
SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 43, No. 5, pp. 1912–1933

SPECTRAL METHODS BASED ON PROLATE SPHEROIDAL WAVE
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Abstract. We examine the merits of using prolate spheroidal wave functions (PSWFs) as basis
functions when solving hyperbolic PDEs using pseudospectral methods.

The relevant approximation theory is reviewed and some new approximation results in Sobolev
spaces are established. An optimal choice of the band-limit parameter for PSWFs is derived for
single-mode functions.

Our conclusion is that one might gain from using the PSWFs over the traditional Chebyshev or
Legendre methods in terms of accuracy and efficiency for marginally resolved broadband solutions.
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1. Introduction. Pseudospectral methods for PDEs [6, 13] approximate the
solution by classical polynomials (usually Chebyshev or Legendre) or trigonometric
polynomials. The main reason for their success is the spectral accuracy, i.e., the con-
vergence rate depends only on the smoothness of the functions being approximated.
This comes at a price, however, as the norm of the differentiation matrix is pro-
portional to the square of the number, N , of interpolation points (or the order of
the polynomials), resulting in small time-steps (∼N−2) [14], when using an explicit
schemes for time integration.

This stringent restriction on the time-step can be attributed to the basis functions
being classical orthogonal polynomials, the roots of which cluster near the boundaries
of the interval, e.g., the smallest distance between any two roots of a Chebyshev
polynomial of degree N is O(N−2). In [18], it was suggested to use a singular mapping
to change the basis functions to overcome this restriction, and this technique has been
successfully used by many people (e.g., [1, 2, 10, 16, 20, 21]). However, as shown in
[16, 20] this mapping only allows for doubling the time-step for practical N . If N is
large, however, the time-step can be increased to scale as O(N−1) [18, 10] without
sacrificing the accuracy as the impact of the singular mapping becomes dominated by
the finite precision. The mapping destroys the quadrature properties of the roots of
the classical polynomials, which may be a disadvantage in certain applications, e.g.,
when filtering is needed or if integrals must be computed as part of the solution, e.g.,
in spectral element methods.

In this paper we assess the performance of pseudospectral methods based on
prolate spheroidal wave functions (PSWF – ψc

k) rather than on polynomials. In [25],
the authors demonstrate the merits of using PSWFs for the interpolation, integration
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PSWF SPECTRAL METHODS FOR HYPERBOLIC PROBLEMS 1913

(quadrature), and differentiation of band-limited functions. They show, among other
things, that for a prescribed accuracy fewer grid points are required for interpolation
and integration than with Chebyshev polynomials. Furthermore, the differentiation
matrix has a smaller condition number, approaching O(N3/2), which suggest the
possibility of increasing the time-step significantly for large values of N .

These basic observations have led to a surge of recent activity in the develop-
ment of methods based on PSWFs, although the topic itself remains in its infancy.
In [4, 5], the author studied the feasibility of using PSWFs as the basis functions in
spectral element methods. More recently, in [3] Beylkin and Sandberg developed a
two-dimensional solver for the acoustic wave equation by using a basis of approxi-
mate PSWFs. However, even basic aspects of approximation and stability theory for
methods based on PSWFs remain unknown.

In this work we consider some of these issues, in particular in the context of solving
hyperbolic PDEs by constructing pseudospectral methods based on quadrature points
and roots associated with the PSWFs. The first step in this direction is to review and
expand the relevant approximation theory. We discuss basic approximation properties
such as the number of points per wavelength required to recover a meaningful result
and show that only two points per wavelength are needed. Thus, the PSWF expansion
recovers the Nyquist limit from Fourier theory, although defined on a finite interval.
This should be contrasted with polynomial expansions where asymptotic estimates
show that at least π points per wavelength are needed [14]. We derive a new result
that demonstrates the spectral accuracy of approximations of smooth functions by
the PSWFs.

Several variants of pseudospectral PSWF methods based on different interpolation
points are subsequently discussed, the main differences being in the definition of the
interpolation points, e.g., we consider genuine Gauss-type quadrature points as well as
Gauss–Lobatto like points defined as the roots of (1−x2)(ψ2c

N )′, where ψ2c
N is the Nth

order PSWF with bandwidth 2c—this approach is clearly inspired by results from
classical polynomials although they are in this case not associated with a quadrature.
The performance of these slightly different methods are essentially equivalent although
the latter choice is more appropriate for solving initial-boundary value problems. We
finally consider the performance of these methods for solving a scalar hyperbolic
equation as well as hyperbolic systems.

The results of our study can be summarized as follows.

• A practical relation between the two parameters, c and N , is N = c to allow
convergence.

• With this choice one observes spectral accuracy. When the solution is broad-
band and marginally resolved, the PSWF-based method is more accurate
than the Chebyshev method with the same number of terms, i.e., generally
more efficient.

• Theoretically the time-step ∆t can be taken as O(N− 3
2 ) if N # 2

π c. However,
the accuracy deteriorates significantly in this case.

The remaining part of the paper is organized as follows. In section 2, we present
some mathematical background and define the PSWFs. Section 3 contains some
approximation results, while section 4 deals with the construction of pseudospectral
methods based on PSWFs. We discuss their stability and solve scalar hyperbolic
equations as well as hyperbolic systems. In the appendix, we give the details of the
proof of the main approximation result.
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1914 Q.-Y. CHEN, D. GOTTLIEB, AND J. S. HESTHAVEN

2. Preliminaries. In this section, we shall summarize the notation and some
general results regarding the PSWFs.

2.1. Prolate spheroidal wave functions. A function f(x) : [−1, 1] → [−1, 1]
is band-limited if there exist a c > 0 and a function φ(t) ∈ L2[−1, 1] such that

f(x) = Fc(φ)(x) =

∫ 1

−1
eicxt φ(t) dt.

It is easy to see that Fc: L2[−1, 1] → L2[−1, 1] is a compact operator, i.e., that it has
eigenvalues λ0,λ1,λ2, . . . , with the property |λi−1| ≥ |λi| ∀i > 0. We shall denote by
ψc
j(x) the eigenfunction corresponding to λj . Then

λj ψ
c
j(x) =

∫ 1

−1
eicxt ψc

j(t) dt, x ∈ [−1, 1],(2.1)

and the eigenfunctions, {ψc
j}

+∞
j=0, are the PSWFs. We choose to normalize them so

that ‖ψc
j‖L2[−1,1] = 1.

One easily checks that the PSWFs also satisfy

µj ψ
c
j(x) =

∫ 1

−1

sin(c(x− t))

x− t
ψc
j(t) dt, x ∈ [−1, 1],

where

µj =
c

2π
|λj |2.

The following theorem gives some properties of the PSWFs (see [22, 25] and the
references therein).

Theorem 2.1. For all c ≥ 0,
• ψc

0, ψc
1, . . . are real, orthonormal, smooth, and complete in L2[−1, 1], and

they form a Chebyshev system [17] on [−1, 1];
• the ψc

k with even k are even functions, and those with odd k are odd;
• λj = ij |λj | )= 0, where i is the complex unit;
• among {µj}∞j=0, about 2c/π are very close to 1; order log(c) decay exponen-

tially from 1 to nearly 0; the remaining ones are very close to 0.
Furthermore, there exists a strictly increasing positive sequence χ0,χ1, . . . , such

that
(
(1 − x2)(ψc

j(x))
′
)′

+
(
χj − c2x2

)
ψc
j(x) = 0.(2.2)

When c = 0, the above equation reduces to the classic singular Sturm–Liouville
problem with p(x) = 1 − x2, q(x) = 0, ω(x) = 1, and χj = j(j + 1), i.e., the PSWFs
with c = 0 are the normalized Legendre polynomials [6, 13].

Following [25], one can evaluate ψc
j by expressing it as

ψc
j(x) =

∞∑

k=0

βj
kP k(x), j = 0, 1, 2, . . . ,(2.3)

where P k is the normalized Legendre polynomial of degree k. Substituting (2.3) into
(2.2) and using the properties of the Legendre polynomials one obtains an eigenvalue
problem

(A− χj · I)βj = 0.(2.4)
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Fig. 2.1. ψc
8(x) for different values of c.

Here A has the form [25]






Ak,k = k(k + 1) +
2k(k + 1) − 1

(2k + 3)(2k − 1)
c2,

Ak,k+2 =
(k + 2)(k + 1)

(2k + 3)
√

(2k + 1)(2k + 5)
c2,

Ak+2,k = Ak,k+2

for k = 0, 1, 2, . . . , where the remaining entries of A are zeros.
Since ψc

j is smooth, the coefficients βj
k decay superalgebraically with respect to

k. The following theorem [25] offers guidelines on where to truncate (2.3) to ensure a
certain accuracy in the approximation of ψc

j .
Theorem 2.2. Assume ψc

m is the mth PSWF with band-limit c, and λm is the
corresponding eigenvalue. If

k ≥ 2(*e · c+ + 1),(2.5)

then ∀c > 0,

∣∣∣∣
∫ 1

−1
ψc
m(x)Pk(x) dx

∣∣∣∣ <
1

λm

(
1

2

)k−1

.

Solving (2.4) and using the corresponding eigenvector in the truncated version of
(2.3) allows for the computation of one PSWF (Figure 2.1) for different values of the
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1916 Q.-Y. CHEN, D. GOTTLIEB, AND J. S. HESTHAVEN

band-limit, c. In Figure 2.1, we note that the zeros of the PSWF move toward the
center as c increases, approaching a uniform distribution. This observation suggests
that by choosing a suitable c > 0 the PSWF method needs fewer points per wave-
length to accurately resolve a wave problem as compared to approximations based on
classical orthogonal polynomials. However, it also suggests that if one chooses c too
large for a fixed N , the PSWF is unable to represent functions defined on the whole
interval.

3. Approximation. In this section, we consider in more detail the properties of
approximations based on PSWFs. We first show that for the single wave cos(Mπx),
with the optimal c = Mπ, the continuous PSWF expansion converges exponentially
fast when at least two PSWFs are retained per wavelength. Equivalently, two points
per wavelength are required for exponential convergence of the discrete approximation.
This should be contrasted with about π points per wavelength needed for methods
using classical orthogonal polynomials.

The second result pertains to the approximation of a general smooth function
with a finite series of PSWFs. Recall that, for an unknown function, the optimal
choice of the bandwidth parameter, c, is unknown and the approximation depends
on two parameters, c and N . A natural approach is assume that the parameters
are related and our experiments show that c = N is a good choice if we want to
maintain the full accuracy (16 digits). We explain why we cannot use c ≥ (π/2)N
and illustrate that there can be benefits in taking c # (π/2)N , albeit at the price of
a lower accuracy.

3.1. Approximation of waves-points per wavelength. Let us consider the
wave u(x) = eiMπx. It follows directly from (2.1) and Theorem 2.1 that its PSWF
expansion is

eiMπx =
+∞∑

j=0

(
λjψ

c
j(1)

)
ψc
j(x),(3.1)

where c = Mπ.
Note that

|λjψ
c
j(1)|2 = |λj ||λjψ

c
j(1)2|,

where the term λjψc
j(1)2 is the jth term in the expansion of eiπM (cf. (3.1)) and

thus bounded—in fact it tends to zero with growing j. From [19], we know that |λj |
decays exponentially with j if j > 2c

π = 2M . This establishes the result: The accurate
resolution of a wave requires two PSWFs per wave. We recall here that expansions
based on Chebyshev or Legendre polynomials require about π points per wave. Only
mapped methods [20] may achieve similar resolution results for sufficiently high values
of N .

In Figure 3.1, we plot the L2-error of the truncated PSWF expansion of the
function cos(Mπx) versus N

M (N is the number of terms in the expansion). It clearly
confirms that when N/M > 2 the error decays exponentially.

In the above discussion we took c = Mπ, which is optimal. However, for general
functions, we do not have a simple optimal c (see Figure 3.2) where we display the
interpolation results with the PSWFs for two different functions. Clearly, the optimal
c depends on the required accuracy and the function being approximated. This is due
to the fact that an arbitrary function has many different modes and each mode has a
distinct optimal c.
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Fig. 3.1. L2-error of the PSWF expansion (truncated after N terms) of cos(Mπx) versus N/M .
×: M = 10; !: M = 20; ◦: M = 30; ": M = 40.
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Fig. 3.2. Demonstration that the optimal c, if it exists, depends on the specific problem and
the required accuracy. Left: L∞-error for the interpolation of ecos(5π(x−0.5)). For an error around
10−6, c = 100 is the best choice. For an error as small as 10−10, c = 160 is optimal. Right:
L∞-error for the interpolation of ecos(π(x−0.5)). Clearly, c = 0 (Legendre basis) is the best among
the four choices.

3.2. Error estimates. In this section, we consider the error estimates, in a
Sobolev norm, of the PSWF expansion of a smooth function. Let x ∈ [−1, 1], and
consider the expansion u(x) =

∑+∞
k=0 ûkψc

k(x). The order of the convergence of the

D
ow

nl
oa

de
d 

11
/2

6/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



1918 Q.-Y. CHEN, D. GOTTLIEB, AND J. S. HESTHAVEN

partial sum uN (x) =
∑N

k=0 ûkψc
k(x) is determined by

‖u− uN‖2
L2[−1,1] ≤

∞∑

k=N+1

|ûk|2,

i.e., it depends solely on the decay rate of the coefficients {ûk}.
Using the standard notation of Hs[−1, 1] for the Sobolev space of functions with

distributional derivatives up to order s being square integrable in L2[−1, 1], we prove
in the appendix the following theorem.

Theorem 3.1. Assume that u ∈ Hs[−1, 1] with the PSWF expansion u(x) =∑+∞
i=0 ûiψc

i (x).

If qN =
√

c2

χN
< 1, then

|ûN | ≤ D
(
N− 2

3 s‖u‖Hs[−1,1] + (qN )δN ‖u‖L2[−1,1]

)
,(3.2)

where both δ and D are positive constants.
From (3.2) it is evident that the expansion coefficients, ûN , may exhibit spectral

convergence when qN < 1. In [23], it is shown that if n grows with c as

n =
2

π

[
c + b log(2

√
c)
]

for some b, then

χn ∼ c2 + 2bc + O(1).

Thus

qn < 1 ⇔ χn > c2 ⇔ b > 0 ⇔ n >
2

π
c.

Consequently, the finite PSWF expansion of a smooth function, u ∈ C∞[−1, 1],

N∑

k=0

ûkψ
c
k(x)

is spectrally accurate if and only if

N >
2

π
c.

In Figure 3.3, we display the relationship between N and c ensuring that qN ≤ 1,
obtained directly by solving the eigenvalue problem. This clearly confirms the above
result. Figure 3.4 shows the loss of accuracy as N approaches 2

π c. The loss of accuracy
partially confirms Theorem 3.1. More precisely, the second term in (3.2) is dominant
as N approaches 2

π c, i.e., qN approaches one. When qN is very close to one, (qN )δN

cannot be small for any moderate N .
We notice that c = N (which guarantees that qN is bounded away from one)

appears to be a good choice if one requires maximum accuracy, although larger values
of c may also work if a reduced accuracy is acceptable. In section 4, we will fur-
ther discuss the issue of choosing c when also considering the time-step and discrete
stability.

Similar results are obtained when we use the PSWFs to interpolate a smooth
function. In Figure 3.5, we compare interpolations based on PSWF and Chebyshev
polynomials. Here we choose the number of grid points N = c. The results indicate
that the PSWF interpolation is superior for functions with fine structures.
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Fig. 3.5. Interpolation results. ◦: Prolate spheroidal wave basis; ∗: Chebyshev polynomials
basis. c = N for prolate spheroidal wave basis. Left: f(x) = cos(2π(x − 0.5)). Right: f(x) =
cos(20π(x− 0.5)).

4. Solving PDEs. In the following we shall discuss the use of the PSWFs as
a basis in spectral methods for solving wave problems. Particular attention shall be
paid to issues of semidiscrete and fully discrete stability.

4.1. First order wave equation. Consider the first order one-way wave equa-
tion






ut = ux, x ∈ [−1, 1],
u(1, t) = g(t),
u(x, 0) = f(x)

(4.1)

for which we shall seek a numerical solution.
Consider the interpolation points {x0, . . . , xN} which will be specified later. We

define the Prolate–Lagrange function as Lj(x) =
∑N

k=0 ljkψ
c
k(x) such that Lj(xk) =

δjk. The existence of Prolate–Lagrange functions follows from the fact that the
PSWFs form a Chebyshev system [17].

In a penalty Galerkin approximation we seek an approximation to the wave prob-
lem of the form

uN (x, t) =
N∑

j=0

uN (xj , t)Lj(x)

such that the vector )U = (uN (x0, t), . . . , uN (xN , t))T satisfies the equation

M
d)U

dt
= S )U − τ(uN (1, t) − g(t)))eN .(4.2)

Here, the boundary condition is imposed in a penalty way [7, 12, 15]. The matrices
M = (mjk) and S = (sjk) are defined as

mjk =

∫ 1

−1
Lj(x)Lk(x) dx,(4.3)

sjk =

∫ 1

−1
Lj(x)L

′

k(x) dx,(4.4)
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PSWF SPECTRAL METHODS FOR HYPERBOLIC PROBLEMS 1921

and )eN = (0, . . . , 1)T .
Theorem 4.1 (stability). The semidiscrete method described in (4.2) is stable

for τ ≥ 1/2.
Proof. For the stability proof it suffices to assume that g(t) = 0. Multiplying

(4.2) by )UT , we get

1

2

d

dt

(
)UTM )U

)
=

∑

jk

uN (xj , t)skjuN (xk, t) − τuN (1, t)2

=
∑

jk

∫ 1

−1
uN (xj , t)uN (xk, t)Lj(x)L′

k(x) dx− τuN (1, t)2

=

∫ 1

−1
uN (x, t)

∂uN (x, t)

∂x
− τuN (1, t)2

=
1

2

(
uN (1, t)2 − uN (−1, t)2 − 2τuN (1, t)2

)
.

Thus, if τ ≥ 1
2 , then

d

dt

∑

jk

∫ 1

−1
uN (xj , t)uN (xk, t)Lj(x)Lk(x) dx ≤ 0

or

d

dt

∫ 1

−1
(uN (x, t))2 dx ≤ 0.

This proves the theorem.
One way to implement the pseudospectral (collocation) method is to replace the

integrals in (4.3) and (4.4) by quadrature formulas based on the points {xk}. Alter-
natively, one can substitute the approximation uN (x, t) for u into the PDE (4.1) and
require that the obtained equation is satisfied at certain collocation points (in most
cases {xk} are used as collocation points as well).

For the PSWF collocation method, we do not have a stability proof. The difficulty
is caused by the fact that the product of any two of the first N PSWFs with band-
limit c is not in the space spanned by the first 2N PSWFs with band-limit 2c for
which the PSWF quadrature is exact. However, when using {xk} as the collocation
points, we numerically verify that the eigenvalues of the differentiation matrix have
negative real parts.

We shall consider two sets of grid points as {xk}: the Gauss–Lobatto PSWF
points (one way to compute them is given in [8]) and the zeros of (1−x2)(ψ2c

N )′. Note
that these points must be computed from PSWF with band-limit 2c (see [25]). As we
find the performance of the methods based on these two sets of points to be almost
equivalent, the latter will be used for the PSWF collocation method if not specified
otherwise.

When using explicit time discretization, e.g., Runge–Kutta schemes, one faces a
stability limit on the time-step ∆t. A necessary condition for stability is that the
product of ∆t and the largest eigenvalue of the differential matrix, being M−1(S −
τ)eN)eTN ) in the current scheme, is inside the stability region of the time-stepping
scheme.

In Figure 4.1, we observe that for fixed N the magnitude of the largest eigenvalue λ
of the PSWF collocation method decreases when c/N increases. So without violating
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Fig. 4.1. The largest absolute eigenvalue of the PSWF collocation method using different values
of c, and the Chebyshev and Legendre collocation methods.
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Fig. 4.2. The largest stable time-step for the PSWF collocation method using different values
of c, the Chebyshev and Legendre collocation methods. A 10th order explicit Runge–Kutta scheme
was used.

the stability condition, a larger c leads to larger ∆t, as confirmed by Figure 4.2. When
computing the largest stable time-step, we implemented a 10th order explicit Runge–
Kutta scheme, the general form (mth order) for ut = Au with constant matrix A
being given as [6]

u1 = un +
∆t

m
Aun,

uk = un +
∆t

m + 1 − k
Auk−1, k = 2, . . . ,m− 1,

un+1 = un + ∆t Aum−1.
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PSWF SPECTRAL METHODS FOR HYPERBOLIC PROBLEMS 1923

This ensures that the errors from the time integration are negligible.
In Figure 4.2, the largest stable time-step approaches a growth rate O(N− 3

2 ),
when c goes to (π/2)N . This suggests that one can use a time-step of order O(N− 3

2 )
by letting c = (π/2)N . However, this choice of c causes a loss of accuracy, as demon-
strated in Figure 3.4. In Table 4.1, we list the errors for the time-steps shown in
Figure 4.2. It is evident that the accuracy is decreasing when c approaches (π/2)N .
This is consistent with our analysis for the approximation using PSWFs.

Table 4.1
L∞-error when solving ut = ux for u(x, t) = cos(2π(x + t − 0.5)) with collocation methods.

A 10th order explicit Runge–Kutta is used. For each N of each method, ∆t is the largest stable
time-step shown in Figure 4.2.

N 80 120 160 200

Chebyshev 3.453 × 10−14 4.952 × 10−14 1.521 × 10−13 1.115 × 10−13

Legendre 7.361 × 10−14 1.117 × 10−12 1.274 × 10−12 1.592 × 10−12

PSWF(c = N) 9.770 × 10−15 9.104 × 10−15 2.081 × 10−14 1.482 × 10−14

PSWF(c = 1.3N) 3.638 × 10−1 2.860 × 10−9 7.133 × 10−12 9.137 × 10−14

PSWF(c = 1.5N) 5.022 × 10−2 2.968 × 10−1 8.051 × 10−2 1.649 × 10−4

The PSWF method offers a systematic way of balancing accuracy and stability. As
a compromise, c = N is used in all subsequent numerical tests. This yields a time-step
which is twice the one obtained by a Legendre collocation method without sacrificing
accuracy. Similar results can be obtained by using a mapping technique [16]. In some
cases it may be beneficial to use a different value of c, e.g., in Figure 3.4, c = 1.1N
could be used if only about 10−9 accuracy was required. Similar improvements over
the traditional Chebyshev collocation methods can also be achieved by the mapping
technique which was first presented in [18], albeit at a loss of the quadrature. However,
it will be impractical to use the PSWF collocation method if one wants to change c
very often, as both the interpolation points and the differentiation matrix have to be
recomputed when c is changed.

4.1.1. Numerical tests. The following numerical tests were carried out
with a collocation method that determines a nodal approximation uN (x, t) =∑N

j=0 uN (xj , t)Lj(x) such that the equation

∂uN

∂t
− ∂uN

∂x
= 0(4.5)

is satisfied at the grid points {xj}. The boundary condition is applied either strongly
or by a penalty procedure as discussed above.

We considered three different initial conditions, listed in Table 4.2.

Table 4.2
Initial condition f(x).

Smooth Nonsmooth

cos(2π(x− 0.5))

cos(20π(x− 0.5)) sin(20π(x− 0.5)) + H(x− 0.5)

The Heaviside function H(x) is defined as

H(x) =

{
1 if x ≤ 0,
−1 otherwise.

(4.6)
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Fig. 4.3. L∞-error from solving ut = ux with a collocation method and strongly imposed
boundary condition. Final time: T = 2π. 10th order Runge–Kutta with ∆t = 2

N2 . Left: u(x, t) =
cos(2π(x− 0.5 + t)). Right: u(x, t) = cos(20π(x− 0.5 + t)). ◦: PSWF; ∗: Chebyshev.
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Fig. 4.4. L∞-error of solving ut = ux by collocation methods. u(x, 0) = sin(20π(x − 0.5)) +
H(x − 0.5). Final time: T = 2π. Left: Chebyshev and PSWF collocation methods with strongly
imposed boundary condition. Right: PSWF collocation method with weakly imposed boundary con-
dition.

In Figure 4.3, we show the errors from solving (4.5) with these smooth initial condi-
tions. The Chebyshev method performs better for functions with small wave numbers,
whereas the PSWF method is clearly better for functions with large wave numbers.

In Figure 4.4, we present the errors for the discontinuous initial condition. In this
case the solution is discontinuous and the point of discontinuity propagates towards
the boundary with a speed a = 1. We observe that the error does not decay below
10−4 when using a strongly imposed boundary condition.

When the boundary condition is imposed by a penalty procedure [7, 15, 12], the
PSWF method is superior to the Chebyshev method (see the right part of Figure 4.4).
We also applied the Legendre collocation method to solve the equation with discontin-
uous initial conditions. Similar to the PSWF collocation method, the weakly imposed
boundary condition yields more accurate results than the strongly imposed boundary
condition.

The improved performance with the weak imposition of the boundary condition
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Fig. 4.5. Eigenvalues of the differentiation matrix for the PSWF collocation method. Boundary
condition is imposed strongly.

can be linked to the behavior of the differentiation matrix. Figures 4.5 and 4.6 show
the spectrum of the modified differentiation matrix for the PSWF collocation method
with strongly and weakly imposed boundary conditions, respectively. We believe that
the positive real parts of eigenvalues for N = 32 and 64 in Figure 4.5 are spurious and
caused by round-off errors, as discussed in [24] for Chebyshev/Legendre spectral dif-
ferentiation matrices. These results document the importance of imposing boundary
conditions in a penalty way.

4.2. A cavity problem. In this section, we solve the one-dimensional Maxwell
equations






ε
∂E

∂t
=

∂H

∂x
,

µ
∂H

∂t
=

∂E

∂x
,

(4.7)

where E(x, t) and H(x, t) are the tangential electric and magnetic fields, and ε and µ
are the relative permittivity and permeability of the materials.

We shall consider the test case of a one-dimensional cavity [−1, 1] filled with two
dielectric media with a material interface at x = 0. Two perfectly conducting walls
are located at x = −1 and x = 1. Denote by ε1 and µ1 the relative permittivity
and permeability of the material at [−1, 0]. Similarly, ε2 and µ2 are the relative
permittivity and permeability of the material in [0, 1]. The electric and magnetic
fields in the two domains are denoted by E1, H1 and E2, H2.
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Fig. 4.6. Eigenvalues of the differentiation matrix for the PSWF collocation method. Boundary
condition is imposed weakly.

Since the walls are perfectly conducting, the boundary conditions are

E1(−1, t) = 0 or
∂H1

∂x
|x=−1 = 0,

E2(1, t) = 0 or
∂H2

∂x
|x=1 = 0.

Denote n1 =
√
ε1 and n2 =

√
ε2, i.e., {ni} is the index of refraction. In all the

following tests, we assume µ1 = µ2 = 1.0, n1 = 1, and n2 = 10.

In Figure 4.7, we display the solution at t = 0. (See [9] for the derivation of
the exact solution.) When n1 )= n2, the solution loses smoothness at the material
interface. It is only globally C0 in [−1, 1]. Thus without using domain decomposition,
we can only get second order convergence with a Chebyshev or PSWF collocation
method (see Figure 4.8). Because of this low order there is limited advantage to the
use of the PSWF collocation method, although the PSWF method needs fewer points
per wavelength to resolve the solution.

For the pointwise errors from both PSWF and Chebyshev collocations, there is a
spike (Figure 4.9) propagating into the left-half domain and whose speed is the speed
of a characteristic wave. It is caused by the initial condition being computed from the
exact solution to the PDE, rather than an exact solution to the numerical scheme.
One can remedy this by computing the initial conditions from the numerical scheme.
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Fig. 4.7. Exact solution at t = 0, n1 = 1.0, n2 = 10.0. Upper: electric field E(x, t). Lower:
magnetic field H(x, t).
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Fig. 4.8. The discrete L2-error at t = 2π. Strongly imposed boundary condition for the
Chebyshev collocation method, weakly imposed boundary condition for the PSWF collocation method.
Left: electric field E(x, t). Right: magnetic field H(x, t).

Assume that the semidiscrete equation of (4.7) is






d )E

dt
= DH

)H,

d )H

dt
= DE

)E.

(4.8)D
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Fig. 4.9. Pointwise error from the PSWF collocation method. c = N = 301. t = 2π. Upper:
electric field. Lower: magnetic field.
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Fig. 4.10. Pointwise errors with the initial conditions computed from the numerical scheme.
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Take the exact solution to the numerical scheme as )E = )̃Eeiωt and )H = )̃Heiωt, and
introduce them into (4.8) to obtain an eigenvalue problem,

iω

(
)̃E
)̃H

)
=

(
0 DH

DE 0

)(
)̃E
)̃H

)
.

The eigenvectors can be used as the initial conditions for the numerical scheme. The
new results are shown in Figure 4.10, confirming this to be the source of the spike.

5. Conclusions. Our study of the applicability of PSWF-based methods to the
numerical solution of time-dependent PDEs results in the following conclusions:

• The PSWF approximation requires two points per wavelength to resolve a
single mode wave function (cos(mπx)) if c is chosen as c = mπ.

• Approximating a broadband function u(x) by a finite expansion of the form∑N
n=0 ûnψc

n, one obtains spectral accuracy for N > 2
π c with loss of accuracy

when N approaches the limit. A robust choice is N = c.
• When solving the wave equation ut = ux with explicit temporal schemes,

the CFL bound on the time-step increases as c ≤ (π/2)N increases. Asymp-
totically, ∆t = O(N−3/2) if c is very close to (π/2)N . However, this choice
results in a deterioration of the accuracy. We found c = N to be a good
choice to ensure good accuracy and large stable time-step, the latter effec-
tively increasing by a factor of 2 over methods based on classical orthogonal
polynomials.

• For marginally resolved broadband problems, the PSWF-based method with
a carefully chosen c is better than the Legendre/Chebyshev collocation meth-
ods. Fewer points are needed per wavelength for fast convergence and the
allowable time-step is twice as large.

• The weak imposition of the boundary condition is necessary for the success
of the method for problems with discontinuous initial conditions. By weakly
applying the boundary condition, we improve the spectrum of the first order
differentiation matrix of the PSWF collocation method, i.e., moving those
eigenvalues with almost zero real parts a little distance away from the imag-
inary axis, thus introducing a small amount of dissipation.

Appendix. In this appendix, we prove Theorem 3.1.
Let βk = βN

k be the coefficient in the expansion of ψc
N in terms of the normalized

Legendre polynomials, i.e., ψc
N (x) =

∑+∞
k=0 β

N
k P k(x), where

βk =

∫ 1

−1
P k(x)ψN (x) dx.

The following recurrence relation for βk is proven in [25]:

(k + 2)(k + 1)

(2k + 3)
√

(2k + 5)(2k + 1)
βk+2 =

(
Λ − k(k + 1)

c2
− 2k(k + 1) − 1

(2k + 3)(2k − 1)

)
βk

− k(k − 1)

(2k − 1)
√

(2k − 3)(2k + 1)
βk−2.(A.1)

Note that, from [23], Λ = χN = O(N2). Let m be any integer satisfying

m = O(Λ1/3) = O(N2/3) and 2m(2m + 1) <
ln 2

2
Λ.(A.2)
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Then we have the following lemma.
Lemma A.1. Assume q = qN =

√
c2

Λ < 1. Then for any given k ≤ 2m, βk is
bounded by

|βk| ≤






D
(

2
q

)k
|β0|, k even,

D
(

2
q

)k
|β1|, k odd,

(A.3)

where D is a constant independent of m.
Proof. We give the proof only for even k. The proof for odd k is similar.
Rewrite (A.1) as

βk+2 =
1

f(k + 2)

(
1

q2

(
1 − k(k + 1)

Λ

)
− g(k)

)
βk − f(k)

f(k + 2)
βk−2,(A.4)

where f(x) = x(x−1)

(2x−1)
√

(2x−3)(2x+1)
and g(x) = 2x(x+1)−1

(2x+3)(2x−1) . It is easy to verify that

1/4 ≤ f(x) ≤ 2
√

5/15,
1

2
≤ g(x) ≤ 11

21
for x ≥ 2.

Therefore, f(x)/f(x + 2) ≤ 8
√

5/15 when x ≥ 2.
Since

k ≤ 2m ⇒ 1

q2

(
1 − k(k + 1)

Λ

)
≥ 1

q2

(
1 − ln 2

2

)
>

11

21
≥ g(x) for x ≥ 2,

the coefficient of βk in (A.4) is positive. Hence, if we assume (A.3) is true for k, k−2,
we can bound βk+2 as

|βk+2| ≤
1

f(k + 2)

(
1

q2

(
1 − k(k + 1)

Λ

)
− g(k)

)
|βk| +

f(k)

f(k + 2)
|βk−2|

≤ 4
1

q2

(
1 − ln 2

2

)
D

(
2

q

)k

|β0| +
8
√

5

15
D

(
2

q

)k−2

|β0|

≤ D

(
2

q

)k+2
(

1 − ln 2

2
+

√
5q4

30

)
|β0| ≤ D

(
2

q

)k+2

|β0|.

The last inequality follows from the facts that q < 1 and 1 − ln 2
2 +

√
5q4

30 < 1. When
k = 0, 2, (A.3) can be easily satisfied by modifying the constant D. This completes
the proof.

Define

Ak =

∫ 1

−1
xkψc

N (x) dx.(A.5)

One can check that
√

2β0 = A0 and
√

2/3β1 = A1.
Lemma A.2. Let m be an integer satisfying (A.2). Then

|A0| ≤ Kq2m

√
2

4m + 1
,(A.6)
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where K is a constant independent of m.
Proof. We first show that

|A0| ≤ q2m|A2m|
m−1∏

l=1

1

1 − 2l(2l+1)
Λ

.(A.7)

Rewrite (2.2) as

(
(1 − x2)ψ

′
)′

+ Λ(1 − q2x2)ψ = 0.

For l ≤ m, multiply the above equation by x2l, then integrate on [−1, 1] to obtain
{

2l(2l − 1)A2l−2 + (Λ − 2l(2l + 1))A2l − Λq2A2l+2 = 0, l ≥ 1,
A0 − q2A2 = 0, l = 0.

Since 2m(2m + 1) ≤ Λ, all A0, A2, . . . , A2m+2 have the same sign. Thus

|A2l| ≤ q2 |A2l+2|
Λ

Λ − 2l(2l + 1)
≤ q2 |A2l+2|

1

1 − 2l(2l+1)
Λ

.

Then (A.7) follows by induction.
To show (A.6), we note that 1 − x ≥ e−2x when 0 ≤ x ≤ ln 2

2 . Therefore,

1 − 2l(2l + 1)

Λ
≥ e−2 2l(2l+1)

Λ if l = 1, 2, . . . ,m− 1,

which leads to

m−1∏

l=1

1

1 − 2l(2l+1)
Λ

≤ e
∑m−1

l=1 4l(2l+1)

Λ ≤ e
8
3
m3

Λ .

From (A.2), m = O(Λ1/3). So (A.5) yields

|A2m| ≤ ‖x2m‖L2[−1,1] ‖ψ‖L2[−1,1] ≤
√

2

4m + 1
,

which proves (A.6).
In the same way, one can also show that |A1| ≤ Kq2m

√
2

4m+3 under the same
conditions on m. We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Assume u(x) has the Legendre expansion

u(x) =
+∞∑

k=0

akPk(x).

By definition,

ûN =

∫ 1

−1
u(x)ψN (x) dx =

∫ 1

−1
ψN (x)

(
+∞∑

k=0

akPk(x)

)
dx.

Let M be an integer such that

M + 1

2m
= γ

ln(1/q)

ln(2/q)
,(A.8)
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where m is defined in (A.2) and 0 < γ < 1 is a constant. Denote by uM (x) the partial

sum uM (x) =
∑M

k=0 akPk(x). Then

ûN =

∫ 1

−1
uM (x)ψN (x) dx +

∫ 1

−1
(u(x) − uM (x))ψN (x) dx.

We use I and II to represent the first and second terms, respectively. According to
the error estimate of the Legendre approximation [11, 6],

|II| ≤ ‖u− uM‖L2[−1,1] ‖ψN (x)‖L2[−1,1] ≤ DM−s‖u‖Hs[−1,1],

where D is a constant (in the following, D is used for different constants). Now,

|I| =

∣∣∣∣∣

M∑

k=0

ak

∫ 1

−1
Pk(x)ψN (x) dx

∣∣∣∣∣ =

∣∣∣∣∣

M∑

k=0

(
ak

√
2

2k + 1

) (∫ 1

−1
P k(x)ψN (x) dx

)∣∣∣∣∣

≤
(

M∑

k=0

(ak)
2 2

2k + 1

)1/2 (
M∑

k=0

(∫ 1

−1
P k(x)ψN (x) dx

)2
)1/2

≤ ‖u‖L2[−1,1]

(
M∑

k=0

β2
k

)1/2

≤ D‖u‖L2[−1,1]

(
M∑

k=0

(
2

q

)2k
)1/2

max (|β0|, |β1|).

Here Lemma A.1 is used in the last reduction.
From Lemma A.2, β0 = 1√

2
A0 < Kq2m

√
2

4m+1 and β1 =
√

3/2A1 < Kq2m
√

2
4m+3 ,

where K is a constant. Thus

|I| ≤ D‖u‖L2[−1,1]

(
M∑

k=0

(
2

q

)2k
)1/2

q2m

√
2

4m + 3

≤ D‖u‖L2[−1,1]

(
2

q

)M+1

q2m

√
2

4m + 3

≤ D‖u‖L2[−1,1]

(
q

(
2

q

)M+1
2m

)2m √
2

4m + 3

≤ D‖u‖L2[−1,1] p
2m

√
2

4m + 3
,

where p = q( 2
q )

M+1
2m .

From (A.8), p = q1−γ and M = O(m) = O(N2/3). Combining the bounds for I
and II, we get

|ûN | ≤ D
(
N− 2

3 s‖u‖Hs[−1,1] + (qN )
2
3 (1−γ)N ‖u‖L2[−1,1]

)
,

which proves Theorem 3.1 with δ = 2
3 (1 − γ).
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