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Abstract. We consider a regularization concept for the solution of ill–posed operator equations,
where the operator is composed of a continuous and a discontinuous operator. A particular appli-
cation is level set regularization, where we develop a novel concept of minimizers. The proposed
level set regularization is capable of handling changing topologies. A functional analytic framework
explaining the splitting of topologies is given. The asymptotic limit of the level set regularization
method is an evolution process, which is implemented numerically and the quality of the proposed
algorithm is demonstrated by solving an inverse source problem.
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1. Introduction. The goal of this paper is to analyze regularization models for
the stable solution of ill-posed operator equations

F (P (φ)) = y . (1.1)

Here F is a continuous operator between Banach spaces X and Y and P is a prob-
ably discontinuous operator from an admissible class P into X. Classical results on
convergence and stability of variational regularization principles for solving non-linear
ill–posed problems (see e.g. [20, 21, 11]) in a Hilbert spaces setting such as

1. existence of a regularized solution,
2. stability of the regularized approximations,
3. approximation properties of the regularized solutions

are applicable if the operator P is

1. bounded and linear or
2. nonlinear, continuous, and weakly closed.

In this paper we particularly emphasize on operator equations (1.1) where the operator
P is discontinuous. Of particular interest for this paper is

P (t) :=

{
0 for t < 0 ,
1 for t ≥ 0 .

(1.2)

With P there is associated the admissible class

P :=
{
u : u = χD where D ⊆ Ω is measurable and Hn−1(∂D) <∞

}
. (1.3)

Here

1. Hn−1(∂D) denotes the n−1-dimensional Hausdorff-measure of the boundary
of D;

2. χD denotes the characteristic function of the set D.
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We call a regularization approach involving this projection level set regularization
since we recover the boundary of an object ∂D, which is a level set (for instance with
value 0) of a function φ. The idea of considering characteristic functions as level sets
of higher dimensional data has been used before in the context of multiphase flow (see
e.g. [19, 27, 9]) and segmentation (see e.g. [8]). Level set method have been used
successively in many applications since the pioneering work of Osher & Sethian [23].
For solving inverse problems applications with level sets we refer to Santosa [25] and
Burger [6].

In this work we base our considerations on ideas from nonlinear convex semigroup
theory (cf. Brezis [5]) which allows to characterize the solution of an evolution process
by implicit time steps of regularization models. Since our regularization models appear
to be nonconvex, the theoretical results of nonlinear semigroup theory are not avail-
able. Simulating this approach, we show in this work that iterated regularization
is well-posed, and (aside form the lack of theoretical results) we can interpret the
iterated regularized solutions as time instance of an evolution process.

Various other models fit in the general framework of this paper but are not particularly
emphasized: For instance for a ∈ R let us consider the following projection operator

P a(t) :=

 −a for t < −a ,
t for −a ≤ t ≤ a ,
a for t > a ,

with the admissible class

Pa :=
{
u : u = P a(φ) with φ ∈ H1(Ω)

}
. (1.4)

The operator P a ensures that the recovered functions are absolutely bounded by a.

P+(t) := exp(t)

with the admissible class

P+ :=
{
u : 0 < u = P+(φ)

}
(1.5)

can be used to guarantee non-negativity. Depending of the operator P we actually
solve a constraint optimization problem. With P+, Pa, P we guarantee that the solu-
tion is in the according admissible class.

The outline of this paper is as follows: In Section 2 we introduce the concept of level
set regularization, based on considerations in [25, 6, 18]. The level set regularization
functionals derived in [18] are modified such that a convergence analysis becomes
tractable (cf. Section 2.1). That is we show that each implicit time step is well-
defined. This a prerequisite step in showing that the according evolution process is
well-defined. To this end, we introduce a novel concept of a minimizer of regularization
functionals involving discontinuous operators (cf. Section 2.2). A convergence analysis
is presented in Section 2.3. The problem of numerical minimization is discussed in
Section 3 and finally numerical examples are presented in Section 5.
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2. Analysis of Level Set Regularization. In the following we pose the general
assumptions which we assume to hold all along this paper:

1. Ω ⊆ Rn is bounded with ∂Ω piecewise C1 (see e.g. [2]).
2. The operator F : L1(Ω) → Y is continuous and Fréchet-differentiable. Y is

a Banach space.
3. ε, α, β denote positive parameters.
4. We use the following notation:
(i) → denotes strong convergence,

(ii)
(∗)
⇀ denotes weak(∗) convergence,

(iii) Lp(Ω) denotes the space of measurable, p-times integrable functions,
(iv) W 1,p(Ω) denotes the Sobolev space of one time weakly differentiable func-

tions where the function and its derivative are in Lp; in particular we set H1 = W 1,2.
(v) BV(Ω) denotes the space of functions of bounded variation.
5. We assume that (1.1) has a solution, i.e. there exists a z ∈ P satisfying

F (z) = y and a function φ ∈ H1(Ω) satisfying |∇φ| 6= 0 in a neighborhood of {φ = 0}
and P (φ) = z. If z = χA and ∅ 6= A, then we let

φ = −dA + dCA

where dA and dCA denote the distance functions from A, and CA, respectively. Since
dA and dCA are uniformly Lipschitz continuous (see e.g. [10]), they are in L∞(Ω).
Moreover, |∇dA| ≤ 1 and |∇dCA| ≤ 1 (see again e.g. [10]). In particular this shows
that dA, dCA ∈ W 1,∞(Ω) ⊆ H1(Ω). Thus z ∈ P if z = χA and A satisfies that the
closure of the interior of A is the closure of A.
We consider the unconstrained inverse problem of solving (1.1) with

P : H1(Ω) → P .

φ 7→ 1
2 + 1

2 sgn(φ) =: 1
2 + 1

2

{
1 for φ ≥ 0
−1 for φ < 0

The standard form of Tikhonov regularization for solving (1.1) consists in minimizing
the functional

Fα(φ) := ‖F (P (φ))− yδ‖2Y + α‖φ− φ0‖2H1(Ω) (2.1)

over H1(Ω). Actually, we understand the minimizer φα of this functional as

φα = lim
ε→0+

φε,α ,

where the limit is understood in an appropriate sense (weak, weak∗ convergence) and
φε,α minimizes the functional over H1(Ω)

Fε,α(φ) := ‖F (Pε(φ))− yδ‖2Y + α‖φ− φ0‖2H1(Ω) , (2.2)

where we use

Pε(φ) :=


0 for φ < −ε ,

1 + φ
ε for φ ∈ [−ε, 0] ,
1 for φ > 0 ,

for approximating P as ε→ 0+. In this case we define

P ′(t) := lim
ε→0+

P ′ε(t) = δ(t) .
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Here and in the following δ(t) denotes the one-dimensional δ-distribution.
Taking into account that

‖Pε(φk)− Pε(φ)‖L1(Ω) ≤
1

ε
meas(Ω)‖φk − φ‖L2(Ω) ,

the proof of existence of a minimizer of the functional Fε,α is similar to the proof
of existence of regularized solutions of Tikhonov functionals for approximately mini-
mizing nonlinear ill–posed problems in [12, 26] (see also [11]).

Theorem 2.1. For any φ0 ∈ H1(Ω) the functional Fε,α (cf. (2.2)) attains a
minimizer φε,α in H1(Ω).

2.1. Towards an Analysis of Level Set Regularization Techniques. In the
following we outline the difficulties in performing a rigorous analysis for the functional
Fα, defined in (2.1).

1. φε,α satisfies,

‖P (φε,α)‖L∞ ≤ 1 and ‖φε,α − φ0‖H1(Ω) <∞ .

Since L∞(Ω) is the dual of L1(Ω), i.e., L1∗(Ω) = L∞(Ω), we find that there exists a
subsequence {φεk,αk

}k∈N such that

φεk,αk
⇀ φ in H1(Ω) and P (φεk,αk

)
∗
⇀ z in L∞(Ω) .

There is no analytical evidence for z ∈ P, i.e. it may not be in the range of the
operator P .

2. To overcome this difficulty let us assume that the sequence {φεk,αk
}k∈N satis-

fies that the Hausdorff measure of the boundary of the set

{x : φεk,αk
(x) ≥ 0}

is uniformly bounded. Then the bounded variation semi-norm of P (φεk,αk
) is uni-

formly bounded, and consequently P (φεk,αk
) has a convergent subsequence in L1(Ω)

showing that z is admissible.
This suggests to incorporate in the functional (2.1) as an additional regularization
term the bounded variation semi-norm of P (φ), penalizing the length of the zero level
set of φ. Actually in design problems the necessity of incorporating such a term is
well documented in [15, 16, 17]. This leads to the following modified regularization
method of minimizing

Gα(φ) := ‖F (P (φ))− yδ‖2Y + 2βα|P (φ)|BV + α‖φ− φ0‖2H1(Ω) . (2.3)

In order to guarantee existence of a minimizer of Gα we introduce a novel concept of
a minimizer:

2.2. Minimizing Concept.
Definition 2.2.

1. A pair of functions

(z, φ) ∈ L∞(Ω)×H1(Ω)

is called admissible
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(i) if there exists a sequence {φk}k∈N in H1(Ω) such that φk → φ with respect
to the L2(Ω)-norm and

(ii) if there exists a sequence {εk}k∈N of positive numbers converging to zero
such that

Pεk(φk)→ z in L1(Ω) .

2. A minimizer of Gα is considered any admissible pair of functions (z, φ) mini-
mizing

Gα(z, φ) = ‖F (z)− yδ‖2Y + αρ(z, φ) (2.4)

over all admissible pairs. Here

ρ(z, φ) := inf lim inf
k→∞

{
2β|Pεk(φk)|BV + ‖φk − φ0‖2H1(Ω)

}
, (2.5)

where the infimum is taken with respect to all sequences {εk}k∈N satisfying Item 1(ii)
and {φk}k∈N satisfying Item 1(i).
A generalized minimizer of Gα(φ) is a minimizer of Gα(z, φ) on the set of admissible
pairs.

The following lemma is to show that the functional ρ is coercive on the set of
admissible pairs.

Lemma 2.3. For each (z, φ) admissible

2β|z|BV + ‖φ− φ0‖2H1(Ω) ≤ ρ(z, φ) .

Proof. Let (z, φ) be an admissible pair, then there exists sequences {εk}k∈N and
{φk}k∈N satisfying Items 1(i) and 1(ii) and

ρ(z, φ) = lim
k→∞

2β|Pεk(φk)|BV + ‖φk − φ0‖2H1(Ω) .

By the weak lower semi-continuity of the BV and H1-norms it follows that

‖φ− φ0‖2H1(Ω) ≤ lim inf
k∈N

‖φk − φ0‖2H1(Ω)

|z|BV ≤ lim inf
k∈N

|Pεk(φk)|BV ,

which proves the assertion.

The definition of ρ(z, φ) is impractical, since it is defined via a relaxation procedure.
The following arguments allow an explicit characterization of this functional. From
several experiments which we outline below, we conjecture the following characteri-
zation of the functional ρ(z, φ).

Conjecture 2.4. We denote by

Φ+ = {x ∈ Ω : φ(x) > 0} and Φ− = {x ∈ Ω : φ(x) < 0}

and

CΦ = Ω\(Φ+ ∪ Φ−) .
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(i) If ∂Φ+ ∩ Ω = ∂Φ− ∩ Ω, then

ρ(z, φ) = 2βHn−1(∂Φ− ∩ Ω) + ‖φ− φ0‖2H1(Ω)

= 2βHn−1(∂Φ+ ∩ Ω) + ‖φ− φ0‖2H1(Ω) .

(ii) If the n-dimensional Lebesgue measure λn(CΦ) > 0, then z is not unique
identified, in particular z can attain all values in [0, 1] in CΦ. We conjecture, that

inf
z admissible

ρ(z, φ) = 2βHn−1(S) + ‖φ− φ0‖2H1(Ω).

The problem consists in finding the surface S of minimal n−1-dimensional Hausdorff
measure, which is contained in CΦ and divides Ω in two sets. One set completely
contains Φ+ and the other set contains Φ−, (cf. Figures 2.1 and 2.2).

Intuitively the conjecture is quite obvious. Assuming the conjecture to be true
we are further led to conjecture that the functional ρ is independent of the choice of
the approximation Pε. Thus any other approximation of P with Lipschitz-continuous
functions Pε approximating the δ-distribution is suitable as well.

φ

φP(ε )
P(
ε

)ψ

ψ

Fig. 2.1. n = 1: The functions φ and Pε(φ) (left): |Pε(φ)|BV = 4. A slight perturbation: ψ
and Pε(ψ) (right): |Pε(ψ)|BV = 2.

φ>0

φ=0

φ<0

Minimal Evolvent 

Minimal Length Evolvent

φ=0

φ>0

φ<0

Fig. 2.2. The minimal evolvent in CΦ

Remark 2.5. For φ ∈ H1(Ω) where {φ = 0} is a set of positive Lebesgue measure
(cf. Figure 2.3) it is possible to find sequences {φk}k∈N and {φ̃k}k∈N, which converge
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strongly to φ in L2(Ω), respectively. But the limits of the projections are different,
i.e., z = limk→∞ Pεk(φk) 6= z̃ = limk→∞ Pεk(φ̃k), cf. Figure 2.3. In such a situation
we have ρ(z, φ) 6= ρ(z̃, φ).

φ>0
φ<0

φ=0

Fig. 2.3. Top: The level set function has critical values (i.e. |∇φ| = 0 in a circle). Bottom:
Two possible functions z and z̃. The black value corresponds to a value of z = 1.

In the following we summarize some properties of the functional ρ.
Lemma 2.6. The functional ρ satisfies

ρ(z, φ) ≤ lim inf
n∈N

ρ(zn, φn)

if zn → z in L1(Ω) and if φn ⇀ φ in H1(Ω) and (zn, φn) is admissible.
Proof. ¿From the definition of the functional ρ and Lemma 2.3 it follows that

the functional ρ is a Γ−-limit (see e.g. [3]) and thus it is weak lower semi-continuous.

Remark 2.7. Suppose for the moment that P is a continuous operator, in which
case we can set Pε := P . Then the admissible class is just the set of pairs (z, φ)
satisfying P (φ) = z . This is just another formulation of constraint optimization. In
our context P is discontinuous and therefore we consider the more general concept of
admissible pairs.

Example 2.8. Let φ ∈ H1(Ω) satisfying |∇φ| > 0 in a neighborhood of {φ = 0}.
1. Let φk = φ ∈ H1(Ω) and let z = P (φk). Since for any sequence εk → 0

Pεk(φk)→ z in L1(Ω) ,

it follows that (z, φ) is admissible.
2. Let φ ∈ H1(Ω) and denote by φk = 1

kφ. Then there is a sequence εk → 0
with

Pεk(φk)→ z in L1(Ω) .

Consequently, (z, 0) is admissible.
The consequence of the second item is striking. Suppose that φ0 = 0 and that there
exists a minimizer φα 6= 0 of (2.3). Then for any k ∈ N

Gα(φα/k) < Gα(φ) ,

showing that a minimizer of Gα is not attained in a common setting. However, the
pair (z = P (φα), 0) is admissible and can be considered as the generalized solution.

Note that in this example we consider only functions φ ∈ H1(Ω) without critical
points along the zero level set.
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2.3. Well-Posedness and Convergence Analysis.
Theorem 2.9 (Well-Posedness). Both the functional Gα and the functional

G̃α(z, φ) := ‖F (z)− yδ‖2Y + 2βα|z|BV + α‖φ− φ0‖2H1(Ω)

attain minimizers on the set of admissible pairs.
Proof.

1. Since (0, 0) is admissible, the set of admissible pairs is not empty.
2. Suppose that {(zk, φk)}k∈N is a sequence of admissible pairs such that

Gα(zk, φk)→ inf Gα ≤ Gα(0, 0) <∞ .

From Lemma 2.3 it follows that {(zk, φk)}k∈N is uniformly bounded in BV ×H1(Ω).
By the Sobolev embedding theorem there exists a subsequence, denoted again by
{φk}k∈N such that

φk ⇀ φ in H1(Ω) and φk → φ in L2(Ω) , and

zk → z in L1(Ω) , 2β|z|BV ≤ ρ(z, φ) ≤ lim inf
k→∞

ρ(zk, φk) .

Since ρ is weakly lower semi-continuous (cf. Lemma 2.6) it follows that

inf Gα = lim
k→∞

Gα(zk, φk)

= lim
k→∞

{
‖F (zk)− yδ‖2Y + αρ(zk, φk)

}
≥ ‖F (z)− yδ‖2Y + αρ(z, φ)

= Gα(z, φ) .

(2.6)

3. It remains to prove that (z, φ) is admissible. For k fixed; since (zk, φk)
is admissible there exists a sequence {εk,l}l∈N of positive numbers and a sequence
{φk,l}l∈N in H1(Ω) such that

φk,l →l→∞ φk in L2(Ω) , Pεk,l
(φk,l)→l→∞ zk in L1(Ω) .

Thus there exists an index l(k) ∈ N such that
(i) εk,l(k) <

1
2εk−1,l(k−1);

(ii) ‖φk,l(k) − φk‖L2(Ω) ≤ 1
k ;

(iii) ‖Pεk,l(k)
(φk,l(k))− zk‖L1(Ω) ≤ 1

k .
Define

ψk := φk,l(k) and ηk := εk,l(k) .

Then, since

ψk → φ in L2(Ω) and Pηk(ψk)→ z in L1(Ω) ,

we see that (z, φ) is admissible.
The proof of existence of a minimizer of G̃α is analogous as for Gα, and thus omitted.

We have shown that for any positive parameters α, β the functionals Gα and G̃α both
attain a minimizer.
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In the sequel we denote by (zα, φα) a minimizer of Gα.
In the following we summarize some convergence result for the regularized mini-

mizers, which are based on the existence of a minimum norm solution:
Theorem 2.10 (Existence of a minimum norm solution). Under the general

assumptions of this paper there exists a minimum norm solution (z†, φ†), that is an
admissible pair of functions that satisfies

1. F (z†) = y,
2. ρ(z†, φ†) = ms := inf {ρ(z, φ) : (z, φ) admissible and F (z) = y} .

Proof.
1. According to assumption 5 there exists a function z̃ ∈ P and a function

φ̃ ∈ H1(Ω) such that P (φ̃) = z̃ and F (z̃) = y. Then the pair (z̃, φ̃) is admissible for
the sequence φ̃k = φ̃, because Pεk(φ̃k) → z̃ converges in L1(Ω) for every sequence
εk → 0 due to the fact that Pεk is a convolution of P with a δ- distribution, i.e.
Pεk = P ∗ δk. Thus the set of admissible pairs with F (z) = y is not empty.

2. Suppose that {(zk, φk)}k∈N is a sequence of admissible pairs with F (zk) = y
such that

ρ(zk, φk)→ ms ≤ ρ(z̃, φ̃) <∞

From Lemma 2.3 it follows that the sequences {φk}k∈N and {zk}k∈N are uniformly
bounded in H1(Ω) and BV(Ω), respectively. Thus there exists subsequences, again
denoted by {φk}k∈N and {zk}k∈N, such that

φk → φ† in L2(Ω) , zk → z† in L1(Ω) .

Since ρ is weakly lower semi-continuous, it follows

ms = lim
k→∞

ρ(zk, φk) ≥ ρ(z†, φ†) .

Since F is continuous on L1(Ω), F (z†) = limk→∞ F (zk) = y. Analogously the proof
of Theorem 2.9 it follows, that (z†, φ†) is admissible and therefore a minimal norm
solution.

Below, we summarize a stability and convergence result. The proof uses classical
techniques from the analysis of Tikhonov type regularization methods (e.g. see [12,
26, 1, 11, 22]) and thus is omitted:

Theorem 2.11.
Convergence: Let ‖yδ − y‖Y ≤ δ. If α = α(δ) satisfies

lim
δ→0

α(δ) = 0 and lim
δ→0

δ2

α(δ)
= 0 .

Then, for a sequence {δk}k∈N converging to 0 there exists a sequence {αk := α(δk)}k∈N
such that (zαk

, φαk
) converges in L1(Ω)× L2(Ω) to a minimal norm solution.

3. Numerical Solution. We consider a stabilized functional

Gε,α(φ) := ‖F (Pε(φ))− yδ‖2Y + 2βα|Pε(φ)|BV + α‖φ− φ0‖2H1(Ω) . (3.1)

This functional is well–posed as the following lemma shows:
Lemma 3.1. For any φ0 ∈ H1(Ω) the functional (3.1) attains a minimizer.
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Proof. The proof is similar to the proof of Theorem 2.1 by taking into account
that for any sequence {φk}k∈N converging weakly to φ in the H1(Ω)-norm, there
exists a strongly convergent subsequence in L2(Ω). Denoting the subsequence again
by {φk}k∈N we find

1.

‖Pε(φk)− Pε(φ)‖L1(Ω) ≤
1

ε
meas(Ω)‖φk − φ‖L2(Ω) → 0 .

2. Therefore

|Pε(φ)|BV ≤ lim inf
k→∞

|Pε(φk)|BV .

Now, the assertion can be proved analogously as Theorem 2.1.

In the following we show that for ε → 0 the minimizer of Gε,α approximates a mini-
mizer of Gα, i.e., it approximates an admissible pair.

Theorem 3.2. Let φε,α be a minimizer of Gε,α. Then for εk → 0, there exists a

convergent subsequence (Pεk(φεk,α), φεk,α) → (z̃, φ̃) in L1(Ω) × L2(Ω), and the limit
minimizes Gα in the set of admissible pairs.

Proof.
1. The infimum of Gα is attained (cf. Theorem 2.9), i.e., there exists (zα, φα)

minimizing Gα over all admissible pairs. In particular, taking into account the defi-
nition of admissible pairs, there exists a sequence {εk}k∈N of positive numbers con-
verging to zero and a corresponding sequence {φk}k∈N in H1(Ω) satisfying

(Pεk(φk), φk)→ (zα, φα) in L1(Ω)× L2(Ω) ,

ρ(zα, φα) = lim
k→∞

{
2β|Pεk(φk)|BV + ‖φk − φ0‖2H1(Ω)

}
.

2. Let φεk be a minimizer of Gεk,α. The sequence {φεk}k∈N is uniformly bounded
in H1(Ω). Thus it has a weakly convergent subsequence (which is again denoted by the
same indices) and the weak limit is denoted φ̃. Moreover, {Pεk(φεk)}k∈N is uniformly
bounded in BV(Ω). Thus, by the compact Sobolev embedding theorem there exists a
subsequence {φεk}k∈N (again denoted with the same indices) satisfying

φεk → φ̃ in L2(Ω) , and Pεk(φεk)→ z̃ in L1(Ω) .

Thus (z̃, φ̃) ∈ P ×H1(Ω) is admissible.
3. From the definition of ρ and the continuity of F : L1(Ω)→ Y it follows that

‖F (z̃)− yδ‖2Y = lim
k→∞

‖F (Pεk(φεk))− yδ‖2Y ,

ρ(z̃, φ̃) ≤ lim inf
k→∞

{
2β|Pεk(φεk)|BV + ‖φεk − φ0‖2H1(Ω)

}
This shows that

Gα(z̃, φ̃) ≤ lim inf
k→∞

Gεk,α(φεk)

≤ lim inf
k→∞

Gεk,α(φk)

= ‖F (zα)− yδ‖2Y + αρ(zα, φα)

= inf Gα .

Therefore the infimum of Gα is attained at (z̃, φ̃).
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Theorem 3.2 justifies to use the functionals Gε,α for approximation of the mini-
mizer of Gα. In contrast to the minimizer of Gε,α, which is a function in H1(Ω), the
minimizer of Gα is an admissible pair (zα, φα). Recall that the function zα is not
uniquely defined by φα if it attains critical values in a neighborhood of the zero level
set (cf. Remark 2.5).

For numerical purposes it is convenient to derive the optimality conditions of
a minimizer of this functional. To this end we consider the functional Gε,α with
Y = L2(∂Ω).

Since P ′ε(φ) is self-adjoint, we can write the formal optimality condition for a
minimizer of the functional Gε,α as follows:

α(∆− I)(φ− φ0) = Rε,α,β(φ) , (3.2)

where

Rε,α,β(φ) = P ′ε(φ)F ′(Pε(φ))∗(F (Pε(φ))− yδ)− βαP ′ε(φ)∇ ·
(
∇Pε(φ)

|∇Pε(φ)|

)
.

4. Iterative Regularization and the Relation to Dynamic Level Set

Methods. For n = 1 set G(1)
α (z, φ) = Gα(z, φ) (cf. (2.4)). Iterative regularization

consists in minimizing the family of functionals

G(n)
α (z, φ) = ‖F (z)− yδ‖2Y + αρ(n)(z, φ) (4.1)

where ρ(n) is the functional ρ (as defined in (2.5)) with φ0 replaced by φn−1. The

minimizer of G(n)
α (z, φ) is denoted by φn.

Proceeding as before, we find that φn can be realized by solving the formal opti-
mality condition

α(∆− I)(φ− φn−1) = Rε,α,β(φ) . (4.2)

Identifying α = 1/∆t, tn = n∆t, and φn = φ(tn), n = 0, 1, . . . we find

(∆− I)

(
φ(tn)− φ(tn−1)

∆t

)
= Rε,1/∆t,β(φ(tn)) . (4.3)

Considering ∆t as a time discretization and using β = b∆∆t we find that in a formal
sense the iterative regularized solution φn is a solution of an implicit time step for the
dynamic system

(∆− I)

(
∂φ(t)

∂t

)
= Rε,1/∆t,b∆∆t(φ(t)) . (4.4)

In our numerical experiments we have calculated the solution of the dynamic system
(4.4).

For each time step it is required to solve equation (4.3). φ(tn) in (4.3) can be
solved with a fixed point iteration: setting φ(tn−1) = φ(0), we get φ(tn) = limk→∞ φ(k)

(∆− I)

(
φ(k+1) − φ(0)

∆t

)
= Rε,1/∆t,b∆∆t(φ

(k)) . (4.5)

In our numerical experiments we observed that the iteration does not significantly
improve after the first iteration (cf. Figure 4.1). This behavior becomes transparent
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by noting the H1-seminorm typically dominates the L2-norm in the quadratic regu-
larization term. The H1-seminorm difference of the regularized solution and φ(0) is
small if it is just shifted up or down. In numerical experiments it is observed that the
first iteration almost corresponds to a horizontal shift of φ(0) such that the residual
functional is minimized (cf. Figure 4.2) and also the further iterations are again nearly
horizontally shifted versions of φ(0) (cf. Figure 4.3).

In almost all test examples the residual ‖F (Pε(φ
(k)))−yδ‖2 is oscillating in depen-

dence of k (cf. Figure 4.2) and smallest for k = 1.

The above consideration justify to restrict attention to the approximate solution
of the dynamic system (4.2) where in each time step only one iteration step of (4.5)
is used, i.e., we use an explicit Euler method for solving the evolution process. In
this case numerical instabilities may occur by dividing by small absolute values of the

gradient in the differential ∇·
(
∇Pε(φ)
|∇Pε(φ)|

)
. Thus, for numerical purpose it is convenient

to introduce a small positive number h and replace the differential by

∇ ·

(
∇Pε(φ)√

|∇Pε(φ)|2 + h2

)
.

Usually semi–implicit iteration schemes require a less restrictive time marching (this
approach is commonly referred as Dziuk’s method). The implementation would
require to solve

(∆− I)

(
φ(k+1) − φ(0)

∆t

)
= P ′ε(φ

(k))F ′(Pε(φ
(k)))∗(F (Pε(φ

(k)))− yδ)

− b∆P ′ε(φ(k))∇ ·

(
∇Pε(φ(k+1))√
|∇Pε(φ(k))|2 + h2

)
.

(4.6)

In implementation of this approach the difficulty arises that the function in front of
∇·
(
∇Pε(φ(k+1))/

√
|∇Pε(φ(k))|2 + h2

)
vanishes outside of a neighborhood of the zero

level set, which makes it almost impossible to implement this scheme efficiently.

Fig. 4.1. The functions φ(0) (solid line), φ(1) (dashed line), φ(2) (dash-dot line) and φ(3)

(dotted line). To recover is the interval [0.4, 0.6], which is displayed by the grey rectangle. The first
iteration is the best. In the right picture α is smaller than in the left picture.
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Fig. 4.2. Decay of the residual ‖F (Pε(φ(k)))−yδ‖2Y in dependence of the number of iterations
(residual evaluated for the first experiment – noise free data in Section 5). After the first iteration
the fixed-point iteration stagnates.
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Fig. 4.3. The differences between φ(0) and the functions φ(1) (dashed line), φ(2) (dash-dot
line) and φ(3) (dotted line) from the left picture of figure 4.1.

5. Numerical Experiments. In this section we shall consider an inverse poten-
tial problem of recovering the shape of a domain D using the knowledge of its
(constant) density and the measurements of the Cauchy data of the corresponding
potential on the boundary of a fixed Lipschitz domain Ω ⊂ R2, which contains D.
This is the same problem as considered by Hettlich and Rundell [13], which used
iterative methods for recovering a single star-shaped object.

To achieve an analogous problem, a certain definition of the operator F is neces-
sary:

F : L2(Ω)→ L2(∂Ω)

χD → F (χD)

This is possible, because we consider only characteristic functions χD. The L2(Ω)-
norm is then equivalent to the L1(Ω)-norm of χD. Therefore the necessary properties
are retained.

The problem introduced above can mathematically be described as follows:

∆u = χD , in Ω ; u|∂Ω = 0 , (5.1)
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where χD is the characteristic function of the domain D ⊂ Ω, which has to be recon-
structed. Since χD ∈ L2(Ω), the Dirichlet boundary value problem in (5.1) has a
unique solution, the potential u ∈ H2(Ω) ∩ H1

0 (Ω). Here H1
0 (Ω) is defined as the

closure with respect to H1(Ω) of functions in C∞(Ω) with compact support in Ω.

The inverse problem we are concerned with, consists in determining the shape of
D from measurements of the Neumann trace of u at ∂Ω, i.e. from [∂u/∂ν]∂Ω, where
ν represents the outer normal vector to ∂Ω.

Notice that this problem can be considered in the framework of an inverse problem
for the Dirichlet to Neumann map. For given h ∈ L2(Ω), the Dirichlet to Neumann
operator maps a Dirichlet boundary data onto the Neumann trace of the potential,
i.e., Λ : H1/2(∂Ω)→ H−1/2(∂Ω), Λ(ϕ) := [∂ũ/∂ν]∂Ω, where ũ solves

∆ũ = h , in Ω ; ũ|∂Ω = ϕ .

The inverse problem for the Λ operator consists in determining the unknown param-
eter (i.e., the function h) from different pairs of Dirichlet, Neumann boundary data.
The general case with h ∈ L2(Ω) has already been considered by many authors, among
them we mention [7, 24], which introduced numerical methods based on Tikhonov
regularization, and [13] with iterative regularization methods.

Hettlich and Rundell [13] observe that, in the particular case h = χD, one pair
of measurement data of Dirichlet–Neumann data furnishes as many information as
the full Dirichlet–Neumann operator, i.e., it is sufficient to consider only one pair of
Cauchy data for the inverse problem. Therefore, no further information on D can be
gained by using various pairs of Dirichlet–Neumann data, since we can always reduce
the reconstruction problem to the homogeneous Dirichlet case.

For the particular case h = χD, it has been observed by Hettlich and Rundell [13]
that the Cauchy data may not furnish enough information to reconstruct the boundary
of D, e.g., if D is not simply connected. On the other hand, Isakov observed in [14]
that star like domains D are uniquely determined by their potentials.

The inverse potential problem is discussed within the general framework intro-
duced in Section 1. In particular, we allow domains, that consists of a number of
connected inclusions. For this general class we have not unique identifiability and we
restrict attention to “minimum-norm solutions”. Recall that in this case a minimum-
norm-solution is a level set function φ, where P (φ) determines the inclusion. A
minimum norm solution satisfies that it minimizes the functional ρ(z, φ) in the class
of level set functions such that the according Neumann boundary values ∂u

∂ν fit the
data yδ.

5.1. The level set regularization algorithm. In the following we describe
the level set regularization algorithm. This method compares to the Landweber iter-
ation as proposed by Hettlich and Rundell [13]. In our context the operator F ′ can
be considered as an approximation of the domain derivative operator for multiple
connected domains (cf. Figure 5.1).

The complexity of our algorithm is as follows: at each iteration of the level set
method, three elliptic boundary value problems are solved (two of Dirichlet type and
one of Neumann type).

In Table 5.1 the iteration procedure for the solution of the formal optimality
condition (3.2) is outlined. The algorithm can be implemented using finite element
codes (as we did) or finite difference methods for the solution of partial differential
equations.
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1. Evaluate the residual rk := F (Pε(φk))− yδ = ∂uk

∂ν − y
δ,

where uk solves

∆uk = Pε(φk) , in Ω ; uk|∂Ω = 0 .

2. Evaluate vk := F ′(Pε(φk))∗(rk) ∈ L2(Ω), solving

∆vk = 0 , in Ω ; vk|∂Ω = rk .

3. Evaluate wk ∈ H1(Ω), satisfying

(I −∆)wk = −P ′ε(φk) vk + βαP ′ε(φk)∇ ·
(
∇Pε(φk)

|∇Pε(φk)|

)
, in Ω;

∂wk
∂ν
|∂Ω = 0 .

4. Update the level set function φk+1 = φk + 1
α wk.

Fig. 5.1. Implementation of a single iteration step for minimizing the level set regularization.

5.2. Reconstruction of a density function with non simply connected
support. In this first experiment we consider the inverse problem of reconstructing
the right hand side χD in (5.1) from the knowledge of a single pair of boundary data
(u,Λu) = (0, yδ) at ∂Ω. In the examples considered below we always use the squared
domain Ω = (0, 1)2 ⊂ R2. χD ∈ L2(Ω) is the characteristic function as represented in
Figure 5.2.

The overdetermined boundary measurement data yδ for solving the inverse pro-
blem, is obtained by solving the elliptic boundary value problem in (5.1). Notice that
χD corresponds to the characteristic function of a not-connected proper subset of Ω.
The initial condition for the level set function is shown in Figure 5.2. In order to

Fig. 5.2. The picture on the left hand side shows the coefficient to be reconstructed. On the
other picture, the initial condition for the level set regularization method.

avoid inverse crimes, the direct problem (5.1) is solved on an adaptively refined grid
with 8.807 nodes (three levels of adaptive refinement). Alternatively, in the numerical
implementation of the level set method, all boundary value problems are solved at an
uniformly refined grid with 2.113 nodes.

When the data is given exactly, we tested the iterative level set regularization
without the additional regularization term |Pε(φk)|BV, i.e. β = 0.
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In all computed experiments we use the operator Pε defined in Section 2 with
ε = 1/8. This seams to be compatible with the size of our mesh, since the diameter of
the triangles in the uniform grid (used in the finite element method) is approximately√

2/32.

In Figure 5.3 we present the evolution of the level set function for given exact
data for the first 3000 iterative steps. As one can see in this figure, the original
level set splits into two convex components after approximately 800 iterations. After
1000 iterations the level set function still changes, but very slowly. We performed
similar tests for different initial conditions and observed that, after 1000 iterations,
the corresponding pictures look very much alike.

For the second part of this experiment, the density function to be reconstructed
is still the one shown in Figure 5.2. This time, however, we add randomly generated
noise to the data yδ used in the first part of the experiment.

The exact boundary data yδ is shown in Figure 5.4 as the dotted (blue) line. We
consider actually two distinct sets of perturbed data: For the first experiment we add
to the exact data a white noise of 10% (in the l∞-norm); For the second experiment
we use a noise level of 50%. Both sets of inaccurate data are plotted in Figure 5.4
and correspond to the solid (red) line.

As in the noise free experiment, the same care was taken to avoid inverse crimes.
The choice of the parameter ε (operator Pε) follows also the same criteria as before.
However, since we are now dealing with noisy data, we have to develop a strategy for
the choice of the regularization parameter β. For this proposal we opted for the fit-
to-data strategy, i.e. βα is chosen such that the regularization term (see Figure 5.1)
has the same order as the noise level.

The corresponding results generated by the level set method where surprisingly
stable, as one can observe in Figures 5.5 and 5.6. In the first case (noise level of
10%) the results are comparable with the previous experiment, where exact data
was available. In the second case (noise level of 50%) we are not able to precisely
recover the shape of the set D, corresponding to the characteristic function shown in
Figure 5.2. However, we are still able to identify the number of connected components
of D, as well as their relative positions inside the domain Ω.

5.3. Reconstruction of a density function with non convex support. In
this second experiment we consider the problem of reconstructing the density function
shown in Figure 5.7. The main goal now is to investigate the difficulty of the level
set method in recovering non convex domains. The domain Ω is the same used in
Subsection 5.2 and again we aim to reconstruct the density function in (5.1) from
boundary measurements.

As in the first part of the previous experiment, the data is almost given exactly
and the velocity wk is again obtained by solving the boundary value problem with
β = 0. The evolution of the level set function is shown in Figure 5.8.

Remark 5.1. The effect of parameter changes: In our numerical observations
we observed that in numerical simulations the minimizer is not severely affected by
the choice of βα and can in fact be neglected.
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Fig. 5.3. Level set evolution for exact data. Plots after 0, 1, 2, 10, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1000, 2000, 3000 iterative steps.
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Fig. 5.5. Level set evolution for inaccurate data; noise level of 10%. Plots after 0, 1, 2, 10,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000 iterative steps.
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Fig. 5.6. Level set evolution for inaccurate data; noise level of 50%. Plots after 0, 1, 2, 10,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1300, 1600 iterative steps.

Fig. 5.7. The picture on the left hand side shows the coefficient to be reconstructed. On the
other picture, the (projection of the) initial condition for the level set regularization method.
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Fig. 5.8. Level set evolution for second experiment. Plots after 0, 1, 5, 20, 50, 100, 200, 400,
600, 800, 1000, 2000, 5000, 10000, 20000, 50000 iterative steps.


