
MATHEMATICS OF COMPUTATION
Volume 68, Number 226, April 1999, Pages 487–517
S 0025-5718(99)01015-7

FINITE ELEMENT APPROXIMATION OF
THE CAHN-HILLIARD EQUATION

WITH CONCENTRATION DEPENDENT MOBILITY

JOHN W. BARRETT AND JAMES F. BLOWEY

Abstract. We consider the Cahn-Hilliard equation with a logarithmic free
energy and non-degenerate concentration dependent mobility. In particular
we prove that there exists a unique solution for sufficiently smooth initial
data. Further, we prove an error bound for a fully practical piecewise linear
finite element approximation in one and two space dimensions. Finally some
numerical experiments are presented.

1. Introduction

Let Ω be a bounded domain in Rd, d ≤ 3, with a Lipschitz boundary ∂Ω. We
consider the Cahn-Hilliard equation with non-constant mobility and logarithmic
free energy:
Find {u(x, t), w(x, t)} such that

∂u
∂t = ∇ . (b(u)∇w) in ΩT := Ω× (0, T ),

w = Ψ′(u)− γ∆u in ΩT ,

u(x, 0) = u0(x) ∀ x ∈ Ω,
∂u
∂ν = ∂w

∂ν = 0 on ∂Ω× (0, T ),

where ν is normal to ∂Ω. The mobility b ∈ C[−1, 1] is such that

0 ≤ bmin ≤ b(s) ≤ bmax ∀ s ∈ [−1, 1].(1.1)

The free energy Ψ : [−1, 1] → R is given by

Ψ(s) := ψ(s) + θc

2 (1 − s2) := θ
2

[
(1 + s) ln[ 1+s

2 ] + (1− s) ln[ 1−s
2 ]

]
+ θc

2 (1− s2)
(1.2)

and γ, θ and θc are positive constants with θ < θc. We define the monotone function
φ : (−1, 1) → R to be

φ(s) := ψ′(s) ≡ θ
2 [ln(1 + s)− ln(1− s)].

The above problem models phase separation of a binary mixture, which is
quenched into an unstable state. Here u := XB −XA ∈ [−1, 1], where XA, XB ∈
[0, 1] are the mass fractions of the two components A and B. When the quench is
shallow, that is θ is close to θc, then the free energy, Ψ, is usually approximated by
a quartic polynomial. The majority of the mathematics literature has concentrated
on this case, with constant mobility. However, this approximation is invalid if the
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quench is deep, i.e., θ � θc. For a fuller discussion of the model, see [10] and the
references therein.

A mobility dependent on the concentration, u, appeared in the original derivation
of the Cahn-Hilliard equation, see [8], and a thermodynamically reasonable choice
is b(s) := [1 − s2]+, see [13] and the references therein. This specific choice for b
leads to a number of mathematical difficulties since it is degenerate, i.e., bmin = 0
in (1.1). A simpler model is to consider for example

b(s) :=

{
1− σs2 if |s| ≤ 1
1
2 (1 − σ)[1 + e−

2σ(s2−1)
1−σ ] if |s| ≥ 1

(1.3)

for a given σ ∈ [0, 1]. Here, σ = 0 yields a constant mobility, σ ∈ (0, 1) yields a
non-degenerate concentration dependent mobility, and σ = 1 yields the degenerate
mobility mentioned above. For the purposes of the analysis in this paper, we have
extended b to R, so that b ∈ C1(R) and is non-degenerate over R if σ < 1.
Throughout the paper, we will assume that

b ∈ C(R), 0 ≤ bmin ≤ b(s) ≤ bmax ∀ s ∈ R.(1.4a)

For the majority of our results we require the further restrictions

bmin > 0, b ∈ C1(R) with |b′(s)| ≤ C ∀ s ∈ R.(1.4b)

We introduce a weak formulation of the above problem:
(P). Find {u,w} such that u(·, 0) = u0(·) and for a.e. t ∈ (0, T )

〈∂u
∂t , η〉+ (b(u)∇w,∇η) = 0 ∀ η ∈ H1(Ω),(1.5a)

(w, η) = γ(∇u,∇η) + (Ψ′(u), η) ∀ η ∈ H1(Ω).(1.5b)

We have adopted the standard notation for Sobolev spaces, denoting the norm of
Wm,p(Ω) (m ∈ N, p ∈ [1,∞]) by ‖ · ‖m,p and semi-norm by | · |m,p. For p =
2, Wm,2(Ω) will be denoted by Hm(Ω) with the associated norm and semi-norm
written as ‖ · ‖m and | · |m, respectively. Throughout, (·, ·) denotes the standard L2

inner product over Ω and 〈·, ·〉 denotes the duality pairing between
(
H1(Ω)

)′ and
H1(Ω). In addition we define∫

− η := 1
|Ω| (η, 1) ∀ η ∈ L2(Ω).

There are two major difficulties in studying problem (P). One is that ψ′(s) is
singular at s = ±1 and therefore (1.5b) has no meaning if u = ±1 in an open set of
non-zero measure. Secondly, establishing uniqueness of a solution is considerably
more difficult when the mobility is concentration dependent.

Although, the Cahn-Hilliard equation has been extensively studied, very lit-
tle mathematical work has appeared for a concentration dependent mobility. In
[17] existence of generalized solutions in one spatial dimension is proved under
the assumptions Ψ ∈ C1(R), b ∈ C0,β(R), β ∈ (0, 1), satisfying (1.1) and u0 ∈
H3(Ω). Furthermore, it is shown that if b(−1) = b(1) = 0 and ‖u0‖0,∞ ≤ 1, then
‖u(·, t)‖0,∞ ≤ 1, t ≥ 0. In [13] existence of solutions {u,w} to (1.5a),(1.5b), satisfy-
ing (2.62) and (2.63), is proved under the assumptions Ψ ∈ C1(R) with Ψ(s) ≥ −C,
|Ψ′(s)| ≤ C|s|r + C (r ∈ R+ for d = 1, 2, r = 3 for d = 3), b ∈ C(R) satisfying
(1.1) with bmin > 0 and u0 ∈ H1(Ω). Furthermore, they prove existence when the
mobility degenerates at ±1 and Ψ′ has singularities at ±1. This includes the case
when Ψ is defined as in (1.2) and b(s) := [1 − s2]+. In [11] existence of a global
unique strong solution {u,w} to (P), u ∈ L2(0,∞;H6(Ω)), is proved under the
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assumptions Ψ is smooth, b is smooth and nonnegative, u0 ∈ H6(Ω) with ‖∆u0‖2

sufficiently small and b(m) > 0, Ψ′′(m) ≥ 0, i.e., metastable, where m :=
∫
− u0. It

is also shown that under these assumptions u(·, t) → m in L∞(Ω) as t→∞.
We consider the finite element approximation of (P) under the following assump-

tions on the mesh:

(A). Let Ω be a convex polyhedron. Let T h be a quasi-uniform partitioning of Ω
into disjoint open simplices κ with hκ := diam(κ) and h := maxκ∈T h hκ, so
that Ω = ∪κ∈T hκ. In addition, it is assumed that T h is an acute partitioning;
that is for (i) d = 2 the angle of any triangle does not exceed π/2, (ii) d = 3
the angle between any two faces of the same tetrahedron does not exceed π/2.
In fact the case d = 2 can be relaxed to weakly acute, see [19]; that is, the
sum of opposite angles relative to any side does not exceed π.

Associated with T h is the finite element space

Sh := {χ ∈ C(Ω) : χ |κ is linear ∀ κ ∈ T h} ⊂ H1(Ω).

Let πh : C(Ω) → Sh be the interpolation operator such that πhη(xj) = η(xj)
(j = 1 → J), where {xj}J

j=1 is the set of nodes of T h. A discrete inner product on
C(Ω), is then defined by

(η1, η2)h :=
∫

Ω

πh(η1(x)η2(x)) dx ≡
J∑

j=1

Mjη1(xj)η2(xj),(1.6)

where 0 < Mj ≤ Chd. We introduce the L2 projections Qh : L2(Ω) → Sh and
Q̂h : L2(Ω) → Sh defined by

(Qhη, χ) = (Q̂hη, χ)h = (η, χ) ∀ χ ∈ Sh.(1.7)

Given N , a positive integer, let ∆t := T/N denote the time step and tn := n∆t,
n = 1 → N . We consider the following fully practical finite element approximation
of (P):

(Ph,∆t). For n = 1 → N find {Un,Wn} ∈ Sh × Sh such that(
Un−Un−1

∆t , χ
)h

+ bmax (∇Wn,∇χ)

=
([
bmax − b(Un−1)

]
∇Wn−1,∇χ

)
∀ χ ∈ Sh,(1.8a)

(Wn, χ)h = γ(∇Un,∇χ) + (φ(Un)− θcU
n, χ)h ∀ χ ∈ Sh,(1.8b)

where U0 ≡ Qhu0 or Q̂hu0 and W 0 ∈ Sh is such that(
W 0, χ

)h
= −γ(∆u0, χ) + (φ(U0)− θcU

0, χ)h ∀ χ ∈ Sh.(1.8c)

The corresponding finite element approximation for constant mobility, i.e., bmax =
bmin ≡ b(s) ≡ 1, is analysed in [2]. We note that the resulting nonlinear algebraic
system that needs to be solved at each time level for (Ph,∆t) is the same that arises
in the constant mobility case. It is the main purpose of this paper to extend the
analysis in [2] to the non-constant mobility case and to prove the following error
bound for the approximation (Ph,∆t).

Theorem 1.1. Let u0 ∈ H3(Ω), ∂u0
∂ν = 0 on ∂Ω and δ ∈ (0, 1) be such that

‖u0‖0,∞ ≤ 1 − δ. Let the assumptions (A) hold and ∆t ≡ Ch, for any fixed
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constant C. Let d ≤ 2 and b satisfy (1.4a),(1.4b). Then for all h > 0 such that
∆t ≤ 4γ/[bmaxθ

2
c ],

‖U0‖0,∞ ≤ 1− 1
2δ and |u0 − U0|21 ≤ Ch;(1.9)

we have that

‖u− U+‖2
L2(0,T ;H1(Ω)) + ‖u− U‖2

L∞(0,T ;(H1(Ω))′) ≤ Ch,(1.10)

where for n ≥ 1

U(·, t) := t−tn−1
∆t Un(·) + tn−t

∆t U
n−1(·) t ∈ [tn−1, tn],

U+(·, t) := Un(·) t ∈ (tn−1, tn].(1.11)

We note that on choosing U0 ≡ Qhu0, the second bound in (1.9) is satisfied
for all h > 0 and a sufficient condition for the first to hold is that h is sufficiently
small. Whereas on choosing U0 ≡ Q̂hu0 the first bound in (1.9) is satisfied for all
h > 0 and the second bound holds with further restrictions on T h and u0; e.g., on
a uniform translation invariant mesh if u0 ∈W 2,∞(Ω).

The error bound in Theorem 1.1 is exactly that obtained for constant mobility
in [2] under fewer restrictions on the data. However, it may not be optimal as
the singular nonlinearity φ makes the analysis particularly delicate. Although our
final error bound is only valid for the restricted data d ≤ 2 with the mobility
b(·) satisfying both (1.4a),(1.4b), a number of the results are developed for more
general data. In particular, the approximation (Ph,∆t) is well posed for all d ≤ 3
with b(·) satisfying just (1.4a). Similarly, the restrictions on the mesh in (A) of
quasi-uniformity (required for the inverse estimates, see (3.11) and (3.10)) and
weak acuteness (required only for the technical bound (3.17)) can be relaxed to a
regular partitioning to prove well posedness of (Ph,∆t).

We note that one could consider an alternative time stepping scheme with θcU
n

in (1.8b) replaced by θcU
n−1. It is a simple matter to adapt the analysis is this

paper to show that this scheme is unconditionally stable, and that the error estimate
in Theorem 1.1 above holds for all ∆t ≡ Ch. However, the resulting scheme on
eliminating {Wn}N

n=0 is a three level time scheme for {Un}N
n=0. This leads to

spurious modes and we have found that the stated discretization (Ph,∆t) performs
better in practice.

The layout of this paper is as follows. In Section 2 we study a regularized prob-
lem (Pε), where φ is replaced by φε. Firstly we prove some ε independent stability
bounds for the solution {uε, wε}, extending on those given in [16] and [2] for the
constant mobility case. Passing to the limit, ε = 0, we prove existence of a solution
{u,w} to (P). Finally we prove uniqueness of these solutions to (Pε) and (P), and
an error bound for this regularization procedure under a number of regularity as-
sumptions, which are shown to hold for the restricted data d ≤ 2 and b(·) satisfying
both (1.4a),(1.4b). In Section 3 we prove firstly well posedness of a fully discrete
continuous piecewise linear finite element approximation of (Pε), (Ph,∆t

ε ), a regu-
larized version of (Ph,∆t). Passing to the limit, ε = 0, we prove the well posedness
of (Ph,∆t). In addition we prove an error bound for the approximation (Ph,∆t

ε ) of
(Pε) and this discrete regularization procedure for the restricted data d ≤ 2 and
b(·) satisfying both (1.4a),(1.4b). By combining all the above error bounds and
choosing the regularization parameter ε and the time step ∆t in terms of the mesh
spacing h, we obtain the error bound in Theorem 1.1. Throughout, C denotes a
generic constant independent of these three parameters. In addition C(a1, · · · , aI)
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denotes a constant depending on the non-negative parameters {ai}I
i=1, such that

C(a1, · · · , aI) ≤ C if ai ≤ C for i = 1 → I. For notational convenience we write
Cb ≡ C(b−1

min). Finally in Section 4 we present some numerical experiments.
We end this section by noting that the error bound in [2] for the finite element

approximation, (Ph,∆t), of (P) with constant mobility has been extended to the
multi-component version of (P) with a constant mobility matrix in [3]. Further-
more, the existence proof in [13] for (P) with a degenerate concentration dependent
mobility has been extended to the multi-component version of (P) with a degen-
erate concentration dependent mobility matrix in [14]. In a forthcoming paper we
intend to extend the error bound in this paper to the multi-component version of
(P) with a non-degenerate concentration dependent mobility matrix.

2. A regularized problem

In [16] Elliot and Luckhaus analysed (P) for constant mobility by introducing
a regularized problem. We employ the same regularization procedure to study the
case when the mobility is concentration dependent.

The logarithmic free energy Ψ(·) is replaced by the twice continuously differen-
tiable function Ψε(s) := ψε(s) + θc

2 (1− s2), where ε ∈ (0, 1) and

ψε(s) :=


θ
2 (1 + s) ln

[
1+s
2

]
+ θ

4ε (1 − s)2 + θ
2 (1− s) ln

[
ε
2

]
− θε

4 if s ≥ 1− ε,
ψ(s) if |s| ≤ 1− ε,
θ
2 (1− s) ln

[
1−s
2

]
+ θ

4ε (1 + s)2 + θ
2 (1 + s) ln

[
ε
2

]
− θε

4 if s ≤ −1 + ε.

(2.1)

The monotone function

φε(s) := ψ′ε(s) =


θ
2 (1 + ln(1 + s))− θ

2ε (1− s)− θ
2 ln ε if s ≥ 1− ε,

φ(s) if |s| ≤ 1− ε,
− θ

2 (1 + ln(1− s)) + θ
2ε (1 + s) + θ

2 ln ε if s ≤ −1 + ε,
(2.2)

has the following properties.
• For all ε > 0

φ(s) ≥ φε(s) if 1 > s ≥ 1− ε,
φε(s) ≥ φ(s) if − 1 + ε ≥ s > −1.(2.3)

• For all r, s
Ψ′

ε(s)(r − s) = ψ′ε(s)(r − s)− θcs(r − s) ≤ ψε(r) − ψε(s) + θcs(s− r)

= Ψε(r)−Ψε(s) + θc

2 (r − s)2,
(2.4)

where we have used the identity

2s(s− r) = s2 − r2 + (s− r)2 ∀ r, s.(2.5)

• For ε ≤ 1
2 and for all r, s

θ(r − s)2 ≤ (φε(r) − φε(s))(r − s)(2.6)

and

(φε(r)− φε(s))2 ≤ φ′ε(max{|r|, |s|})(φε(r) − φε(s))(r − s)

≤ θ
ε (φε(r) − φε(s))(r − s).(2.7)

In addition, if r, s > 1− ε or r, s < −1 + ε, then
θ
2ε (r − s)2 ≤ (φε(r) − φε(s))(r − s).(2.8)



492 J. W. BARRETT AND J. F. BLOWEY

Furthermore, it is a simple matter to show that Ψε is bounded below for ε sufficiently
small; e.g., if ε ≤ ε0 := θ/(8θc), then

Ψε(s) ≥ θ
8ε

(
[s− 1]2+ + [−1− s]2+

)
− θc ≥ −θc ∀ s,(2.9)

where [·]+ := max{·, 0}. To see this, we note firstly for |s| ≤ 1 that

Ψε(s) ≥ ψε(s) ≥ ψε(0) ≡ −θ ln 2 ≥ −θc.

Secondly, for s ≥ 1 we have under the stated assumption on ε that

Ψε(s) ≥ θ
4ε (s− 1)2 − θε

4 + θc

2 (1− s2)

≡ [ θ
4ε −

θc

2 ](s− 1)2 − θε
4 + θc(1 − s)

≥ [ θ
4ε − θc](s− 1)2 − θε

4 − θc

2 ,

where we have applied a Young’s inequality. Applying a similar bound for s ≤ −1
yields the desired result (2.9).

For later purposes, we recall the following well-known Sobolev interpolation re-
sults, e.g., see [1]: let p ∈ [1,∞], m ≥ 1 and assume that v ∈ Wm,p(Ω). Then there
are constants C and µ = d

m

(
1
p −

1
r

)
such that the inequality

|v|0,r ≤ C|v|1−µ
0,p ‖v‖µ

m,p holds for r ∈


[p,∞] if m− d

p > 0,
[p,∞) if m− d

p = 0,
[p,− d

m−(d/p) ] if m− d
p < 0.

(2.10)

We now study the corresponding regularized version of (P).
(Pε). Find {uε, wε} such that uε(·, 0) = u0(·) and for a.e. t ∈ (0, T )

〈∂uε

∂t , η〉+ (b(uε)∇wε,∇η) = 0 ∀ η ∈ H1(Ω),(2.11a)

(wε, η) = γ(∇uε,∇η) + (Ψ′
ε(uε), η) ∀ η ∈ H1(Ω).(2.11b)

It is convenient to introduce the “inverse Laplacian” operator G : F → V such
that

(∇Gv,∇η) = 〈v, η〉 ∀ η ∈ H1(Ω),(2.12)

where F :=
{
v ∈ (H1(Ω))′ : 〈v, 1〉 = 0

}
and V := {v ∈ H1(Ω) : (v, 1) = 0}. The

well posedness of G follows from the Lax-Milgram theorem and the Poincaré in-
equality

|η|0,p ≤ C(|η|1,p + |(η, 1)|) ∀ η ∈ W 1,p(Ω) and p ∈ [1,∞].(2.13)

One can define a norm on F by

‖v‖−1 := |Gv|1 ≡ 〈v,Gv〉 1
2 ∀ v ∈ F .(2.14)

We note also for future reference that using a Young’s inequality yields for all α > 0
that

〈v, η〉 ≡ (∇Gv,∇η) ≤ ‖v‖−1|η|1 ≤ 1
2α‖v‖2

−1 + α
2 |η|21 ∀ v ∈ F , η ∈ H1(Ω).(2.15)

In addition it follows from (2.12), (2.10) and (2.13) that

|∇Gv|0 ≤ C|v|0,r ∀ v ∈ Lr(Ω) ∩ F ,(2.16)

where r = 1, 1 + τ, 6
5 , for any τ > 0, for d = 1, 2, 3, respectively.
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Assuming that bmin > 0 and given q measurable in Ω, it is also convenient to
introduce the operator Gq : F → V such that

(b(q)∇Gqv,∇η) = 〈v, η〉 ∀ η ∈ H1(Ω).(2.17)

It follows for all q measurable in Ω and v ∈ F that

|∇Gv|20 ≡ 〈v,Gv〉 ≡ (b(q)∇Gqv,∇Gv) ≤ b
1
2
max|[b(q)]

1
2∇Gqv|0|∇Gv|0.

Similarly we have that

|[b(q)] 1
2∇Gqv|20 ≡ 〈v,Gqv〉 ≡ (∇Gv,∇Gqv) ≤ b

− 1
2

min|∇Gv|0|[b(q)]
1
2∇Gqv|0.

Combining the above, it follows for all q measurable in Ω and v ∈ F that

bmin|[b(q)]
1
2∇Gqv|20 ≤ |∇Gv|20 ≤ bmax|[b(q)]

1
2∇Gqv|20.(2.18)

Let q be measurable in Ω, v ∈ F and η ∈ H1(Ω), then

〈v, η〉 ≡ (b(q)∇Gqv,∇η) ≤ b
1
2
max|[b(q)]

1
2∇Gqv|0|η|1 = b

1
2
max〈v,Gqv〉

1
2 |η|1(2.19)

so that an analogue of (2.15) holds. Similarly to (2.16), we have from (2.17), (2.10)
and (2.13) that

|∇Gqv|0 ≤ Cb−1
min|v|0,r ∀ v ∈ Lr(Ω) ∩ F ,(2.20)

where r = 1, 1 + τ, 6
5 , for any τ > 0, for d = 1, 2, 3, respectively.

For a.e. t ∈ (0, T ), let q(·, t) be measurable in Ω and v(·, t) ∈ L2(Ω) ∩ F be such
that ∂q

∂t (·, t),
∂v
∂t (·, t) ∈ L2(Ω). If b satisfies (1.4a),(1.4b), then by differentiating

(2.17) with respect to t and setting η ≡ Gqv we obtain that

(∂v
∂t ,Gqv) = ( ∂

∂t [b(q)∇Gqv],∇Gqv)

= (b′(q)
∂q

∂t
, |∇Gqv|2) + (b(q)∇ ∂

∂t [Gqv],∇Gqv)

= (b′(q)∂q
∂t , |∇Gqv|2) + ( ∂

∂t [Gqv], v).

(2.21)

Hence applying (2.21) and noting (2.17) yields that

d
dt(Gqv, v) = ( ∂

∂t [Gqv], v) + (Gqv,
∂v
∂t ) = 2(Gq

∂v
∂t , v)− (b′(q)∂q

∂t∇Gqv,∇Gqv).(2.22)

We note for future reference that if ∂q
∂t (·, t) ∈ L2(Ω) for a.e. t ∈ (0, T ) and if b

satisfies (1.4a),(1.4b), then (2.10) yields that

|(b′(q)∂q
∂t∇Gqv,∇Gqv)| ≤ C|∂q

∂t |0 |∇Gqv|20,4 ≤ C|∂q
∂t |0 |Gqv|

2− d
2

1 ‖Gqv‖
d
2
2 .(2.23)

Similarly if q1, q2 ∈ H1(Ω) and b satisfies (1.4a),(1.4b), then (2.10) yields that

|[b(q2)]
1
2∇(Gq1 − Gq2)v|0 ≡ ([b(q2)− b(q1)]∇Gq1v,∇(Gq1 − Gq2 )v)

1
2

≤ b
− 1

2
min |[b(q2)− b(q1)]∇Gq1v|0 ≤ Cb

− 1
2

min |q2 − q1|0,4 |∇Gq1v|0,4

≤ Cb
− 1

2
min |q2 − q1|

1− d
4

0 ‖q2 − q1‖
d
4
1 |Gq1v|

1− d
4

1 ‖Gq1v‖
d
4
2 .(2.24)

Adapting an argument in [15], we now find a bound on ‖Gqv‖2 when b satisfies
(1.4a),(1.4b), q ∈ H2(Ω), v ∈ L2(Ω)∩F and Ω is a convex polyhedron or ∂Ω ∈ C1,1.
It follows from the standard regularity estimate | · |2 ≤ C|∆ · |0, Gqv ∈ V , (2.20),
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(2.17) and (2.10) with r = ∞, 2
τ , 6, µ = 1

2 , 1− τ, 1 and s = 2, 2
1−τ , 3, λ = 0, τ, 1

2 for
all τ ∈ (0, 1), when d = 1, 2, 3, respectively, that

bmin‖Gqv‖2 ≤ C [bmin|∆Gqv|0 + |v|0] ≤ C [|b(q)∆Gqv|0 + |v|0]
= C

[
|b′(q)∇q.∇Gqv + v|0 + |v|0

]
≤ C [|∇q|0,r|∇Gqv|0,s + |v|0]

≤ C
[
|q|1−µ

1 ‖q‖µ
2 |Gqv|1−λ

1 ‖Gqv‖λ
2 + |v|0

]
.(2.25)

Finally using a Young’s inequality yields that

‖Gqv‖2 ≤ Cb

[
|q|α1 ‖q‖

β
2 |Gqv|1 + |v|0

]
,(2.26)

where α = 1
2 ,

τ
1−τ , 0, for all τ ∈ (0, 1), and β = 2d−2 when d = 1, 2, 3, respectively.

Choosing η ≡ 1 in (2.11a) yields that 〈∂uε

∂t , 1〉 = 0, i.e., (uε(·, t), 1) = (u0(·), 1)
for all t. Hence it follows from (2.11a), (2.17), (1.4b) and (2.13) that

wε ≡ −Guε

∂uε

∂t +
∫
− Ψ′

ε(uε).(2.27)

Therefore for bmin > 0, (Pε) can be rewritten as follows.
Find uε such that uε(·, 0) = u0(·) and for a.e. t ∈ (0, T ), (uε(·, t), 1) = (u0(·), 1)

and

γ(∇uε,∇η) + (Ψ′
ε(uε), η −

∫
− η) + (Guε

∂uε

∂t , η) = 0 ∀ η ∈ H1(Ω).(2.28)

Similarly, if bmin > 0 (P) can be rewritten as follows.
Find u such that u(·, 0) = u0(·) and for a.e. t ∈ (0, T ), (u(·, t), 1) = (u0(·), 1) and

γ(∇u,∇η) + (Ψ′(u), η −
∫
− η) + (Gu

∂u
∂t , η) = 0 ∀ η ∈ H1(Ω)(2.29)

with

w ≡ −Gu
∂u
∂t +

∫
− Ψ′(u).(2.30)

Theorem 2.1. Let d ≤ 3 and u0 ∈ H1(Ω) be such that ‖u0‖0,∞ ≤ 1 and |
∫
− u0| <

1 − δ for some δ ∈ (0, 1). If b satisfies (1.4a) with bmin > 0, then for all ε ≤
ε0 there exists {uε, wε} solving (Pε) such that the following stability bounds hold
independently of ε

‖uε‖L∞(0,T ;H1(Ω)) ≤ C, ‖uε‖H1(0,T ;(H1(Ω))′) ≤ C(2.31)

and

‖[uε − 1]+‖L∞(0,T ;L2(Ω)) + ‖[−uε − 1]+‖L∞(0,T ;L2(Ω)) ≤ Cε
1
2 .(2.32)

In addition, the following stability bounds hold independently of ε:

‖wε‖L2(0,T ;H1(Ω)) ≤ Cb and ‖φε(uε)‖L2(ΩT ) ≤ Cb;(2.33)

and if Ω is a convex polyhedron or ∂Ω ∈ C1,1,

‖uε‖L2(0,T ;H2(Ω)) ≤ Cb.(2.34)

Furthermore, if b satisfies (1.4b) and

‖∂uε

∂t ‖L
8

8−d (0,T ;L2(Ω))
≤ C(b−1

min, ε
−1), ‖uε‖L2d (0,T ;H2(Ω)) ≤ C(b−1

min, ε
−1),

‖wε‖
L

8
6−d (0,T ;H1(Ω))

≤ C(b−1
min, ε

−1),(2.35)

then the solution {uε, wε} of (Pε) is unique.
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Proof. Existence follows from standard arguments using Galerkin approximations
and then passing to the limit; see [13]. The choices of η below can be justified in a
similar way.

Choosing η ≡ ∂uε

∂t in (2.28) and integrating over (0, t) yields for all t ∈ (0, T )
that

γ
2 |uε(·, t)|21 + (Ψε(uε(·, t)), 1) +

∫ t

0

|[b(uε)]
1
2∇Guε

∂uε

∂s (·, s)|20 ds

= γ
2 |u0|21 + (Ψε(u0), 1) ≤ C,(2.36)

where we have noted the assumptions on u0. Hence the ε independent bounds in
(2.31) follow from noting (2.9), (2.13), (2.18) and (2.14). The bound (2.32) follows
immediately from the bound on (Ψε(uε(·, t)), 1) in (2.36) and (2.9).

Noting (2.27), (2.13) and (2.36) yields that

‖(I −
∫
− )wε‖L2(0,T ;H1(Ω))

≤ C‖∇Guε

∂uε

∂t ‖L2(ΩT ) ≤ Cb
− 1

2
min‖[b(uε)]

1
2∇Guε

∂uε

∂t ‖L2(ΩT ) ≤ Cb
− 1

2
min.(2.37)

Choosing η ≡ φε(uε) in (2.28), noting that φ′ε(·) ≥ θ and (2.13) yields for a.e. t ∈
(0, T ) that

2γθ|uε|21 + |(I −
∫
− )φε(uε)|20 ≤ |θcuε − Guε

∂uε

∂t |20
≤ C

[
|uε|20 + b−1

min|[b(uε)]
1
2∇Guε

∂uε

∂t |20
]
.(2.38)

Integrating the above over t ∈ (0, T ), noting (2.31) and (2.36) yields that

‖(I −
∫
− )φε(uε)‖L2(ΩT ) ≤ Cb

− 1
2

min.(2.39)

Choosing η ≡ uε in (2.28) yields for any constant λ and for a.e. t ∈ (0, T ) that

(Ψ′
ε(uε), λ−

∫
− uε) = (Ψ′

ε(uε), λ− uε)− γ|uε|21 − (Guε

∂uε

∂t , uε)

≤ (Ψε(λ)−Ψε(uε), 1) + θc

2 |uε − λ|20 + Cb
− 1

2
min|[b(uε)]

1
2∇Guε

∂uε

∂t |0|uε|0,

where we have noted (2.4) and (2.13). Hence it follows on choosing λ = ±1 and
noting (2.9) that

δ|Ω||
∫
− Ψ′

ε(uε)| ≤ C[ 1 + |uε|20 + b
− 1

2
min|[b(uε)]

1
2∇Guε

∂uε

∂t |0|uε|0 ].(2.40)

Integrating the above over t ∈ (0, T ) and noting (2.31) and (2.36) yields that

‖
∫
− Ψ′

ε(uε)‖L2(ΩT ) ≤ Cb
− 1

2
min.(2.41)

Combining (2.41), (2.37) and (2.39) yields the desired result (2.33). Finally (2.34)
follows from (2.11b), (2.31), (2.33) and standard elliptic regularity theory.

Assuming that (2.28) has two solutions u1
ε, u

2
ε with corresponding wi

ε defined by
(2.27), it follows that for a.e. t ∈ (0, T ) uε := u1

ε − u2
ε ∈ V satisfies

γ|uε|21 + (φε(u1
ε)− φε(u2

ε), uε) + (Gu1
ε

∂u1
ε

∂t − Gu2
ε

∂u2
ε

∂t , uε) = θc|uε|20.(2.42)
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If b satisfies (1.4a),(1.4b), on noting (2.22), (2.23), (2.24), (2.26), (2.27), (2.19),
(2.18), and applying Hölders inequality, it follows that for a.e. t ∈ (0, T )

γ|uε|21 + (φε(u1
ε)− φε(u2

ε), uε) + 1
2

d
dt (Gu1

ε
uε, uε)

= θc|uε|20 − 1
2 (b′(u1

ε)
∂u1

ε

∂t ∇Gu1
ε
uε,∇Gu1

ε
uε)− ((Gu1

ε
− Gu2

ε
)∂u2

ε

∂t , uε)

≤ θc|uε|20 + C|∂u1
ε

∂t |0
∣∣Gu1

ε
uε

∣∣2− d
2

1

∥∥Gu1
ε
uε

∥∥ d
2

2

+ Cb |uε|
1− d

4
0 ‖uε‖

d
4
1

∣∣Gu1
ε
uε

∣∣1− d
4

1

∥∥Gu1
ε
uε

∥∥ d
4

2
|w2

ε |1

≤ γ
2 |uε|21 + Cb

(
Gu1

ε
uε, uε

) [
1 + |∂u1

ε

∂t |
8

8−d

0 + |∂u1
ε

∂t |0|u1
ε|

αd
2

1 ‖u1
ε‖

βd
2

2

+|u1
ε|

4αd
12−d

1 ‖u1
ε‖

4βd
12−d

2 |w2
ε |

16
12−d

1 + |w2
ε |

8
6−d

1

]
≤ γ

2 |uε|21 + Cb

(
Gu1

ε
uε, uε

) [
1 + |∂u1

ε

∂t |
8

8−d

0 + |u1
ε|4α

1 ‖u1
ε‖

4β
2 + |w2

ε |
8

6−d

1

]
.(2.43)

Uniqueness then follows from noting (2.6), (2.31), (2.35), a Gronwall inequality,
(2.13) and (2.27).

We note that the integral assumption on the initial data, in Theorem 2.1 above,
only excludes the physically uninteresting case of u0 ≡ ±1, when only one compo-
nent is present.

Remark. If ∂q
∂t (·, t) ∈ V , for a.e. t ∈ (0, T ), then alternatively to (2.23), we have

from (2.15) and (2.16) that∣∣∣(b′(q)∂q
∂t , |∇Gqv|2)

∣∣∣
≤ |∂q

∂t |1|G[(I −
∫
− )(b′(q)|∇Gqv|2)]|1 ≤ C|∂q

∂t |1|Gqv|21,2(1+τ),(2.44)

where τ = 0, any τ > 0, τ = 1
5 , for d = 1, 2, 3, respectively. Using this inequality,

when performing a similar computation to that in (2.43), yields uniqueness of a
solution to (Pε) with the first assumption in (2.35) replaced by

‖∂uε

∂t ‖Lν(0,T ;H1(Ω)) ≤ C(b−1
min, ε

−1) ν = 1, 1 + τ
2+τ ,

8
7 for d = 1, 2, 3.(2.45)

Corollary 2.1. Let u0 ∈ H3(Ω), ∂u0
∂ν = 0 on ∂Ω and δ ∈ (0, 1) be such that

‖u0‖0,∞ ≤ 1− δ. Let d ≤ 3 with either Ω being a convex polyhedron or ∂Ω ∈ C1,1.
Let b satisfy (1.4a),(1.4b). Then for all ε ≤ ε0(δ) solutions {uε, wε} of (Pε) are
such that the following stability bounds hold independently of ε:∥∥∂uε

∂t

∥∥
L2(0,T?;H1(Ω))

+
∥∥∂uε

∂t

∥∥
L∞(0,T?;(H1(Ω))′) + ‖wε‖L∞(0,T?;H1(Ω)) ≤ Cb,(2.46a)

‖φε(uε)‖L∞(0,T?;L2(Ω)) + ‖uε‖L∞(0,T?;H2(Ω)) + ‖wε‖L2(0,T?;H2(Ω)) ≤ Cb,(2.46b)

where T? = T if d ≤ 2, and T? ∈ (0, T ] if d = 3. Hence the solution {uε, wε} of
(Pε) is unique over ΩT? .

Proof. Differentiating (2.11b) with respect to t and setting η = ∂uε

∂t , noting φ′ε(r) ≥
θ ≥ 0, (2.11a), (2.27), (2.21) and (2.22) yields that for a.e. t ∈ (0, T?)

γ
∣∣∂uε

∂t

∣∣2
1
− θc

∣∣∂uε

∂t

∣∣2
0
≤ γ

∣∣∂uε

∂t

∣∣2
1
+ (φ′ε(uε)∂uε

∂t ,
∂uε

∂t )− θc

∣∣∂uε

∂t

∣∣2
0

= 〈∂wε

∂t ,
∂uε

∂t 〉
= −

(
b(uε)∇∂wε

∂t ,∇wε

)
= − 1

2
d
dt [(b(uε)∇wε,∇wε)] + 1

2

(
b′(uε)∂uε

∂t , |∇wε|2
)
,

(2.47)
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where T? ∈ (0, T ]. Once again this differentiation and these choices of test function
can be justified in the standard way by using a Galerkin approximation and then
passing to the limit. Noting (2.44), the following inequality holds for τ = 0, any
τ ∈ (0, 1

5 ], τ = 1
5 for d = 1, 2, 3, respectively∣∣(b′(uε)∂uε

∂t , |∇wε|2)
∣∣ ≤ γ

2 |
∂uε

∂t |21 + C|wε|41,2(1+τ).(2.48)

Next we note from (2.10), (2.27) and (2.26) that

|wε|41,2(1+τ) ≤ Cb |wε|4(1−µ)
1 ‖Guε

∂uε

∂t ‖
4µ
2

≤ Cb

[
|wε|41 |uε|4µα

1 ‖uε‖4µβ
2 + |wε|4(1−µ)

1 |∂uε

∂t |
4µ
0

]
≤ Cb

[
|wε|41 |uε|4µα

1 ‖uε‖4µβ
2 + |wε|

4(1−µ)
1−2µ

1 + |∂uε

∂t |20
]
,(2.49)

where µ = d τ
2(1+τ) . It follows from standard elliptic regularity, (2.38), (2.40) and

(2.27) that

‖uε‖2 ≤ C [ ‖uε‖1 + |φε(uε)|0 + |wε|0 ] ≤ Cb [ 1 + |uε|0 ] [ 1 + |uε|0 + |wε|1 ] .(2.50)

Combining (2.47), (2.48), (2.49), (2.50) and noting (2.19) and (2.27) yields that for
a.e. t ∈ (0, T?)

γ
∣∣∂uε

∂t

∣∣2
1
+ 1

2
d
dt [(b(uε)∇wε,∇wε)] ≤ Cb

∣∣∂uε

∂t

∣∣2
0

+ C(b−1
min, ‖uε‖1)

[
1 + |wε|4(1+ρ)

1

]
≤ C(b−1

min, ‖uε‖1)
[
1 + (b(uε)∇wε,∇wε)2(1+ρ)

]
,

(2.51)

where ρ = 5τ
2 . We set B(t) := max{(b(uε(·, t))∇wε(·, t),∇wε(·, t)), 1} for a.e.

t ∈ (0, T ). It follows from (2.33) that∫ T

0

B(t) dt ≤ C(b−1
min, T ).(2.52)

From (2.51) and the above notation we have for a.e. t ∈ (0, T?) that

dB
dt ≤ C(b−1

min, ‖uε‖1)B2(1+ρ).(2.53)

Via a Galerkin approximation, one can show in the standard way that

B(0) ≤ C
[
1 + |wε(0)|21

]
≤ C

[
1 + |∆u0|21 + ‖Ψ′′

ε (u0)‖2
0,∞|u0|21

]
≤ C

[
1 + ‖u0‖2

3

]
≤ C,

(2.54)

provided u0 ∈ H3(Ω), ∂u0
∂ν = 0 on ∂Ω and ε0 ≤ δ; see for example Proposition 2.5

in [5].
For d = 1, i.e., ρ = 0, it follows from (2.53) and (2.52) that for a.e. t ∈ (0, T )

B(t) ≤ e
C(b−1

min,‖uε‖1)

∫ t

0

B(s) ds
B(0) ≤ C(b−1

min, ‖uε‖1, T )B(0).(2.55)

For d = 2, i.e., for any ρ ∈ (0, 1
2 ), it follows from (2.53) that for a.e. t ∈ (0, T?)

− 1
2ρ

d
dtB

−2ρ ≤ C(b−1
min, ‖uε‖1)B.(2.56)
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Hence we have from (2.56) and (2.52) that

B(t) ≤ [1− 2ρC(b−1
min, ‖uε‖1)[B(0)]2ρ

∫ t

0

B(s) ds]−
1
2ρB(0)

≤ [1 + 4ρC(b−1
min, ‖uε‖1)[B(0)]2ρ

∫ t

0

B(s) ds]
1
2ρB(0)

≤ e
C(b−1

min,‖uε‖1)[B(0)]2ρ

∫ t

0

B(s) ds
B(0)

≤ C(b−1
min, ‖uε‖1, T, B(0)) t ∈ (0, T ),(2.57)

provided ρ ∈ (0, 1
2 ) is chosen sufficiently small so that

4ρC(b−1
min, ‖uε‖1)[B(0)]2ρ

∫ T

0

B(s) ds ≤ 1.(2.58)

For d = 3, i.e., ρ = 1
5 , it follows from (2.53) that for a.e. t ∈ (0, T?)

− 1
1+2ρ

d
dtB

−(1+2ρ) ≤ C(b−1
min, ‖uε‖1).(2.59)

Hence we have from (2.59) that

B(t) ≤ [1− (1 + 2ρ)C(b−1
min, ‖uε‖1)[B(0)]1+2ρt]−

1
(1+2ρ)B(0)

≤ [1 + 2(1 + 2ρ)C(b−1
min, ‖uε‖1)[B(0)]1+2ρt]

1
1+2ρB(0)

≤ eC(b−1
min,‖uε‖1)[B(0)]1+2ρtB(0)

≤ C(b−1
min, ‖uε‖1, T, B(0)) t ∈ (0, T?),(2.60)

provided T? is such that

2(1 + 2ρ)C(b−1
min, ‖uε‖1)[B(0)]1+2ρT? ≤ 1.(2.61)

The third bound in (2.46a) then follows from (2.55), (2.57), (2.60), (2.54), (2.31),
(2.27), (2.13) and (2.40). The first bound in (2.46a) then follows from the third
and (2.51). Similarly, the second follows from the third on noting (2.27) and (2.18).
The first two bounds in (2.46b) follow from the third in (2.46a) and (2.50). The
third bound in (2.46b) follows from the first two in (2.46b) on noting (2.27), (2.26),
(2.46a) and (2.13). Finally, uniqueness of a solution to (Pε) over ΩT? follows from
the bounds (2.46a), (2.46b) and Theorem 2.1.

Theorem 2.2. If d ≤ 3, b satisfies (1.4a) with bmin > 0 and the assumptions on
u0 of Theorem 2.1 hold, then there exists {u,w} solving (P) such that

u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′),(2.62)

w ∈ L2(0, T ;H1(Ω)) and φ(u) ∈ L2(ΩT );(2.63)

and if either Ω is a convex polyhedron or ∂Ω ∈ C1,1

u ∈ L2(0, T ;H2(Ω)).(2.64)

Furthermore, if the assumptions on u0 and b of Corollary 2.1 hold, then the solution
{u,w} of (P) is such that

u ∈ L∞(0, T?;H2(Ω)) ∩H1(0, T?;H1(Ω)) ∩W 1,∞(0, T?; (H1(Ω))′),(2.65)

w ∈ L∞(0, T?;H1(Ω)) ∩ L2(0, T?;H2(Ω)) and φ(u) ∈ L∞(0, T?;L2(Ω)),(2.66)
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where T? = T if d ≤ 2, and T? ∈ (0, T ] if d = 3. Moreover, the solution {u,w} of
(P) is unique over ΩT? and we have that

‖u− uε‖2
L2(0,T?;H1(Ω)) + ‖u− uε‖2

L∞(0,T?;(H1(Ω))′) ≤ Cb ε.(2.67)

Proof. As the bounds (2.31) and (2.33) are independent of ε, it follows that there
exists u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′), φ? ∈ L2(ΩT ) and a subsequence
{uε′} such that as ε′ → 0

uε′ → u in L∞(0, T ;H1(Ω)) weak–star and in H1(0, T ; (H1(Ω))′) weakly,
(2.68)

wε′ → w in L2(0, T ;H1(Ω)) weakly and φε′(uε′) → φ? in L2(ΩT ) weakly.
(2.69)

Using an argument from [2], it follows that φ? ≡ φ(u). Therefore taking the limit
ε′ → 0 in (2.11b) yields that {u,w} solves (1.5b). It is implied by (2.68) that
uε′ → u in L2(ΩT ) strongly as ε′ → 0; see [18]. Noting this, (1.4a) and (2.69), it
follows for a.e. t ∈ (0, T ) that as ε′ → 0

(b(uε′)∇wε′ ,∇η) → (b(u)∇w,∇η) ∀ η ∈W 1,∞(Ω).

Therefore taking the limit ε′ → 0 in (2.11a) yields, on noting the above and (2.68),
that {u,w} solves (1.5a). Hence we have existence of a solution {u,w}, satisfying
(2.62) and (2.63), of (P). The regularity results (2.64), (2.65) and (2.66) follow
similarly to the ε independent bounds (2.34), (2.46a), (2.46b). Uniqueness of a
solution to (P) over ΩT? then follows as for (Pε); see (2.42) and (2.43).

We now prove an error bound between the unique solutions u and uε of problems
(P) and (Pε). Set e := u− uε. Subtraction of (2.28) from (2.29), noting (2.22) and
choosing η = e yields for a.e. t ∈ (0, T?) that

γ|e|21 + (φ(u)− φε(uε), e) + 1
2

d
dt (Gue, e)

= θc|e|20 − 1
2 (b′(u)∂u

∂t∇Gue,∇Gue)− ((Gu − Guε)
∂uε

∂t , e).(2.70)

From the monotonicity of φε and (2.8) it follows that for a.e. t ∈ (0, T?)

(φε(u)− φε(uε), e) ≥ θ
2ε

∫
Ω+

ε (t)∪Ω−ε (t)

e2 dx,(2.71)

where

Ω+
ε (t) := {x ∈ Ω : 1− ε ≤ u(x, t) ≤ uε(x, t)},

Ω−ε (t) := {x ∈ Ω : uε(x, t) ≤ u(x, t) ≤ −1 + ε}.

Next we note from the definition of φε and (2.3) that
1. If |r| ≤ 1− ε, then φε(r) ≡ φ(r).
2. If r ≥ 1− ε and s ≤ r, then (φε(r) − φ(r))(r − s) ≤ 0.
3. If r ≤ −1 + ε and r ≤ s, then (φε(r)− φ(r))(r − s) ≤ 0.

Hence it follows for a.e t ∈ (0, T?) that

(φε(u)− φ(u), e) ≤
∫

Ω+
ε (t)∪Ω−ε (t)

(φε(u)− φ(u))e dx ≤ −
∫

Ω+
ε (t)∪Ω−ε (t)

φ(u)e dx.

(2.72)
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Substituting (2.71) and (2.72) into (2.70), and as (1.4a),(1.4b) hold it follows simi-
larly to (2.43) on noting (2.23), (2.24), (2.26), (2.27), (2.19) and (2.18) that for a.e.
t ∈ (0, T?)

γ|e|21 + θ
2ε

∫
Ω+

ε (t)∪Ω−ε (t)

e2 dx+ 1
2

d
dt (Gue, e)

≤ (φε(u)− φ(u), e) + θc|e|20 − 1
2 (b′(u)∂u

∂t∇Gue,∇Gue)− ((Gu − Guε)
∂uε

∂t , e)

≤ −
∫

Ω+
ε (t)∪Ω−ε (t)

φ(u)e dx+ θc|e|20 + C|∂u
∂t |0 |Gue|

2−d
2

1 ‖Gue‖
d
2
2

+ Cb |e|
1− d

4
0 ‖e‖

d
4
1 |Gue|

1− d
4

1 ‖Gue‖
d
4
2 |wε|1

≤ Cε

∫
Ω+

ε (t)∪Ω−ε (t)

[φ(u)]2 dx

+ Cb (Gue, e)
[
1 + |∂u

∂t |
8

8−d

0 + |u|4α
1 ‖u‖4β

2 + |wε|
8

6−d

1

]
.(2.73)

The desired result (2.67) then follows from noting (2.46a), (2.65), (2.66), a Gronwall
inequality, (2.13), (2.17), (2.18) and (2.14).

Remark. We note that the assumption bmin > 0 in Theorems 2.1 and 2.2 can be
relaxed in order to establish existence of a solution {uε, wε} to (Pε), with the bounds
(2.31) and (2.32) holding, and a solution {u,w} to (P), with (2.62) holding; see [13].

3. Finite element approximation

Throughout the rest of the paper we assume that the assumptions (A) hold.
We now consider the following fully discrete approximation to (Pε); which is a
regularized version of (Ph,∆t), see Section 1.
(Ph,∆t

ε ). For n ≥ 1, find {Un
ε ,W

n
ε } ∈ Sh × Sh such that(

Un
ε −Un−1

ε

∆t , χ
)h

+ bmax (∇Wn
ε ,∇χ)

=
([
bmax − b(Un−1

ε )
]
∇Wn−1

ε ,∇χ
)

∀ χ ∈ Sh,(3.1a)

(Wn
ε , χ)h = γ(∇Un

ε ,∇χ) + (φε(Un
ε )− θcU

n
ε , χ)h ∀ χ ∈ Sh,(3.1b)

where U0
ε ≡ Qhu0 or Q̂hu0 and W 0

ε ∈ Sh is such that

(W 0
ε , χ)h = −γ(∆u0, χ) + (φε(U0

ε )− θcU
0
ε , χ)h ∀ χ ∈ Sh.(3.1c)

Similarly to (2.12), we introduce the operator Gh : F → V h such that

(∇Ghv,∇χ) = 〈v, χ〉 ∀ χ ∈ Sh,(3.2)

where V h := {vh ∈ Sh : (vh, 1) = 0}. We have the following analogues of (2.14)
and (2.15). We define a norm on F by

‖v‖−h := |Ghv|1 = 〈v,Ghv〉 1
2 ∀ v ∈ F ,(3.3)

and for α > 0 we have that

〈v, χ〉 ≡ (∇Ghv,∇χ) ≤ ‖v‖−h|χ|1 ≤ 1
2α‖v‖2

−h + α
2 |χ|21 ∀ v ∈ F , χ ∈ Sh.(3.4)
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Below we recall some well-known results concerning Sh: for m = 0 or 1, and for
p ≥ 2

|(I − πh)η|m,p ≤ Ch2−m−d( 1
2−

1
p )|η|2 ∀ η ∈ H2(Ω);(3.5)

|(I −Qh)η|0 + h|(I −Qh)η|1 ≤ Chm|η|m ∀ η ∈ Hm(Ω), m = 1 or 2;(3.6)
|χ|20 ≤ |χ|2h := (χ, χ)h ≤ (d+ 2)|χ|20 ∀ χ ∈ Sh;(3.7)

|(χ1, χ2)− (χ1, χ2)h| ≤ Ch1+m‖χ1‖m‖χ2‖1 ∀ χ1, χ2 ∈ Sh, m = 0 or 1;(3.8)
|(G − Gh)v|0 ≤ Ch2−m‖v‖−m, ∀ v ∈ (Hm(Ω))′ ∩ F , m = 0 or 1.(3.9)

Next we note that

C1h
2|vh|1 ≤ C2h|vh|0 ≤ ‖vh‖−h ≤ ‖vh‖−1 ≤ C3‖vh‖−h ∀ vh ∈ V h.(3.10)

The first inequality on the left is just an inverse inequality, recalling that the par-
titioning is quasi-uniform, and holds for any vh ∈ Sh. The second bound follows
from the first and (3.4). The third follows from noting that |Ghvh|1 ≤ |Gvh|1. The
final inequality follows from noting (3.9) with m = 0 and the second inequality
above. In addition, we note the inverse inequality for 1 ≤ p1 ≤ p2 ≤ ∞ and m = 0
or 1

|χ|m,p2 ≤ Ch
d(p1−p2)

p1p2 |χ|m,p1 ∀ χ ∈ Sh.(3.11)

The following bounds concerning Qh and Q̂h are also easily established. From
(3.6), (3.5) and (3.11) we have that

|(I −Qh)η|0,∞ ≤ Ch2− d
2 |η|2 ∀ η ∈ H2(Ω).(3.12)

Comparing Q̂hη with Qhη and noting (3.8) and the first inequality on the left of
(3.10) yields that

|(I − Q̂h)η|0 + h|(I − Q̂h)η|1 ≤ Ch|η|1 ∀ η ∈ H1(Ω).(3.13)

Since (Q̂hη)(xj) ≡ (η, χj)/(1, χj) j = 1 → J ; where χj ∈ Sh and χj(xi) = δij , it
follows that

‖Q̂hη‖0,∞ ≤ ‖η‖0,∞ ∀ η ∈ L∞(Ω).(3.14)

Furthermore for a uniform mesh if d = 1 and for a uniform translation invariant
mesh if d = 2 and Ω is a rectangle, we note from (1.6) and the above that

|(πh − Q̂h)η|2h ≤ Ch−d
J∑

j=1

[(η, χj)− (η, χj)h]2

≤ Ch−d
∑

j∈JB

[(η, χj)− (η, χj)h]2 + Ch−d
∑
j∈JI

[(η, χj)− (η, χj)h]2

≤ Ch3|η|21,∞ + Ch4|η|22,∞ ≤ Ch3‖η‖2
2,∞ ∀ η ∈W 2,∞(Ω),(3.15)

where JB := {j : xj ∈ ∂Ω}, JI := {j : xj 6∈ ∂Ω} and we have noted that
#JB ≤ Ch1−d, #JI ≤ Ch−d.

Since φε is monotone it follows (see [12, p. 68]) that

|(I − πh)[φε(χ)]|0 ≤ Ch|πh[φε(χ)]|1 ∀ χ ∈ Sh.(3.16)

Furthermore, as the partitioning is (weakly) acute, it follows from (2.7) for ε ≤ 1
2

that ∀ χ ∈ Sh

|∇πh[φε(χ)]|20 ≤ φ′ε(‖χ‖0,∞)(∇χ,∇πh[φε(χ)]) ≤ θ
ε (∇χ,∇πh[φε(χ)]);(3.17)

see [9] and [19, §2.4.2].
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In addition to (3.2) we introduce Ĝh : Fh → V h, defined by

(∇Ĝhv,∇χ) = (v, χ)h ∀ χ ∈ Sh,(3.18)

where Fh := {v ∈ C(Ω) : (v, 1)h = 0}. Note that V h ⊂ Fh and the analogue of
(3.4) holds: for α > 0

(v, χ)h ≡ (∇Ĝhv,∇χ) ≤ |Ĝhv|1|χ|1 ≤ 1
2α |Ĝhv|21 + α

2 |χ|21 ∀ v ∈ Fh, χ ∈ Sh.

(3.19)

It is easily deduced from (3.8) (e.g., see [6]) that

‖(Gh − Ĝh)vh‖1 ≤ Ch2‖vh‖1, ∀ vh ∈ V h.(3.20)

In addition, we have the analogue of (3.10)

h2|vh|1 ≤ C1h|vh|h ≤ C2|Ĝhvh|1 ≤ C3|Ghvh|1 ≤ C4|Ĝhvh|1 ∀ vh ∈ V h.(3.21)

The first inequality on the left is just an inverse inequality on noting (3.7) and
holds for all vh ∈ Sh. The second follows from the first and (3.19). The third and
fourth follow from (3.20) and noting the first two inequalities in (3.10) and (3.21),
respectively.

It follows from (3.1a) with χ ≡ 1 and (1.7) that

(Un
ε , 1) = (U0

ε , 1) = (u0, 1) n ≥ 1.(3.22)

Then similarly to (2.28), (Ph,∆t
ε ) can be rewritten as follows.

For n ≥ 1 find Un
ε ∈ Sh such that (Un

ε , 1) = (u0, 1) and

γ(∇Un
ε ,∇χ) + (φε(Un

ε )− θcU
n
ε , (I −

∫
− )χ)h + b−1

max(Ĝh(Un
ε −Un−1

ε

∆t ), χ)h

= (Wn−1
ε − b−1

maxĜhJn−1
ε , (I −

∫
− )χ)h ∀ χ ∈ Sh,

(3.23)

where Jn−1
ε ∈ V h is such that

(Jn−1
ε , χ)h = (b(Un−1

ε )∇Wn−1
ε ,∇χ) ∀ χ ∈ Sh,(3.24)

Wn
ε = Wn−1

ε − b−1
maxĜh(Un

ε −Un−1
ε

∆t + Jn−1
ε ) + 1

|Ω| (φε(Un
ε )− φε(Un−1

ε ), 1)h,(3.25)

where U0
ε ≡ Qhu0 or Q̂hu0 and W 0

ε ∈ Sh satisfies (3.1c).
We note for future reference that from (3.24) and (3.18) it follows that

|ĜhJn
ε |1 ≤ C|Wn

ε |1 n ≥ 0.(3.26)

Lemma 3.1. Let d ≤ 3 and the assumptions on u0 of Theorem 1.1 and the assump-
tions (A) hold. If b satisfies (1.4a), and ∆t ≤ 4γ/[bmaxθ

2
c ], then for all ε ≤ ε0(δ)

and for all h > 0 such that

‖U0
ε ‖0,∞ ≤ 1− 1

2δ,(3.27)

there exists a unique solution {Un
ε ,W

n
ε }N

n=0 to (Ph,∆t
ε ) satisfying

max
n=0→N

|Un
ε |21 + b2min

N∑
n=1

|Un
ε − Un−1

ε |21 + |W 0
ε |21 + bmin∆t

N∑
n=1

|Wn
ε |21

(3.28)

+ bmin∆t
N∑

n=1

[
|Ĝh(Un

ε −Un−1
ε

∆t )|21 + ε|πh[φε(Un
ε )]|21 + |πh[φε(Un

ε )]|20
]
≤ C.
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Furthermore, we have that

|[Un
ε − 1]+|h + |[−Un

ε − 1]+|h ≤ Cε
1
2 n = 1 → N.(3.29)

Proof. As U0
ε ≡ Qhu0 or Q̂hu0, existence and uniqueness of U0

ε follows immediately.
Moreover, from (3.6), (3.13) and the assumption (3.27) it follows that

|U0
ε |21 + (Ψε(U0

ε ), 1)h ≤ C.(3.30)

Existence and uniqueness of W 0
ε follows immediately from (3.1c). Furthermore, we

have that

W 0
ε ≡ −Q̂h(γ∆u0) + πh[φε(U0

ε )]− θcU
0
ε .(3.31)

Hence we have from (3.31), (3.13), (3.17), (3.30) and (3.27) and the assumptions
on u0 that for ε ≤ ε0(δ) ≤ δ

2

‖W 0
ε ‖1 ≤ C

[
‖u0‖3 + ‖U0

ε ‖1

]
≤ C.(3.32)

Existence of Un
ε follows by noting that for fixed n ≥ 1, (3.23) is the Euler-

Lagrange equation of the minimization problem

min
χ∈Kh

γ
2 |χ|21 + (Ψε(χ), 1)h

+ 1
2bmax∆t |∇Ĝ

h(χ− Un−1
ε )|20 − (Wn−1

ε − b−1
maxĜhJn−1

ε , χ)h,

where Kh := {χ ∈ Sh : (χ, 1) = (u0, 1) }. For fixed n ≥ 1, if (3.23) has two
solutions Un,1

ε and Un,2
ε , then U

n

ε := Un,1
ε − Un,2

ε ∈ V h satisfies

γ|Un

ε |21 + (φε(Un,1
ε )− φε(Un,2

ε ), U
n

ε )h + 1
bmax∆t |ĜhU

n

ε |21 = θc|U
n

ε |2h.

It follows from (2.6) and (3.19) with α = 1
2bmaxθc∆t that

γ|Un

ε |21 + θ|Un

ε |2h + 1
bmax∆t |ĜhU

n

ε |21 ≤ θc|U
n

ε |2h ≤ 1
bmax∆t |ĜhU

n

ε |21 + bmaxθ2
c∆t

4 |Un

ε |21

from which uniqueness of Un
ε follows under the stated condition on ∆t. Existence

and uniqueness of Wn
ε , n ≥ 1, follows immediately from (3.1b).

We now prove the stability bound (3.28). For fixed n ≥ 1 choosing χ ≡ Wn
ε in

(3.1a), χ ≡ (Un
ε − Un−1

ε )/∆t in (3.1b) and combining yields that

γ(∇Un
ε ,∇(Un

ε − Un−1
ε )) + (φε(Un

ε )− θcU
n
ε , U

n
ε − Un−1

ε )h + bmax∆t|Wn
ε |21

= ∆t([bmax − b(Un−1
ε )]∇Wn−1

ε ,∇Wn
ε ).(3.33)

Noting (2.4) and the identity (2.5) yields that

γ
2 |Un

ε |21 + (Ψε(Un
ε ), 1)h + γ

2 |U
n
ε − Un−1

ε |21(3.34)

+ ∆t
2

{
bmax|Wn

ε |21 + |[b(Un−1
ε )]

1
2∇Wn

ε |20
+ |[bmax − b(Un−1

ε )]
1
2∇(Wn

ε −Wn−1
ε )|20

}
≤ γ

2 |Un−1
ε |21 + (Ψε(Un−1

ε ), 1)h + θc

2 |Un
ε − Un−1

ε |2h
+ ∆t

2 |[bmax − b(Un−1
ε )]

1
2∇Wn−1

ε |20.
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Choosing χ ≡ ∆t(Un
ε − Un−1

ε ) in (3.1a) and applying Young’s inequalities yields
that

θc

2 |Un
ε − Un−1

ε |2h
= − θc∆t

2 ([bmax − b(Un−1
ε )]∇(Wn

ε −Wn−1
ε ) + b(Un−1

ε )∇Wn
ε ,∇(Un

ε − Un−1
ε ))

≤ ∆t
2 |[bmax − b(Un−1

ε )]
1
2∇(Wn

ε −Wn−1
ε )|20 + (bmin+2bmax)∆t

4bmax
|[b(Un−1

ε )]
1
2∇Wn

ε |20
+ θ2

c∆t
8 |[bmax − b(Un−1

ε )]
1
2∇(Un

ε − Un−1
ε )|20

+ bmaxθ2
c∆t

4(bmin+2bmax) |[b(Un−1
ε )]

1
2∇(Un

ε − Un−1
ε )|20

≤ ∆t
2 |[bmax − b(Un−1

ε )]
1
2∇(Wn

ε −Wn−1
ε )|20 + ∆t

2 |[b(Un−1
ε )]

1
2∇Wn

ε |20
+ bmin∆t

4 |Wn
ε |21 + bmaxθ2

c∆t
8

[
1− b2var

2+bvar

]
|Un

ε − Un−1
ε |21,(3.35)

where bvar := bmin/bmax. Combining (3.34) and (3.35) under the stated condition
on ∆t yields for n ≥ 1 that

γ
2 |Un

ε |21 + γb2var
2(2+bvar)

|Un
ε − Un−1

ε |21 + (Ψε(Un
ε ), 1)h + (2bmax−bmin)∆t

4 |Wn
ε |21

≤ γ
2 |Un−1

ε |21 + (Ψε(Un−1
ε ), 1)h + (bmax−bmin)∆t

2 |Wn−1
ε |21.(3.36)

Summing (3.36) from n = 1 → m yields for all m ≤ N that

γ
2 |Um

ε |21 + γb2var
2(2+bvar)

m∑
n=1

|Un
ε − Un−1

ε |21 + (Ψε(Um
ε ), 1)h + bmin∆t

4

m∑
n=1

|Wn
ε |21

≤ γ
2 |U0

ε |21 + (Ψε(U0
ε ), 1)h + (bmax−bmin)∆t

2 |W 0
ε |21 ≤ C,(3.37)

where we have noted (3.30) and (3.32). Hence the first four bounds of (3.28) hold.
The fifth bound of (3.28) holds on noting (3.25) and (3.26). Furthermore, the bound
(3.29) follows immediately from the bounds on (Ψε(Un

ε ), 1)h, n = 1 → N , above
and (2.9).

Choosing χ ≡ πh[φε(Un
ε )] in (3.23), summing from n = 1 → N and noting the

bounds above and (3.17) yields, similarly to (2.38) and (2.39), that

bmin∆t
N∑

n=1

[
ε|πh[φε(Un

ε )]|21 + |(I −
∫
− )πh[φε(Un

ε )]|2h
]
≤ C.(3.38)

Choosing χ ≡ Un
ε in (3.23) and rearranging, similarly to (2.40), yields for any

constant λ

(φε(Un
ε ), λ−

∫
− Un

ε )h ≤ (ψε(λ)− ψε(Un
ε ), 1)h − b−1

max(Ĝh(Un
ε −Un−1

ε

∆t ), Un
ε )h

+(θcU
n
ε +Wn−1

ε − b−1
maxĜhJn−1

ε , (I −
∫
− )Un

ε )h.(3.39)

Choosing λ = ±1 in (3.39) and summing n = 1 → N yields, similarly to (2.41),
that

bmin∆t
N∑

n=1

|
∫
− πh[φε(Un

ε )]|2h ≤ C.(3.40)

Combining (3.38), (3.40) and the first bound in (3.28) and noting (3.7) yields the
remaining bounds in (3.28).
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Lemma 3.2. Let d ≤ 2 and the assumptions on u0 of Theorem 1.1 and the as-
sumptions (A) hold. Let b satisfy (1.4a),(1.4b) and ∆t ≤ 4γ/[bmaxθ

2
c ]. Then for all

ε ≤ ε0(δ) and for all h > 0 such that

‖U0
ε ‖0,∞ ≤ 1− 1

2δ and |u0 − U0
ε |21 ≤ C∆t,(3.41)

the unique solution {Un
ε ,W

n
ε }N

n=0 to (Ph,∆t
ε ) satisfies

∆t
N∑

n=1

‖Un
ε −Un−1

ε

∆t ‖2
1 + (∆t)2

N∑
n=1

|W
n
ε −W n−1

ε

∆t |21

+ max
n=1→N

|Wn
ε |21 + max

n=1→N
|Ĝh(Un

ε −Un−1
ε

∆t )|21 ≤ Cb.(3.42)

Proof. The proof is a discrete analogue of Corollary 2.1. From (3.1b),(3.1c) it
follows for n ≥ 1 that

(Wn
ε −Wn−1

ε , χ)h = γ(∇(Un
ε − Un−1

ε ),∇χ) + (φε(Un
ε )− φε(Un−1

ε ), χ)h

−∆tθc(Y n
ε , χ)h − γ(∇Zn

ε ,∇χ) ∀ χ ∈ Sh,(3.43)

where

Y n
ε := (Un

ε − Un−1
ε )/∆t n ≥ 1 and Zn

ε :=
{
u0 − U0

ε n = 1,
0 n ≥ 2.(3.44)

Choosing χ ≡ Un
ε − Un−1

ε in (3.43) and noting (3.1a) with χ ≡Wn
ε −Wn−1

ε yields
for n ≥ 1 that

γ∆t|Y n
ε |21 + (φε(Un

ε )− φε(Un−1
ε ), Y n

ε )h

+ bmax|Wn
ε −Wn−1

ε |21
=− (b(Un−1

ε )∇Wn−1
ε ,∇(Wn

ε −Wn−1
ε ))

+ θc∆t|Y n
ε |2h + γ(∇Zn

ε ,∇Y n
ε ).

(3.45)

It follows from (3.45) on noting (2.6), (2.5) and (3.19) that for n ≥ 1

γ∆t|Y n
ε |21 + θ∆t|Y n

ε |2h + 1
2bmax(∆t)2|W

n
ε −W n−1

ε

∆t |21 + 1
2 |[b(Un−1

ε )]
1
2∇Wn

ε |20

≤ γ∆t|Y n
ε |21 + ∆t(φε(Un

ε )−φε(Un−1
ε )

∆t , Y n
ε )h

+(∆t)2|[bmax − 1
2b(U

n−1
ε )]

1
2∇(W n

ε −W n−1
ε

∆t )|20 + 1
2 |[b(Un−1

ε )]
1
2∇Wn

ε |20
= θc∆t|Y n

ε |2h + 1
2 |[b(Un−1

ε )]
1
2∇Wn−1

ε |20 + γ(∇Zn
ε ,∇Y n

ε )

≤ γ
2 ∆t|Y n

ε |21 + C∆t|ĜhY n
ε |21 + pn,(3.46)

where p1 := 1
2 |[b(U0

ε )]
1
2∇W 0

ε |20 + C 1
∆t |Z1

ε |21 and

pn := 1
2 |[b(Un−2

ε )]
1
2∇Wn−1

ε |20 + 1
2∆t

∫
Ω

[ b(Un−1
ε )−b(Un−2

ε )
∆t ]|∇Wn−1

ε |2 dx if n ≥ 2.

Similarly to (2.48) and alternatively to (2.49), we have from (1.4b), (2.15), (2.16),
(3.11) and a Young’s inequality that for n ≥ 2∫

Ω

[ b(Un−1
ε )−b(Un−2

ε )
∆t ]|∇Wn−1

ε |2 dx ≤ γ
2 |Y n−1

ε |21 + C|Wn−1
ε |41,2(1+τ)

≤ γ
2 |Y n−1

ε |21 + Ch−
2τd
1+τ |Wn−1

ε |41
≤ γ

2 |Y n−1
ε |21 + C|Wn−1

ε |4(1+τ)
1 + Cτh−2d,(3.47)
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where τ = 0 for d = 1, and for any τ > 0 for d = 2. We set s0 := 0, v0 := 1 and

rn := γ
2∆t|Y n

ε |21, sn := |[b(Un−1
ε )]

1
2∇Wn

ε |20, vn := max{rn + sn, vn−1}
yn := C|ĜhY n

ε |21 + Cτh−2d, zn := Csn−1 + yn n ≥ 1.(3.48)

It follows from (3.28) and if τ ≤ Ch2d that

∆t
N∑

n=1

zn ≤ C∆t
N∑

n=1

sn + ∆t
N∑

n=1

yn ≤ Cb(1 + τh−2d) ≤ Cb.(3.49)

It follows from (3.48), (3.46), (3.47), (3.28) and (3.41) that v1 ≤ Cb and

max{1, sn−1} ≤ vn−1 ≤ vn ≤ vn−1 + Cb∆t s
2(1+τ)
n−1 + ∆t yn n ≥ 2.(3.50)

For d = 1, i.e., τ = 0, it follows from (3.50) and (3.49) that

vn ≤ (1 + Cb∆t sn−1)vn−1 + ∆t yn ≤ eCb∆t sn−1vn−1 + ∆t yn

≤ e

Cb∆t

n−1∑
i=1

si
[
v1 + ∆t

n∑
i=2

yi

]
≤ Cb n = 2 → N.(3.51)

For d = 2, i.e., τ > 0, it follows from the mean value theorem, (3.50) and (3.48)
that

− 1
2τ

[v−2τ
n − v−2τ

n−1] ≤ v
−(1+2τ)
n−1 [vn − vn−1] ≤ ∆t zn n ≥ 2.(3.52)

Summing (3.52) and noting (3.49) yields that v1 ≤ Cb and

vn ≤ [1− 2τv2τ
1 ∆t

n∑
i=2

zi]−
1
2τ v1

≤ [1 + 4τv2τ
1 ∆t

n∑
i=2

zi]
1
2τ v1 ≤ e

2v2τ
1 ∆t

N∑
i=2

zi

v1 ≤ Cb n = 2 → N ;

(3.53)

provided τ > 0 is chosen sufficiently small so that τ ≤ Ch2d and

4τv2τ
1 ∆t

N∑
n=1

zn ≤ 1.(3.54)

Hence the third bound in (3.42) follows from (3.48), (3.51) and (3.53). The fourth
bound in (3.42) follows from the third on noting (3.25) and (3.26). The first two
bounds in (3.42) follow from summing (3.46) and noting (3.47), the third bound in
(3.42), (3.28), (3.41) and (2.13).

Assuming that bmin > 0 and given q measurable in Ω, we introduce the analogue
of (2.17): Gh

q : F → V h such that

(b(q)∇Gh
q v,∇χ) = 〈v, χ〉 ∀ χ ∈ Sh.(3.55)

The analogues of (2.18) and (2.19) hold: for all v ∈ F

bmin|[b(q)]
1
2∇Gh

q v|20 ≤ |∇Ghv|20 ≤ bmax|[b(q)]
1
2∇Gh

q v|20,(3.56)

and

〈v, χ〉 ≡ (b(q)∇Gh
q v,∇χ) ≤ b

1
2
max〈v,Gh

q v〉
1
2 |χ|1 ∀ χ ∈ Sh.(3.57)
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It follows immediately from (2.17), (3.55) and (3.5) that for all measurable q and
v ∈ F that

|[b(q)] 1
2∇(Gq − Gh

q )v|0 ≤ |[b(q)] 1
2∇(I − πh)Gqv|0 ≤ Ch|Gqv|2.(3.58)

Similarly to (3.55), we introduce Ĝh
q : Fh → V h such that

(b(q)∇Ĝh
q v,∇χ) = (v, χ)h ∀ χ ∈ Sh.(3.59)

The analogues of (3.56) and (3.57) hold: for all v ∈ Fh

bmin|[b(q)]
1
2∇Ĝh

q v|20 ≤ |∇Ĝhv|20 ≤ bmax|[b(q)]
1
2∇Ĝh

q v|20,(3.60)

and

(v, χ)h ≡ (b(q)∇Ĝh
q v,∇χ) ≤ b

1
2
max

[
(v, Ĝh

q v)
h

] 1
2 |χ|1 ∀ χ ∈ Sh.(3.61)

An analogue of (2.24) holds: for q1, q2 ∈ L4(Ω) and v ∈ Fh

|∇(Ĝh
q1
− Ĝh

q2
)v|0 ≤ Cb−1

min|q1 − q2|0,4|∇Ĝh
q2
v|0,4.(3.62)

Similarly to (3.20), it is easily deduced from (3.8) that for q measurable

‖(Gh
q − Ĝh

q )vh‖1 ≤ Cb−1
minh

2‖vh‖1 ∀ vh ∈ V h.(3.63)

We now prove an error estimate between the problems (Ph,∆t
ε ) and (Pε).

Theorem 3.1. Let the assumptions of Lemma 3.2 hold. Then we have that

‖uε − U+
ε ‖2

L2(0,T ;H1(Ω)) + ‖uε − Uε‖2
L∞(0,T ;(H1(Ω))′) ≤ Cb

[
ε−1h2 + ∆t

]
,(3.64)

where

Uε(·, t) := t−tn−1
∆t Un

ε (·) + tn−t
∆t U

n−1
ε (·) t ∈ [tn−1, tn] n ≥ 1

and

U+
ε (·, t) := Un

ε (·), U−ε (·, t) := Un−1
ε (·) t ∈ (tn−1, tn] n ≥ 1.

Proof. Using the above notation and introducing analogous notation forWε, (3.1a)–
(3.1c) can be restated as follows.

Find {Uε, Wε} ∈ H1(0, T ;Sh) × L∞(0, T ;Sh) such that Uε(·, 0) ≡ Qhu0(·) or
Q̂hu0(·), Wε(·, 0) is defined by (3.1c) and for a.e. t ∈ (0, T ), (Uε(·, t), 1) = (u0(·), 1)
and

γ(∇U+
ε ,∇χ) + (φε(U+

ε )− θcU
+
ε , (I −

∫
− )χ)h + (Ĝh

U−ε
∂Uε

∂t , χ)h

= ∆t([b(U−ε )− bmax]∇∂Wε

∂t ,∇Ĝh
U−ε

(I −
∫
− )χ) ∀ χ ∈ Sh,

(3.65a)

(
W+

ε , χ
)h = γ(∇U+

ε ,∇χ) + (φε(U+
ε )− θcU

+
ε , χ)h ∀ χ ∈ Sh.(3.65b)

Note that (3.65a) follows by combining (3.1b) with χ ≡ (I −
∫
− )χ and (3.1a)

with χ ≡ Ĝh
U−ε

(I −
∫
− )χ. We set e(±)

ε := uε − U
(±)
ε ∈ V , eA

ε := uε − πhuε and

E
(±)
ε := πhuε − U

(±)
ε ∈ Sh for a.e. t ∈ (0, T ). We note for future reference that

Uε − U±ε = (t− t̂±n )∂Uε

∂t t ∈ (tn−1, tn) n ≥ 1,(3.66)

where t̂+n := tn and t̂−n := tn−1.
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On subtracting (3.65a) from (2.28), it follows for a.e. t ∈ (0, T ) that

γ(∇e+ε ,∇χ) + (φε(uε)− φε(U+
ε ), (I −

∫
− )χ) + (Guε

∂eε

∂t , χ)

= θc(e+ε , (I −
∫
− )χ)

+
[
(φε(U+

ε )− θcU
+
ε , (I −

∫
− )χ)h − (φε(U+

ε )− θcU
+
ε , (I −

∫
− )χ)

]
+

[
(Ĝh

U−ε
∂Uε

∂t , χ)h − (Guε

∂Uε

∂t , χ)
]

+∆t([bmax − b(U−ε )]∇∂Wε

∂t ,∇Ĝh
U−ε

(I −
∫
− )χ) ∀ χ ∈ Sh.(3.67)

Hence choosing χ ≡ E+
ε ∈ Sh and noting (2.7), (2.15), (2.13), (2.18), (3.8), (3.16)

and a Young’s inequality, yields for a.e. t ∈ (0, T ) that

γ|e+ε |21 + ε
θ |φε(uε)− φε(U+

ε )|20 + (Guε

∂eε

∂t , e
+
ε )

≤ γ|e+ε |21 + (φε(uε)− φε(U+
ε ), e+ε ) + (Guε

∂eε

∂t , e
+
ε )

= θc(e+ε , E
+

ε ) + γ(∇e+ε ,∇eA
ε ) + (φε(uε)− φε(U+

ε ), (I −
∫
− )eA

ε ) + (Guε

∂eε

∂t , e
A
ε )

+
[
(πh[φε(U+

ε )]− θcU
+
ε , E

+

ε )h − (πh[φε(U+
ε )]− θcU

+
ε , E

+

ε )
]

+ ((πh − I)[φε(U+
ε )], E

+

ε ) +
[
(Ĝh

U−ε
∂Uε

∂t , E
+
ε )h − (Guε

∂Uε

∂t , E
+
ε )

]
+ ∆t([bmax − b(U−ε )]∇∂Wε

∂t ,∇Ĝh
U−ε
E

+

ε )

≤ Cb

[
‖e+ε ‖2

−1 + |eA
ε |21 + ε−1|eA

ε |20 + ‖∂eε

∂t ‖−1|eA
ε |0

+ h4‖U+
ε ‖2

1 + h2‖πh[φε(U+
ε )]‖2

1

]
+

[
(∂Uε

∂t , Ĝh
U−ε
E

+

ε )h − (∂Uε

∂t , Ĝh
U−ε
E

+

ε )
]

+ (∂Uε

∂t , (Ĝh
U−ε

− Guε)E
+

ε ) + ∆t([bmax − b(U−ε )]∇∂Wε

∂t ,∇Ĝh
U−ε
E

+

ε ),

(3.68)

where E
+

ε := (I −
∫
− )E+

ε .
From (3.8), (3.60), (3.21), (3.10) and (2.16) it follows that

|(∂Uε

∂t , Ĝh
U−ε
E

+

ε )h − (∂Uε

∂t , Ĝh
U−ε
E

+

ε )|

≤ Ch2‖∂Uε

∂t ‖1|Ĝh
U−ε
E

+

ε |1 ≤ Cb[ ‖e+ε ‖2
−1 + |eA

ε |20 ] + Ch4|∂Uε

∂t |21.
(3.69)

Similarly from (3.60), (3.21), (3.10) and (2.16) it follows that

∆t|([bmax − b(U−ε )]∇∂Wε

∂t ,∇Ĝh
U−ε
E

+

ε )| ≤ Cb[ ‖e+ε ‖2
−1 + |eA

ε |20 ] + C (∆t)2|∂Wε

∂t |21.
(3.70)

From (2.15) it follows that

|(∂Uε

∂t , (Ĝh
U−ε

− Guε)E
+

ε )|

≤ C‖∂Uε

∂t ‖−1

[
|(Guε − Ĝh

uε
)E

+

ε |1 + |(Ĝh
uε
− Ĝh

U−ε
)E

+

ε |1
]
.(3.71)

From (2.26), (2.46b) and (2.20) it follows that

‖Guεv‖2 ≤ Cb|v|0 ∀ v ∈ L2(Ω) ∩ F .(3.72)
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From (3.58), (3.72), (3.63), (3.10) and (2.15) it follows that

|(Guε − Ĝh
uε

)E
+

ε |1 ≤ |(Guε − Gh
uε

)E
+

ε |1 + |(Gh
uε
− Ĝh

uε
)E

+

ε |1
≤ Cb[h|E

+

ε |0 + h2‖E+

ε ‖1 ] ≤ Cbh|E
+

ε |0
≤ Cb

[
‖e+ε ‖−1|e+ε |1 + |eA

ε |20 + h2
]
.(3.73)

From (3.62) it follows that

|(Ĝh
uε
− Ĝh

U−ε
)E

+

ε |1 ≤ Cb−1
min|e−ε |0,4|Ĝh

uε
E

+

ε |1,4.(3.74)

From (3.11) and (3.73) it follows that

|Ĝh
uε
E

+

ε |1,4 ≤ |GuεE
+

ε |1,4 + |(Guε − Gh
uε

)E
+

ε |1,4 + Ch−
d
4 |(Gh

uε
− Ĝh

uε
)E

+

ε |1
≤ |GuεE

+

ε |1,4 + |(Guε − Gh
uε

)E
+

ε |1,4 + Cbh
1− d

4 |E+

ε |0.(3.75)

From (3.11), (3.5), (3.72) and (3.73) it follows that

|(Guε − Gh
uε

)E
+

ε |1,4 ≤ |(I − πh)GuεE
+

ε |1,4 + Ch−
d
4 |(πhGuε − Gh

uε
)E

+

ε |1

≤ Cbh
−d

4

[
h|E+

ε |0 + |(I − πh)GuεE
+

ε |1 + |(Guε − Gh
uε

)E
+

ε |1
]

≤ Cbh
1−d

4 |E+

ε |0.(3.76)

Combining (3.75) and (3.76), and noting (2.10), (3.72), (2.18), (3.10) and (2.15)
yields that

|Ĝh
uε
E

+

ε |1,4 ≤ |GuεE
+

ε |1,4 + Cbh
1− d

4 |E+

ε |0 ≤ Cb‖E
+

ε ‖
1− d

4
−1 |E+

ε |
d
4
0

≤ Cb‖E
+

ε ‖
1−d

4
−1

[
|eA

ε |
d
4
0 + ‖e+ε ‖

d
8
−1|e+ε |

d
8
1

]
.(3.77)

From (3.66), (2.10) and (2.15) it follows that

|e−ε |0,4 ≤ |e+ε |0,4 + ∆t|∂Uε

∂t |0,4 ≤ C
[
‖e+ε ‖

4−d
8

−1 |e+ε |
4+d
8

1 + ∆t|∂Uε

∂t |1
]
.(3.78)

Combining (3.71), (3.73), (3.74), (3.77), (3.78) and noting (3.66) yields that

|(∂Uε

∂t , (Ĝh
U−ε

− Guε)E
+

ε )|

≤ 1
4γ|e+ε |21 + Cb

[
1 + ‖∂Uε

∂t ‖2
−1

] [
‖eε‖2

−1 + |eA
ε |20 + (∆t)2|∂Uε

∂t |21 + h2
]
.(3.79)

We note from (2.23), (2.18), (3.72), (2.15) and (3.66) that

|(b′(uε)∂uε

∂t ∇Guεeε,∇Guεeε)| ≤ Cb |∂uε

∂t |0 ‖eε‖
2− d

4
−1 |eε|

d
4
1

≤ 1
4γ|e+ε |21 + Cb

[
|∂uε

∂t |
8

8−d

0 ‖eε‖2
−1 + (∆t)2 |∂Uε

∂t |21
]
.(3.80)

Combining (3.68), (3.69), (3.70), (3.79) and noting (2.22), (3.66), (3.80) and (2.18)
yields that

γ|e+ε |21 + 1
2

d
dt (Guεeε, eε) = γ|e+ε |21 + (Guε

∂eε

∂t , eε)− 1
2 (b′(uε)∂uε

∂t ∇Guεeε,∇Guεeε)

= γ|e+ε |21 + (Guε

∂eε

∂t , e
+
ε ) + (Guε

∂eε

∂t , eε − e+ε )− 1
2 (b′(uε)∂uε

∂t ∇Guεeε,∇Guεeε)

≤ Cb

[
1 + ‖∂Uε

∂t ‖2
−1

] [
‖eε‖2

−1 + |eA
ε |21 + ε−1|eA

ε |20 + ‖∂eε

∂t ‖−1|eA
ε |0

+[(∆t)2 + h4]|∂Uε

∂t |21 + h4‖U+
ε ‖2

1 + h2‖πh[φε(U+
ε )]‖2

1 + (∆t)2|∂Wε

∂t |21 + h2
]

+C∆t‖∂eε

∂t ‖−1‖∂Uε

∂t ‖−1 + Cb|∂uε

∂t |
8

8−d

0 ‖eε‖2
−1.(3.81)
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Integrating (3.81) over t ∈ (0, T ), using a Gronwall inequality and noting (2.13),
(2.18), (3.42), (2.46a), (3.6), (3.13), (3.28), (3.5) and (2.46b) yields that

‖e+ε ‖2
L2(0,T ;H1(Ω)) + ‖eε‖2

L∞(0,T ;(H1(Ω))′)

≤ C(b−1
min, ‖∂Uε

∂t ‖L∞(0,T ;(H1(Ω))′), ‖∂uε

∂t ‖L2(ΩT ))
[
h2 + ‖u0 − U0

ε ‖2
−1

+ ‖eA
ε ‖2

L2(0,T ;H1(Ω)) + ε−1‖eA
ε ‖2

L2(ΩT )

+ ‖∂eε

∂t ‖L2(0,T ;(H1(Ω))′)[ |eA
ε |L2(ΩT ) + ∆t‖∂Uε

∂t ‖L2(0,T ;(H1(Ω))′) ]

+ h4‖U+
ε ‖2

L2(0,T ;H1(Ω)) + h2‖πh[φε(U+
ε )]‖2

L2(0,T ;H1(Ω))

+ [(∆t)2 + h4]‖∂Uε

∂t ‖2
L2(0,T ;H1(Ω)) + (∆t)2‖∂Wε

∂t ‖2
L2(0,T ;H1(Ω))

]
≤ Cb[ ε−1h2 + ∆t] .

Theorem 3.2. Let d ≤ 3 and the assumptions on u0 of Theorem 1.1 and the
assumptions (A) hold. If b satisfies (1.4a) and ∆t ≤ 4γ/[bmaxθ

2
c ], then for all

h > 0 such that ‖U0‖0,∞ ≤ 1 − 1
2δ; there exists a unique solution {Un,Wn}N

n=0 to
(Ph,∆t) satisfying

max
n=0→N

|Un|21 + b2min

N∑
n=1

|Un − Un−1|21 + |W 0|21

+ bmin∆t
N∑

n=1

[
|Wn|21 + |Ĝh(Un−Un−1

∆t )|21
]

+ bmin∆t
N∑

n=1

|πh[φ(Un)]|20 ≤ C

(3.82)

and

‖U‖L∞(ΩT ) < 1.(3.83)

In addition if d ≤ 2, b satisfies (1.4b) and |u0 − U0|21 ≤ C∆t, we have that

∆t
N∑

n=1

‖Un−Un−1

∆t ‖2
1 + (∆t)2

N∑
n=1

|W n−W n−1

∆t |21 + max
n=0→N

|Wn|21

+ max
n=1→N

|Ĝh(Un−Un−1

∆t )|21 ≤ Cb,(3.84)

and for ε ≤ ε0, provided h−
d
2 [ ε−1h2 + ∆t ] ≤ C, we have that

‖U+ − U+
ε ‖2

L2(0,T ;H1(Ω)) + ‖U − Uε‖2
L∞(0,T ;(H1(Ω))′) ≤ Cb[ε+ ε−1h2 + ∆t].(3.85)

Here U and U+ are defined similarly to their regularized counterparts; see Theorem
1.1.

Proof. The proof is a discrete analogue of Theorem 2.2. Uniqueness of a solution
to (Ph,∆t) follows as for (Ph,∆t

ε ). Existence of a solution follows by letting ε → 0,
noting the uniform bounds in (3.28) and applying a discrete analogue of (2.68)–
(2.69). Hence the bounds (3.82) hold. The bound (3.83) follows immediately from
the bound on πh[φ(Un)] in (3.82). Similarly the bounds (3.84) hold for d ≤ 2 on
noting the uniform bounds (3.42).

We now prove (3.85). For a.e. t ∈ (0, T ) we set E(±)
U := U (±) − U

(±)
ε ∈ V h and

E
(±)
W := W (±) −W

(±)
ε . We note, similarly to (3.66), that

E+
U − EU = (tn − t)∂EU

∂t for t ∈ (tn−1, tn].(3.86)
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Subtracting (3.65a) from its non-regularized counterpart, choosing χ ≡ E+
U and

noting (3.8), (3.60), (3.21), (3.3), (3.10), (3.19) and (2.15) yields for a.e. t ∈ (0, T )
that

γ|E+
U |21 + (φ(U+)− φε(U+

ε ), E+
U )h + (Guε

∂EU

∂t , E
+
U )

=θc|E+
U |2h + (∂EU

∂t , [Guε − Ĝh
U−ε

]E+
U ) + (∂U

∂t , [Ĝh
U−ε

− Ĝh
U− ]E+

U )h

+
[
(∂EU

∂t , Ĝh
U−ε
E+

U )− (∂EU

∂t , Ĝh
U−ε
E+

U )h
]

+ ∆t
[
([b(U−)− bmax]∇∂W

∂t ,∇Ĝh
U−E

+
U )

− ([b(U−ε )− bmax]∇∂Wε

∂t ,∇Ĝh
U−ε
E+

U )
]

≤C‖E+
U ‖2

−1 + C‖∂EU

∂t ‖−1|(Guε − Ĝh
U−ε

)E+
U |1 + C‖∂U

∂t ‖−1|(Ĝh
U−ε

− Ĝh
U−)E+

U |1
+ Cb‖E+

U ‖−1[h2|∂EU

∂t |1 + ∆t|∂W
∂t |1 + ∆t|∂Wε

∂t |1].

(3.87)

Similarly to (3.73) we have that

|(Guε − Ĝh
uε

)E+
U |1 ≤ Cbh|E+

U |0 ≤ Cb

[
‖E+

U ‖−1|E+
U |1 + h2

]
.(3.88)

Similarly to (3.74) and (3.77) we have that

|(Ĝh
uε
− Ĝh

U−ε
)E+

U |1 ≤ Cb|e−ε |0,4|Ĝh
uε
E+

U |1,4 ≤ Cb|e−ε |0,4‖E+
U ‖

1−d
8

−1 |E+
U |

d
8
1

≤ Cb

[
‖E+

U ‖
2− d

4
−1 |E+

U |
d
4
1 + |e+ε |21 + (∆t)2|∂Uε

∂t |21
]
,(3.89)

where we have noted (2.10), (2.13) and (3.66). Similarly to (3.89) we have that

|(Ĝh
U−ε

− Ĝh
U−)E+

U |1 ≤ Cb|E−U |0,4|Ĝh
U−ε
E+

U |1,4

≤ Cb|E−U |0,4

[
|Ĝh

uε
E+

U |1,4 + h−
d
4 |(Ĝh

uε
− Ĝh

U−ε
)E+

U |1
]

≤ Cb

[
1 + h−

d
4 |e−ε |0,4

]
|E−U |0,4|Ĝh

uε
E+

U |1,4

≤ Cb

[
1 + h−

d
4 |e−ε |0,4

]
‖E+

U ‖
1−d

8
−1 |E+

U |
d
8
1 ‖E−U ‖

4−d
8

−1 |E−U |
4+d
8

1 ,(3.90)

where we have noted (3.11), (2.10) and (2.15). Similarly to (3.80) we have that

|(b′(uε)∂uε

∂t ∇GuεEU ,∇GuεEU )|

≤ 1
4γ|E

+
U |21 + Cb

[
|∂uε

∂t |
8

8−d

0 ‖EU‖2
−1 + (∆t)2 |∂EU

∂t |21
]
.(3.91)
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It follows from (3.87), (2.8), (2.22), (3.86), (3.7), an analogue of (2.72), (2.18),
(3.91), (3.88), (3.89), (3.90) and a Young’s inequality that for a.e. t ∈ (0, T )

γ|E+
U |21 + θ

2ε (E+
U , E

+
U )h

ω+
ε (t)∪ω−ε (t)

+ 1
2

d
dt (GuεEU , EU )

≤ γ|E+
U |21 + (φε(U+)− φε(U+

ε ), E+
U )h + (Guε

∂EU

∂t , EU )

− 1
2 (b′(uε)∂uε

∂t ∇GuεEU ,∇GuεEU )

≤ (φε(U+)− φ(U+), E+
U )h + (Guε

∂EU

∂t , EU − E+
U )

− 1
2 (b′(uε)∂uε

∂t ∇GuεEU ,∇GuεEU ) + C‖E+
U ‖2

−1

+ C‖∂EU

∂t ‖−1|(Guε − Ĝh
U−ε

)E+
U |1 + C‖∂U

∂t ‖−1|(Ĝh
U−ε

− Ĝh
U−)E+

U |1
+ Cb‖E+

U ‖−1[h2|∂EU

∂t |1 + ∆t|∂W
∂t |1 + ∆t|∂Wε

∂t |1]

≤ C|(φ(U+), E+
U )h

ω+
ε (t)∪ω−ε (t)

|+ Cb

[
1 + |∂uε

∂t |
8

8−d

0

]
‖EU‖2

−1

+ C‖∂EU

∂t ‖−1|(Guε − Ĝh
U−ε

)E+
U |1 + C‖∂U

∂t ‖−1|(Ĝh
U−ε

− Ĝh
U−)E+

U |1
+ Cb

{
∆t‖∂EU

∂t ‖2
−1 + [h4 + (∆t)2 ]|∂EU

∂t |21 + (∆t)2|∂W
∂t |21 + (∆t)2|∂Wε

∂t |21
}

≤ Cb

[
1 + ‖∂EU

∂t ‖2
−1

] [
‖EU‖2

−1 + h2 + |e+ε |21 + (∆t)2‖∂EU

∂t ‖2
−1 + (∆t)2|∂Uε

∂t |21
]

+Cb

{
‖∂U

∂t ‖−1

[
1 + h−

d
4 |e−ε |1

]} 8
6−d [

‖EU‖2
−1 + (∆t)2‖∂EU

∂t ‖2
−1

]
+Cε|πh[φ(U+)]|20 + Cb|∂uε

∂t |
8

8−d

0 ‖EU‖2
−1

+Cb

{
∆t‖∂EU

∂t ‖2
−1 + [h4 + (∆t)2 ]|∂EU

∂t |21 + (∆t)2|∂W
∂t |21 + (∆t)2|∂Wε

∂t |21
}
;(3.92)

where, recalling the notation of (1.6),

(η1, η2)h
ω+

ε (t)∪ω−ε (t)
:=

∑
j∈ω+

ε (t)∪ω−ε (t)

Mjη1(xj)η2(xj), ∀ η1, η2 ∈ C(Ω);

and ω+
ε (t) := {j : 1 − ε ≤ U+(xj , t) ≤ U+

ε (xj , t)}, ω−ε (t) := {j : U+
ε (xj , t) ≤

U+(xj , t) ≤ −1 + ε}. Integrating the above for t ∈ (0, T ), applying a Gronwall
inequality and noting (2.13), (2.18), (2.46a), (3.42), (3.64), (3.82) and (3.84) yields
that

‖E+
U ‖2

L2(0,T ;H1(Ω)) + ‖EU‖2
L∞(0,T ;(H1(Ω))′) ≤ C(b−1

min, ‖∂U
∂t ‖L∞(0,T ;(H1(Ω))′),

‖∂Uε

∂t ‖L∞(0,T ;(H1(Ω))′), ‖∂uε

∂t ‖L2(ΩT ), h
− d

4 ‖e−ε ‖L2(0,T ;H1(Ω)))

×
[
h2 + ε‖πh[φ(U+)]‖2

L2(ΩT ) + ∆t‖∂EU

∂t ‖2
L2(0,T ;(H1(Ω))′)

+[(∆t)2 + h4]‖∂EU

∂t ‖2
L2(0,T ;H1(Ω)) + ‖e+ε ‖2

L2(0,T ;H1(Ω))

+(∆t)2
{
‖∂Uε

∂t ‖2
L2(0,T ;H1(Ω)) + ‖∂W

∂t ‖2
L2(0,T ;H1(Ω)) + ‖∂Wε

∂t ‖2
L2(0,T ;H1(Ω))

}]
≤ Cb[ ε+ ε−1h2 + ∆t],

since using (3.66)

h−
d
4 ‖e−ε ‖L2(0,T ;H1(Ω)) ≤ Ch−

d
4 [ ‖e+ε ‖L2(0,T ;H1(Ω)) + ∆t‖∂Uε

∂t ‖L2(0,T ;H1(Ω)) ]

≤ Cbh
− d

4 [ ε−1h2 + ∆t ]1/2 ≤ Cb.(3.93)

Hence the desired result (3.85) follows.
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Therefore combining (2.67), (3.64) and (3.85) yields that

‖u− U+‖2
L2(0,T ;H1(Ω)) + ‖u− U‖2

L∞(0,T ;(H1(Ω))′)

≤ Cb

[
ε+ ε−1h2 + ∆t

]
≤ Cb

[
ε+ ε−1h2 + h

]
,(3.94)

provided ∆t ≡ C1h ≤ 4γ/[bmaxθ
2
c ], h−

d
2 [ ε−1h2 + ∆t] ≤ Cb and U0

ε ≡ U0 satisfies
(1.9). Hence choosing ε ≡ C2h ≤ ε0, for some constant C2 proves Theorem 1.1.
Finally we note that on choosing U0 ≡ Qhu0, the second bound in (1.9) is satisfied
for all h > 0 and a sufficient condition for the first to hold is that h is sufficiently
small; see (3.6) and (3.12). On choosing U0 ≡ Q̂hu0 the first bound in (1.9) is
satisfied for all h > 0 and the second bound holds with further restrictions on T h

and u0; e.g., on a uniform translation invariant mesh if u0 ∈ W 2,∞(Ω); see (3.14),
(3.15), the first bound in (3.21) and (3.5).

4. Numerical experiments

4.1. One space dimension. As no exact solution to (P) is known, a comparison
between the solutions of (Ph,∆t) on a coarse mesh, U , with that on a fine mesh, u,
was made. The data used in each experiment on the coarse meshes were Ω = (0, 1),
γ = 1.5× 10−3, θ = 0.3, θc = 1.0, T = 0.4, ∆t = 0.32h, h = 1/(J − 1), where J =
2k +1 (k = 6, 7, 8, 9), bmax = 1, tol = 1×10−7 and µ = 0.1. The last two quantities
were parameters used to vary the degree and speed of convergence in the iterative
method (method II of [10]) to solve for Un at each time level in (Ph,∆t). The data
were the same for the fine mesh except J = 212 + 1. We note that the restriction
on ∆t in Theorem 1.1 holds for this data. The initial data u0 was taken to be the
clamped (complete) cubic spline interpolating 1

5 (cos(πx)− cos(3πx)+1.3 cos(5πx))
at the points i/8 (i = 0 → 8). Hence we have that

u0 ∈ H3(Ω) \H4(Ω) and u′0(0) = u′0(1) = 0.

On setting U0 ≡ Q̂hu0, it follows that the assumptions on u0 and U0 of Theorem
1.1 hold. In addition this choice of initial data u0 ensured that the singularities
in φ played a role. We performed three experiments with b given by (1.3) with
σ = 0.5, 0.8 and 0.9. For this choice of b, the integral on the right hand side of
(1.8a) can be evaluated exactly using Simpson’s rule on each element. In Figure 1,
we plot uσ(·, 0) and uσ(·, 0.4), where uσ denotes the “true solution” of (P) dependent
on σ.

The quantity E2 := ∆t
∑N

n=1 |πhun − Un|21 was computed and is given in the
table below.

σ J 65 129 257 513
0.5 8.88 2.12 0.470 9.63×10−2

0.8 0.130 3.05×10−2 7.21×10−3 1.59×10−3

0.9 8.35×10−2 1.88×10−2 4.41×10−3 9.72×10−4

We see that the ratio of consecutive E2 are between 4.2 and 4.9 which is better
than 2, the rate of convergence proved in Theorem 1.1.

It is interesting to consider the effect of varying bmax on the numerical solution.
We performed several numerical experiments for b(s) ≡ 1 with precisely the same
parameters and data as mentioned above except h = 10−2, U0 = −0.6± δh where
δh ∈ Sh with ‖δh‖0,∞ ≤ 0.05, W 0 satisfying (1.8b) when n = 0 and ∆t = 2i×10−4
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−1

−0.5

0

0.5

1

0 1x

u0.5(0.4)
u0.8(0.4)
u0.9(0.4)

uσ(0)

Figure 1. uσ plotted for σ = 0.5, 0.8, 0.9

with i = −1, 0, 1 and 2. We took bmax = 1, 2 and 4. Once again the restriction
on ∆t in Theorem 1.1 holds for this data. For a fixed bmax, the solutions for the
different choices of ∆t were graphically indistinguishable. However for a fixed ∆t,
the solutions for the different choices of bmax were distinguishable in that they had
similar dynamics with a time delay. As ∆t decreased this delay decreased as one
would expect. Repeating the experiment above for fixed bmax with the alternative
time stepping scheme, where θcU

n in (1.8b) is replaced by θcU
n−1 as mentioned

in the introduction, one obtains distinguishable solutions as ∆t is varied. Thus we
prefer the discretization (Ph,∆t).

4.2. Two space dimensions. We performed several numerical experiments in two
spatial dimensions with Ω = (0, 1)× (0, 1). We took a uniform mesh consisting of
squares κ of length h = 1/64, each of which was divided into two triangles by its
north-east diagonal. Instead of (1.6), we used the discrete inner product on C(Ω)
given by

(η1, η2)h =
∫

Ω

Πh(η1(x)η2(x))dx ∀ η1, η2 ∈ C(Ω),

where Πh is the piecewise continuous bilinear interpolant at the vertices on each
square κ. With this choice of discrete inner product all of the results proved in
Section 3 still hold and in addition one can exploit “the discrete cosine transform”
in solving the nonlinear algebraic system arising at each time level in (Ph,∆t); see [4]
for a fuller discussion. The data was taken to be the same as for the first experiment
except γ = 3.2× 10−3 = ∆t and b as in (1.3) but with different values for σ. With
bmax = 1, the restriction on ∆t in Theorem 1.1 holds. For the above choice of b,
the integral on the right hand side of (1.8a) can be evaluated exactly by sampling
at the midpoints of the sides over each element. The initial data was taken to be
U0 = ±δh, where δh ∈ Sh with ‖δh‖0,∞ ≤ 0.05 and W 0 satisfying (1.8b) when
n = 0. In Figures 2 and 3 we plot a grey scale grid plot of U at several times where
the final numerical solution plotted is stationary, that is Un does not change from
one time level to the next. The pictures are arranged in a matrix format with time
increasing to the right in rows then down columns. The grey scale ranges from



FINITE ELEMENT APPROXIMATION 515

Figure 2. U0.5(·, t) plotted when t = 0.4, 0.8, 4.0, 5.2, 7.2 and 22.4

Figure 3. U0.99(·, t) plotted when t = 0.8, 4.8, 13.6, 14.4, 16.8 and 45.6

−0.9 to 0.9 in steps of 0.2 with pure black/white representing values larger/smaller
than 0.9/−0.9. The largest value of U0.5(·, 22.4) and U0.99(·, 45.6) in magnitude are
0.99741 and 0.99742 correct to 5 d.p. One does not expect these values to depend
on σ.
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From the experiments displayed in Figures 2 and 3, the degeneracy of the mo-
bility b appears to play a crucial role in the behaviour of the numerical solution.
Further, as we increase the value of σ to 0.999 and then 1.0, making the mobility
fully degenerate, we found that the numerical solutions were extremely similar to
that obtained with σ = 0.9 with the exception that the pictures appeared to be
slightly delayed in time. For b constant, it is clearly seen that decreasing b simply
increases the time scale of (P) proportionately. Similarly, comparing the graphs
from Figure 1 for σ = 0.5 and 0.9 one infers that for values of σ close to 1, when b
is more degenerate, there is a slower time scale.

For a parameter ε > 0, taking the scalings γ = ε2, τ = ε2t, b(s) = [1− s2]+ and
letting θ = θ(ε) ↘ 0, [7] have shown using a formal asymptotic analysis that the
level set

Γ(t) = {x ∈ Ω : u(x, t; ε) = 0},

where u(x, t; ε) is the solution to (P) dependent on the parameter ε, approximately
moves in its normal direction with velocity proportional to the surface diffusion.
This contrasts with the case where b(s) ≡ 1 in which case the level set approximates
a Mullins-Sekerka flow. In the experiments shown in Figures 2 and 3 above the
values of θ and ε are not particularly small. However, we wish to exploit this link
with surface diffusion in future work.
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