees, and boundary and interface
conditions are imposed strongly for the Legendre–Galerkin, Legendre-collocation, and
Chebyshev-collocation methods and weakly for the Legendre-collocation penalty and
Chebyshev-collocation penalty methods.

We restrict the penalty parameter to a specific one in this paper and leave the
study for the proper range of the parameters to future work. Convergence analy-
sis for the eigenvalues and eigenfunctions is carried out for the Legendre–Galerkin
method. For the collocation cases, two different methods are introduced by choosing
two different test spaces for the same trial space.

The numerical results for Legendre–Galerkin, Legendre-collocation, Legendre-
collocation penalty, Chebyshev-collocation, and Chebyshev-collocation penalty meth-
ods presented here show a spectral rate of convergence for the eigensolutions. In
terms of accuracy, the results of the Legendre–Galerkin and the Legendre-collocation
methods, which use the same space for the test and trial spaces, are comparable and
more accurate than the results of the Legendre-collocation penalty and the Legendre-
collocation methods, which use different spaces for the trial and test space. The
penalty method is favorable because of the simplicity in implementation for the same
magnitude of accuracy.

We organize this paper as follows. In section 2 we reformulate the eigenproblem
into a multidomain variational formulation. We recall the minmax principle to char-
acterize the lth eigenvalue by minimizing the maximum of the Rayleigh quotient over
l-dimensional subspaces. In section 3 we present the finite-dimensional space used for
the approximate solution. The procedure to find the basis for the finite approximant
space is shown. In section 4 we define the multidomain variational formulation for
Legendre–Galerkin method. We provide a convergence analysis for the eigenvalues
and eigenfunctions. The theory is confirmed by numerical results. In section 5 two
different Legendre-collocation methods are defined, based on the test space chosen.
The numerical results for eigensolutions by those methods show a spectral rate of
convergence. In section 6, we discuss the Legendre-collocation penalty method by
defining a multidomain variational formulation with the penalty approach [7] for the
boundary and interface constraints. Chebyshev-collocation approximations are also
tested and their numerical results presented. Section 7 discusses the asymptotic be-
havior of the largest approximate eigenvalues. Section 8 gives a brief conclusion.

2. The multidomain variational formulation. The source-free Maxwell equa-
tions describing the transverse-magnetic mode in one-dimensional periodic media can
be cast as the following generalized eigenvalue problem: find λ and u in H2

p (−π, π)
(where p stands for periodic), such that

−u′′ = λε(x)u,(2.1)

where ε(x) = 1 in (−π, 0) and ε(x) = ω2 in [0, π), ω �= 1. The function u represents
the electric field pattern, and the dielectric function ε(x) describes a unit cell from a
multilayer structure with 2π-periodicity. This problem was considered in [18].
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Recall the variational formulation of (2.1) from [18]: Find λ and u ∈ H1
p (−π, π)

such that

a(u, v) = λ(u, v) for v ∈ H1
p (−π, π),(2.2)

where

a(u, v) =
∫ π

−π
u′v′dx and (u, v) =

∫ π

−π
uv εdx.(2.3)

Since a(u, v) is Hermitian, the eigenvalue can be characterized by the following two
statements from [9], [18], [20], [21].

Theorem 2.1. Let λl denote the eigenvalues of (2.1), and let Sl be any l-
dimensional subspace of H1

p (Ω). Then, for λ1 ≤ λ2 ≤ · · · ≤ λl · · · ,

λl = min
Sl⊂H1

p(Ω)
max
v∈Sl

a(v, v)
(v, v)

.(2.4)

We also recall the following lemma from [9] and [18].
Lemma 2.2. Let λi be arranged in ascending order, and define

Ei,j = span{ui, . . . , uj},(2.5)

where ui is the eigenfunction corresponding to the eigenvalue λi. Then

λl = max
v∈Ek,l

a(v, v)
(v, v)

, k ≤ l,(2.6)

λl = min
v∈El,m

a(v, v)
(v, v)

, l ≤ m.(2.7)

It is natural here to consider splitting the domain. Denote the domain by Ω =
(−π, π) and divide it into two subdomains, say, Ω− = (−π, 0) and Ω+ = (0, π), so
that ε(x) is smooth in each subdomain. Denote the restrictions by u− = u

∣∣
Ω−

and

u+ = u
∣∣
Ω+

, which are distributional solutions to the given equation (2.1). Integrate
by parts in Ω1 and Ω2, respectively, and define the following bilinear forms:

a(u, v)− =
∫ 0

−π
u′−v

′
−dx+ u′−v−

∣∣∣−π
0
, (u, v)− =

∫ 0

−π
u−v−ε−dx,(2.8)

a(u, v)+ =
∫ π

0
u′+v

′
+dx+ u′+v+

∣∣∣0
π
, (u, v)+ =

∫ π

0
u+v+ε+dx.(2.9)

Remark 1. It is clear to see that, for u, v ∈ H1
p (Ω),

a(u, v) = a(u, v)− + a(u, v)+,(2.10)
(u, v) = (u, v)− + (u, v)+.(2.11)

3. Finite-dimensional subspace. In this section we present the finite-dimen-
sional space used in our approximation. Denote by PN = span{Lk(ξ), ξ ∈ [−1, 1]}
the space of Legendre polynomials of degree at most N . We define the local variables
x− and x+ by

x−(ξ) =
π

2
(ξ − 1) and x+(ξ) =

π

2
(ξ + 1).(3.1)
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The approximation space V2N−2 is the (2N − 2)-dimensional space defined by

V2N−2 = {φ ∈ H2
p (Ω) : φ−(x−(ξ)) ∈ PN and φ+(x+(ξ)) ∈ PN}.(3.2)

To apply the Galerkin approximation, we need to find a basis of V2N−2. This is done
as follows.

Let φ in V2N−2 be expressed by

φ− = φ
∣∣
x−(ξ) =

N∑
k=0

ckLk(ξ),(3.3)

φ+ = φ
∣∣
x+(ξ) =

N∑
k=0

dkLk(ξ).(3.4)

Since φ and φ′ are continuous at x = 0 and 2π-periodic, we apply the following
conditions:

φ−(0) = φ+(0), φ−(−π) = φ+(π),(3.5)
φ′−(0) = φ′+(0), φ

′
−(−π) = φ′+(π).(3.6)

Letting αk = L′k(1) =
k(k+1)

2 , and applying the boundary and the interface conditions
(3.5) and (3.6), we obtain the following relations for the coefficients:

cN =

N−2
2∑

k=1

[
− (αN + α2k)

2αN
c2k +

(αN − α2k)
2αN

d2k

]
,(3.7)

dN =

N−2
2∑

k=1

[
(αN − α2k)

2αN
c2k − (αN + α2k)

2αN
d2k

]
,(3.8)

cN−1 =

N−4
2∑

k=0

[
− (αN−1 + α2k+1)

2αN−1
c2k+1 − (αN−1 − α2k+1)

2αN−1
d2k+1

]
,(3.9)

dN−1 =

N−4
2∑

k=0

[
− (αN−1 − α2k+1)

2αN−1
c2k+1 − (αN−1 + α2k+1)

2αN−1
d2k+1

]
.(3.10)

For simplicity, here we use the following notation:

βk =
αNk + αk
2αNk

and γk = (−1)kαNk − αk
2αNk

,(3.11)

Nk =
{

N for even k,
N − 1 for odd k.(3.12)

Then, substituting (3.7)–(3.10) into (3.3)–(3.4), we get

φ− = φ
∣∣
x−(ξ) =

N−2∑
k=0

ck{Lk(ξ)− βkLNk(ξ)}+
N−2∑
k=0

dkγkLNk(ξ),(3.13)

φ+ = φ
∣∣
x+(ξ) =

N−2∑
k=0

ckγkLNk(ξ) +
N−2∑
k=0

dk{Lk(ξ)− βkLNk(ξ)}.(3.14)
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Thus, one can easily see the basis for V2N−2 given by

{φk, ψk} for 0 ≤ k ≤ N − 2,(3.15)

where the basis functions are defined by

(φk)− = Lk(ξ)− βkLNk(ξ), (φk)+ = γkLNk(ξ),(3.16)
(ψk)− = γkLNk(ξ), (ψk)+ = Lk(ξ)− βkLNk(ξ).(3.17)

Now, we are ready to construct the multidomain Legendre–Galerkin scheme in the
following section.

4. Legendre–Galerkin method. Find λN , uN ∈ V2N−2 such that

a(uN , vN ) = λN (uN , vN ) for all vN ∈ V2N−2.(4.1)

From the relations (2.10) and (2.11), the two inner products can be expressed by

a(uN , vN ) =
∫ 0

−π
(uN− )

′(vN− )
′dx+

∫ π

0
(uN+ )′(vN+ )′dx =

∫ π

−π
(uN )′(vN )′dx,(4.2)

(uN , vN ) =
∫ 0

−π
(uN− )(v

N
− )(ε−)dx+

∫ π

0
(uN+ )(vN+ )(ε+)dx =

∫ π

−π
uNvN ε dx.(4.3)

4.1. Numerical scheme and its results. The approximate eigenfunction uN ∈
V2N−2 can be expanded by the basis found in section 3 with an unknown set of (2N−2)
coefficients:

uN =
N−2∑
k=0

[(ûNφ )kφk + (ûNψ )kψk].(4.4)

Take vN = φn for 0 ≤ n ≤ N−2, and substitute uN in the form (4.4) to the variational
formulation (4.2)–(4.3). We obtain the Legendre–Galerkin scheme as follows:

KûN = λNM ûN .(4.5)

The following are defined for the notation in scheme (4.5):

K =
[
K−− K−+
K+
− K+

+

]
, M =

[
M−− M−+
M+
− M+

+

]
, and ûN =

[
ûNφ
ûNψ

]
,(4.6)

where

(K−− )k,n =
∫ π

−π
(φk)′(φn)′dx, (K−+ )k,n =

∫ π

−π
(φk)′(ψn)′dx,

(K+
−)k,n =

∫ π

−π
(ψk)′(φn)′dx, (K+

+ )k,n =
∫ π

−π
(ψk)′(ψn)′dx,

(M−− )k,n =
∫ π

−π
φkφnε(x)dx, (M−+ )k,n =

∫ π

−π
φkψnε(x)dx,

(M+
− )k,n =

∫ π

−π
ψkφnε(x)dx, (M+

+ )k,n =
∫ π

−π
ψkψnε(x)dx,
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Table 1
Relative errors of eigenvalues for ω = 2 and the discrete l2-errors of ui−uNi for the multidomain

Legendre–Galerkin method.

λi N (λNi − λi)/λi ‖ui − uNi ‖
4 2.94(-03) 2.61(-03)
8 7.04(-10) 4.38(-07)

0.369875 16 6.15(-15) 1.03(-15)
32 7.38(-14) 3.49(-15)
64 6.40(-13) 2.55(-14)
4 4.39(-04) 8.77(-03)
8 1.63(-10) 2.38(-06)

0.536233 16 2.89(-14) 2.45(-14)
32 3.43(-14) 3.60(-14)
64 9.31(-14) 1.42(-13)
4 3.55(-02) 1.71(-01)
8 1.75(-06) 4.16(-04)

1.607115 16 2.76(-16) 5.43(-11)
32 5.94(-15) 4.82(-14)
64 3.96(-14) 2.85(-13)
4 3.28(-01) 1.05(-01)
8 1.45(-04) 4.71(-04)

1.937181 16 6.07(-15) 2.31(-10)
32 2.64(-14) 8.45(-15)
64 2.84(-13) 8.09(-14)

and

ûNφ = [(ûNφ )0, (ûNφ )1, . . . , (ûNφ )N−2]T and ûNψ = [(ûNψ )0, (ûNψ )1, . . . , (ûNψ )N−2]T .

Now, we solve the generalized matrix eigenproblem (4.5) numerically and obtain
the approximate l(≤ 2N−2)th eigenvalues, λNl , and the set of orthogonal vectors ûN ,
which approximates the lth eigenfunction ul as the coefficients in the expansion of the
basis of V2N−2. In Table 1, the relative errors for λNl − λl and the discrete l2-errors
of ul − uNl as N increases are provided for the first few eigenvalues in an ascending
order and the associated eigenfunctions. The numerical results demonstrate that the
errors decay exponentially as N increases.

4.2. Error estimates for eigenvalues and eigenfunctions. We show the er-
ror estimates for the approximate eigenvalues and eigenfunctions for the multidomain
Legendre–Galerkin method.

We first treat the approximate eigenvalues. Let PNu be defined by

PNu =
N−2∑
k=0

[(ûφ)kφk + (ûψ)kψk],(4.7)

where the expansion coefficients (ûφ)k and (ûψ)k will be defined later in this section.
From the minmax principle [9], [21], we can characterize the eigenvalue for the

multidomain Legendre–Galerkin procedure by

λNl = min
Sl⊂V2N−2

max
v∈Sl

a(v, v)
(v, v)

.(4.8)
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Lemma 4.1. Let λNl be the approximation to λl as obtained by the Legendre–
Galerkin procedure (4.5), and let PNu be defined as in (4.7). Then

λl ≤ λNl ≤ λl max
v∈E1,l

a(PNv, PNv)
a(v, v)

max
v∈E1,l

(v, v)
(PNv, PNv)

.(4.9)

Proof. Since V2N−2 is a subspace of H1
p (Ω), it is true that λl ≤ λNl . Now,

let PE1,l be spanned by PNu1, . . . , PNul. For simplicity, we denote by Pu = PNu.
Clearly PE1,l is the l-dimensional subspace of V2N−2. Using the minmax principle,
we have

λNl ≤ max
v∈PE1,l

a(v, v)
(v, v)

= max
v∈E1,l

a(Pv, Pv)
(Pv, Pv)

= max
v∈E1,l

a(v, v)
(v, v)

a(Pv, Pv)
a(v, v)

(v, v)
(Pv, Pv)

.

From Lemma 2.2, the proof follows.
Lemma 4.2. For ui=1,...,l ∈ H1

p (Ω), where (ui)− ∈ Hm(Ω−) and (ui)+ ∈
Hm(Ω+),

max
v∈E1,l

(v, v)
(Pv, Pv)

≤ 1 + C(l)N−m,(4.10)

where the constant C(l) is independent of N .
Proof. We follow the procedure in [18]. For v =

∑l
i=1 µiui in E1,l, we have

(v, v)− (Pv, Pv)
(v, v)

≤ 2|(v, v − Pv)|
(v, v)

≤ 2
∑l
i,j=1 |µi||µj ||(ui − Pui, uj)|∑l

i=1 |µi|2
= 2l max

i,j=1,...,l
|(ui − Pui, uj)|.

For the last term above, we have

|(ui − Pui, uj)| ≤ |(ui − Pui, uj)−|+ |(ui − Pui, uj)+|.(4.11)

Now consider an eigenfunction u = ui and its projection Pu onto the space V2N−2.
Since

Pu− =
N−2∑
k=0

[
(ûφ)k(φk)− + (ûψ)k(ψk)−

]
,(4.12)

Pu+ =
N−2∑
k=0

[
(ûφ)k(φk)+ + (ûψ)k(ψk)+

]
,(4.13)

we can rewrite them in terms of Legendre polynomials as follows:

Pu− =
N−2∑
k=0

(ûφ)kLk + cN−1LN−1 + cNLN ,(4.14)

Pu+ =
N−2∑
k=0

(ûψ)kLk + dN−1LN−1 + dNLN ,(4.15)
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where

cN−1 =

N−4
2∑

k=0

[−β2k+1(ûφ)2k+1 + γ2k+1(ûψ)2k+1] ,

cN =

N−2
2∑

k=1

[−β2k(ûφ)2k + γ2k(ûψ)2k] ,

dN−1 =

N−4
2∑

k=0

[γ2k+1(ûφ)2k+1 − β2k+1(ûψ)2k+1] ,

dN =

N−2
2∑

k=1

[γ2k(ûφ)2k − β2k(ûψ)2k] .

Now we identify

(ûφ)k =
2k + 1

2

∫ 1

−1
u−(x−(ξ))Lk(ξ)dξ,(4.16)

(ûψ)k =
2k + 1

2

∫ 1

−1
u+(x+(ξ))Lk(ξ)dξ,(4.17)

which are exactly the Legendre coefficients for u− and u+, respectively. For clarity, we
replace the notation (ûφ)k by (û−)k, and similarly (ûψ)k by (û+)k. Then, considering
an eigenfunction ui, the expansion coefficients of Pui are denoted by (ûi−)k and
(ûi+)k. Then we have

|(ui − Pui, uj)−|

=

∣∣∣∣∣∣

 ∞∑
k≥N−1

(ûi−)kLk − cN−1LN−1 − cNLN ,
∞∑
n=0

(ûj−)nLn



−

∣∣∣∣∣∣
≤ π

2

∞∑
k≥N−1

|(ûi−)k||(ûj−)k|
∫ 1

−1
L2
kdξ

+
π

2
|cN−1||(ûj−)N−1|

∫ 1

−1
L2
N−1dξ +

π

2
|cN ||(ûj−)N |

∫ 1

−1
L2
Ndξ = RHS(1).

We examine the two terms |cN−1| and |cN |. From the Cauchy–Schwarz inequality, we
have

|cN−1| ≤



N−4
2∑

k=0

(|β2k+1|2 + |γ2k+1|2)



1/2


N−4
2∑

k=0

(|(ûi−)2k+1|2 + |(ûi+)2k+1|2)



1/2

,

|cN | ≤



N−2
2∑

k=1

(|β2k|2 + |γ2k|2)



1/2


N−2
2∑

k=1

(|(ûi−)2k|2 + |(ûi+)2k|2)



1/2

.

Since |βk|, |γk| < 1, and |(ûj−)k|, |(ûj+)k| decay like O(k−m) in [4] and [5], it is clear
that |cN−1| and |cN | are bounded by O(N). Since

∫ 1
−1 L

2
k(ξ)dξ = 2

2k+1 , the second
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term of RHS(1) which is the leading term decays like O(N−m). Therefore we have

|(ui − Pui, uj)−| ≤ CN−m.(4.18)

Similarly, we get

|(ui − Pui, uj)+| ≤ CN−m.(4.19)

This completes the proof.
Lemma 4.3. For ui=1,...,l ∈ H1

p (Ω), where (ui)− ∈ Hm(Ω−) and (ui)+ ∈
Hm(Ω+),

max
v∈E1,l

a(Pv, Pv)
a(v, v)

≤ 1 + C(l)N−m,(4.20)

where the constant C(l) is independent of N .
Proof. Since

a(Pv, Pv)
a(v, v)

= 1− a(v, v)− a(Pv, Pv)
a(v, v)

,(4.21)

we examine the convergency of the last term (4.21). Following the similar procedure
as in Lemma 4.2, we obtain

|a(ui − Pui, uj)−| =
∣∣∣∣∣∣a

 ∞∑
k≥N−1

(ûi−)kLk − cN−1LN−1 − cNLN ,
∞∑
n=0

(ûj−)nLn



−

∣∣∣∣∣∣
≤ π

2

∞∑
k≥N−1

∞∑
n=0

|(ûi−)k||(ûj−)k|
∫ 1

−1
L′kL

′
ndξ

+
π

2
|cN−1||(ûj−)N−1|

∞∑
n=0

∫ 1

−1
L′N−1L

′
ndξ

+
π

2
|cN ||(ûj−)N |

∞∑
n=0

∫ 1

−1
L′NL

′
ndξ = RHS(2).

Since the leading term of RHS(2) decays like O(N−m), we have

|a(ui − Pui, uj)−| ≤ CN−m.(4.22)

Similarly, we get

|a(ui − Pui, uj)+| ≤ CN−m.(4.23)

This completes the proof.
As consequences of Lemmas 4.2 and 4.3, we have the following theorems.
Theorem 4.4. For ui=1,...,l ∈ H1

p (Ω), where (ui)− ∈ Hm(Ω−) and (ui)+ ∈
Hm(Ω+), let λNl be the lth eigenvalue obtained by the multidomain Legendre–Galerkin
approximation from (4.1) to the eigenvalue λl. Then

|λNl − λl| ≤ C(l)N−m,(4.24)

where C(l) is independent of N .
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For the approximate eigenvectors, we can state the following.
Theorem 4.5. For ui=1,...,l ∈ H1

p (Ω), where (ui)− ∈ Hm(Ω−) and (ui)+ ∈
Hm(Ω+), let uNl be the lth eigenfunction of the multidomain Legendre–Galerkin ap-
proximation (4.1) to the eigenfunction ul. Then

||ul − uNl || ≤ C(l)N−m,(4.25)

where C(l) is independent of N .
The proof follows the same way as in [21].

5. Legendre-collocation methods. The Legendre–Gauss–Lobatto points ξi
are defined by

ξ0 = −1, ξN = 1, ξi(i = 1, . . . , N − 1) zeros of L′N ,(5.1)

and the Legendre–Gauss–Lobatto weights are

wi =
2

N(N + 1)
1

[LN (ξi)]2
.(5.2)

Denoting

(u−)i = u
∣∣
(x−)i

for (x−)i =
π

2
(ξi − 1),(5.3)

(u+)i = u
∣∣
(x+)i

for (x+)i =
π

2
(ξi + 1),(5.4)

we define two discrete bilinear forms that approximate a(u, v)− and a(u, v)+:

a(u, v)h− =
N∑
i=0

(u−)′i(v−)
′
iwi + (u−)′0(v−)0 − (u−)′N (v−)N ,(5.5)

a(u, v)h+ =
N∑
i=0

(u+)′i(v+)′iwi + (u+)′0(v+)0 − (u+)′N (v+)N .(5.6)

To approximate (u, v)− and (u, v)+, define

(u, v)h− =
N∑
i=0

(u−)i(v−)i(ε−)iwi,(5.7)

(u, v)h+ =
N∑
i=0

(u+)i(v+)i(ε+)iwi.(5.8)

It is natural to define the following discrete bilinear forms approximating the contin-
uous bilinear forms a(u, v) and (u, v):

a(u, v)h = a(u, v)h− + a(u, v)h+,(5.9)
(u, v)h = (u, v)h− + (u, v)h+.(5.10)

Now, we state the multidomain discrete variational formulation of (2.2): Find λc

and uc in V2N−2 such that

a(uc, v)h = λc(uc, v)h for v ∈ V,(5.11)

where V is a suitable space that will be specified later. In the following subsections,
we introduce two different Legendre-collocation methods by taking the space V dif-
ferently.
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5.1. Legendre-collocation method 1. Our first Legendre-collocation method
takes the space V2N−2 as a test space. Find λc and uc in V2N−2 such that

a(uc, vc)h = λc(uc, vc)h for vc ∈ V2N−2.(5.12)

To construct the scheme, we expand

(uc−)i =
N∑
j=0

(uc−)j lj(ξi),(5.13)

(uc+)i =
N∑
j=0

(uc+)j lj(ξi),(5.14)

where the Lagrange interpolation polynomials of degree N based on the Legendre–
Gauss–Lobatto points [8], [10] are

lj(ξ) = − 1
N(N + 1)

(1− ξ2)L′N (ξ)
(ξ − ξj)LN (ξj)

.(5.15)

Take vc = φn(x)(0 ≤ n ≤ N − 2), which is the basis for V2N−2, and substitute uc−,
uc+, and v

c in (5.5) and (5.6). Applying the continuity and the periodicity for uc, that
is, (uc−)0 = (uc+)N and (uc−)N = (uc+)0, we get

a(uc, vc)h = (uc−)0

(
N∑
i=0

[Di0(φn−)
′
iw0 +DiN (φn−)

′
iwN ]

)

+ (uc+)0

(
N∑
i=0

[Di0(φn+)
′
iw0 +DiN (φn+)

′
iwN ]

)

+
N−1∑
j=1

(uc−)j
N∑
i=0

Dij(φn−)
′
iwi +

N−1∑
j=1

(uc+)j
N∑
i=0

Dij(φn+)
′
iwi,

where Dij = l′j(ξi) is the differentiation matrix of Lagrange polynomials based on
Legendre–Gauss–Lobatto points [10], [13]. Similarly, we have

(uc, vc)h = (uc−)0[(φ0−)0(ε−)0w0 + (φ0+)N (ε+)NwN ]
+ (uc+)0[(φ0+)0(ε+)0w0 + (φ0−)N (ε−)NwN ]

+
N−1∑
j=1

(uc−)j(φn−)j(ε−)jwj +
N−1∑
j=1

(uc+)j(φn+)j(ε+)jwj .

Applying the same procedure for vc = ψn(x)(0 ≤ n ≤ N − 2), we have a system of
2N − 2 equations with the unknown vector

uc = [(uc−)0, (u
c
−)1, . . . , (u

c
−)N−1, (uc+)0, (u

c
+)1, . . . , (u

c
+)N−1]T .

From the remaining boundary and the interface conditions, that is, (uc−)
′
0 = (uc+)

′
N

and (uc−)
′
N = (uc+)

′
0, we get two more equations:

(uc−)0[D0N −DN0] +
N−1∑
j=1

(uc−)jDjN + (uc+)0[DNN −D00]−
N−1∑
j=1

(uc+)jDj0 = 0,

(uc−)0[D0N −DN0] +
N−1∑
j=1

(uc−)jDj0 + (uc+)0[DNN −D00]−
N−1∑
j=1

(uc+)jDjN = 0.



12 M. S. MIN AND D. GOTTLIEB

Finally, we can represent the Legendre-collocation (method 1) scheme (5.11) in matrix
form:

Kuc = λcMuc,(5.16)

where the dimension of the matrices K and M is 2N × 2N .
The numerical results are presented in Table 2 for the first few eigenvalues in

ascending order and the corresponding eigenfunctions, showing that the relative errors
for eigenvalues and l2-errors of the eigenfunctions decay exponentially as N increases.

5.2. Legendre-collocation method 2. Let us first define the (N−1)-dimensional
space

L̄N−1 = span{lj(ξ)|1 ≤ j ≤ N − 1, ξ ∈ [−1, 1]},(5.17)

where the Lagrange interpolation polynomials of degree N based on the Legendre–
Gauss–Lobatto points are

lj(ξ) = − 1
N(N + 1)

(1− ξ2)L′N (ξ)
(ξ − ξj)LN (ξj)

.(5.18)

Then we define

W2N−2 = {ϕ ∈ C0
p(Ω)|ϕ−(x−(ξ)) ∈ L̄N−1 and ϕ+(x+(ξ)) ∈ L̄N−1},(5.19)

the basis of which is given by {ϕn, ζn}N−1
n=1 , where

ϕn =
{
ln(ξ) in [−π, 0],

0 otherwise and ζn =
{

0 in [−π, 0],
ln(ξ) otherwise.

The multidomain discrete variational formulation of (2.2) for this method is to find
λcc and ucc in V2N−2 such that

a(ucc, wc)h = λcc(ucc, wc)h for wc ∈W2N−2.(5.20)

Setting

(ucc− )i =
N∑
j=0

(ucc− )j lj(ξi),

(ucc+ )i =
N∑
j=0

(ucc+ )j lj(ξi)

and plugging them into (5.20) with wc = ϕn(x), ζn(x) (1 ≤ n ≤ N − 1), we get

Kucc = λccMucc,(5.21)

where, denoting the second derivative matrix of Lagrange interpolation polynomials
of degree N based on Legendre–Gauss–Lobatto points by D2, the entries of (2N×2N)
matrices K and M are expressed by

Knj =


 D2

nj

{
1 ≤ n ≤ N − 1, 0 ≤ j ≤ N,

N + 1 ≤ n ≤ 2N, N ≤ j ≤ 2N,
0 otherwise,

(5.22)
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Table 2
Domain decomposition Legendre-collocation methods (LC1=method 1, LC2=Method 2) for the

relative errors of eigenvalues for ω = 2 and the l2-discrete errors of eigenfunctions.

Methods LC1 LC2
λi N (λci − λi)/λi ‖ui − uci‖ (λcci − λi)/λi ‖ui − ucci ‖

4 2.94(-03) 2.91(-03) 3.81(-01) 1.97(-01)
8 7.04(-10) 4.65(-07) -5.74(-05) 2.95(-06)

0.369875 16 -1.75(-14) 2.33(-15) -2.61(-13) 1.35(-14)
32 -2.23(-13) 3.19(-14) 2.30(-12) 1.40(-13)
64 -6.66(-13) 3.32(-13) 9.42(-12) 4.81(-13)
4 -6.14(-03) 2.17(-02) 1.39(+00) 1.06(+00)
8 -8.61(-09) 4.22(-06) -3.38(-05) 2.99(-05)

0.536233 16 -2.48(-15) 3.10(-14) -1.49(-13) 3.10(-13)
32 0.00(+00) 1.59(-13) 5.81(-14) 4.88(-13)
64 -2.05(-13) 2.46(-13) -5.60(-13) 2.18(-12)
4 -7.80(-02) 1.29(-01) 8.07(-01) 8.79(-01)
8 -2.89(-05) 6.33(-04) -2.10(-03) 5.43(-03)

1.607115 16 6.90(-16) 7.33(-11) -8.33(-10) 1.59(-09)
32 1.28(-14) 2.26(-13) 2.99(-14) 4.62(-13)
64 -4.42(-15) 6.55(-13) -1.85(-13) 1.35(-12)
4 3.28(-01) 1.17(-01) 1.62(+00) 2.49(-01)
8 1.45(-04) 4.99(-04) 1.13(-02) 1.89(-03)

1.937181 16 1.83(-15) 2.38(-10) 2.20(-08) 3.83(-09)
32 -6.49(-14) 3.86(-14) 4.56(-13) 8.42(-14)
64 -2.68(-13) 1.24(-13) 1.85(-12) 3.32(-13)

and

Mnj = diag{(ε−)1, . . . , (ε−)N−1, (ε+)1, . . . , (ε+)N−1}.
Additionally, two more equations are incorporated into the first and Nth rows of the
matrices K and M , which are from the boundary and interface constraints:

(ucc− )0[D0N −DN0] +
N−1∑
j=1

(ucc− )jDjN + (ucc+ )0[DNN −D00]−
N−1∑
j=1

(ucc+ )jDj0 = 0,

(ucc− )0[D0N −DN0] +
N−1∑
j=1

(ucc− )jDj0 + (ucc+ )0[DNN −D00]−
N−1∑
j=1

(ucc+ )jDjN = 0,

where D is defined as in section 5.1.
Solving (5.21) numerically, one obtains the eigenvalues λccl (l ≤ 2N) and the asso-

ciated eigenvector

ucc = [(ucc− )0, (u
cc
− )1, . . . , (u

cc
− )N−1, (ucc+ )0, (ucc+ )1, . . . , (ucc+ )N−1]T .

The numerical results are presented in Table 2 for the first few eigenvalues in as-
cending order and the corresponding eigenfunctions, showing the exponential rate of
convergence.

6. Legendre-collocation penalty method. In this section, the notation used
in section 4 represents the same definition. Let LN+1 be the (N + 1)-dimensional
space of Legendre–Lagrange interpolation polynomials of degree N defined by

LN+1 = span{lj(ξ)|0 ≤ j ≤ N, ξ ∈ [−1, 1]},(6.1)
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Table 3
Relative errors of eigenvalues ω = 2 and the l2-discrete errors of eigenfunctions for multidomain

Chebyshev-collocation method 2.

λi N (λcci − λi)/λi ‖ui − ucci ‖
4 -2.75(-02) 2.81(-03)
8 -2.20(-05) 1.22(-06)

0.369875 16 8.55(-15) 1.99(-15)
32 -1.76(-13) 2.80(-14)
64 -4.58(-12) 1.15(-12)
4 4.21(-02) 2.51(-02)
8 -1.39(-05) 1.18(-05)

0.536233 16 -5.77(-14) 5.06(-14)
32 -5.38(-14) 1.72(-13)
64 -3.55(-13) 9.13(-13)
4 1.55(-01) 4.70(-01)
8 -8.48(-04) 1.82(-03)

1.607115 16 -2.28(-10) 4.31(-10)
32 4.98(-14) 8.25(-14)
64 -1.41(-13) 9.66(-13)
4 6.97(-01) 4.74(-02)
8 4.52(-03) 6.72(-04)

1.937181 16 6.13(-09) 1.05(-09)
32 -2.88(-14) 1.56(-14)
64 -8.99(-13) 4.72(-13)

where

lj(ξ) = − 1
N(N + 1)

(1− ξ2)L′N (ξ)
(ξ − ξj)LN (ξj)

.(6.2)

Let Y2N+2 be the (2N + 2)-dimensional space of piecewise continuous interpolation
polynomials defined as

Y2N+2 = {η ∈ L2(Ω)|η−(x−(ξ)) ∈ LN+1 and η+(x+(ξ)) ∈ LN+1},
the basis of which is given by

{ηn, ςn} for 0 ≤ n ≤ N,(6.3)

where

ηn =
{
ln(ξ) in [−π, 0],

0 otherwise and ςn =
{

0 in (−π, 0),
ln(ξ) otherwise.

Now, we define the discrete bilinear form approximating a(u, v) with penalty boundary
constraints:

a(u, v)τ = a(u, v)h− + a(u, v)h+

+τ1{(u+)N − (u−)0}
+τ2{(u+)0 − (u−)N}
+τ3{(u+)′N − (u−)′0}
+τ4{(u−)′N − (u+)′0},
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where τi (1 ≤ i ≤ 4) are suitable constants depending on N , to be chosen later.
Now, we state the multidomain discrete variational formulation of (2.2) by penalty

approach. Find λτ and uτ in Y2N+2 such that

a(uτ , vτ )τ = λτ (uτ , vτ )h for vτ ∈ Y2N+2.(6.4)

To construct the scheme, we expand

(uτ−)i =
N∑
j=0

(uτ−)j lj(ξi),(6.5)

(uτ+)i =
N∑
j=0

(uτ+)j lj(ξi).(6.6)

Take vτ = ηn(x) and vτ = ςn(x), and choose τ1 = τ2 = στ1 and τ3 = τ4 = στ2 . Then
we define the following matrix K, whose dimensions are 2N + 2:

K =
[
D2 O
O D2

]
,(6.7)

where the (N + 1)× (N + 1) matrix D2 is the second derivative matrix of Lagrange
interpolation polynomials based on Legendre–Gauss–Lobatto points. Also, defining
the matrices

M = diag{(ε−)0, . . . , (ε−)N , (ε+)0, . . . , (ε+)N},

B1 =




−1 . . . 0 0 . . . 1
0 . . . 0 0 . . . 0
... . . . 0 0 . . .

...
0 . . . −1 1 . . . 0
0 . . . −1 1 . . . 0
... . . . 0 0 . . .

...
0 . . . 0 0 . . . 0
−1 . . . 0 0 . . . 1




(6.8)

and

B2 =




−D01 . . . −D0N DN1 . . . DNN

0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
0 . . . 0 0 . . . 0

DN1 . . . DNN −D01 . . . −D0N
−D01 . . . −D0N DN1 . . . DNN

0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
0 . . . 0 0 . . . 0

DN1 . . . DNN −D01 . . . −D0N




,(6.9)

and letting

Kτ = K + στ1B1 + στ2B2,(6.10)
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Table 4
Relative errors of eigenvalues for ω = 2 and the L2-discrete errors of eigenfunctions for the

Legendre-collocation penalty (LCP) method and the Chebyshev-collocation penalty (CCP) method.

Methods LCP CCP
λi N (λτi − λi)/λi ‖ui − uτi ‖ (λτi − λi)/λi ‖ui − uτi ‖

4 -6.35(-02) 2.91(-03) -2.76(-02) 2.64(-03)
8 -5.73(-05) 5.09(-06) -2.21(-05) 1.18(-06)
16 -2.18(-13) 2.53(-14) -1.79(-12) 4.17(-13)

0.369875 32 5.10(-12) 4.75(-13) -5.86(-12) 1.37(-12)
64 -8.03(-12) 3.88(-12) -1.28(-10) 2.83(-11)
4 -4.81(-02) 4.12(-02) -4.30(-02) 2.43(-02)
8 -3.40(-05) 4.01(-05) -1.41(-05) 1.13(-05)

0.536233 16 -6.40(-13) 3.75(-12) 4.47(-13) 3.07(-12)
32 2.05(-13) 1.72(-12) 2.44(-12) 1.73(-11)
64 3.90(-11) 3.47(-10) 4.10(-11) 2.93(-10)
4 -1.96(-01) 4.42(-01) -1.52(-01) 4.53(-01)
8 -2.10(-03) 4.06(-03) -8.34(-04) 1.70(-03)

1.607115 16 -8.32(-10) 1.50(-09) -2.26(-10) 4.18(-10)
32 1.70(-12) 4.20(-11) 6.39(-13) 6.93(-12)
64 -2.21(-12) 8.62(-11) 1.20(-11) 1.36(-10)
4 5.11(-01) 5.28(-02) 7.13(-01) 5.81(-02)
8 1.13(-02) 1.82(-03) 4.57(-03) 6.38(-04)

1.937181 16 2.20(-08) 3.71(-09) 6.15(-09) 1.02(-09)
32 4.61(-13) 6.62(-13) -1.34(-12) 7.64(-13)
64 1.01(-11) 4.35(-12) -2.51(-11) 1.61(-11)

we can represent the Legendre-collocation penalty scheme for (6.4):

Kτuτ = λτMuτ ,(6.11)

where uτ = [(uτ−)0, . . . , (u
τ
−)N , (u

τ
+)0, . . . , (u

τ
+)N ]T .

The numerical computations are carried out for the case στ1 = στ2 =
{ 2
πN(N + 1)

}2

[11], [12], which is chosen for the matrix Kτ to be symmetric positive definite [9],
[20]. The results, shown in Table 4, demonstrate the exponential rate of convergence.
Simply replacing the set of points and the weights by the Chebyshev–Gauss–Lobatto
points and weights, one can construct the multidomain Chebyshev-collocation penalty
method, whose results also are provided in Table 4.

The theoretical analysis of the convergence for the multidomain spectral penalty
method is left for future study, as is the analysis for optimizing the parameter τi for
this eigenvalue problem.

7. Discussion. In this section we discuss the asymptotic behavior of the largest
approximate eigenvalues obtained by the multidomain spectral techniques for the
eigenproblem with a discontinuous coefficient. Figures 1–2 demonstrate the relative
errors of the eigenvalues with fixed N = 4, 8, 16, 32, 64 for each different method.
The figures show that for the approximations with degree N , the fraction 2

π of the
approximate eigenvalues converges to the analytic eigenvalues exponentially. Bernardi
and Maday [2] and Vandeven [22] give rigorous proofs for finding the fraction of the
approximate eigenvalues that approximate the eigenvalues of the second-order spectral
differentiation operator.

We present the relative errors for the first 29 eigenvalues for a fixed N = 16 in
Table 5. One can see that 1

π of the eigenvalues approximate the analytic eigenvalues
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Fig. 1. Legendre–Galerkin method (left) and Legendre-collocation method 1 (right): the relative
errors of all the eigenvalues for N = 4, 8, 16, 32, 64.
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Fig. 2. Legendre-collocation method 2 (left) and Legendre-collocation penalty method (right):
the relative errors of all the eigenvalues for N = 4, 8, 16, 32, 64.

of the problem very accurately. One also can see that the Legendre–Galerkin method
and the Legendre-collocation method 1 are more accurate than the other colloca-
tion methods. However, the Legendre-collocation method 2 and Legendre-collocation
penalty method are relatively easier to implement because of their simplicity in dealing
with the basis of the space used in the approximation.

8. Conclusion. In this paper, we have mainly discussed the Legendre–Galerkin,
Legendre-collocation, and Legendre-collocation penalty methods with a domain de-
composition approach in order to get exponentially accurate eigensolutions for a model
eigenvalue problem with a piecewise continuous coefficient.

Acknowledgments. Special thanks to Wai-Sun Don, Jan Hesthaven, and Yvon
Maday for their discussions and several suggestions regarding the topics in this paper.
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Table 5
Relative errors of eigenvalues for ω = 2 for the domain decomposition Legendre–Galerkin (LG),

Legendre-collocation method 1 (LC1), Legendre-collocation method 2 (LC2), Chebyshev-collocation
method 2 (CC2), Legendre-collocation penalty method (LCP), Chebyshev-collocation penalty method
(CCP): λ∗l is the lth approximate eigenvalue and N = 16.

(λ∗l − λl)/λl
l LG LC1 LC2 CC2 LCP CCP
1 -6.15(-15) -1.68(-14) -9.67(-14) 8.55(-15) -1.05(-12) -1.79(-12)
2 -2.89(-14) -8.28(-16) -1.49(-13) -5.77(-14) -2.58(-14) 4.47(-13)
3 -2.76(-16) 4.69(-15) -8.33(-10) -2.28(-10) -8.31(-10) -2.26(-10)
4 -6.07(-15) 1.14(-16) 2.20(-08) 6.13(-09) 2.20(-08) 6.15(-09)
5 5.52(-13) -1.42(-11) 8.41(-12) -1.69(-08) -1.31(-08) -2.37(-08)
6 9.48(-12) 9.48(-12) 1.74(-06) 4.80(-07) 1.74(-06) 4.81(-07)
7 2.83(-08) 2.83(-08) -1.19(-04) -3.16(-05) -1.19(-04) -3.16(-05)
8 5.94(-09) -7.70(-08) -7.80(-05) -2.20(-05) -7.87(-05) -2.24(-05)
9 9.59(-07) -8.19(-06) -8.51(-04) -2.36(-04) -8.44(-04) -2.33(-04)
10 2.62(-05) 2.62(-05) 2.70(-03) 7.56(-04) 2.71(-03) 7.61(-04)
11 2.15(-04) -1.11(-03) 6.59(-04) 1.20(-03) 5.59(-04) 1.16(-03)
12 6.74(-04) 6.74(-04) 2.11(-02) 2.61(-03) 2.11(-02) 2.62(-03)
13 1.25(-02) 1.25(-02) -2.07(-02) 1.12(-02) -2.06(-02) 1.12(-02)
14 4.88(-03) -1.50(-02) -6.98(-02) -3.63(-02) -7.02(-02) -3.65(-02)
15 2.53(-02) -2.96(-02) -6.49(-02) -4.14(-02) -6.42(-02) -4.10(-02)
16 8.25(-02) 8.25(-02) 1.29(-01) 1.17(-01) 1.30(-01) 1.18(-01)
17 1.40(-01) 2.55(-02) 2.22(-01) 9.57(-02) 2.25(-01) 9.61(-02)
18 1.44(-01) 1.40(-01) 2.76(-01) 2.05(-01) 2.76(-01) 2.04(-01)
19 2.23(-01) 1.53(-01) 2.76(-01) 1.92(-01) 2.74(-01) 1.91(-01)
20 3.57(-01) 3.57(-01) 2.30(-01) 3.88(-01) 2.27(-01) 3.87(-01)
21 4.77(-01) 3.89(-01) 6.88(-02) 4.15(-01) 6.65(-02) 4.15(-01)
22 5.89(-01) 5.89(-01) 3.17(-01) 6.21(-01) 3.18(-01) 6.20(-01)
23 6.97(-01) 5.20(-01) 2.76(-01) 4.69(-01) 2.77(-01) 4.69(-01)
24 8.38(-01) 8.38(-01) 7.77(-01) 1.00(+00) 7.78(-01) 1.00(+00)
25 9.78(-01) 6.44(-01) 6.49(-01) 8.09(-01) 6.49(-01) 8.09(-01)
26 1.89(+00) 1.89(+00) 1.74(+00) 2.19(+00) 1.75(+00) 2.21(+00)
27 2.22(+00) 1.67(+00) 1.46(+00) 1.86(+00) 1.48(+00) 1.88(+00)
28 4.59(+00) 4.58(+00) 4.96(+00) 8.90(+00) 4.99(+00) 9.00(+00)
29 5.22(+00) 3.93(+00) 4.31(+00) 7.82(+00) 4.33(+00) 7.91(+00)
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