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2 FABIO CAMILLI AND LARS GR�UNEand [16] for a viscosity solution approach). It is well known that if f vanishes at somepoints, there are in�nite many viscosity solutions to (1.1) (see [15]). Nevertheless, amongthese solutions, in general only one is the relevant solution (for example, from the physicalpoint of view, from the control theoretic one, etc.).In [6] (see also [14]), requiring a stronger condition for supersolution than that for thestandard viscosity solution, a Comparison Principle, which characterizes the maximal vis-cosity solution of the problem, has been obtained for the following class of Hamilton-Jacobiproblems H(x;Du) = f(x) x 2 
; (1.2)u(x) = g(x) x 2 @
: (1.3)Here 
 is a bounded domain of RN , H and f are nonnegative continuous functions and fcan have a very general zero set (the Eikonal equation (1.1) �ts into this class of equation).It is worth noting that this maximal solution is the value function of a control problemassociated in a suitable way to (1.2){(1.3).There are, in general, two approaches to the discretization of problem (1.2)-(1.3).A �rst possibility is to discretize problem (1.2)-(1.3) directly, but imposing some additionalcondition which among the in�nite many solutions singles out the one we want to approx-imate: for example, in [17], it is assumed that the solution is known on the zero set of f ,which is now a part of the boundary of the domain where the problem is discretized.A second possible approach (see [4], [5] and references therein) is to discretize a regularizedversion of problem (1.2){(1.3), obtained by cutting from below f at some positive level� > 0 (note that for f > 0 problem (1.2){(1.3) has a unique viscosity solution). To provethe convergence of the scheme, both � and the discretization step h have to be send to 0.Since the limit problem does not have a unique viscosity solution, it is not possible to applythe Barles-Souganidis theorem and, to our knowledge, there is no convergence theorem forthis class of schemes, at least for a general zero set of f . Furthermore, if � and h are notrelated by some condition, the approximation scheme shows numerical instability and it isnot really known which solution is approximated (see [12] for some numerical tests in thissense).Aim of this paper is to describe an approximation scheme for which it is possible to provethe convergence to the maximal solution of problem (1.2){(1.3), without requiring anyadditional assumptions.The scheme is based on a two step discretization of the control problem associated to theregularized problem: �rst in the time variable, discretization step h, and then in the spacevariable, discretization step k (see [2], [13] for related ideas).In the �rst part (Sections 3, 4), we study the approximation scheme obtained by dis-cretization in time. We show that, if � and h are related in an appropriate way, the schemeconverges to the maximal solution of (1.2){(1.3) for � and h going to zero. This result is inthe spirit of [3], in the sense that it is based on stability properties of the maximal viscositysolution and on its characterization given by the comparison theorem in [6]. Therefore,the proof of the convergence theorem can be easily modi�ed to manage other boundaryconditions instead of (1.3) or, also, di�erent approximation schemes not necessarely basedon the control theoretic interpretation of the problem.



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 3In the second part (Section 5) we study the discretization error for the fully discrete scheme.We show that, if the zero set of f is not too \wild", it is possible to estimate in terms of� and of the discretization steps the L1-distance between the approximate solution andthe maximal solution of the continuous problem. This part deeply employs the controltheoretic interpretation both of the discrete problem and of the continuous one.2 Continuous problem: assumptions and resultsIn this section we brie
y recall the characterization of the maximal solution of problem(1.2)-(1.3) obtained in [6]. Here and in the remainder of the paper by (sub, super)solutionswe mean Crandall-Lions viscosity (sub, super)solutions (see [1] for a general treatment).We �rst set the assumptions on the data of the problem. The hamiltonian H : 
�RN ! Ris assumed to be continuous in both variables and to verifyH(x; 0) = 0; H(x; p) > 0 if jpj 6= 0,limjpj!+1H(x; p) = +1 uniformly for x 2 
,t! H(x; tp) is strictly increasing for t 2 [0; 1]for any (x; p) 2 
� RN , (2.1)and Z(x) := fp 2 RN : H(x; p) � f(x)gis convex for any x 2 
: (2.2)Note that the hypothesis (2.2) replaces the stronger one of convexity of H in p.The function f : 
 ! R is nonnegative, continuous in 
 . Moreover, de�ned K := fx 2
 : f(x) = 0g, it is assumed that K \ @
 = ;: (2.3)Finally we assume g : RN ! R to be a continuous and bounded function.We introduce the gauge function � and the support function � of the convex set Z(x),namely �(x; p) = inff� > 0 : p� 2 Z(x)g (2.4)�(x; p) = supfpq : q 2 Z(x)g; (2.5)for any (x; p) 2 
�RN . Both these functions are convex and homogeneous in the variablep, and are l.s.c. and respectively continuous in 
 (note that, if x 2 K, �(x; 0) = 0 and�(x; p) = +1 for jpj 6= 0). Moreover they are related by the following equality�(x; p) = sup�(x;q)�1fpqg x 2 
, p 2 RN : (2.6)Example 2.1 Let  : R+ ! R+ be a continuous function such that  (0) = 0 and  isstrictly increasing. Consider the equation (jDu(x)j) = f(x) x 2 
: (2.7)



4 FABIO CAMILLI AND LARS GR�UNEIn this case we have Z(x) = B(0;  �1(f(x));�(x; p) = jpj �1(f(x)) ; �(x; p) =  �1(f(x))jpj:We now de�ne a nonsymmetric semidistance on 
�
 byL(x; y) = inffR T0 �(�(t);� _�(t))dt : T > 0; �(t) 2W 1;1([0; T ];
)s.t. �(0) = x; �(T ) = ygand, for x 2 
 and r > 0, the open setsBL(x; r) := fy 2 
 : L(x; y) < rg:It can be shown that the family BL(x; r) induces a topology �L on 
. If K consists ofisolated points this topology is equivalent to the Euclidean topology and the problem canbe studied in the framework of viscosity solution theory (see [14]). In general, �L is weakerthan the Euclidean topology and, for x 2 K, the set of points having zero L-distance fromx is a subset of K.To obtain the characterization of the maximal solution, the de�nition of viscosity solutionwill be adapted to the topology �L.De�nition 2.2 Given a l.s.c. function v : 
 ! R, a Lipschitz continuous function � iscalled L-subtangent to v at x0 2 
 if, for some � > 0,�(x0) = v(x0)�(x) � v(x) x 2 BL(x0; �):The L-subtangent is called strict if �(x) < v(x) outside BL(x0) = fx 2 
 : L(x0; x) = 0g.We remark that the convexity assumption (2.2) allows us to use Lipschitz continuous testfunctions instead of C1 test functions as in the standard de�nition of viscosity solution.For a Lipschitz continuous function �, we denote by @�(x) the generalized gradient of � atx, i.e. @�(x) = cofp 2 RN : p = limnD�(xn) for a sequence xn ! x s.t.� is di�erentiable at xng:De�nition 2.3 A l.s.c. function v : 
 ! R is said to be a singular supersolution of(1.2) if for any x0 2 
 and for any �, L-subtangent to v at x0 such that @�(x) = f0g inx 2 BL(x0; �) \ K, there exists a sequence xn 2 
 n K and a sequence pn 2 @�(xn) forwhich limn!+1L(x0; xn) = 0 (2.8)and limn!1�(xn; pn)� 1 � 0: (2.9)



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 5It is worth noting that the de�nition of singular supersolution reduces to the standardde�nition of viscosity supersolution if x0 2 
 nK. In fact, in this case, since the topology�L and the Euclidean topology are equivalent in neighborhood of x0, L-subtangents atx0 coincide with standard subtangents. Moreover, in (
 n K) � RN , �(x; p) � 1 (resp.�(x; p) � 1) if and only if H(x; p) � f(x) (resp. H(x; p) � f(x)).In the following theorem, we compare viscosity subsolutions and singular supersolutions ofequation (1.2).Theorem 2.4 Let u 2 USC(
), v 2 LSC(
) be a viscosity subsolution and a singularsupersolution of equation (1.2), respectively, such that u � v on @
. Thenu � v in 
:Hypothesis (2.2) allows us to give a control theoretic interpretation of problem (1.2){(1.3).Let U be the value function of the control problem with dynamics( _�(t) = q(t) t 2 [0;1)�(0) = x; (2.10)where x 2 
 and q is any bounded measurable function from [0;+1) to Rn such thatT := infft > 0 : �(t) 62 
g < +1, and with cost functionalJ(x; q) = Z T0 �(�(t); q(t))dt + g(�(T )): (2.11)The dynamic programming equation associated to the control problem (2.10){(2.11) issupjqj�1 fqDu(x)� �(x; q)g = 0 x 2 
: (2.12)This equation turns out to be equivalent to equation (1.2), in the sense that any viscositysub or supersolution of equation (2.12) is also a viscosity sub- or supersolution of equation(1.2) and vice versa.In the following we will assume that the boundary datum g veri�es the compatibilitycondition g(x)� g(y) � L(x; y) for any x, y 2 @
. (2.13)It is standard to show that, under hypothesis (2.13), U is a viscosity solution of (1.2) andsatis�es the boundary condition (1.3). Furthermore we haveProposition 2.5 The value function U is a singular supersolution of equation (1.2) in 
.Theorem 2.4 and Proposition 2.5 now allow us to characterize the maximal solution of(1.2){(1.3): Let S denote the set of functions v 2 USC(
) which are viscosity subsolutionsof (1.2) and which satisfy v � g on @
. From Theorem 2.4 and Proposition 2.5 it followsthat the value function U of the control problem (2.10){(2.11) is the maximal element of S,i.e. the maximal subsolution of problem (1.2){(1.3). Moreover U is a singular supersolutionof (1.2) satisfying U = g on @
, hence it is the maximal solution.



6 FABIO CAMILLI AND LARS GR�UNERemark 2.6 If H is convex in p, then U coincides with the value function of controlproblem with dynamics (2.10) and cost functionalJ(x; q) = Z T0 f(�(t)) +H�(�(t); q(t))dt + g(�(T )):where H�(x; �) denotes the Legendre transform of H(x; �), cp. [15]. Note, however, that�(x; q) and f(x) +H�(x; q) in general do not coincide pointwise.We conclude this section stating a particular case of a general stability theorem proved in[6] needed for the construction of the approximation scheme.Proposition 2.7 Set f�(x) = maxff(x); �g and let u� be the sequence of viscosity solutionsof H(x;Du) = f�(x) x 2 
;u(x) = g(x) x 2 @
: (2.14)Then lim�!0u�(x) = U(x)uniformly in 
, where U is the maximal solutions of (1.2)-(1.3).Note that for any � > 0 �xed, since f� > 0 in 
, problem (2.14) admits a unique viscositysolution. Moreover this solution is given by the value function of the control problem withdynamics (2.10) and cost functionalJ�(x; q) = Z T0 ��(�(t); q(t))dt + g(�(T )) (2.15)where �(T ) 2 @
 and ��(x; q) is de�ned as �(x; q) with f� instead of f .We introduce some notations we will use in the following. We de�neM := supf��(x; q) : x 2 
; jqj = 1; � > 0g: (2.16)Moreover, for � > 0, we set!��(r) := supfj��(x; p)� ��(y; p)j : jpj = 1; jx� yj < rg; (2.17)�(�) := infx2
;jqj=1 ��(x; q): (2.18)Note that, for any � > 0, �(�) > 0 and !��(r) is bounded by !�(r) = supfj�(x; p)��(y; p)j :jpj = 1; jx� yj < rg.3 The semidiscrete schemeLet us introduce the semidiscrete approximation scheme, obtained by discretizing in timethe exit time control problem (2.10){(2.15). For a �xed � > 0, we choose a step in timeh 2 (0; 1) and de�ne discrete dynamics by the recursive sequence( xn+1 = xn + hqn n 2 Nx0 = x;



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 7for x 2 
, fqng � Rn such that jqnj = 1.The cost is given by Jh�(x; qn) = N�1Xn=0 h��(xn; qn) + g(xN )where N = inffn 2 N : xn 62 
g(we assume the convention that P�1n=0 = 0). The value function for this control problem isuh�(x) = inffJh�(x; qn) : fqng such that N < +1g:By a standard application of the discrete dynamic programming principle, the function uh�is a solution of the problem( uh�(x) = infjqj=1 fh��(x; q) + uh�(x+ hq)g x 2 
;u(x) = g(x) x 2 RN n 
: (3.1)The following result holds trueProposition 3.1 There is a constant C (independent of h and �) such thatjuh�(x)j � C for any x 2 
. (3.2)Moreover uh� is the unique bounded solution of (3:1).Proof: We �rst observe that it is always possible to assume, by adding a constant, thatg � 0. It follows that uh� � 0. Moreoveruh�(x) �M supx2
 d(x; @
) + supx2Rn g(x)where M is as in (2.16).Let v1, v2 be two bounded solution of (3.1) and set wi(x) = 1� e�vi(x), for i = 1; 2. Thenwi satis�es ( wi(x) = [Swi](x) x 2 
wi = 1� e�g(x) x 2 RN n 
; (3.3)where [S�](x) = infjqj=1n1� h��(x; q) + e�h��(x;q)�(x+ hq)o :It follows that sup
 jSw1(x)� Sw2(x)j � � sup
 jw1(x)� w2(x)jwith � = e�h�(�) < 1, and w1 = w2 = g in RN n 
.We conclude that for any � > 0 and h > 0 there exists at most one bounded solution of(3.3) and therefore of problem (3.1). This solution is given by uh�.Remark 3.2 If we discretized the control problem (2.10){(2.11) directly (which corre-sponds to setting � = 0 in the previous approximation scheme), the resulting approxi-mating equation does not have a unique bounded solution, similarly to what happens inproblem (1.2)-(1.3). This causes the drawback that any algorithm designed to solve thatapproximating equation could not converge to the maximal viscosity solution and, in anycase, displays high numerical instability (see [12]).



8 FABIO CAMILLI AND LARS GR�UNE4 Convergence of the semidiscrete schemeIn this section, we prove the convergence of the approximation scheme introduced in theprevious section to the maximal solution of (1.2){(1.3).Given a locally uniformly bounded sequence of functions v� : 
! R, � > 0, we setlim inf�!0 � v�(x) = infflim inf�!0 v�(x�) : x� ! x; x� 2 
glim sup�!0 � v�(x) = supflim sup�!0 v�(x�) : x� ! x; x� 2 
gfor any x 2 
. The functions lim inf�!0 � v�(x) and lim sup�!0 � v�(x) are, respectively, l.s.c. andu.s.c. in 
.Lemma 4.1 Let uh� be a sequence of solutions of (3.1) and assume that h = h(�) is suchthat !��(h)�(�) ! 0 as �! 0+: (4.1)Then u(x) = lim inf�!0 � uh�(x) x 2 
is a singular supersolution of (1.2).Proof: Because of (3.2), the function u is well de�ned in 
. Let � : 
! R be L-subtangentto u at x0 2 
. It is possible to assume without loss of generality (see [6], Proposition 5.1)that � is a strict L-subtangent to u at x0.Employing a standard argument in viscosity solution theory, we �nd a sequence x� ofminimum points for uh� � � such that L(x0; x�)! 0 as � tends to 0+. Then0 = supjqj=1��uh�(x� + hq)� uh�(x�)h � ��(x�; q)� �� maxjqj=1���(x� + hq)� �(x�)h � ��(x�; q)� == ��(x� + hq�)� �(x�)h � ��(x�; q�) (4.2)for some q� with jq�j = 1.From the Mean Value Theorem for Lipschitz continuous functions (see Clarke [7]), thereexist �� 2 (0; 1) and p� 2 @�(x� + h��q�) such that�(x� + hq�)� �(x�) = hp�q�: (4.3)Set x� = x� + hq�. Substituting (4.3) into (4.2), we get0 � p�q� � ��(x�; q�) � p�q� � ��(x�; q�) + !��(h): (4.4)Observe that x� 62 K, otherwise, since @�(x) = f0g on K, we should have p� = 0 and from(4.4) 0 � ���(x�; q�)



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 9which is impossible since �� is strictly positive in 
.Let q� = q�=��(x�; q�). By the homogeneity of ��(x; q) with respect to q, we have q� 2 fq 2RN : ��(x�; q) � 1g. Dividing (4.4) by ��(x�; q�) and recalling (2.6), we get0 � p�q� � 1 + !��(h)�(�) � sup��(x�;q)�1np�qo� 1 + !��(h)�(�) �� sup�(x�;q)�1np�qo� 1 + !��(h)�(�) � �(x�; p�)� 1 + !��(h)�(�) :Since the sequence x� belongs to 
 nK and L(x0; x�)! 0, as �! 0+, we conclude, thanksto hypothesis (4.1), that u is a singular supersolution of (1.2).Theorem 4.2 Assume that either g � 0 (4.5)or 
 is convex: (4.6)If uh� is a sequence of solutions of problem (3.1) and h = h(�) satis�es the assumption(4.1), then lim�!0uh�(x) = U(x) uniformly in 
, (4.7)where U is the maximal solution of problem (1.2)-(1.3).Proof: We set u(x) = lim inf�!0 � uh�(x);u(x) = lim sup�!0 � uh�(x)for x 2 
. These function are well de�ned because of (3.2).From Proposition 4.1, it follows that u is a singular supersolution of equation (1.2). More-over it is standard to show that u is a subsolution of (2.12) and therefore of (1.2) in 
 (see,f.e., [1] or [2]). If we show that u � u on @
, then Theorem 2.4 and Proposition 2.5 implythat u = u = U in 
 and therefore (4.7).We will show that u(x) � g(x) � u(x) for any x 2 @
. (4.8)To show that u(x) � g(x) on @
, we need an estimate on the behavior of uh� in a neigh-borhood of @
. Let � > 0 be su�ciently small and set 
� = fx 2 
 : d(x; @
) < �g.For x 2 
�, let y 2 @
 be such that d(x; @
) = jy � xj. De�ne a control law fqng for thediscrete control problem by qn = x� yjx� yj n 2 Nand, denoted by xn the corresponding discrete trajectory, let N = inffn > 0 : xn 62 
g.Observing that Nh � jy � xj, we getuh�(x) � N�1Pn=0 h��(xn; qn) + g(xN ) ��M jy � xj+ g(y) + !g(h):



10 FABIO CAMILLI AND LARS GR�UNEwhere M is as in (2.16) and !g is a modulus of continuity of g. If x0 2 @
 and x� 2 
 is asequence converging to x0, we have either uh�(x�) = g(x�), if x� 2 @
, oruh�(x�) �M jy� � x�j+ g(y�) + !g(h)if x� 2 
, where y� 2 @
 is such that d(x�; @
) = jx� � y�j. Since also y� converges to x0,we get u(x0) � g(x0) on @
.To get the other inequality in (4.8), if g � 0, then uh�(x) � 0 in 
 and therefore u � 0 on@
.If (4.6) holds, by adding a constant, we can always assume that g � 0.For x 2 
, let qn be an �-optimal control for uh�(x), xn the corresponding discrete trajectoryand N the exit time from 
. Since�(�)Nh � N�1Xn=0 h��(xn; qn) + g(xN ) � uh�(x) + �we have Nh � C + 1�(�)with C as in (3.2).Let q(t) be a control law for the continuous problem obtained by setting q(t) = qi fort 2 [ih; (i + 1)h), i = 0; 1; : : : ; N � 1. If �(t) and T are respectively the trajectory and theexit time corresponding to q(t), we haveu�(x) � R Nh0 ��(�(t); q(t))dt + g(�(T )) �� N�1Pn=0 h (��(xn; qn) + !��(h)) + g(xN ) + !g(j�(T ) � xN j) �� uh�(x) + � + C !�� (h)�(�) + !g(h); (4.9)where the estimate j�(T )�xN j � h holds because of the convexity of 
. Since u�(x) = g(x)for any x 2 @
 and the assumption (4.1) is satis�ed, from (4.9) we easily get other inequalityin (4.8).Remark 4.3 For the Eikonal equation (1.1) we have ��(x; q) = f�(x)jqj and thereforecondition (4.1) reduces to !f (h)� ! 0 as �! 0+where !f is the modulus of continuity of the function f on 
.5 Discretization error for the fully discrete schemeIn this section we will discuss a fully discrete scheme derived from the semidiscrete one asdeveloped in the previous sections. In order to simplify the calculations we assume that



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 11the function g de�ning the boundary condition is uniformly Lipschitz with constant Lg,and that the domain 
 is convex.We will introduce a space discretization which transforms (3.1) into a �nite dimensionalproblem. For this purpose we choose a grid � covering 
 consisting of simplices Sj withnodes xi and look for the solution of (3.1) in the spaceW := fw 2 C(
) jrw � const on Sjgof piecewise linear functions on �. By the parameter k we denote the maximal diameterof the simplices Sj . For simplicity we assume that the boundary of the gridded domaincoincides with the boundary of 
. (In the general case we can always achieve an errorscaling linearly with the distance between these two boundaries due to the fact that g isLipschitz).Thus we end up with the fully discrete schemeuk�;h(xi) = infjqj=1nh��(xi; q) + uk�;h(xi + hq)o (5.1)for all nodes xi 2 
 with the boundary condition uk�;h(xi) = g(xi) for the nodes xi 62 
 andlinear interpolation between the nodes.Note that there exists a unique bounded solution of (5.1). The boundedness of any solutionof (5.1) follows from the fact thatuk�;h(xi) � h��(xi; q) + uk�;h(xi + hq)holds for any q 2 Rn with jqj = 1. Thus we can always choose q such that uk�;h(xi + hq)depends on nodes which are closer to the boundary @
 than xi and (if h < k) on xi itself,but with a weight strictly less than one. Since the value in the boundary nodes is boundedwe obtain boundedness for each node by induction.Due to the boundedness the existence of a unique solution uk�;h is now easily proved byapplying the Kruzkov transformationv(x) = 1� e�uk�;h(x)as in the proof of Proposition 3.1.Note that the function �� appearing in the scheme is de�ned implicitely via H and f�. Inorder to solve the scheme we assume that we can compute this function analytically ase.g. in Example 2.1. (In the case of a convex Hamiltonian one may alternatively use anumerical approximation of the integrand from Remark 2.6 via the Legendre transform asgiven e.g. in [10]. Note, however, that this procedure yields a di�erent cost function thanin the following analysis.)We will now start by estimating the discretization error ju�(x) � uk�;h(x)j, x 2 
. Sincewe allow nonconstant boundary conditions we introduce the following auxiliary functionswhich will be useful for the estimation of the error.



12 FABIO CAMILLI AND LARS GR�UNEDe�nition 5.1 For each point x 2 
 we de�new1(x) = u�(x)� u�(�(T ))where �(�) is an optimal path for the initial value x and �(T ) 2 @
.For each node xi of the grid pick a control qi minimizing (5.1) and let w2 2 W be theunique solution of w2(xi) = h��(xi; qi) + w2(xi + hqi) (5.2)with the boundary condition w2(x) = 0 and interpolation between the nodes.Finally we de�ne w(x) = maxfw1(x); w2(x)g.Remark 5.2 The existence of optimal paths follows from the continuous dependence ofthe functional J(x; q) from the control function q using the weak�-metric (as de�ned forcontrol functions e.g. in [9]), using the Gronwall Lemma as in [8, Proof of Lemma 3.4(ii)]and the structure of ��. Note that the a-priori boundedness of the length of approximatelyoptimal trajectories | following from the positivity of �� | is crucial for this continuousdependence. Thus in general the existence of optimal trajectories does not hold for thenon-regularized problem since there for any sequence of approximately optimal trajectoriesthe length of these trajectories may grow unbounded when we restrict jq(t)j = 1 for allt � 0.Note that we do not require uniqueness of the optimal paths in De�nition 5.1. In the casethat there is no unique optimal path we may use one that minimizes w1.De�nition 5.1 de�nes functions which are 0 at @
 and away from @
 essentially grow likeu� and uk�;h, respectively. More precisely we have thatw1(�(t)) � w1(x) = u�(�(t))� u�(x)and w2(xi + hqi)� w2(xi) = uk�;h(xi + hqi)� uk�;h(xi)for �(�) and qi as used in the de�nition.Note that in particular if g(x) � c is constant we obtainw(x) = maxfu�(x); uk�;h(x)g � c:Using this w we can give the following estimate for the discretization error.Proposition 5.3 Let uk�;h 2W be the unique solution of (5.1). Then the estimateju�(x)� uk�;h(x)j � C �k!��(k)h�(�) + k�(�)h + !��(h)�(�) �w(x) + (M + Lg)h+ Lgk (5.3)holds for each x 2 
 and for all su�ciently small k > 0 and h > 0 with M , !�� and � asde�ned in (2.16){(2.18), �(�) = infx2
;jqj=jpj=1 ��(x; p)��(x; q) ;and some constant C independent from �; h and k.



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 13The proof can be found in the appendix.Remark 5.4 (i) Note that estimate (5.3) is stronger than the usual L1 estimate sinceessentially the error scales with the function w(x) being 0 at @
. The reason for thisbehaviour origins in the fact that the error is estimated along the optimal trajectorieswhose length depends on the optimal value.(ii) The constant �(�) essentially depends on the growth of H in jpj, e.g. in Example 2.1 wehave �(�) =  �1(�). The constant �(�) is determined by the di�erence between H(x; p) andH(x; q) for jpj = jqj. In particular if H(x; p) 2 [C1jpj
 ; C2jpj
 ] we have that �(�) � C1=C2independently from �. Finally, !� (which gives a bound for !�� for all � > 0) combines thecontinuity properties of H and f , i.e. in Example 2.1 we have that !�(r) = ! �1�f (r).(iii) Note that the requirement on h ensuring the convergence of the fully discrete scheme isthat !��(h)=�(�)! 0 as �! 0, thus it is consistent with condition (4.1) for the convergenceof the semidiscrete scheme.(iv) The appearance of the value �(�) in the denominator in (5.3) is due to the fact thathere we implicitely included the worst case, i.e. that the length of the optimal trajectoriesmay grow like 1=�(�) for �(�)! 0. Since this is not necessarily the case in many practicalexamples one can expect better convergence behaviour for �(�)! 0.(v) A particular nice formulation of estimate (5.3) can be obtained if we consider theEikonal equation (1.1) (implying �(�) = 1 and �(�) = �), assume that f is uniformlyLipschitz (implying !��(h) � Lfh) and impose a homogeneous boundary condition, i.e.g � c (implying Lg = 0). In this case the estimate becomesju�(x)� uk�;h(x)j � C "k2h� + kh + h� # �maxfu�(x); uk�;h(x)g � c�+ Chfor some constant C > 0 independent from �; h and k. In particular this implies convergenceof the scheme if "! 0, h="! 0 and k=h! 0.We will now turn to the discussion of the error obtained when equation (1.2) is replacedby equation (2.14), i.e. the error introduced by the regularization of the problem.Proposition 2.7 already implies that u" converges to U , where U is the maximal subsolutionof (1.2). Unfortunately, in general this convergence can be arbitrary slow. In the optimalcontrol interpretation this is due to the fact that the length of approximately optimaltrajectories may grow unbounded as the approximation gets better and better. Sincethese long pieces of the trajectories can only appear in regions where f is su�ciently small(otherwise the cost would be large contradicting the approximate optimality), we can derivean estimate for the regularization error by de�ning a criterion for the sets where f is smallwhich in turn gives a bound on the length of approximately optimal trajectories.The following de�nition is our main tool for this purpose.De�nition 5.5 Let B � Rd be a compact set. For each connected component Bi of B wede�ne the inner diameter d(Bi) byd(Bi) := supx;y2Bi dBi(x; y)



14 FABIO CAMILLI AND LARS GR�UNEwhere dBi(x; y) := inf8><>:T � 0 ������� 9�(t) 2W 1;1([0; T ]; Bi)s.t. �(0) = x; �(T ) = y;j _�(t)j = 1 a.e. 9>=>;and for B we de�ne the inner diameter byd(B) :=XBi d(Bi)where the sum is taken over all connected components of B.Using this de�nition we can state the following estimate for the regularization error.Proposition 5.6 Let U be the maximal subsolution of (1.2) and let u� be the uniqueviscosity solution of (2.14).Then the estimate kU � u�k1 � c(�)d(K�)holds where K� := fx 2 
 j f(x) � �g and c(�) = supx2K�; jqj=1 ��(x; q).The proof can be found in the appendix.Here the constant c(�) depends only on the sets Z�(x) = fp : H(x; p) � f�(x)g, i.e. on �and on the Hamiltonian H. In fact an easy calculation shows thatc(�) = supx2K�;p2Z�(x) jpj = supx2K�;p2Rn;H(x;p)�� jpj:Thus e.g. the estimate c(�) � C�
 for some constants C; 
 > 0 and all � > 0 su�cientlysmall holds if H(x; p) � (jpj=C)1=
 for all x 2 K�, all � > 0 su�cently small and all p 2 Rnwith jpj su�ciently small. In particular for the Eikonal equation (1.1) this implies c(�) = �.Observe that if f is piecewise polynomial then d(K") is bounded for all � > 0 and henceconvergence with order c(�) follows for �! 0. Piecewise polynomial maps are in particularinteresting since they include the case where f is obtained from experimental data bysome polynomial interpolation (e.g. using piecewise linear interpolations, multidimensionalsplines...).The following theorem now gives the full a-priori estimates for the approximation error ofthe whole numerical approximation.Theorem 5.7 Let U be the maximal subsolution of (1.2) and let uk�;h be the unique solu-tion of the numerical scheme (5.1).Then the estimatejU(x)� uk�;h(x)j � c(�)d(K�) + C �k!��(k)h�(�) + k�(�)h + !��(h)�(�) �w(x) + (M�� + 2Lg)h+ Lgkholds for each x 2 
 and the constants from the Propositions 5.3 and 5.6.



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 15Proof: Follows immediately from the Propositions 5.3 and 5.6.Remark 5.8 (i) A possible modi�cation of the scheme can be made if we allow smallertime steps at the boundary @
, i.e. for xi 2 
 and xi + hq 62 
 we use the restricted timestep �h = supfh 2 [0; h] jxi + hq 2 
g:Although slightly more di�cult to implement this modi�cation usually gives better numer-ical results. The proof of Proposition 5.3 also applies to this modi�ed scheme.(ii) Due to the structural similarity of the scheme described in this section with the schemeconsidered in [13], the adaptive grid scheme developed there can also be applied here.Similar convergence results as in [13] can be obtained for our scheme using the techniquefrom the proof of Proposition 5.3.6 Appendix: Proof of the Propositions 5.3 and 5.6In order to prove Proposition 5.3 we will �rst state a useful estimate for the local erroralong the functional.Lemma 6.1 For each measurable q(�) with jq(t)j = 1 for almost all t 2 [0; h] and the path�(�) with _�(t) = q(t) and �(t) 2 
 for all t 2 [0; h] there exists p 2 Rn with jpj = 1 suchthat h�(�(0); p) � Z h0 ��(�(t); q(t))dt + h!��(h)and �(0) + hp = �(h):Conversely, for each p 2 Rn with jpj = 1 and each x 2 
 with x + hp 2 
 there exists ameasurable function q(�) with jq(t)j = 1 for all t � 0 such thatZ h0 ��(�(t); q(t))dt � h�(x; p) + h!��(h)and �(0) = x; �(h) = x+ hpwhere _�(t) = q(t) and �(t) 2 
 for all t 2 [0; h].Proof: The convexity of �� in the second argument implies��(x; Z h0 q(t)dt) � Z h0 ��(x; q(t))dt:Hence by de�ning p = 1h Z h0 q(t)dtthe �rst assertion immediately follows from the continuity of �� which is measured by !�� .



16 FABIO CAMILLI AND LARS GR�UNEThe second assertion follows directly from the continuity of �� setting q(t) � p and usingthe convexity of 
.Proof of Proposition 5.3We start giving some preliminary estimates.First note that the error at the boundary can be estimated byjuk�;h(x)� u�(x)j � Lgk (6.1)which simply follows from the Lipschitz property of g.Furthermore it is easy to see that on each element Sj of the grid we can estimateju�(x)� u�(y)j � supz2Sj ;jqj=1 ��(z; q)k (6.2)for each two points x; y 2 Sj. We abbreviate �j = supz2Sj ;jqj=1 ��(z; q).We show the estimate (5.3) by estimating seperately the quantities uk�;h(x) � u�(x) andu�(x)� uk�;h(x). First, we consider uk�;h(x)� u�(x).Observe that for any 
 > 0 there exists an � � 0 such thatuk�;h(x)� u�(x) � �(w1(x) + 
) + (M�� + Lg)h+ Lgk for all x 2 
 (6.3)which easily follows from the fact that w1 � 0 and uk�;h is bounded.Now we �x some arbitrary 
 > 0 and choose � � 0 to be minimal with (6.3). If � = 0 theassertion immediately follows. Otherwise if � > 0 by the continuity of the functions andthe compactness of 
 we can conclude that there exists x� 2 
 such thatuk�;h(x�)� u�(x�) = �(w1(x�) + 
) + (M�� + Lg)h+ Lgk: (6.4)Now consider the element Sj containing x�. We can write x� =Pi2I �ixi where the xi arethe nodes of Sj and the �i are nonnegative coe�cients with Pi2I �i = 1.Using estimate (6.2) we obtainuk�;h(x�)� u�(x�) �Xi2I �i(uk�;h(xi)� u�(xi)) + �jk: (6.5)Now for each of the nodes we distinguish three cases.(i) xi 2 @
: By (6.1) this impliesuk�;h(xi)� u�(xi) � Lgk (6.6)(ii) xi 2 
 and for the optimal path �i(�) with �i(0) = xi from De�nition 5.1 there exists atime �i 2 (0; h] such that u�(xi) = Z �i0 ��(�i(t); qi(t))dt + g(�i(�i))



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 17where �i(�i) 2 @
 and _�i(t) = qi(t). In this case by the convexity of 
 we can concludethat there exists p 2 Rn with jpj = 1 and xi+hp 62 
 such that jxi+hp� �i(�i)j � h. Thuswe obtain uk�;h(xi)� u�(xi) � (M�� + Lg)h+ Lgk (6.7)(iii) xi 2 
 and for the optimal path �i(�) with �i(0) = xi from De�nition 5.1 the equalityu�(xi) = Z h0 ��(�i(t); qi(t))dt + u�(�i(h)) (6.8)holds where �i(0) = xi, �i(h) 62 @
 and _�i(t) = qi(t).In this case Lemma 6.1 and the de�nition of uk�;h implyuk�;h(xi)� u�(xi) � h!��(h) + uk�;h(�i(h))� u�(�i(h)) (6.9)where by (6.8) we can estimateu�(�i(h)) � u�(xi)� h infjqj=1 ��(xi; q) + h!��(h)and by De�nition 5.1 thus alsow1(�i(h)) � w1(xi)� h infjqj=1 ��(xi; q) + h!��(h): (6.10)Taking into account that the coe�cients in (6.5) sum up to 1 we deriveXi2I �i(uk�;h(xi)� u�(xi)) � (M�� + Lg)h+ Lgk + h!��(h) + uk�;h(�i(h)) � u�(�i(h)) (6.11)and combining (6.3), (6.4), (6.5), (6.10) and (6.11) we obtain�(w1(x�) + 
) � h!��(h) + �jk + � (w1(x�) + 
)� h infx2Si;jqj=1 ��(x; q) + h!��(h) + �jk!from which we conclude that� � h!��(h) + �jkh infx2Si;jqj=1 ��(x; q)� h!��(h)� �jk : (6.12)Estimating �j � �(")�1 infx2Sj ;jqj=1 ��(x; q) + !��(k) and writing �j = infx2Sj ;jqj=1 ��(x; q)(note that �j � �(�)) this becomes� � h!��(h) + �(")�1�jk + !��(k)kh�j � h!��(h)� �(")�1�jk � !��(k)k :Now we specify the assumption \h; k > 0 su�ciently small" by choosing them such that!��(h) << �(�), k << �(")h and !��(k)k << �(�)h which yields (recall �(�) � �j)h�j � h!��(h)� �(�)�1�jk � !��(k)k � 1Ch�j



18 FABIO CAMILLI AND LARS GR�UNEfor some constant C > 0 and thus� � C "!��(h)�j + k�(")h + !��(k)kh�j #which implies the desired estimate for w1(x) + 
 since �j � �(�). Since all values in thisresulting inequality are independent from 
 > 0 this also implies the estimate for 
 = 0.The inequality for u�(x) � uk�;h(x) follows with the same technique and the obvious modi-�cations using w2; note that here the convexity of 
 is also needed in Lemma 6.1 used incase (iii). Proceeding in this way we end up with the analogous estimate to (6.12)� � h!��(h) + �jkh infx2Si;jqj=1 ��(x; q)which leads to the desired result here without using the assumptions on k and h.Proof of Proposition 5.6For any measurable and bounded q and any x 2 
 denote the solution of (2.10) by�(t; x; q(�)). Fix � > 0, �1 > 0 and �2 2 (0; �) arbitrary and pick some x 2 
. Then by the op-timal control representation of U (2.10){(2.11) there exists a solution ��1(t) = �(t; x; q�1(�))with jq�1(t)j = 1 and a time T�1 > 0 such that ��1(T�1) 2 @
 andZ T�10 �(��1(t); q�1(t))dt+ g(��1(T�1)) < U(x) + �1:We now divide the connected components Ki�, i 2 I of K� into two classes by de�ningI1 := ni 2 I j f(x) � �� �2 for all x 2 Ki�oand I2 = I n I1. Then by the continuity of H there exists a constant 
(�2) with 
(�2)! 0as �2 ! 0 such thatj��(x; p)� �(x; p)j < 
(�2) for all x 2 Ki�; i 2 I1; jpj = 1: (6.13)Furthermore by the uniform continuity of f every set Ki�, i 2 I2, has a volume boundedfrom below by some uniform constant depending on �2 and hence there are only �nitelymany of these sets; we may number them by i = 1; : : : ; N .Now we de�ne for each of these Ki", i = 1; : : : ; N which is hit by the trajectory ��1 timesti� and ti+ byti� = infft 2 [0; T�1 ] j ��1(t) 2 Ki"g and ti+ = supft 2 [0; T�1 ] j ��1(t) 2 Ki"gwhere we omit those sets Ki" for which [ti�; ti+] � [tj�; tj+] for some j 6= i holds. This givesus a �nite number r of pairwise disjoint intervals [ti�; ti+] which we assume to be numberedaccording to their order, i.e. ti+ < ti+1� for i = 1; : : : ; r � 1.For each trajectory piece ��1(�)j[ti+;ti+1� ] we have by (6.13) and by the fact that outside K�the functions � and �� coincide the estimateZ ti+1�ti+ j�(��1(t); q�1(t))� ��(��1(t); q�1(t))jdt � (ti+1� � ti+)
(�2):



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 19For the points ��1(ti�) and ��1(ti+) we choose controls qi(�) satisfying jqi(t)j = 1 and yielding�(�i; ��1(ti�); qi(�)) = ��1(ti+), �(�i; ��1(ti�); qi(�)) 2 Ki� for all t 2 [0; �i] and �i � d(Ki�) whichis possible by the de�nition of d(�) and the structure of the dynamics (2.10). We now de�nea sequence of times ti, i = 0; : : : ; r byt0 = 0; t1 = t1�; ti+1 = ti + �i + (ti+1� � ti+); i = 1; : : : ; r � 2; tr = tr�1 + �r + (T�1 � tr+)and a measurable function ~q(�) by~q(t) = 8><>: q�1(t); t 2 [t0; t1)qi(t� ti); t 2 [ti; ti + �i)q�1(t� ti � �i + ti+); t 2 [ti + �i; ti+1)This construction yields that�(t; x; ~q(�)) = ��1(t) for all t 2 [t0; t1]and �(t; x; ~q(�)) = ��1(t� ti � �i + ti+) for all t 2 [ti + �i; ti+1]; i = 1; : : : ; r � 1thus in particular it follows that �(tr; x; ~q(�)) = ��1(T�1) and | de�ning t0+ := 0 | weobtainu�(x)� g(��1(T�1)) � Z tr0 ����(t; x; ~q(�)); ~q(t)�dt= r�1Xi=0 Z ti+1ti ����(t; x; ~q(�)); ~q(t)�dt� r�1Xi=0  Z ti+1+ti� ����1(t); q�1(t)�dt+ (ti+1� � ti+)
(�2) + �i+1c(�)!� U(x)� g(��1(T�1)) + �1 + T�1
(�2) + d(K�)c(�)Now letting �rst �2 ! 0 and then �1 ! 0 we obtain the assertion since u� � U is obvi-ous.References[1] M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions ofHamilton-Jacobi-Bellman equations, Birkh�auser, Boston, 1997.[2] M. Bardi and M. Falcone, An approximation scheme for the minimum time function,SIAM J. Control Optim. 28 (1990), 950{965.[3] G. Barles, and P. Souganidis, Convergence of approximation scheme for fully nonlinearsecond order equations, Asymptotic Anal. 4 (1991), 271{283.[4] M.J.Brooks and B.K.P.Horn, Shape from Shading, The MIT Press, Boston, 1989.
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