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FINITE ELEMENT APPROXIMATION OF
THE CAHN-HILLIARD EQUATION
WITH CONCENTRATION DEPENDENT MOBILITY

JOHN W. BARRETT AND JAMES F. BLOWEY

ABSTRACT. We consider the Cahn-Hilliard equation with a logarithmic free
energy and non-degenerate concentration dependent mobility. In particular
we prove that there exists a unique solution for sufficiently smooth initial
data. Further, we prove an error bound for a fully practical piecewise linear
finite element approximation in one and two space dimensions. Finally some
numerical experiments are presented.

1. INTRODUCTION

Let Q be a bounded domain in R%, d < 3, with a Lipschitz boundary 9. We
consider the Cahn-Hilliard equation with non-constant mobility and logarithmic
free energy:

Find {u(z,t), w(z,t)} such that

u = V. (b(u)Vw) in Qr :=Qx(0,7),
w = V'(u) —~yAu in Qr,
u(z,0) = wo(x) Ve,

% = ‘?9—1,/” =0 on 09 x (0,7,
where v is normal to 9. The mobility b € C[—1,1] is such that
(1.1) 0 < bmin < b(8) < bmax Vsel[-1,1].

The free energy ¥ : [—1,1] — R is given by

(1.2)
U(s) = (s) + G (1 — 82) i= & [(1+ ) In[LE2] + (1 — ) In[252]] + % (1 — s2)

and 7y, 6 and 6. are positive constants with 8 < 6.. We define the monotone function
¢:(—1,1) - R to be

6(s) 1= 1/(5) = & (1 + 5) — In(1 - 5)].

The above problem models phase separation of a binary mixture, which is
quenched into an unstable state. Here u := Xp — X4 € [—1,1], where X4, Xp €
[0,1] are the mass fractions of the two components A and B. When the quench is
shallow, that is 6 is close to 6., then the free energy, ¥, is usually approximated by
a quartic polynomial. The majority of the mathematics literature has concentrated
on this case, with constant mobility. However, this approximation is invalid if the
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quench is deep, i.e., § < .. For a fuller discussion of the model, see [10] and the
references therein.

A mobility dependent on the concentration, u, appeared in the original derivation
of the Cahn-Hilliard equation, see [8], and a thermodynamically reasonable choice
is b(s) := [1 — s?]4, see [13] and the references therein. This specific choice for b
leads to a number of mathematical difficulties since it is degenerate, i.e., by, = 0
n (1.1). A simpler model is to consider for example

1—o0s? if |s] <1
(1.3) b(s) == {

20(s2—

Ll —g)l4e ] if]s|>1

for a given o € [0,1]. Here, o = 0 yields a constant mobility, o € (0,1) yields a
non-degenerate concentration dependent mobility, and o = 1 yields the degenerate
mobility mentioned above. For the purposes of the analysis in this paper, we have
extended b to R, so that b € C*(R) and is non-degenerate over R if o < 1.
Throughout the paper, we will assume that

(1.4a) be C(R), 0 < bimin < b(8) < bmax VseR.
For the majority of our results we require the further restrictions
(1.4b) bmin >0, beC'R) with [p/(s)|<C  VseR.

We introduce a weak formulation of the above problem:
(P). Find {u,w} such that u(-,0) = ug(-) and for a.e. t € (0,T)

(1.5a) (%,n} + (b(u)Vw,Vn) =0 Vne HYQ),
(1.5b) (w,n) =v(Vu, V) + (¥'(u),n) Vne H(Q).

We have adopted the standard notation for Sobolev spaces, denoting the norm of
WmP(Q) (m € N, p € [1,00]) by || - |lm,p and semi-norm by | - |,,p. For p =
2, W™2(Q) will be denoted by H™ () with the associated norm and semi-norm
written as || - ||, and |- |, respectively. Throughout, (-,-) denotes the standard L?
inner product over € and (-, -) denotes the duality pairing between (H'(2))" and
H'(Q). In addition we define

o= (1) Ve L3Q).

There are two major difficulties in studying problem (P). One is that ¢’(s) is
singular at s = £1 and therefore (1.5b) has no meaning if v = £1 in an open set of
non-zero measure. Secondly, establishing uniqueness of a solution is considerably
more difficult when the mobility is concentration dependent.

Although, the Cahn-Hilliard equation has been extensively studied, very lit-
tle mathematical work has appeared for a concentration dependent mobility. In
[17] existence of generalized solutions in one spatial dimension is proved under
the assumptions ¥ € CY(R), b € C%¥(R), B € (0,1), satisfying (1.1) and ug €
H3(Q). Furthermore, it is shown that if 5(—1) = b(1) = 0 and ||ug||o,cc < 1, then
[lw(-,t)]]0,00 < 1,t > 0. In [13] existence of solutions {u,w} to (1.5a),(1.5b), satisfy-
ing (2.62) and (2.63), is proved under the assumptions ¥ € C1(R) with ¥(s) > —C,
|U'(s)] < Cls|"+ C (r € RY ford = 1,2, r = 3 for d = 3), b € C(R) satisfying
(1.1) with bpmin > 0 and ug € H'(Q). Furthermore, they prove existence when the
mobility degenerates at +1 and ¥’ has singularities at £1. This includes the case
when ¥ is defined as in (1.2) and b(s) := [1 — s?];. In [11] existence of a global
unique strong solution {u,w} to (P), u € L?(0,00; H%(Q)), is proved under the
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assumptions W is smooth, b is smooth and nonnegative, ug € H°(2) with ||Aug||2
sufficiently small and b(m) > 0, U”(m) > 0, i.e., metastable, where m := f ug. It
is also shown that under these assumptions u(-,¢) — m in L*°(Q) as t — oo.

We consider the finite element approximation of (P) under the following assump-
tions on the mesh:

(A). Let Q be a convex polyhedron. Let 7" be a quasi-uniform partitioning of
into disjoint open simplices xk with h,, := diam(x) and h := max,czn hy, so
that Q = U,c7r&. In addition, it is assumed that 7" is an acute partitioning;
that is for (i) d = 2 the angle of any triangle does not exceed 7/2, (ii) d = 3
the angle between any two faces of the same tetrahedron does not exceed 7/2.
In fact the case d = 2 can be relaxed to weakly acute, see [19]; that is, the
sum of opposite angles relative to any side does not exceed 7.

Associated with 77" is the finite element space
Shi={xeCQ): x| islinear V k € T"} c HY(Q).

Let 7" : C(Q) — S" be the interpolation operator such that 7n(z;) = n(z;)
(j =1—1J), where {z; }3-]:1 is the set of nodes of 7". A discrete inner product on

C(9), is then defined by

J
16 )= [ () dr = 3 M ()n,).
j=1
where 0 < M; < Ch?. We introduce the L? projections Q" : L?(2) — S" and
Q" : L2(Q) — S" defined by

(1.7) Q™. x) = (@, 0" =(n,x) Vxes"

Given N, a positive integer, let At := T'/N denote the time step and t,, := nAt,
n=1— N. We consider the following fully practical finite element approximation
of (P):

(P™A%). For n =1 — N find {U",W"} € S" x S" such that

(U"—A—[{"l,x)h + boax (VW™ V)
(1.8a) = ([bmax — 0(U™ 1] VW"=1 Vy) V x € 5",
(18b)  (Wnx)" =4(VU™,VX) + (@(U") = U™ )" ¥ x € 5,
where U® = Q"ug or Q"ug and WO € S" is such that
(1.8¢) (WO,X)h = —y(Aug, x) + (6(U®) = 0.U°, )" ¥ x e S".

The corresponding finite element approximation for constant mobility, i.e., byax =
bmin = b(s) = 1, is analysed in [2]. We note that the resulting nonlinear algebraic
system that needs to be solved at each time level for (P?4?) is the same that arises
in the constant mobility case. It is the main purpose of this paper to extend the
analysis in [2] to the non-constant mobility case and to prove the following error
bound for the approximation (P"4?).

Theorem 1.1. Let up € H3(Q), %LV" =0 on 0Q and 6 € (0,1) be such that

luollo,co < 1 — 8. Let the assumptions (A) hold and At = Ch, for any fived
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constant C. Let d < 2 and b satisfy (1.4a),(1.4b). Then for all h > 0 such that
At < 4y/[bmaxb?],

(1.9) [U%o,00 <1— 26 and lug — U°|F < Ch;
we have that
(1.10) flu — U+||2L2(0,T;H1(Q)) + [Ju— U||2Loo(o,T;(H1(Q))/) < Ch,
where for n > 1

U(,t) = 22U () + B5tUn 1) t € [taot. tal,
(1.11) UT(,t):=U"() te€ (th1,tn).

We note that on choosing U = Q"ug, the second bound in (1.9) is satisfied
for all » > 0 and a sufficient condition for the first to hold is that & is sufficiently
small. Whereas on choosing U° = Q"ug the first bound in (1.9) is satisfied for all
h > 0 and the second bound holds with further restrictions on 7" and ug; e.g., on
a uniform translation invariant mesh if ug € W2°°(Q).

The error bound in Theorem 1.1 is exactly that obtained for constant mobility
in [2] under fewer restrictions on the data. However, it may not be optimal as
the singular nonlinearity ¢ makes the analysis particularly delicate. Although our
final error bound is only valid for the restricted data d < 2 with the mobility
b() satisfying both (1.4a),(1.4b), a number of the results are developed for more
general data. In particular, the approximation (P™%) is well posed for all d < 3
with b(-) satisfying just (1.4a). Similarly, the restrictions on the mesh in (A) of
quasi-uniformity (required for the inverse estimates, see (3.11) and (3.10)) and
weak acuteness (required only for the technical bound (3.17)) can be relaxed to a
regular partitioning to prove well posedness of (P™41).

We note that one could consider an alternative time stepping scheme with 6.U"™
in (1.8b) replaced by .U~ It is a simple matter to adapt the analysis is this
paper to show that this scheme is unconditionally stable, and that the error estimate
in Theorem 1.1 above holds for all At = Ch. However, the resulting scheme on
eliminating {W"}Y_, is a three level time scheme for {U"}Y_,. This leads to
spurious modes and we have found that the stated discretization (P"4?) performs
better in practice.

The layout of this paper is as follows. In Section 2 we study a regularized prob-
lem (P.), where ¢ is replaced by ¢.. Firstly we prove some ¢ independent stability
bounds for the solution {u.,w.}, extending on those given in [16] and [2] for the
constant mobility case. Passing to the limit, € = 0, we prove existence of a solution
{u,w} to (P). Finally we prove uniqueness of these solutions to (P.) and (P), and
an error bound for this regularization procedure under a number of regularity as-
sumptions, which are shown to hold for the restricted data d < 2 and b(-) satisfying
both (1.4a),(1.4b). In Section 3 we prove firstly well posedness of a fully discrete
continuous piecewise linear finite element approximation of (P.), (P?4%) a regu-
larized version of (P™4%). Passing to the limit, £ = 0, we prove the well posedness
of (P™A%). In addition we prove an error bound for the approximation (P?4%) of
(P.) and this discrete regularization procedure for the restricted data d < 2 and
b(-) satisfying both (1.4a),(1.4b). By combining all the above error bounds and
choosing the regularization parameter ¢ and the time step At in terms of the mesh
spacing h, we obtain the error bound in Theorem 1.1. Throughout, C' denotes a
generic constant independent of these three parameters. In addition C(a,--- ,ar)
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denotes a constant depending on the non-negative parameters {a;}!_;, such that

C(ay, -+ ,ar) < Cifa; < C for i =1 — I. For notational convenience we write
Cy = C(br;iln). Finally in Section 4 we present some numerical experiments.

We end this section by noting that the error bound in [2] for the finite element
approximation, (P"2?), of (P) with constant mobility has been extended to the
multi-component version of (P) with a constant mobility matrix in [3]. Further-
more, the existence proof in [13] for (P) with a degenerate concentration dependent
mobility has been extended to the multi-component version of (P) with a degen-
erate concentration dependent mobility matrix in [14]. In a forthcoming paper we
intend to extend the error bound in this paper to the multi-component version of
(P) with a non-degenerate concentration dependent mobility matrix.

2. A REGULARIZED PROBLEM

In [16] Elliot and Luckhaus analysed (P) for constant mobility by introducing
a regularized problem. We employ the same regularization procedure to study the
case when the mobility is concentration dependent.

The logarithmic free energy ¥(+) is replaced by the twice continuously differen-
tiable function W.(s) := . (s) + % (1 — s?), where ¢ € (0,1) and

(2.1)

LAl+s)m ]+ L(1—-s)2+4(1—s)ln[g] — L if s> 1—c¢,
(s) if [s| <1—c¢,
bl—s)n [+ L1+ +4(1+s)n[5] - L ifs< -1+

The monotone function

[STES

Ye(s) =

<

g1+In(l+s)—L(1-s)—%me ifs>1—c¢,
(2:2) ¢=(s) :==1i(s) = @(s) if |s| <1—e¢,
(1+1n(1—s))—|—2%(1+s)—|—%1n6 ifs < —-1+¢,

N[

has the following properties.
eforalle >0

93 P(s) 2 @e(s) i 1>s5>1—¢,
(2.3) de(s) > o(s) if —14+e>s>-1.

e For all r, s
W (s)(r —8) = e(s)(r — 8) = Ocs(r — 8) < We(r) — e(s) + Ocs(s — 1)
=0 (r) — U.(s) + %C(r —3)2,

where we have used the identity

(2.4)

(2.5) 2s5(s —r) =8> —r* +(s—71)> Vs
e For ¢ < % and for all r, s

(2.6) 0(r — 5)* < (9e(r) — ¢:(5))(r — 5)

and

(0e(r) = ¢=(5))* < oL (max{|r], [s[})(de(r) — ¢=(s))(r = s)
(2.7) < E(e(r) — =())(r — 9).
In addition, if r,s >1 —¢c or r,s < —1 4+ ¢, then

(2.8) 32 (r = 8)% < (¢e(r) — ¢:(5))(r — 9).
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Furthermore, it is a simple matter to show that ¥, is bounded below for ¢ sufficiently
small; e.g., if ¢ < ep :=0/(86.), then
(2.9) Uo(s) > L (s—12 +[-1—s]2) — 0. > —0, Vs,
where [-];+ := max{-,0}. To see this, we note firstly for |s| <1 that
o(s) > e(s) > 4e(0) = —0In2 > —6,.
Secondly, for s > 1 we have under the stated assumption on € that

Ue(s) > L(s—1)2— &+ fe(1 -5

=[L %) (s —1)2— % +0.1-5)
> [L—0(s—1)? - % - %,

where we have applied a Young’s inequality. Applying a similar bound for s < —1
yields the desired result (2.9).

For later purposes, we recall the following well-known Sobolev interpolation re-
sults, e.g., see [1]: let p € [1,00], m > 1 and assume that v € W™P(Q). Then there

are constants C' and y = 4 (l - %) such that the inequality

m \p

[p, o0] ifm—g>0,
(2.10)  |vlo, < C’|v|(1);“||v|\‘,;)p holds for r € < [p, o) if m— g =0,

d : d
[p,—m] 1fm—5<0

We now study the corresponding regularized version of (P).
(P.). Find {u.,w.} such that u.(-,0) = uo(-) and for a.e. t € (0,T)

(2'113*) <66Lt5777> + (b(ua)vwaa V) =0 Vne Hl(Q)7
(2.11b) (we,n) = ¥(Vue, V) + (PL(ue),n) V€ HY(Q).

It is convenient to introduce the “inverse Laplacian” operator G : F — V such
that

(2.12) (VGuv,Vn) = (v,n) ¥V ne HY(Q),

where F := {v € (H'(Q))": (v,1) =0} and V := {v € H(Q) : (v,1) = 0}. The
well posedness of G follows from the Lax-Milgram theorem and the Poincaré in-
equality

(2.13) nlop < Clnlip +1(m, D)) ¥neWHP(Q) and pe 1,00
One can define a norm on F by
(2.14) [v]l—1 := |Gv|y = (v,Gv)> VwveF.

We note also for future reference that using a Young’s inequality yields for all a > 0
that

(2.15) (v,n) = (VGv,Vn) < |vll-1lnls < s=|lvl>1 + $nlF Vv eF, ne H(Q).
In addition it follows from (2.12), (2.10) and (2.13) that
(2.16) [VGulo < Clv|o.r YovelL'(Q)NF,

6

where 7 = 1,1+ 7, z, for any 7 > 0, for d = 1,2, 3, respectively.
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Assuming that by, > 0 and given ¢ measurable in 2, it is also convenient to
introduce the operator G, : 7 — V such that

(2.17) (b(a)VGqv, Vi) = (v,m) V1€ H'(Q).
It follows for all ¢ measurable in ) and v € F that
IVGU2 = (1,Gv) = (b(a)VG,v, VGV) < bhax| bla)] VG,0l0 [ VG0,

Similarly we have that

b(9)] VG0 3 = (v, Gav) = (VG, VG,0) < b, 2 [VGolo|[b(@)] VGyvlo.
Combining the above, it follows for all ¢ measurable in 2 and v € F that
(2.18) banin [0(9)]2 VG0l < [VGUIS < bunax| [0(0)] VG-
Let ¢ be measurable in Q, v € F and n € H'(Q), then
(219)  (v,1) = (b(@)VGyv, V) < biraxl [D(@)]2 VGytlo[n = birasc{v, Gyv) 2]y

so that an analogue of (2.15) holds. Similarly to (2.16), we have from (2.17), (2.10)
and (2.13) that
(2.20) IVG,vlo < CbL |v]o.r YoveL (Q)NF,

min

where r = 1,1+ 7,7 5, for any 7 > 0, for d = 1, 2, 3, respectively.

For a.e. t € (0,T), let q(-,t) be measurable in Q and v(-,t) € L?(Q2) N F be such
that %(-,t), ‘ZZ( t) € L*(Q). If b satisfies (1.4a),(1.4b), then by differentiating
(2.17) with respect to ¢t and setting n = G,v we obtain that

(%%, Gqv) = (F[b(q)VGqu], VG,v)
(2.21) = V@2 [VG40P) + ()Y & [6t], VG,0)
— V(@) 2, [VG,0) + (2160, 0)
Hence applying (2.21) and noting (2.17) yields that
(2.22) L(G0,0) = (§16,0],0) + Gyv, 3) = 206,22, 0) — (¥(@) 24V G0, VG,0).

We note for future reference that if 6—3(-,t) € L*(Q) for a.e. t € (0,T) and if b
satisfies (1.4a),(1.4b), then (2.10) yields that

2—4 4
(2.23)  |(V' (@) 2V Gqv, VGg0)| < CI1 %[0 IVGul; 4 < CI5H0 1Ggvly™ 2 [IGgull3 -
Similarly if g1, g2 € H*(2) and b satisfies (1.4a),(1.4b), then (2.10) yields that
16(¢2)]2 V(Gar = Ga)vlo = ([b(as) — b(@1)]V G0, V(G - Gas)0)?
< bm12n |[b(q2) - b(ql)]vglhv|0 < Cbmln |q2 (J1|0,4 |vglhv|074

_1 1—4 4 _4d 4
(224) < Chi e —aly e — all§ (Gl 1,05

Adapting an argument in [15], we now find a bound on [|Gsv||2 when b satisfies
(1.4a),(1.4b), ¢ € H2(Q2), v € L*(Q)NF and  is a convex polyhedron or 90 € C1.
It follows from the standard regularity estimate | - |2 < C|A - |o, Gv € V, (2.20),
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(2.17) and (2.10) with r = o00,2,6, p=1,1—7,1 and s = 2
all 7 € (0,1), when d = 1,2, 3, respectively, that

buin[|Ggvllz < C [bmin] AGv]o + [v]o] < C'[|b(q)AGgvo + |v]o]
C IV (9)Va.VGav + |y + [v]o] < C[|Vdlo,r|VGqvlo,s + [v]0]

3, )\:0,7'7%f01"

'y T—1 7-7

1— 1—X A
(2.25) < Clali™ llall§ 1901} G013 + [vlo]
Finally using a Young’s inequality yields that
(2.26) 1Gavlls < Co [lalf llall§ 1G4v]s + lolo] -
where o = %, 7,0, for all 7 € (0,1), and 8 = 29-2 when d = 1,2, 3, respectively.

Choosing 7 = 1 in (2.11a) yields that (68%, 1) =0, ie., (u(-,t),1) = (uo(-),1)
for all ¢. Hence it follows from (2.11a), (2.17), (1.4b) and (2.13) that
(2.27) we = —Gy, 2 + £ UL(ue).

Therefore for byin > 0, (P.) can be rewritten as follows.
Find w. such that u(-,0) = uo(-) and for a.e. t € (0,71, (uc(-,t),1) = (uo(-),1)
and

(2.28)  Y(Vue, V) + (PL(ue),n — £ 1) + (Gu. Be,p) =0 Vi€ HY().

Similarly, if byin > 0 (P) can be rewritten as follows.
Find w such that u(-,0) = uo(-) and for a.e. t € (0,T), (u(-,t),1) = (up(+), 1) and

(2.29) Y(Vu, Vi) + Jn—F )+ (Gue.n) =0 VneH(Q)
with
(2.30) w= -G, 2%+ £ V(u)

Theorem 2.1. Let d < 3 and up € H*(Q) be such that ||ugloco <1 and | uo| <
1 =46 for some § € (0,1). If b satisfies (1.4a) with byin > 0, then for all ¢ <
o there exists {u.,w:} solving (P.) such that the following stability bounds hold

independently of €

(2.31) luell Lo 0,751 () < C, [well mr 0,751 (2))) < C
and
(2.32) l[ue = Uil oo miz2c)) + =tte = Ui llzoeo.miz2() < Ce?,

In addition, the following stability bounds hold independently of €:
(2.33) wellz2(0,7;m1 () < Cp and [|¢=(uz)l[L2(0r) < Cb;
and if Q is a convex polyhedron or 9Q € C11,

(2.34) uell2(0,7;m2(0)) < Cb-

Furthermore, if b satisfies (1.4b) and

151 -

1 1 1
L3— d (0,T;L2(Q2)) < C( min> & )7 HUEHL?d(O,T;H?(Q)) < C( min? € )7
(2.35) lwell s, < Clbghee™),

19
el 6%a 0,1 () = \Vmine

then the solution {uc,w.} of (P:) is unique.
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Proof. Existence follows from standard arguments using Galerkin approximations
and then passing to the limit; see [13]. The choices of n below can be justified in a
similar way.

Choosing n = % in (2.28) and integrating over (0,¢) yields for all ¢t € (0,7)
that

Hue (O + (e (ue / D)} VGa, 222 (- 5)[3 ds
(2.36) :%|u0|1 (P (up), 1) < C,

where we have noted the assumptions on ug. Hence the € independent bounds in
(2.31) follow from noting (2.9), (2.13), (2.18) and (2.14). The bound (2.32) follows
immediately from the bound on (¥, (u.(-,%)),1) in (2.36) and (2.9).

Noting (2.27), (2.13) and (2.36) yields that

(1 - Jr' )w€||L2(O T;H(Q))
(237) < ClVGu, 2l r2(r) < Cbk|b(ue)]3VGo, 2 | 2y < Chit

min*

Choosing 1 = @< (u) in (2.28), noting that ¢.(-) > 0 and (2.13) yields for a.e. t €
(0,T) that

290Jucl + |(1 — f )= (ue)[§ < [Beue — Gu. 557 1§
(2.38) < O ful3 + by ()] VG, 213

Integrating the above over ¢ € (0,7, noting (2.31) and (2.36) yields that

(239) ||( JC )¢6(u6)||L2(QT) < Cbmln

Choosing 1 = u, in (2.28) yields for any constant A and for a.e. t € (0,T) that

(Wo(ue)s A = f ue) = (Pe(ue), A — ue) — '7|“€|% (gue B Ue)
S (We(A) = We(ue), 1) + %|u5 - )‘|0 + Cb,, 2 |[b(u5)]5vgus #|0|u5|0,

min

where we have noted (2.4) and (2.13). Hence it follows on choosing A = £1 and
noting (2.9) that

min

(2.40) 510 F WL (ue)| < CL1+ fuel3 + bl b(ue) F VG, 22 [ouclo ]

Integrating the above over ¢ € (0,7) and noting (2.31) and (2.36) yields that

(2.41) | WL ()| 2r) < Ch

Combining (2.41), (2.37) and (2.39) yields the desired result (2.33). Finally (2.34)
follows from (2.11b), (2.31), (2.33) and standard elliptic regularity theory.

Assuming that (2.28) has two solutions u}, u2 Wlth corresponding w. defined by
(2.27), it follows that for a.e. t € (0,T) U, := ul —u? € V satisfies

_ — dul ou? _
(2'42) 7|us|% + ((bs(u;) - Qbs(ug)vus) + (gug ot gugﬁi, us) = 9c|us|(2)'
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If b satisfies (1.4a),(1.4b), on noting (2.22), (2.23), (2.24), (2.26), (2.27), (2.19),
(2.18), and applying Holders inequality, it follows that for a.e. t € (0,T)

Wael? + (fe(ul) — ¢e(u?),Ue) + § 5 (Gur We, Ue )
= bofu.|? l(b’(ub%vgumg,vg@w — ((Gus — Guz) %= 02)
< O[3 + 012 |o|gu1us|1 G |3
Ol T |G ! nggﬂsﬂf |w§|1

< Ual3 + Oy (G-, w.) |1+ | % s™

_8
[ 5 2 +|w§|fd}

£lolull lulll*

_8
(2.43) < 3} + Gy (Gur:, ae) 1+| 15T +IUi|‘1‘a||U§I|§5+IWE|fd]-

Uniqueness then follows from noting (2.6), (2.31), (2.35), a Gronwall inequality,
(2.13) and (2.27). O

We note that the integral assumption on the initial data, in Theorem 2.1 above,
only excludes the physically uninteresting case of ug = £1, when only one compo-
nent is present.

Remark. If gg( t) € V, for a.e. t € (0,T), then alternatively to (2.23), we have
from (2.15) and (2.16) that

(¥ (0) 519G,
(2.44) < |BHIGIT — £ ) @)VG0 )]s < CIEHLIG R s

where 7 =0, any 7 > 0, 7 = %, for d = 1,2, 3, respectively. Using this 1nequality,
when performing a similar computation to that in (2.43), yields uniqueness of a
solution to (P.) with the first assumption in (2.35) replaced by

(245) %= le o) < Cloph,e™?) v=1,145=,8 ford=1,2,3.

Corollary 2.1. Let uy € H3(Q), % =0 on 00 and 6 € (0,1) be such that

lluollo,o <1—6. Letd < 3 with either 2 being a convex polyhedron or O € C11.
Let b satisfy (1.4a),(1.4b). Then for all e < £¢(d) solutions {u.,w:} of (P:) are
such that the following stability bounds hold independently of €:

Juc Oue
(2.46a) | W||L2(O,T*;H1(Q)) + } W”Lw(o,:r*;(Hl(Q))/) + st||L°°(0,T*;H1(Q)) < Cb,

(2.46b) [P (ue)ll Loo (0,7,522()) + el oo 0,1, 152 (92)) + |well 20,7, 52 () < Ch,
where T, =T if d < 2, and T, € (0,T] if d = 3. Hence the solution {us,w:} of
(P.) is unique over Qr, .

Proof. Differentiating (2.11b) with respect to ¢ and setting n = 2= noting ¢’ (r) >

ot
0 >0, (2.11a), (2.27), (2.21) and (2.22) yields that for a.e. ¢t € (0,T%)
(2.47)
|% |%

‘1 |0 at ‘1 We(uf)aaﬁtvaaﬁt — e |%|0_ aaﬁtvaaﬁwJ

=—(b(u )vagf;,vws) = — 1L [(b(ue) Vwe, Vwe)] + 5 (0 (ue) 2, |Vwe ?)
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where T, € (0,T]. Once again this differentiation and these choices of test function
can be justified in the standard way by using a Galerkin approximation and then
passing to the limit. Noting (2.44), the following inequality holds for 7 = 0, any
7€ (0, %], T= % for d = 1,2, 3, respectively

(2.48) |0 (ue) G, [Vwe?)| < 3%+ Clwelf oy-

Next we note from (2.10), (2.27) and (2.26) that

4(1— F)
e} piry < Cblwe[i4 7 [1Gu, 213"

dpo

IN

u5+|w5|4(1 H) |%|4#}

Co [ e e 1 3

N

(2.49)

Co [lwal4 ot [ [ |3 4 [ T |2 |o] ’

where p = %. It follows from standard elliptic regularity, (2.38), (2.40) and

(2.27) that

(2.50) [luella < Clluclly + @z (ue)lo + |welo] < Cp [1+ |uelo] [1 4 [uclo + [we|1 ]
Combining (2.47), (2.48), (2.49), (2.50) and noting (2.19) and (2.27) yields that for
a.e. t € (0,Ty)

(2.51)

)25 2+ 1 (b(u.) V., V)] < Gy | 22 1)

+ Clbpins luell) |1+ ey

min’

o

<C(b L

min’

l[uell1) [1 + (b(us)sz,sz)Q(l-ﬁ-p)} 7

where p = 22, We set B(t) := max{(b(uc(-,t))Vwe(-,t), Vw.(-, 1)), 1} for a.e.
€ (0,T). It follows from (2.33) that

min’

(2.52) / B(t)dt < C(b-L . T).

From (2.51) and the above notation we have for a.e. t € (0,T,) that
(2.53) 4B < C(bpt, llucll1) B2+0),

Via a Galerkin approximation, one can show in the standard way that
o5y PO SCL+wOR
' < O [1+ [Auglf + [ %2 (u0) 13 0 uolt] < C [1+ [luoll] < C

provided ug € H3(R), %“0 =0 on 09 and gg < §; see for example Proposition 2.5
in [5].
For d =1, i.e., p =0, it follows from (2.53) and (2.52) that for a.e. t € (0,T)

C(bmlln lluells) / B(s B
(2.55) B(t) < ) < Clbgiy, l[uell, T)B(0).
For d =2, i.e., for any p € (0, 1), it follows from (2.53) that for a.e. t € (0,T%)
(2.56) —5pai B~ < Olbgins llucll) B
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Hence we have from (2.56) and (2.52) that

BO) < - 2000k Ll BOP [ B6)asFB0)
< 19005k ) IBO [ B @ BO)
C (b lucll) [B(0)]2 / B(s)ds
< e 0 B(0)
(2.57) < Clbpiy llucll1, T, B(0)) te(0,7),
provided p € (0,1) is chosen sufficiently small so that
T
(2.58) 1pCOL e BOP [ Bls)ds < 1.
0
For d =3, ie., p= 1, it follows from (2.53) that for a.e. ¢ € (0,T%)
(2.59) — i 4 B2 < Clbiy lluell)-

Hence we have from (2.59) that
B(t) < [1 = (14 2p)C bty el ) [BO)]+204) 7597 B(0)
<[4 2(1 + 29)C bty llue[l1)[B(0)] 4274 722 B(0)
< O lueIDIBO) 2t ()

(2.60) <Cbzt, luell1, T, B(0)) t € (0,T)),

min’?

provided T is such that
(2.61) 21+ 20) Clogly, s DIBO]FT, < 1.

The third bound in (2.46a) then follows from (2.55), (2.57), (2.60), (2.54), (2.31),
(2.27), (2.13) and (2.40). The first bound in (2.46a) then follows from the third
and (2.51). Similarly, the second follows from the third on noting (2.27) and (2.18).
The first two bounds in (2.46b) follow from the third in (2.46a) and (2.50). The
third bound in (2.46b) follows from the first two in (2.46b) on noting (2.27), (2.26),
(2.46a) and (2.13). Finally, uniqueness of a solution to (P.) over Qp, follows from
the bounds (2.46a), (2.46b) and Theorem 2.1. O

Theorem 2.2. If d < 3, b satisfies (1.4a) with by > 0 and the assumptions on
ug of Theorem 2.1 hold, then there exists {u,w} solving (P) such that

(2.62) u € L>(0,T; HY(Q)) N HY(0,T; (H*(2))),
(2.63) we L20,T; HY(Q)) and ¢(u) € L*(Qr);
and if either Q is a convex polyhedron or 9 € O
(2.64) u € L*(0,T; H*(Q)).

Furthermore, if the assumptions on ug and b of Corollary 2.1 hold, then the solution
{u,w} of (P) is such that

(2.65)  w € L0, Ty H*(Q)) N HY0, Ty HY(Q)) N WH(0, Ty; (HY(Q))),
(2.66) w e L=(0,T,; H'(Q)) N L*(0,T; H*(Q)) and ¢(u) € L*=(0,Ty; L*(Q)),
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where T, =T if d <2, and T, € (0,T] if d = 3. Moreover, the solution {u,w} of
(P) is unique over Qr, and we have that

(2.67) lu = ellZao, 7,501 (@) + 14— el Foe 0,1, (2 (2))) < C e

Proof. As the bounds (2.31) and (2.33) are independent of ¢, it follows that there
exists u € L>(0,T; HY(Q)) N HY(0,T; (HY(Q))"), ¢* € L*(Qr) and a subsequence
{ues} such that as e’ — 0

(2.68)
uer — u in L(0,T; H(Q)) weak-star and in H(0,T; (H'(R))') weakly,

(2.69)
wer — w in L?(0,T; HY(Q)) weakly and ¢ (uer) — ¢*  in L*(Qr) weakly.

Using an argument from [2], it follows that ¢* = ¢(u). Therefore taking the limit
¢’ — 01in (2.11b) yields that {u,w} solves (1.5b). It is implied by (2.68) that
uer — u in L?(Q7) strongly as ¢’ — 0; see [18]. Noting this, (1.4a) and (2.69), it
follows for a.e. t € (0,T) that as ¢’ — 0

(b(uer ) Vwer, Vi) — (b(u)Vw, Vi) Ve Whe(Q).

Therefore taking the limit ¢/ — 0 in (2.11a) yields, on noting the above and (2.68),
that {u,w} solves (1.5a). Hence we have existence of a solution {u,w}, satisfying
(2.62) and (2.63), of (P). The regularity results (2.64), (2.65) and (2.66) follow
similarly to the e independent bounds (2.34), (2.46a), (2.46b). Uniqueness of a
solution to (P) over Qp, then follows as for (P.); see (2.42) and (2.43).

We now prove an error bound between the unique solutions v and u. of problems
(P) and (P.). Set e := u — ue. Subtraction of (2.28) from (2.29), noting (2.22) and
choosing n = e yields for a.e. t € (0,T) that

7|6|% + (¢(u) - ¢s(us)v 6) =+ %%(guea 6)
(270) = 9c|6|3 - %(b/(u)%vguea vgue) - ((gu - gue)aautsa )
From the monotonicity of ¢. and (2.8) it follows that for a.e. t € (0,T%)

(2.71) (6e() — de(uc), €) > £ /m@)umt) ¢ da,

where
QF(t):={z€Q:1—¢ <u(z,t) <uclz,t)},
Q- () :={zx € Q:ue(z,t) <ulx,t) < —1+¢e}.

Next we note from the definition of ¢. and (2.3) that

1. If |r] <1 —¢g, then ¢.(r) = ¢(r).
2. Ifr >1—eand s <r, then (¢-(r) — ¢(r))(r — s) <
r

Hence it follows for a.e ¢t € (0,T}) that
(2.72)

(6e(u) — Blu), ) < /

QF (H)UQZ (t)

(¢e(u) — ¢(u))edr < — / d(u)e dz.

QF Uz (t)
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Substituting (2.71) and (2.72) into (2.70), and as (1.4a),(1.4b) hold it follows simi-

larly to (2.43) on noting (2.23), (2.24), (2.26), (2.27), (2.19) and (2.18) that for a.e.
te(0,Ty)

vlel? + %/ e2dx+%%(gue,e)
QFf Uz (t)

< (fe(u) — dlu),e) + 0cleld — (0 (u) 24V Gue, VGue) — ((Gu — Gu.) % e)
= /ni(ﬂum(t) d(weds +0.|ef} + C|%¢ o [Guel;? |GuellS

+ Colels ™ lelf 1Guell ™ Gueld fuwely
<

c: [ [6(u)]? dz
QF (H)UQZ (t)
_8 _8
(2.73)  + Cy (Gue, ) [1 12857+ [uldouly” + w7

The desired result (2.67) then follows from noting (2.46a), (2.65), (2.66), a Gronwall
inequality, (2.13), (2.17), (2.18) and (2.14). O

Remark. We note that the assumption by, > 0 in Theorems 2.1 and 2.2 can be
relaxed in order to establish existence of a solution {u,, w. } to (P.), with the bounds
(2.31) and (2.32) holding, and a solution {u, w} to (P), with (2.62) holding; see [13].

3. FINITE ELEMENT APPROXIMATION

Throughout the rest of the paper we assume that the assumptions (A) hold.
We now consider the following fully discrete approximation to (P.); which is a

regularized version of (P"4?), see Section 1.
(P12, For n > 1, find {U?, W2} € S* x S" such that

n n—1 h
(U = ,x) + bpnax (VI Vy)

(3.1a) = ([bmax — 0(UZ™H] VW21 VY) V x € 5",
(3.1b) (W2 x)h =~+(VUZ, V) + (¢ (UZ) — 6.U2, x)" V¥ x € S,

where U? = Q"ug or Q"ug and W2 € S” is such that

(31c)  (W20)" = —y(Auo,x) + (6(U2) = 0.U2, x)" ¥ x € 5™
Similarly to (2.12), we introduce the operator G" : F — V" such that
(3.2) (VG"0,Vx) = (v,x) V x €S8,

where VP := {v" € S" : (v, 1) = 0}. We have the following analogues of (2.14)
and (2.15). We define a norm on F by

(3.3) oll—p = |G 01 = (v,G")2 VweF,
and for o > 0 we have that

(34) (v,x) = (VG"0, Vx) < oll-nlxlt < 5gllvl2, + §IXIT VveF, xesh
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Below we recall some well-known results concerning S": for m = 0 or 1, and for
p=2

(3.5) (L = 7"l p < CHT TR ]y Y g € HA(Q);

(3.6) |(I—Q™nlo+h|(I—-Q"nl <Ch™nlm VYneH™), m=1or 2
(3.7) IXIZ < X2 = (6x)" < (d+2)x]3 Vxesh
(3.8)|(x1,x2) — (x1,x2)"| < CA** ™ [Ix1llmlix2lli V¥ x1,x2 € ", m=0or 1;
(3.9) (G —GMvlo < Ch*™||v||_p, Yve(H™Q) NF, m=0orl.

Next we note that
(3.10) C’lh2|vh|1 < Cgh|vh|0 < th||_h < ||vh||_1 < C’3||vh||_h Vol e v

The first inequality on the left is just an inverse inequality, recalling that the par-
titioning is quasi-uniform, and holds for any v" € S*. The second bound follows
from the first and (3.4). The third follows from noting that |G"v"|; < |Gv"|;. The
final inequality follows from noting (3.9) with m = 0 and the second inequality
above. In addition, we note the inverse inequality for 1 < p; < ps < 0o and m =0
or 1

d(p1—p2)
(3.11) IXlmps < Ch™ 775 [X|mopy Y x € Sh.

The following bounds concerning Q" and Qh are also easily established. From
(3.6), (3.5) and (3.11) we have that

(3.12) (I — Q")nlo.0o < Ch> %[nla ¥ € H(Q).

Comparing Q"1 with Q"7 and noting (3.8) and the first inequality on the left of
(3.10) yields that

(3.13) (1 = Q"o + hI(I = QMnly < Chlnly ¥ 1y € H'(S).

Since (Q"n)(z;) = (n,x;)/(1,x;) j=1— J; where x; € S" and x;(z;) = d;, it
follows that
(3.14) 1Q" ll0,00 < IInllo,00 ¥ 1 € L().

Furthermore for a uniform mesh if d = 1 and for a uniform translation invariant
mesh if d = 2 and  is a rectangle, we note from (1.6) and the above that

J
(7" = QM < Ch™ Y [(n, x5) — (m,x;)")?
=1
Ch™ Y [, x5) = (0, x)"1* + Ch™ > " [(n.x5) — (. x)")?
JE€EIB JEeJI
(3.15) < CR*mIT o + ChYnls o0 <CR* M350 Ve W>™(9Q),
where Jp = {j @ x; € 0Q}, Jr = {j : x; ¢ 0Q} and we have noted that

#Jp < Ch'=?, $J; < Ch™4.
Since ¢. is monotone it follows (see [12, p. 68]) that

(3.16) (I = 7" g ()]0 < Chln"[p-(x)]l1 V¥ x € S".

Furthermore, as the partitioning is (weakly) acute, it follows from (2.7) for ¢ < 1
that V y € S

(3.17) VA" o ()15 < BL(Ixll0.00) (VX: VA 0 (0)]) < E(Vx, VA" [oe(X)]);
see [9] and [19, §2.4.2].

IN
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In addition to (3.2) we introduce Gh: Fh — V" defined by
(3.18) (VG"0,Vx) = (v,x)" V xes",

where F* := {v € C(Q) : (v,1)" = 0}. Note that V" C F" and the analogue of
(3.4) holds: for a >0

(3.19)
(0,%)" = (VG"0,Vx) < [G"vli|xh < [6"0} + §Ix[} VoeF", xesh
It is easily deduced from (3.8) (e.g., see [6]) that
(3.20) 1(G" = GMw" ||y < CRh||v"||1, Vol e Vi
In addition, we have the analogue of (3.10)
(3.21) B2y < C1hjo"|n < Co|Ghol |y < Cs|GM" ) < Cy|GM" ) Vo e VI

The first inequality on the left is just an inverse inequality on noting (3.7) and
holds for all v® € S". The second follows from the first and (3.19). The third and
fourth follow from (3.20) and noting the first two inequalities in (3.10) and (3.21),
respectively.

It follows from (3.1a) with x =1 and (1.7) that

(3.22) (U 1) = (U2,1) = (uo, 1) n>1.

Then similarly to (2.28), (P%4?) can be rewritten as follows.
For n > 1 find U" € S" such that (UZ,1) = (ug, 1) and

~ n__rm—1
Y(VUZ,VX) + (6=(U2) = 0.U2, (I = § 130" + biahi (G (7))
(Wn 1_bm£xgh’]n ! I_JC )X)h VXESh,
where J~1 € V" is such that

(3.24) (J2L )" = UrHVWET V) Y x e ST,

(3.23)

(3.25) W2 = W' — bl G (g 4 J21) 4 o (6(U2) — (U, D,

where U2 = Q"ug or Q"ug and W2 € S satisfies (3.1c).
We note for future reference that from (3.24) and (3.18) it follows that

(3.26) IGhJn| < ClW, n > 0.

Lemma 3.1. Letd < 3 and the assumptions on ug of Theorem 1.1 and the assump-
tions (A) hold. If b satisfies (1.4a), and At < 4vy/[bmax0?], then for all € < g¢(6)
and for all h > 0 such that

(3.27) 1U200,00 <1— 16,

1
2
there exists a unique solution {U™, WPIN_, to (P™A) satisfying

(3.28)

N N
max (UZ[F 4 0, D U = UZTHR 4 (WO + brin AL Y (W

n=1 n=1

mmmz (167 (B2 3 + el [0 (U + o (U ] < C.
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Furthermore, we have that
(3829)  |UZ il +[[-UF — 4] < Ce n=1-N.

Proof. As U2 = Q"ug or QMuyg, existence and uniqueness of U 9 follows immediately.
Moreover, from (3.6), (3.13) and the assumption (3.27) it follows that

(3.30) U912 + (V. (U2), ) < C.

Existence and uniqueness of W2 follows immediately from (3.1c). Furthermore, we
have that

(3.31) Wo = —Q"yAug) + "¢ (U%)] — 0.U°.

Hence we have from (3.31), (3.13), (3.17), (3.30) and (3.27) and the assumptions
on ug that for e < ¢gp(0) < %

(3.32) W2l < C [lluolls + IU21: ] < C.

Existence of Ul follows by noting that for fixed n > 1, (3.23) is the Euler-
Lagrange equation of the minimization problem

N 2 h
iy, IX[T 4+ (e(x), 1)
+ o VG O = UZTHIE = (W2 = b 6T 0"

where K" := {y € S" : (x,1) = (ug,1)}. For fixed n > 1, if (3.23) has two
solutions U™! and U2, then U: = UMt — U2 € VI satisfies

VOL + (9e(U) = ¢ (UI?), U + 557 |G"UL 1} = 60U 3.
It follows from (2.6) and (3.19) with & = $bmaxf:At that

—n —n 51 =N —n A1 =N bmax 02 AL (771
’Y|U5 E + 9|U5 |I21 + bmaiAt|ghUs |% < 96|Us |}21 < bmaiAt |ghU5 |% + me'UE |%

from which uniqueness of Ul* follows under the stated condition on At. Existence
and uniqueness of W, n > 1, follows immediately from (3.1b).

We now prove the stability bound (3.28). For fixed n > 1 choosing x = W in
(3.1a), x = (U — Ur~1)/At in (3.1b) and combining yields that

VVUL, V(UL = UZ)) + (¢ (UL) = 0U2, UL = UL + bax AW [}
(3.33) = At([bmax — bUZ"HVWEL VIV,
Noting (2.4) and the identity (2.5) yields that
(3.34) U2 + (P (U2), )" + 3|UZ = U1

+ B {bmax W2 + (U2 2 VIV 3

+ [[Bmax = UL V(W = W23
SFUZTHR + (R (U, )M+ U - U2

+ S [bmax — HUZH]E VIR,
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Choosing y = At(U" — U71) in (3.1a) and applying Young’s inequalities yields
that
LUz — U
= — 8B ([byax — U HV(WE = W) + b(UR-H) VW2, V(UD — UPY))
2 max g € € g g g g

< B [bmax — bUZHIEV(WE = W13 4 CetefZmed2 (U212 VWS
02 n—1\1% n n—
< t|[bmax_b(U DEvUr -Ur 3

max0c A n— 5 n n—
+ 4<bmm+2bm;>|[ (Ur-YEv(Ur - UrY)3
< At [bax — U] EV (W2 — W”—1>|% At pUr-HEVwrR

(3 35) mmAtlwn|2 maxgiﬁt [1 __boar } |Un U1 %7

+

2+4-bya €

where byar := bmin/bmax. Combining (3.34) and (3.35) under the stated condition
on At yields for n > 1 that

n bvar n— n 2bmax_bmin A n
HUZR + g (U2 — U271} 4 (W (U2), 1) 4 Clmexpusa) By 2
n— n— bmax_bmin A n—
(3.36) < I (Re(UZ ), 1) o el B

Summing (3.36) from n = 1 — m yields for all m < N that

1|Um|2 + et 2+bva,) Z U2 = U271+ (9 (U), 1 “""At Z Wi

bmax mlnA
(3.37) < U3 + (¥ €<U£>7 1)t 4 Lmex—boin) BLpp012 <

where we have noted (3.30) and (3.32). Hence the first four bounds of (3.28) hold.
The fifth bound of (3.28) holds on noting (3.25) and (3.26). Furthermore, the bound
(3.29) follows immediately from the bounds on (¥ (U"),1)", n =1 — N, above
and (2.9).

Choosing x = ©"[¢-(U)] in (3.23), summing from n = 1 — N and noting the
bounds above and (3.17) ylclds similarly to (2.38) and (2.39), that

N

(3.38) bminA Z 5|7T [0 (UZ) ”1 + (1 JC )Wh[d’s(Usn)”%] <C

Choosing x = U in (3.23) and rearranging, similarly to (2.40), yields for any
constant A

(6 (U A — F U < (e (V) = e (UP), 1) — b (G (L), U
(3.39) +(0U + WrTE — bl Ghart (T - UM
Choosing A = +1 in (3.39) and summing n = 1 — N yields, similarly to (2.41),
that

(3.40) bunin At Z | £ 7t M3 < C.

Combining (3.38), (3.40) and the first bound in (3.28) and noting (3.7) yields the
remaining bounds in (3.28). O
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Lemma 3.2. Let d < 2 and the assumptions on ug of Theorem 1.1 and the as-
sumptions (A) hold. Let b satisfy (1.4a),(1.4b) and At < 4v/[bmax0?]. Then for all
e < eo(0) and for all h > 0 such that

0 1 02
(3 41) Hba || <1 5 and |u0 U < CAif

the unique solution {U™, WIN_ to (PMAY) satisfies
N N »
SN+ (a3
n=1 n=1

(3.42) + max |W"|1—|— max |gh(

)|1 < Cy.

Proof. The proof is a dlscrete analogue of Corollary 2.1. From (3.1b),(3.1c) it
follows for n > 1 that

(W =W )" =y(V(UL = U2, VX) + (6 (UZ) — 6 (U2 ), )"

(3.43) —A0 (Y ) —y(VZE, VY)YV xeSh
where

n n n— n Uy — UO n = 1,
(3.44) Y= (U -UMY/At n>1 and Z! ::{ 00 Y

Choosing x = U — U~ in (3.43) and noting (3.1a) with y = W — W~ ! yields
for n > 1 that

VALY + (6(UF) = 6 (U1, Y)"
+ bmaX|W5n - Wsn_lﬁ
= (OUITHVWITL V(W = W)
FOAY [+ (VZE, VY.

It follows from (3.45) on noting (2.6), (2.5) and (3.19) that for n > 1

(3.45)

n n wr—wr—! n— 1 n
VALY 4+ OAHY | + Lbmax (A1) Y3 4 L[b(U2 1) 2 VW23

<y AUYTE 4 Ap(2UDZUIT) ymye
+( A2 max — 30U FV(EEFE) B 4 L (U] VW3
= OAUY[E + S| BUrEVWI T + (V22 VYD)
(346) < JALY!(} 4 CAUG"YI [} + pa,
where py := %Hb(UEO)]%VWEO% + C2;|22|? and

n—1y_ n—2 .
po = L|BUZ 2 VW2 %At/ﬂ[bw LU w2 de if n > 2.

Similarly to (2.48) and alternatively to (2.49), we have from (1.4b), (2.15), (2.16),
(3.11) and a Young’s inequality that for n > 2

b(UP 1) —b( n— n— n—
/[%HVW WPde < FY2UR A+ CWE 0

Hyr 24+ C B w4
(347) < FYr R+ owr T g orn2,

Q0
IN
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where 7 = 0 for d = 1, and for any 7 > 0 for d = 2. We set sg := 0, vp := 1 and
= JAUYR, s = |BUTHEVWER, vy = max{r, + sp, vp1}

(3.48) vy, == C|G"Y |2 + Crh™2, Zn = Csp_1+ Yn n > 1.

It follows from (3.28) and if 7 < Ch?? that

N N N
(3.49) ALY 2y SCALY sy + ALY yn < Cy(1+7h2) < G

n=1 n=1 n=1

It follows from (3.48), (3.46), (3.47), (3.28) and (3.41) that v; < C} and
(3.50) max{1, sp—1} <vp_1 < vy < Vpoq —l—CbAts 1+T +Aty n > 2.
For d =1, ie., 7 =0, it follows from (3.50) and (3.49) that

vy < (14 CpAtsy,_1)vn—1+ Aty, < eCobtsn—1y L+ Aty,

n—1
CbAtZ Si n
(3.51) < e =l vl+AtZyi] < Gy n=2-N.
1=2

For d = 2, i.e., 7 > 0, it follows from the mean value theorem, (3.50) and (3.48)
that

1 T
(3.52) —glvn T - 027 <o P, — ve] < Atz n>2.

T

n =

Summing (3.52) and noting (3.49) yields that v; < C} and
vy < [1— 27v17AtZzl - U1
(3.53) N

1+ 4TU17AtZzZ 2L =2 9 <Cp, n=2— N;

provided 7 > 0 is chosen sufficiently small so that 7 < Ch?? and
N
(3.54) ATVTALY 2y < 1L

Hence the third bound in (3.42) follows from (3.48), (3.51) and (3.53). The fourth
bound in (3.42) follows from the third on noting (3.25) and (3.26). The first two
bounds in (3.42) follow from summing (3.46) and noting (3.47), the third bound in
(3.42), (3.28), (3.41) and (2.13). O

Assuming that by;, > 0 and given ¢ measurable in 2, we introduce the analogue
of (2.17): GI' : F — V" such that

(3.55) (b(q)VGv,Vx) = (v,x) V¥ x € 5"

The analogues of (2.18) and (2.19) hold: for all v € F

(3.56) bmin[b(@)]* VG 0[5 < [VG" 05 < bmaxl [b()] ¥ VG 0[5,
and

(3.57) (0, %) = (b(g)VG v, Vx) < bhax (v, G"0) 2 [ ¥V x € 8™
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It follows immediately from (2.17), (3.55) and (3.5) that for all measurable ¢ and
v € F that

(3.58) [b(a)]2 V(Gy — G wlo < [[b(9))2 V(I — 7")Ggvlo < Ch|Gqula.
Similarly to (3.55), we introduce G" : F* — V" such that

(3.59) (b(q)VGiv, VX) = (v,x)" ¥ x € S™

The analogues of (3.56) and (3.57) hold: for all v € F"

(3.60) buninl[0(2)] 2 VGI0[3 < [VG"0[2 < bunaxl[b(q)] 2 VG0 3,

and

(361 (©.20" = 0@V, VX) < b [ (0.G50)" | I ¥ x e S

An analogue of (2.24) holds: for ¢1, ¢2 € L*(Q) and v € F"

(3.62) V(G = Ga)vlo < Chialar — a2l0.4[VGg, vlo.a-
Similarly to (3.20), it is easily deduced from (3.8) that for ¢ measurable
(3.63) 1@ — Gty < Cop ol W eV

We now prove an error estimate between the problems (P%4%) and (P.).
Theorem 3.1. Let the assumptions of Lemma 3.2 hold. Then we have that
(3:64) lue = U120, () + Nte = Uellpoe o,y 0yy < Cb [e7 10 + At
where

Ud(t) = E2=tUn () + tUr=1()  t€ [tur,ta) n>1
and
UF(,t) :=U(), UZ(t):=U") € (tnr,tn] n> 1

Proof. Using the above notation and introducing analogous notation for W, (3.1a)—
(3.1¢) can be restated as follows.

Find {U., W.} € H'(0,T;S") x L>(0,T;S") such that U.(-,0) = Q"uo(-) or
QMug(+), We(-,0) is defined by (3.1c) and for a.e. t € (0,T), (U-(-,t),1) = (uo(-), 1)
and

YVUZE,VX) + (6= (UF) = 0UF (1= £ ))" + (G- %5 0"

(3.65a) = AL([B(UZ) — by V- 7ngg;( - F)x) VYxesh

(3.65b) (W) = VUL, V) + (6 (UF) = 0.UF, )"V y € S,

Note that (3.65a) follows by combining (3.1b) with x = (I — f )x and (3.1a)
with x = Qh (I f )x. We set eF = —U® e v, el = u. — mhu. and
E) =7 u; U™ € St for ae. t € (0,T). We note for future reference that

(3.66) U.—UE=(t—1t5%  te(th1,ty) n>1,

where ¢} :=t, and £ == t,_1.
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On subtracting (3.65a) from (2.28), it follows for a.e. t € (0,7") that

Y(Ved, Vx) + (= (ue) = ¢-(UD), (L = f )x) + (Gu. B2 X)

= GC(ejv(I_JC)X)
+ [ (0-(UF) = 0UF (I = £ )x)" = (6(UF) = 0.UF, (I = F )x) ]

[(gh* ot uX) (gus ot uX):|
(3.67) +A([bmax — b(U )| Ve ,vgg; (I-F)x) Vxesh

Hence choosing x = EF € S and noting (2.7), (2.15), (2.13), (2.18), (3.8), (3.16)
and a Young’s inequality, yields for a.e. t € (0,7) that

(3.68)
MeZ 2 + 519 (ue) — 6<(UD) + (Gu. %7 )
<Aled [} 4+ (@(ue) = ¢(UD), ed) + (G, 7 ed)
= 0c(eZ BD) + (Ve Vel) + (de(uc) = 6=(UD), (I = § Jel) + (Gu. G €2)
+ [ [6-(U) - 605 B! — (x"10-(U)] - 0.UF B
(" = DU ED) + (G- % B — (G % BD)|
+ AH([bmax — bUD)VE, VGE_E])

+(
-

< Colled 121 + €2l + 7 el + 1152 I -tlelo
5h =T 5h
+ WU I3 + B2 o (UONE] + [(%, G0 BE) — (%=, BD)]
+ (%5, (61 = Gu)EL) + At((bax — (U )V 2=, VGE_EY),

where B, = (I — f)ETF.
From (3.8), (3.60), (3.21), (3.10) and (2.16) it follows that

5h =t 5h =t
(% G- E)" — (%¢.60 B,

sh T
< CR|| 1[G T2 |1 < Cul e 112, + 23] + ChA| 2= 2.

(3.69)

Similarly from (3.60), (3.21), (3.10) and (2.16) it follows that

(3.70)
At|([bmax — b(UZ )]V%,VQ{};F:)I CollleXlI2y + le2[3] + C (A)?| %5 2.

From (2.15) it follows that
(%=, (Gh_ — Gu.)EY)|
(3.71) < CY 251 |[(Gu. = GEEL |+ (G — G VB |
From (2.26), (2.46b) and (2.20) it follows that
(3.72) 1Gu.v]l2 < Cylv]o Yuve L) Q)N F.
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From (3.58), (3.72), (3.63), (3.10) and (2.15) it follows that
(Gu. —G"VELL < (Gu — Gh)EL L+ (G —GE)EL ]

+ =+
< Gh[E o+ R2IE 1] < CohlEL o
(3.73) < Gy [letllaalet s + 2 +47].
From (3.62) it follows that
(3.74) (G5, = G5 VB2 I < COialez loalG B v

From (3.11) and (3.73) it follows that
G2 Bl s < 16w Bl a+ |(Gu. — G0 )E |14+ Ch™3|(Gh. — Gh VB!,
(3.75) < NGW B 14+ (G = GE)E |14 + Gyl =4 [E |o.
From (3.11), (3.5), (3.72) and (3.73) it follows that
(Gu. = GEVE 14 < |(I = 7)Gu Bl |14+ Ch™5|(x" G — G2 )BTy
< o™t [WE o+ |1 = 760 BL [+ [(Gu. — GL)EL ]
(3.76) < Cyh 4 [E o,

Combining (3.75) and (3.76), and noting (2.10), (3.72), (2.18), (3.10) and (2.15)
yields that

GEE e < 16w Bl + Gl HE o < GIES|SHEN
1__
(3.77) < GIENNSE [led1d + e 15 et 1]
From (3.66), (2.10) and (2.15) it follows that
(3.78) ez loa <lefloa+ At|%=loa < [|\e+|| e ],® +At|8Us|].

Combining (3.71), (3.73), (3.74), (3.77), (3.78) and noting (3.66) yields that
5 —+
(%7 (G- = Gu ) B )|
(3.79) < pled1F + Co [L+ 1% 1124] [NleelZy + [e2 [ + (At)?| S [F +A%] .
We note from (2.23), (2.18), (3.72), (2.15) and (3. 66) that

|(b/(us)%vgusesavguses)| <Cb|%|0 ||€s|| 1 |€s|1
(3.80) < plellF+Co [|%§ llecll®y + (At)? | %= 2

Combining (3.68), (3.69), (3.70), (3.79) and noting (2.22), (3.66), (3.80) and (2.18)
yields that

7|6:|% =+ %%(gusesv 65) 7|6+|2 (gus ot 766) - %(b/(us)%vgusesv quses)
= el [T+ (Gu. G ed) + (Gu. Gr e —ef) — $(V (ue) BV Gy ec, VG, )

<Gy [14 12 02] leal®y + et + =7 e R + 1252 -aledo

H(AL)? + 1Y% [T+ RHUZ IR + h2 (|7 [ (UDIIF + (A1) %55 [} + 12

(3.81) +CAH|% | 1] 2y + Co| 2|57 sl
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Integrating (3.81) over ¢ € (0,T), using a Gronwall inequality and noting (2.13),
(2.18), (3.42), (2.46a), (3.6), (3.13), (3.28), (3.5) and (2.46b) yields that
e 1720711 () + lleellZoo 0,7 (a1 ()))
< C O 1% | 0 50011 @ 1585 2@y ) [ A2 + o — U212,
+ e 1% 20,701 )y + €~ HleZ 1% 2009
+ )| % | 2o, @) L€l L2y + At|| 2= 5 120,15 () ]
+ h4||U+||L2(O THY(Q) T h?||x" [¢5(U+)]||L2(o T,H(R))
+ [(At) + h4]|| ||L2(0 T;H1(Q)) + (At) ” ||L2(0 T;H'(Q))
< Gyle™ 'R+ AY. O

Theorem 3.2. Let d < 3 and the assumptions on ug of Theorem 1.1 and the
assumptions (A) hold. If b satisfies (1.4a) and At < 4vy/[bmaxt?], then for all
h >0 such that [|[U°[jo,c0 <1 — £6; there ezists a unique solution {U™, W"}N_ to
(P24 satisfying

(3.82)
N
Jmnax U+ b, U™ = U+ WO
N n=1
+ bt Y [|W”|2+|gh(U" ur=urtlyg } mmAch S(UM]2 < C
and "
(3.83) Ul L~ @r) < 1.

In addition ifd <2, b satisfies (1. 4b) and |ug — U°|3 < CAt, we have that
AtZ”Un Un 1 At Z|Wn Wn 1|2+ maX |Wn|1

(3:84) + max |¢<%—’i”“> ey

and for e < g9, provided h—% [e71h? + At] < C, we have that
(3.85) |lU* = UL 72 0,mm10)) + U = UellZo 0.7 ar1 )y < Cole + €7 h* + A,

Here U and U™ are defined similarly to their reqularized counterparts; see Theorem
1.1.

Proof. The proof is a discrete analogue of Theorem 2.2. Uniqueness of a solution
o (P44 follows as for (PMA!). Existence of a solution follows by letting ¢ — 0,
noting the uniform bounds in (3.28) and applying a discrete analogue of (2.68)—
(2.69). Hence the bounds (3.82) hold. The bound (3.83) follows immediately from
the bound on 7"[¢(U™)] in (3.82). Similarly the bounds (3.84) hold for d < 2 on
noting the uniform bounds (3.42).

We now prove (3.85). For a.e. t € (0,T) we set ES := U®) — U™*) € VP and
E‘(,‘jf) =W — W, We note, similarly to (3.66), that

(3.86) Eff —Ey = (t, — )2 for t€ (th_1,ty).
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Subtracting (3.65a) from its non-regularized counterpart, choosing x = E;]' and
noting (3.8), (3.60), (3.21), (3.3), (3.10), (3.19) and (2.15) yields for a.e. t € (0,T)
that

(3.87)
VEFE+ (0(UT) — ¢(UD), EF)" + (G 21, EFF)

=0 B |+ (25, (G, — Gh_1E) + (57,0 — Gl 1E)"
+ (9B, Ef) - (%Gt B ]
+ AL (D) = b VI, VGl )
- ([p(Us) - max]vf’g%,véh,Eﬂ}
<CIES 21 + Ol 251G, = Gp ) EG I + ClGFI-11(G) - = G- ) B I
+ Gl Ef || -1 [R?252 |1 + At 5 |1+At| =4

Similarly to (3.73) we have that
(388)  [(Gu. —GL)ESH < CohlEglo < Cy (IS 1| BS | +h?]
Similarly to (3.74) and (3.77) we have that

1-4

(Gl gh VEF|1 < ColeZ loalGh Eflia < Coles ol EF |E+|1

(3.89) < Gy [IBFIZH IS +1ed B + (A0 3]
where we have noted (2.10), (2.13) and (3.66). Similarly to (3.89) we have that

(G- = Gb-)VEG 1 < Gyl By loalGl- Bl 1,
< Gyl By lo.s [162 Bt lua+n~H1(Gh. — Gl ) B 1]
< Gy {1 +hf |e;|o74} |E o, 4|QZ€E+|1 4

1__

(3.90) < Gy [1+ 0 H e loa| 1B 1A 1B 1B 1T 1B L
where we have noted (3.11), (2.10) and (2.15). Similarly to (3.80) we have that

(b (ue) 22V G, By, VG, Evr)|

2
1] -

(3.91) < NEFR+ Gy [I&‘E lo "I Eul|2y + (At)* |25
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It follows from (3.87), (2.8), (2.22), (3.86), (3.7), an analogue of (2.72), (2.18),
(3.91), (3.88), (3.89), (3.90) and a Young’s inequality that for a.e. t € (0,T)
YNEG I+ 52 (B BH)! Fuws ) T 33 (Gu. B, Ev)
SUESR + (6<(UT) = ¢=(UD), BY)" + (Gu. %5 Bv)
— 5 (V' (1) % VG, Eu, VG, Bu)
< ($=(UF) = o(UF), E)" + (Gu. %5, B — )
l(b’(us)aﬁvg%Eu, VG.. Ev) + CllEfI12,
+ Ol %5 -1l(Gu. = G VEF L+ CIGEI-11(G) - — Gl B
+ Gyl EF || -1[n%|25E |1+At| W1+ At 2]

< OO s t)|+cb[1+|%| ]|EU||2_1
+ 2B 1[G, — G )ERh + CI LN I(Gh. — G )ER
+ Oy (D252, + [ (AP IIZELR + (0PI + (07|22}

< Gy [1+ 11282112, [I1Bu 2, + 2+ [ef [F + (A0 25212, + (A1) e 2]
_8
+Co {19811 [1+ 1~ |e-|1}}6 (1B 2, + (At)21 2822,

+CelR BU )R+ Col B 5 By 2,
(3.92) +C{ A2, + [+ (A0)?]|2B2 [ + (A2IBE + (02|27}

where, recalling the notation of (1.6),

(10, 112) 5 (1) = Y Mym(z)na(z;), Vm,ne € CQ);
jewd (t)Uwz (t)
and wl(t) == {j : 1 —e < U (x;,t) < UF(25,8)}, wo (t) == {j : UF(x;,1) <
Ut (z;,t) < —1+ ¢}. Integrating the above for ¢t € T), applying a Gronwall

0,
inequality and noting (2.13), (2.18), (2.46a), (3.42), (3.64), (3.82) and (3.84) yields
that

||EU||L2(0 THY(Q) T ||EU||L°°(O THY(Q))) = C(br_nma || ||L°° T5(H())')»
1282 | o< 0,13 0m1 (@)) |1 2 | L2y o % lle2 || L2 go,msm ()
x| 02+ ellm DU 32 cary + AU N3 01,002y
+(At)? + 1)) 25 ||L2 o.1;H Q) T e ||L2(o T H(Q))
+(At)? {H ||L2(0TH1 Q))+H ||L2 (0,T;H () +|| ||L2(0TH1(Q))H
< GCyle+e7'h* + A1,
since using (3.66)

i les 20,1511 (2)) < Ch™ et | 220,752 ( 00| p2 (0,752 () ]
(3.93) < Ch [T R+ AL]Y? < G,

Hence the desired result (3.85) follows. |
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Therefore combining (2.67), (3.64) and (3.85) yields that

lw — U3 207110y + 1v = Ull Lo 0.2 020y
(3.94) < Cylet+e 'R+ At] < Cy[e+e 'h*+1],

provided At = C1h < 47/[bmax0?], b~ %[ 1h? + At] < Cy and U? = UO satisfies
(1.9). Hence choosing ¢ = Coh < gq, for some constant Cy proves Theorem 1.1.
Finally we note that on choosing U® = Q"uy, the second bound in (1.9) is satisfied
for all A > 0 and a sufficient condition for the first to hold is that h is sufficiently
small; see (3.6) and (3.12). On choosing U® = Q"ug the first bound in (1.9) is
satisfied for all A > 0 and the second bound holds with further restrictions on 7"
and ug; e.g., on a uniform translation invariant mesh if ug € W2°°(Q); see (3.14),
(3.15), the first bound in (3.21) and (3.5).

4. NUMERICAL EXPERIMENTS

4.1. One space dimension. As no exact solution to (P) is known, a comparison
between the solutions of (P"4%) on a coarse mesh, U, with that on a fine mesh, u,
was made. The data used in each experiment on the coarse meshes were 2 = (0,1),
y=15x10"2%,0=0.3,0.=1.0,T =04, At =0.32h, h =1/(J — 1), where J =
28 +1 (k=6,7,8,9), bmax = 1, tol = 1 x 1077 and p = 0.1. The last two quantities
were parameters used to vary the degree and speed of convergence in the iterative
method (method IT of [10]) to solve for U™ at each time level in (P"4?). The data
were the same for the fine mesh except J = 2'2 + 1. We note that the restriction
on At in Theorem 1.1 holds for this data. The initial data ug was taken to be the
clamped (complete) cubic spline interpolating £ (cos(rz) — cos(3mz) + 1.3 cos(5mz))
at the points i/8 (i = 0 — 8). Hence we have that

ug € H3(Q)\ H*(Q) and uf(0) = uy(1) = 0.

On setting U° = Q"uy, it follows that the assumptions on uo and U of Theorem
1.1 hold. In addition this choice of initial data ug ensured that the singularities
in ¢ played a role. We performed three experiments with b given by (1.3) with
o = 0.5,0.8 and 0.9. For this choice of b, the integral on the right hand side of
(1.8a) can be evaluated exactly using Simpson’s rule on each element. In Figure 1,
we plot us(+,0) and u, (-, 0.4), where u, denotes the “true solution” of (P) dependent
on o.

The quantity E? := At 25:1 |7Pu™ — U™|? was computed and is given in the
table below.

To J] 6 | 129 [ 257 [ 513 |
0.5 8.88 2.12 0470 [ 9.63x10~2
0.8 0.130 [ 3.05x10 2| 7.21x10 7 | 1.59x10 °
0.9 8.35x10 % [ 1.88x10 % | 4.41x10~ % | 9.72x 10"

We see that the ratio of consecutive E? are between 4.2 and 4.9 which is better
than 2, the rate of convergence proved in Theorem 1.1.

It is interesting to consider the effect of varying by,ax on the numerical solution.
We performed several numerical experiments for b(s) = 1 with precisely the same
parameters and data as mentioned above except h = 1072, U? = —0.6 £ 6" where
6" € Sh with [|6"|0.00 < 0.05, WO satisfying (1.8b) when n = 0 and At = 2% x 10~*



514 J. W. BARRETT AND J. F. BLOWEY

0 T 1
FIGURE 1. u, plotted for ¢ = 0.5,0.8,0.9

with ¢ = —1,0,1 and 2. We took bymax = 1,2 and 4. Once again the restriction
on At in Theorem 1.1 holds for this data. For a fixed by.x, the solutions for the
different choices of At were graphically indistinguishable. However for a fixed At,
the solutions for the different choices of by,.x were distinguishable in that they had
similar dynamics with a time delay. As At decreased this delay decreased as one
would expect. Repeating the experiment above for fixed by,ax with the alternative
time stepping scheme, where 6.U™ in (1.8b) is replaced by 6.U"~! as mentioned
in the introduction, one obtains distinguishable solutions as At is varied. Thus we
prefer the discretization (P™4?).

4.2. Two space dimensions. We performed several numerical experiments in two
spatial dimensions with = (0,1) x (0,1). We took a uniform mesh consisting of
squares k of length h = 1/64, each of which was divided into two triangles by its
north-east diagonal. Instead of (1.6), we used the discrete inner product on C/(9)
given by

()" = /Q T (11 (2)2(2)) Vi, m € C(Q),

where II" is the piecewise continuous bilinear interpolant at the vertices on each
square k. With this choice of discrete inner product all of the results proved in
Section 3 still hold and in addition one can exploit “the discrete cosine transform”
in solving the nonlinear algebraic system arising at each time level in (P™4?); see [4]
for a fuller discussion. The data was taken to be the same as for the first experiment
except v = 3.2 x 1073 = At and b as in (1.3) but with different values for o. With
bmax = 1, the restriction on At in Theorem 1.1 holds. For the above choice of b,
the integral on the right hand side of (1.8a) can be evaluated exactly by sampling
at the midpoints of the sides over each element. The initial data was taken to be
Uy = 6", where 6" € S" with [|0"0.00 < 0.05 and WO satisfying (1.8b) when
n = 0. In Figures 2 and 3 we plot a grey scale grid plot of U at several times where
the final numerical solution plotted is stationary, that is U™ does not change from
one time level to the next. The pictures are arranged in a matrix format with time
increasing to the right in rows then down columns. The grey scale ranges from
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FIGURE 3. Ug.g9(-,t) plotted when ¢t = 0.8,4.8,13.6,14.4,16.8 and 45.6

—0.9 to 0.9 in steps of 0.2 with pure black/white representing values larger/smaller
than 0.9/—0.9. The largest value of Uy 5(-,22.4) and Up.gg(-,45.6) in magnitude are
0.99741 and 0.99742 correct to 5 d.p. One does not expect these values to depend

on o.
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From the experiments displayed in Figures 2 and 3, the degeneracy of the mo-
bility b appears to play a crucial role in the behaviour of the numerical solution.
Further, as we increase the value of ¢ to 0.999 and then 1.0, making the mobility
fully degenerate, we found that the numerical solutions were extremely similar to
that obtained with ¢ = 0.9 with the exception that the pictures appeared to be
slightly delayed in time. For b constant, it is clearly seen that decreasing b simply
increases the time scale of (P) proportionately. Similarly, comparing the graphs
from Figure 1 for ¢ = 0.5 and 0.9 one infers that for values of o close to 1, when b
is more degenerate, there is a slower time scale.

For a parameter € > 0, taking the scalings v = €2, 7 = €2t, b(s) = [1 — s%] and
letting 6 = 6(€) \, 0, [7] have shown using a formal asymptotic analysis that the
level set

L) ={z € Q:u(z,t;€) =0},

where u(z, t; €) is the solution to (P) dependent on the parameter €, approximately
moves in its normal direction with velocity proportional to the surface diffusion.
This contrasts with the case where b(s) = 1 in which case the level set approximates
a Mullins-Sekerka flow. In the experiments shown in Figures 2 and 3 above the
values of # and € are not particularly small. However, we wish to exploit this link
with surface diffusion in future work.

REFERENCES

1. R.A. Adams and J. Fournier, Cone conditions and properties of Sobolev spaces, J. Math.
Anal. App. 61 (1977), 713-734. MR 57:3840

2. J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of the
Cahn-Hilliard with logarithmic free energy, Numer. Math. 72 (1995), 1-20. MR 96h:65118

3. J.W. Barrett and J.F. Blowey, An error bound for the finite element approximation of a model
for phase separation of a multi-component alloy, IMA J. Numer. Anal. 16 (1996), 257-287.
MR 97b:73011

4. J.W. Barrett and J.F. Blowey, Finite element approzimation of a model for phase separation
of a multi-component alloy with non-smooth free energy, Numer. Math. 77 (1997), 1-34. CMP
97:16

5. J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with
non-smooth free energy. I. Mathematical analysis, Eur. Jnl. of Applied Mathematics 2 (1991),
233-279. MR 93a:35025

6. J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with
non-smooth free energy. II. Numerical analysis, Eur. Jnl. of Applied Mathematics 3 (1992),
147-179. MR 93g:80007

7. JJW. Cahn, C.M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation with a concen-
tration dependent mobility: motion by minus the Laplacian of the mean curvature, Eur. Jnl.
of Applied Mathematics 7 (1996), 287-301. MR 97g:80010

8. J.W. Cahn and J.E. Hilliard, Spinodal decomposition: A reprise, Acta Metall. 19 (1971),
151-161.

9. J.F. Cialvaldini, Analyse numérique d’un probléme de Stefan & deuzx phases par une méthode
d’elements finis, SIAM J. Numer. Anal. 12 (1975), 464-487.

10. M.I.M. Copetti and C.M. Elliott, Numerical analysis of the Cahn-Hilliard equation with log-
arithmic free energy, Numer. Math. 63 (1992), 39-65. MR 94b:65130

11. Ha Dang, Stability and boundary layer properties of Cahn-Hilliard equations, Ph.D. Thesis,
University of Utah (1995).

12. C.M. Elliott, Error analysis of the enthalpy method, IMA J. Numer. Anal. 7 (1987), 61-71.
MR 90a:65222

13. C.M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM
J. Math. Anal. 27 (1996), 404-423. MR 97c¢:35081



14.

15.

16.

17.

18.

19.

FINITE ELEMENT APPROXIMATION 517

C.M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a
concentration dependent mobility matriz, Physica D 109 (1997) pp. 242-256. CMP 98:06
C.M. Elliott and S. Larsson, A finite element model for the time-dependent joule heating
problem, Math. Comp. 64 (1995), 1433-1453. MR 95m:65164

C.M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separation of a multi-
component mizture with interfacial free energy. IMA, University of Minnesota, Preprint 887
(1991).

Yin Jingxue, On the ezistence of nonnegative continuous solutions of the Cahn-Hilliard equa-
tion. J. Diff. Eqns. 97 (1992), 310-327. MR 93£:35193

J.L. Lions, Quelques méthodes de résolution des problémes auz limites nonlinéaires. Dunod,
Paris (1969). MR 41:4326

R.H. Nochetto, Finite element methods for parabolic free boundary problems, in Advances in
numerical analysis vol 1, (W. Light ed.), O.U.P. (1991), pp. 34-95. CMP 92:04

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE, LONDON SW7 2BZ, U.K.
E-mail address: j.barrett@ic.ac.uk

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF DURHAM, DURHAM DH1 3LE,

U.K.

E-mail address: j.f.blowey@durham.ac.uk



