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1 Introduction

Given a Hamilton-Jacobi equation, a general result due to Barles-Souganidis [3] says that
any “reasonable” approximation scheme (based f.e. on finite differences, finite elements,
finite volumes, discretization of characteristics, etc.) converges to the viscosity solution of
the equation. Besides some simple properties that the approximation scheme has to satisfy,
it is only requested that the equation satisfies a comparison theorem for discontinuous
solutions, which in particular implies uniqueness of the viscosity solution.

This result covers a wide class of first and second order Hamilton-Jacobi equations, yet there
are interesting examples of equations coming from the applications for which uniqueness of
the viscosity solution does not hold. A significant example is given by the Eikonal equation

[Du| = f(z) (1.1)

on some open and bounded domain 2 C R coupled for example with a Dirichlet boundary
condition on 0f2. This equation arises in the Shape-from-Shading problem in image analysis
and a large literature has been devoted to its study (see [4] for a description of the problem
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and [16] for a viscosity solution approach). It is well known that if f vanishes at some
points, there are infinite many viscosity solutions to (1.1) (see [15]). Nevertheless, among
these solutions, in general only one is the relevant solution (for example, from the physical
point of view, from the control theoretic one, etc.).

In [6] (see also [14]), requiring a stronger condition for supersolution than that for the
standard viscosity solution, a Comparison Principle, which characterizes the maximal vis-
cosity solution of the problem, has been obtained for the following class of Hamilton-Jacobi
problems

H(z,Du) = f(x) z € Q, (
u(z) = g(z) x € 0f. (

1.2)
1.3)
Here Q is a bounded domain of RV, H and f are nonnegative continuous functions and f
can have a very general zero set (the Eikonal equation (1.1) fits into this class of equation).
It is worth noting that this maximal solution is the value function of a control problem
associated in a suitable way to (1.2)—(1.3).

There are, in general, two approaches to the discretization of problem (1.2)-(1.3).

A first possibility is to discretize problem (1.2)-(1.3) directly, but imposing some additional
condition which among the infinite many solutions singles out the one we want to approx-
imate: for example, in [17], it is assumed that the solution is known on the zero set of f,
which is now a part of the boundary of the domain where the problem is discretized.

A second possible approach (see [4], [5] and references therein) is to discretize a regularized
version of problem (1.2)—(1.3), obtained by cutting from below f at some positive level
e > 0 (note that for f > 0 problem (1.2)—(1.3) has a unique viscosity solution). To prove
the convergence of the scheme, both ¢ and the discretization step h have to be send to 0.
Since the limit problem does not have a unique viscosity solution, it is not possible to apply
the Barles-Souganidis theorem and, to our knowledge, there is no convergence theorem for
this class of schemes, at least for a general zero set of f. Furthermore, if € and h are not
related by some condition, the approximation scheme shows numerical instability and it is
not really known which solution is approximated (see [12] for some numerical tests in this
sense).

Aim of this paper is to describe an approximation scheme for which it is possible to prove
the convergence to the maximal solution of problem (1.2)-(1.3), without requiring any
additional assumptions.

The scheme is based on a two step discretization of the control problem associated to the
regularized problem: first in the time variable, discretization step h, and then in the space
variable, discretization step k (see [2], [13] for related ideas).

In the first part (Sections 3, 4), we study the approximation scheme obtained by dis-
cretization in time. We show that, if € and h are related in an appropriate way, the scheme
converges to the maximal solution of (1.2)-(1.3) for € and h going to zero. This result is in
the spirit of [3], in the sense that it is based on stability properties of the maximal viscosity
solution and on its characterization given by the comparison theorem in [6]. Therefore,
the proof of the convergence theorem can be easily modified to manage other boundary
conditions instead of (1.3) or, also, different approximation schemes not necessarely based
on the control theoretic interpretation of the problem.



APPROXIMATION OF DEGENERATE HAMILTON-JACOBI EQUATIONS 3

In the second part (Section 5) we study the discretization error for the fully discrete scheme.
We show that, if the zero set of f is not too “wild”, it is possible to estimate in terms of
e and of the discretization steps the L°°-distance between the approximate solution and
the maximal solution of the continuous problem. This part deeply employs the control
theoretic interpretation both of the discrete problem and of the continuous one.

2 Continuous problem: assumptions and results

In this section we briefly recall the characterization of the maximal solution of problem
(1.2)-(1.3) obtained in [6]. Here and in the remainder of the paper by (sub, super)solutions
we mean Crandall-Lions viscosity (sub, super)solutions (see [1] for a general treatment).

We first set the assumptions on the data of the problem. The hamiltonian H : @ xRY — R

is assumed to be continuous in both variables and to verify

H(z,0) =0, H(z,p) >0 if|p|#0,

lim H(z,p) = +oo uniformly for z € Q,
p|—+o00 (2.1)

t — H(z,tp) is strictly increasing for ¢ € [0, 1]
for any (z,p) € A x RY,

and N

Z(z):={p e R" : H(z,p) < f(2)} (2.2)
is convex for any z € (). '
Note that the hypothesis (2.2) replaces the stronger one of convexity of H in p.

The function f :  — R is nonnegative, continuous in £ . Moreover, defined K := {z €
Q: f(z) =0}, it is assumed that
KnoQ=0. (2.3)

Finally we assume ¢ : RN — R to be a continuous and bounded function.

We introduce the gauge function p and the support function ¢ of the convex set Z(z),
namely

plz,p) = inf{A>0: § € Z(z)} (2.4)
6(z,p) = sup{pg: q € Z(z)}, (2.5)

for any (z,p) € @ x RY. Both these functions are convex and homogeneous in the variable
p, and are l.s.c. and respectively continuous in © (note that, if z € K, p(z,0) = 0 and
p(z,p) = +oo for |p| # 0). Moreover they are related by the following equality

p(z,p) = sup {pq} zeQ, peRY. (2.6)
d(z,q)<1

Example 2.1 Let ¢ : R" — RT be a continuous function such that (0) = 0 and v is
strictly increasing. Consider the equation

P(|Du(z)]) = flz)  z€Q (2.7)
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In this case we have

We now define a nonsymmetric semidistance on £ x Q by

L(z,y) = inf{ [} 6(£(t), —€(t))dt : T > 0, £(t) € WH([0,T7,
st £(0) =z, &(T) =

and, for x € © and r > 0, the open sets
Br(z,r):={y € Q: L(z,y) <r}.

It can be shown that the family By (z,r) induces a topology 77, on Q. If K consists of
isolated points this topology is equivalent to the Euclidean topology and the problem can
be studied in the framework of viscosity solution theory (see [14]). In general, 77, is weaker
than the Euclidean topology and, for x € K, the set of points having zero L-distance from
z is a subset of K.

To obtain the characterization of the maximal solution, the definition of viscosity solution
will be adapted to the topology 7.

Definition 2.2 Given a l.s.c. function v : Q@ — R, a Lipschitz continuous function ¢ is
called L-subtangent to v at ¢ € 2 if, for some € > 0,

¢(z0) = v(wo)

v
d(z) <v(zx x € Br(xg,€).
The L-subtangent is called strict if ¢p(z) < v(x) outside By (zo) = {x € Q : L(zo,z) = 0}.

We remark that the convexity assumption (2.2) allows us to use Lipschitz continuous test
functions instead of C' test functions as in the standard definition of viscosity solution.
For a Lipschitz continuous function ¢, we denote by d¢(z) the generalized gradient of ¢ at
z, i.e.

Op(x) =co{p € RN : p=Ilim, D¢(x,) for a sequence z, — = s.t.
¢ is differentiable at x, }.

Definition 2.3 A ls.c. function v :  — R is said to be a singular supersolution of
(1.2) if for any z¢ € © and for any ¢, L-subtangent to v at z¢ such that d¢(z) = {0} in
x € Br(zo,€) N K, there exists a sequence z, € 2\ K and a sequence p, € 0¢(z,) for
which

nETmL(xg,xn) =0 (2.8)
and
lim p(zp,pn) —1>0. (2.9)

n—00
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It is worth noting that the definition of singular supersolution reduces to the standard
definition of viscosity supersolution if zo € @\ K. In fact, in this case, since the topology
71, and the Euclidean topology are equivalent in neighborhood of zy, L-subtangents at
zo coincide with standard subtangents. Moreover, in (2 \ K) x RV, p(z,p) < 1 (resp.
p(x,p) > 1) if and only if H(z,p) < f(z) (resp. H(z,p) > f(z)).

In the following theorem, we compare viscosity subsolutions and singular supersolutions of

equation (1.2).

Theorem 2.4 Let u € USC(Q2), v € LSC(Q) be a viscosity subsolution and a singular
supersolution of equation (1.2), respectively, such that v < v on 0€2. Then

Hypothesis (2.2) allows us to give a control theoretic interpretation of problem (1.2)—(1.3).
Let U be the value function of the control problem with dynamics

(g o

where z € Q and ¢ is any bounded measurable function from [0,+00) to R" such that
T :=inf{t > 0:&(t) € Q} < 400, and with cost functional

T
Jayg) = [ o(el), a(t)dt +9(6(T)) (2:11)
The dynamic programming equation associated to the control problem (2.10)—(2.11) is
sup {¢Du(z) — d(z,q)} =0 x € Q. (2.12)
lgl<1

This equation turns out to be equivalent to equation (1.2), in the sense that any viscosity
sub or supersolution of equation (2.12) is also a viscosity sub- or supersolution of equation
(1.2) and vice versa.

In the following we will assume that the boundary datum g verifies the compatibility
condition
9(z) —g(y) < L(z,y)  for any z, y € 9Q. (2.13)

It is standard to show that, under hypothesis (2.13), U is a viscosity solution of (1.2) and
satisfies the boundary condition (1.3). Furthermore we have

Proposition 2.5 The value function U is a singular supersolution of equation (1.2) in Q.

Theorem 2.4 and Proposition 2.5 now allow us to characterize the maximal solution of
(1.2)—(1.3): Let S denote the set of functions v € USC(£2) which are viscosity subsolutions
of (1.2) and which satisfy v < g on 0f2. From Theorem 2.4 and Proposition 2.5 it follows
that the value function U of the control problem (2.10)—(2.11) is the maximal element of S,
i.e. the maximal subsolution of problem (1.2)-(1.3). Moreover U is a singular supersolution

of (1.2) satisfying U = g on 02, hence it is the maximal solution.
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Remark 2.6 If H is convex in p, then U coincides with the value function of control
problem with dynamics (2.10) and cost functional

Jad) = [ E0) + B €0, a0) -+ 9(€(T))

where H*(z,-) denotes the Legendre transform of H(z,-), cp. [15]. Note, however, that
d(z,q) and f(z) + H*(x,q) in general do not coincide pointwise.

We conclude this section stating a particular case of a general stability theorem proved in
[6] needed for the construction of the approximation scheme.

Proposition 2.7 Set f.(z) = max{f(z), e} and let u, be the sequence of viscosity solutions

of
H(z,Du) = f(z) z€Q,

u(z) = g(x) € 09, (2.14)

Then
lim u(z) = U(x)

e—0

uniformly in Q, where U is the maximal solutions of (1.2)-(1.3).

Note that for any € > 0 fixed, since f. > 0 in Q, problem (2.14) admits a unique viscosity
solution. Moreover this solution is given by the value function of the control problem with
dynamics (2.10) and cost functional

Joe.a) = [ 5(e®), a0yt + g(€(r)) 2.15)

where £(T) € 00 and d¢(x, q) is defined as d(x,q) with f, instead of f.
We introduce some notations we will use in the following. We define
M :=sup{d.(z,q) : z€Q, |g| =1, e > 0}. (2.16)

Moreover, for € > 0, we set

ws (r) = sup{|dc(z,p) — dc(y,p)| = Ipl =1, [z —y| <7}, (2.17)
ale) = inf  d(z,q). (2.18)
z€Q,|g|=1

Note that, for any € > 0, a(e) > 0 and w;_(r) is bounded by ws(r) = sup{|d(z,p) —d(y,p)]| :
pl=1, |z -yl <r}

3 The semidiscrete scheme

Let us introduce the semidiscrete approximation scheme, obtained by discretizing in time
the exit time control problem (2.10)-(2.15). For a fixed € > 0, we choose a step in time
h € (0,1) and define discrete dynamics by the recursive sequence

Tpy1 = Tp + haqy neN
rog = &,
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for z € Q, {gn} C R" such that |g,| = 1.
The cost is given by

N-1

Jhe(xa Qn) = Z h55($n, Qn) + g(xN)

n=0

where
N =inf{n e N: z, € Q}
(we assume the convention that Zﬁio = 0). The value function for this control problem is
Upe(z) = Inf{Jhe(z, qn) : {gn} such that N < +oo}.

By a standard application of the discrete dynamic programming principle, the function up,
is a solution of the problem

{ upe(w) = inflg—1 {hdc(z,q) + upne(x + hq)} ?:VE Q, (3.1)
u(z) = g(z) zeRY\ Q.
The following result holds true
Proposition 3.1 There is a constant C (independent of h and €) such that
[upe(T)] < C for any z € (). (3.2)

Moreover wuy, is the unique bounded solution of (3.1).

Proof: We first observe that it is always possible to assume, by adding a constant, that
g > 0. It follows that upe > 0. Moreover

une(z) < M supd(z,09) + sup g(z)
e TER™

where M is as in (2.16).

Let vy, v be two bounded solution of (3.1) and set w;(z) = 1 —e~%(®) for i = 1,2. Then
w; satisfies

(1) = . Q

{ wi(z) = [Swi)(x) € (3.3)

w; =1 — e 9@) r RV \ Q,

where

[S¢](z) = inf {1 — hé(x,q) + e @D p( 4 hq)} :
lg|=1

It follows that
sgp |Swi(z) — Swa(z)| < ﬁsgp |wy (z) — wa(x)]

with 8 = e 7€) < 1, and w; = wy = g in RV \ Q.

We conclude that for any € > 0 and h > 0 there exists at most one bounded solution of
(3.3) and therefore of problem (3.1). This solution is given by upe. U

Remark 3.2 If we discretized the control problem (2.10)-(2.11) directly (which corre-
sponds to setting € = 0 in the previous approximation scheme), the resulting approxi-
mating equation does not have a unique bounded solution, similarly to what happens in
problem (1.2)-(1.3). This causes the drawback that any algorithm designed to solve that
approximating equation could not converge to the maximal viscosity solution and, in any
case, displays high numerical instability (see [12]).
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4 Convergence of the semidiscrete scheme

In this section, we prove the convergence of the approximation scheme introduced in the
previous section to the maximal solution of (1.2)-(1.3).

Given a locally uniformly bounded sequence of functions v, : Q@ — R, € > 0, we set

liregiglf* ve(z) = inf{liregiglfvf(xf) D ze = x, T €Q}
limsup* v (z) = sup{limsupv.(z): e — z, 2 € Q}
e—0 e—0

for any = € Q. The functions lim iglf* ve(z) and limsup* ve(x) are, respectively, l.s.c. and
e~ e—0

w.s.c. in Q.

Lemma 4.1 Let up be a sequence of solutions of (3.1) and assume that h = h(e) is such

that L
@i(h) o s e 0t (4.1)
a(e)
Then
u(z) = llIgl}lglf* Upe () z €}

is a singular supersolution of (1.2).

Proof: Because of (3.2), the function u is well defined in 2. Let ¢ : @ — R be L-subtangent
to u at zog € Q. It is possible to assume without loss of generality (see [6], Proposition 5.1)
that ¢ is a strict L-subtangent to u at zg.

Employing a standard argument in viscosity solution theory, we find a sequence x. of
minimum points for uye — ¢ such that L(zg,z.) — 0 as € tends to 0. Then

0 =supj =  tnele h(}? ~ Unel@e) _ 5e(we,q)} <
S max“l\zl {_¢($E - h(}]l) — ¢(x€) - 56(x67 Q)} = (4'2)
— _¢($E + hq}i) B ¢($€) _ 5e($e,(I5)

for some ¢ with |gc| = 1.

From the Mean Value Theorem for Lipschitz continuous functions (see Clarke [7]), there
exist 0. € (0,1) and p. € dp(ze + hbcqc) such that

¢($e + th) - ¢($e) = hpeqe- (43)
Set Te = x¢ + hge. Substituting (4.3) into (4.2), we get
0 < peqe — 5e($ea QE) < Peqe — e (fea Qe) + ws, (h) (4-4)

Observe that T, ¢ K, otherwise, since d¢(z) = {0} on K, we should have p. = 0 and from
(4.4)
0< _5e(xea(k)
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which is impossible since §, is strictly positive in €.

Let G, = q¢/0¢(T¢,qc). By the homogeneity of d.(z, ) with respect to g, we have g, € {q €
RY : 6.(Z¢,q) < 1}. Dividing (4.4) by (T, ¢c) and recalling (2.6), we get

0 < pe§€—1+w55(h) < sup {peq} 14 ws, (h) <
afe) 8e(Te,q)<1 af(e)
wy, (h) _ ws, (h)
< su gt =1+ 22 < (T, pe) — 1+ 2
S pad =1+ S Selerd - 145G

Since the sequence Z, belongs to 2\ K and L(zg,Z.) — 0, as ¢ — 07, we conclude, thanks
to hypothesis (4.1), that u is a singular supersolution of (1.2). [

Theorem 4.2 Assume that either
g=0 (4.5)
or
(2 is convex. (4.6)

If upe is a sequence of solutions of problem (3.1) and h = h(e) satisfies the assumption

(4.1), then
lir% upe(z) = U(x) uniformly in €, (4.7
€e—

where U is the maximal solution of problem (1.2)-(1.3).

Proof: We set
u(z) = hreri)%nf* Upe (),

u(xz) = lim sup® upe(z)
e—0

for € Q. These function are well defined because of (3.2).

From Proposition 4.1, it follows that u is a singular supersolution of equation (1.2). More-
over it is standard to show that @ is a subsolution of (2.12) and therefore of (1.2) in € (see,
fee., [1] or [2]). If we show that w > @ on 0f2, then Theorem 2.4 and Proposition 2.5 imply
that u =% = U in Q and therefore (4.7).

We will show that
u(z) < g(x) < u(r) for any x € 0f. (4.8)

To show that w(x) < g(x) on Jf2, we need an estimate on the behavior of u, in a neigh-
borhood of 0€2. Let n > 0 be sufficiently small and set , = {z € @ : d(z,09) < n}.
For z € Q,, let y € 0 be such that d(z,082) = |y — z|. Define a control law {g,} for the
discrete control problem by
_*r~Y

[z =yl
and, denoted by z, the corresponding discrete trajectory, let N = inf{n > 0: z, ¢ Q}.
Observing that Nh < |y — z|, we get

qn n €N

N-1
Uhe(x) < ZO h(se(xnaQn) + g(xN) <
n=

< My — x|+ g(y) + wy(h).
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where M is as in (2.16) and wy is a modulus of continuity of g. If zp € 9Q and z. € N is a
sequence converging to xg, we have either upc(x.) = g(z¢), if z. € 09, or

'Ufhe(xe) < M|ye - $e| + g(ye) + wg(h)
if z. € Q, where y. € 092 is such that d(z., 02) = |z — y¢|. Since also y. converges to xy,
we get u(xg) < g(zo) on ON.

To get the other inequality in (4.8), if g = 0, then up(z) > 0 in Q and therefore u > 0 on
09.

If (4.6) holds, by adding a constant, we can always assume that g > 0.

For = € (, let ¢, be an n-optimal control for uy(z), ,, the corresponding discrete trajectory
and N the exit time from (2. Since

N-1
a(e)Nh < Z hoe(Tn, qn) + g(xn) < upe(w) +1
n=0
we have Ol
Nh< ZF

a(e)
with C as in (3.2).

Let ¢(t) be a control law for the continuous problem obtained by setting ¢(t) = ¢; for
t € [ih,(i+1)h), 1 =0,1,...,N — 1. If £(¢) and T are respectively the trajectory and the
exit time corresponding to ¢(t), we have

uc(@) < [ 0c(E(t), q(t)dt + g(€(T)) <
< ]:Z: h (0e(@n, gn) + ws. () + g(zn) + wg(|E(T) —zN]) < (4.9)

< une(w) + 1+ CLL 4wy (h),

where the estimate |£(7") —z | < h holds because of the convexity of Q. Since uc(z) = g(x)
for any x € 9Q and the assumption (4.1) is satisfied, from (4.9) we easily get other inequality
in (4.8). U

Remark 4.3 For the Eikonal equation (1.1) we have d.(z,q) = fc(z)|q| and therefore
condition (4.1) reduces to
wy(h)

€

-0 as € — 0t

where wy is the modulus of continuity of the function f on Q.

5 Discretization error for the fully discrete scheme

In this section we will discuss a fully discrete scheme derived from the semidiscrete one as
developed in the previous sections. In order to simplify the calculations we assume that
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the function g defining the boundary condition is uniformly Lipschitz with constant L,,
and that the domain €2 is convex.

We will introduce a space discretization which transforms (3.1) into a finite dimensional
problem. For this purpose we choose a grid I' covering ) consisting of simplices S; with
nodes z; and look for the solution of (3.1) in the space

W :={w e C(Q) | Vw = const on S;}

of piecewise linear functions on I'. By the parameter k& we denote the maximal diameter
of the simplices S;. For simplicity we assume that the boundary of the gridded domain
coincides with the boundary of Q. (In the general case we can always achieve an error
scaling linearly with the distance between these two boundaries due to the fact that ¢ is
Lipschitz).

Thus we end up with the fully discrete scheme

utn(i) = inf {h0c(zisq) +up(wi + ha) (5.1)
q =

for all nodes x; € 2 with the boundary condition u’:h(xl) = g(x;) for the nodes z; ¢ Q and
linear interpolation between the nodes.

Note that there exists a unique bounded solution of (5.1). The boundedness of any solution
of (5.1) follows from the fact that

uf () < hoe(wi,q) +uf (i + hq)

holds for any ¢ € R” with |¢g| = 1. Thus we can always choose ¢ such that ufh(a:l + hq)
depends on nodes which are closer to the boundary 92 than z; and (if h < k) on x; itself,
but with a weight strictly less than one. Since the value in the boundary nodes is bounded
we obtain boundedness for each node by induction.

Due to the boundedness the existence of a unique solution ufh is now easily proved by

applying the Kruzkov transformation

as in the proof of Proposition 3.1.

Note that the function §. appearing in the scheme is defined implicitely via H and fe. In
order to solve the scheme we assume that we can compute this function analytically as
e.g. in Example 2.1. (In the case of a convex Hamiltonian one may alternatively use a
numerical approximation of the integrand from Remark 2.6 via the Legendre transform as
given e.g. in [10]. Note, however, that this procedure yields a different cost function than
in the following analysis.)

We will now start by estimating the discretization error |u(z) — ufyh($)|, z € . Since
we allow nonconstant boundary conditions we introduce the following auxiliary functions
which will be useful for the estimation of the error.
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Definition 5.1 For each point z € 2 we define

wi(z) = ue(x) — uc(§(T))
where £(+) is an optimal path for the initial value z and £(T) € 9.

For each node z; of the grid pick a control ¢; minimizing (5.1) and let wy € W be the
unique solution of
wa(w;) = hoe(zi, qi) + wa(wi + hgi) (5.2)

with the boundary condition wy(z) = 0 and interpolation between the nodes.

Finally we define w(z) = max{w; (z),wa(z)}.

Remark 5.2 The existence of optimal paths follows from the continuous dependence of
the functional J(z,q) from the control function ¢ using the weak*-metric (as defined for
control functions e.g. in [9]), using the Gronwall Lemma as in [8, Proof of Lemma 3.4(ii)]
and the structure of d.. Note that the a-priori boundedness of the length of approximately
optimal trajectories — following from the positivity of 6. — is crucial for this continuous
dependence. Thus in general the existence of optimal trajectories does not hold for the
non-regularized problem since there for any sequence of approximately optimal trajectories
the length of these trajectories may grow unbounded when we restrict |g(¢)| = 1 for all
t > 0.

Note that we do not require uniqueness of the optimal paths in Definition 5.1. In the case
that there is no unique optimal path we may use one that minimizes w;.

Definition 5.1 defines functions which are 0 at 92 and away from 0f2 essentially grow like
ue and uf,h, respectively. More precisely we have that

wi(§(1) — wi(z) = ue((t)) — ue(x)

and
wa (@i + hai) — wa(wi) = ug (@ + hai) — ug ()
for £(-) and ¢; as used in the definition.

Note that in particular if g(x) = ¢ is constant we obtain

w(z) = max{ue(x), u’éh(x)} —c.
Using this w we can give the following estimate for the discretization error.

Proposition 5.3 Let uf,h € W be the unique solution of (5.1). Then the estimate

kws, (k k h
ws, (k) L wa.(h)
hale) | Bk | ale)
holds for each z € Q and for all sufficiently small k¥ > 0 and h > 0 with M, ws;, and « as

defined in (2.16)-(2.18),

|ue(z) — ufh(x)| <C w(z) + (M + Lg)h + Lgk (5.3)

> dc(z,p)
29, lq/=lp|=1 0¢ (2, q)

Ble) =

)

and some constant C' independent from €, h and k.
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The proof can be found in the appendix.

Remark 5.4 (i) Note that estimate (5.3) is stronger than the usual L., estimate since
essentially the error scales with the function w(z) being 0 at J€2. The reason for this
behaviour origins in the fact that the error is estimated along the optimal trajectories
whose length depends on the optimal value.

(ii) The constant a(e) essentially depends on the growth of H in |p|, e.g. in Example 2.1 we
have «(e) = 1! (€). The constant 3(e) is determined by the difference between H(z,p) and
H(z,q) for |p| = |q|. In particular if H(z,p) € [Ci|p|7, Ca|p|”] we have that B(e) > C1/Cs
independently from e. Finally, ws (which gives a bound for ws, for all € > 0) combines the
continuity properties of H and f, i.e. in Example 2.1 we have that ws(r) = wy-1,7(r).

(iii) Note that the requirement on A ensuring the convergence of the fully discrete scheme is
that ws,_(h)/a(e) — 0 as e — 0, thus it is consistent with condition (4.1) for the convergence
of the semidiscrete scheme.

(iv) The appearance of the value a(e) in the denominator in (5.3) is due to the fact that
here we implicitely included the worst case, i.e. that the length of the optimal trajectories
may grow like 1/a(e) for a(e) — 0. Since this is not necessarily the case in many practical
examples one can expect better convergence behaviour for a(e) — 0.

(v) A particular nice formulation of estimate (5.3) can be obtained if we consider the
Eikonal equation (1.1) (implying B(e) = 1 and a(e) = €), assume that f is uniformly
Lipschitz (implying ws_(h) < Lyh) and impose a homogeneous boundary condition, i.e.
g = c (implying Ly, = 0). In this case the estimate becomes

K2k

h €

juele) — ub ()] < C | -

(max{ue(x), ufyh(x)} - C) +Ch

for some constant C' > 0 independent from e, h and k. In particular this implies convergence
of the scheme if e — 0, h/e — 0 and k/h — 0.

We will now turn to the discussion of the error obtained when equation (1.2) is replaced
by equation (2.14), i.e. the error introduced by the regularization of the problem.

Proposition 2.7 already implies that u. converges to U, where U is the maximal subsolution
of (1.2). Unfortunately, in general this convergence can be arbitrary slow. In the optimal
control interpretation this is due to the fact that the length of approximately optimal
trajectories may grow unbounded as the approximation gets better and better. Since
these long pieces of the trajectories can only appear in regions where f is sufficiently small
(otherwise the cost would be large contradicting the approximate optimality), we can derive
an estimate for the regularization error by defining a criterion for the sets where f is small
which in turn gives a bound on the length of approximately optimal trajectories.

The following definition is our main tool for this purpose.

Definition 5.5 Let B C R? be a compact set. For each connected component B; of B we
define the inner diameter d(B;) by

d(B;) := sup dp;(z,y)
€,y i
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where

() € Wl’oo([((),T] i)

dp,(z,y) :==inf<T >0 s.t. £(0) T) 7:
1€E(t)] =1 a.e.

and for B we define the inner diameter by
=Y _d(B))
B;

where the sum is taken over all connected components of B.
Using this definition we can state the following estimate for the regularization error.

Proposition 5.6 Let U be the maximal subsolution of (1.2) and let u, be the unique
viscosity solution of (2.14).

Then the estimate
U — telloo < cle)d(Ke)

holds where K¢ := {z € Q| f(z) < €} and c(€) = supyex. , |g|=1 ¢(Z; q)-

The proof can be found in the appendix.

Here the constant c(e) depends only on the sets Z.(z) = {p: H(z,p) < fe(x)}, i.e. on €
and on the Hamiltonian H. In fact an easy calculation shows that

c(e) = sup Ip| = sup Ip|.
TEKe,pEZc() € Ke,peR™, H (x,p)<e

Thus e.g. the estimate c(e) < Ce” for some constants C,y > 0 and all € > 0 sufficiently
small holds if H(x,p) > (|p|/C)1/7 for all z € K, all € > 0 sufficently small and all p € R"
with |p| sufficiently small. In particular for the Eikonal equation (1.1) this implies c(€) = e.

Observe that if f is piecewise polynomial then d(K.) is bounded for all € > 0 and hence
convergence with order c(e) follows for € — 0. Piecewise polynomial maps are in particular
interesting since they include the case where f is obtained from experimental data by
some polynomial interpolation (e.g. using piecewise linear interpolations, multidimensional
splines...).

The following theorem now gives the full a-priori estimates for the approximation error of
the whole numerical approximation.

Theorem 5.7 Let U be the maximal subsolution of (1.2) and let u’éh be the unique solu-
tion of the numerical scheme (5.1).

Then the estimate

—ulfy(z c(e kws, (k) k ws, (h)
V(@) —ugp(@)] < eld(K) + O | J205+ Zosn + =05

w(zx) + (Ms, +2Lg)h + Lyk

holds for each z € 2 and the constants from the Propositions 5.3 and 5.6.
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Proof: Follows immediately from the Propositions 5.3 and 5.6. 0

Remark 5.8 (i) A possible modification of the scheme can be made if we allow smaller
time steps at the boundary 01, i.e. for z; € Q and z; + hq € Q we use the restricted time
step

h = sup{h € [0,h] | z; + hg € Q}.

Although slightly more difficult to implement this modification usually gives better numer-
ical results. The proof of Proposition 5.3 also applies to this modified scheme.

(ii) Due to the structural similarity of the scheme described in this section with the scheme
considered in [13], the adaptive grid scheme developed there can also be applied here.
Similar convergence results as in [13] can be obtained for our scheme using the technique
from the proof of Proposition 5.3.

6 Appendix: Proof of the Propositions 5.3 and 5.6

In order to prove Proposition 5.3 we will first state a useful estimate for the local error
along the functional.

Lemma 6.1 For each measurable ¢(-) with |g(¢)| = 1 for almost all ¢ € [0, h] and the path
£(-) with £(t) = q(t) and &(t) € Q for all ¢ € [0,h] there exists p € R* with |p| = 1 such
that

/ 5e( ))dt + has, ()

and

£(0) + hp = &(h).

Conversely, for each p € R* with |p| = 1 and each x € Q with z + hp €  there exists a
measurable function ¢(-) with |g(¢)| = 1 for all ¢ > 0 such that

/ 5e( ))dt < hd(z, p) + hws, (h)

and
£(0) ==, {(h) =z +hp
where £(t) = ¢(t) and £(t) € Q for all t € [0, h].

Proof: The convexity of §. in the second argument implies

h h
dela [ at) < [ o q(e)ar
h
- [ attyat

the first assertion immediately follows from the continuity of J. which is measured by w; .

Hence by defining
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The second assertion follows directly from the continuity of . setting ¢(¢) = p and using
the convexity of Q. H

Proof of Proposition 5.3
We start giving some preliminary estimates.

First note that the error at the boundary can be estimated by
juf () — ue(x)] < Lok (6.1)

which simply follows from the Lipschitz property of g.

Furthermore it is easy to see that on each element S; of the grid we can estimate

|u€(x) - ue(y)| < sup 56(2, q)k (62)
z€8j,|q|=1

for each two points z,y € S;. We abbreviate £; = sup,cg, |g=1 0¢(2, q)-
k

€,

We show the estimate (5.3) by estimating seperately the quantities u} ,(z) — uc(z) and

ue(z) — u’éh(x). First, we consider uf,h(x) — ue(x).

Observe that for any v > 0 there exists an n > 0 such that
ufyh(x) —ue(z) < plwi(z) +v) + (Ms. + Ly)h + Lgk  for all z € Q (6.3)

which easily follows from the fact that w; > 0 and uf,h is bounded.

Now we fix some arbitrary v > 0 and choose 7 > 0 to be minimal with (6.3). If n = 0 the
assertion immediately follows. Otherwise if 7 > 0 by the continuity of the functions and
the compactness of €2 we can conclude that there exists z* €  such that

ufyh(x*) — ue(z") = n(wi(z*) +v) + (Ms, + Lg)h + Lyk. (6.4)

Now consider the element S; containing z*. We can write 2* = >, ; \;jz; where the x; are
the nodes of S; and the \; are nonnegative coefficients with »,-; A; = 1.

Using estimate (6.2) we obtain

ugn(a") = ue(z) < D Nilugp(2i) — (i) + rjk. (6.5)
i€l

Now for each of the nodes we distinguish three cases.

(i) z; € 0Q: By (6.1) this implies

uf’h(xi) —ue(x;) < Lok (6.6)

(ii) z; € Q and for the optimal path &;(-) with &;(0) = z; from Definition 5.1 there exists a
time 7; € (0, h] such that

udo) = [ 860, a0t + (&)
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where &(7;) € 9Q and &(t) = ¢;(t). In this case by the convexity of  we can conclude
that there exists p € R” with |p| = 1 and z; + hp & Q such that |z; + hp — &;(7;)| < h. Thus
we obtain

ul j(2:) = ue(zi) < (M, + Lg)h + Lyk (6.7)

(iii) z; € Q2 and for the optimal path &(-) with &(0) = z; from Definition 5.1 the equality

h
ueled) = [ &), a(®)dt + ucl&(h) (6.9

holds where &(0) = z;, &(h) € OQ and & (t) = qi(t).
In this case Lemma 6.1 and the definition of uf,h imply

ue g (w:) = te(wi) < hws, (h) + ¢y (&i(h)) — uc(&(h) (6.9)
where by (6.8) we can estimate

ue(&i(h)) < ue(z;) —h |;|D:fl de(Zi,q) + hws, (h)

and by Definition 5.1 thus also

wy (&(h)) < wy(z;) —h ‘;‘n:fl de(zi, q) + hws_(h). (6.10)

Taking into account that the coefficients in (6.5) sum up to 1 we derive

> Niugp (i) — uez:)) < (Ms, + Lg)h + Lok + hws, (h) + ué, (€i(h) — ue(&i(h)  (6.11)
el

and combining (6.3), (6.4), (6.5), (6.10) and (6.11) we obtain

n(wi(z*) + ) < hws, (h) + kjk +1n ((wl(x*) +7)—h eSim‘f‘ 1(Se(ac,q) + hws_(h) + /@k)
T i q|=

from which we conclude that

< hws, (h) + Kk

: . 6.12
N hlnfa:ESi,|q|:1 5e($a Q) - hw& (h) - ij ( )

Estimating x; < B(e)™! infyes; g=10(z, q) + ws, (k) and writing p; = infies. 1g=1 0e(2, q)
(note that p; > «(e)) this becomes
hws, (h) + B(e) " pjk + ws, (k)k
= hpg — hws (h) — B(e) sk — ws (k)

Now we specify the assumption “h, £ > 0 sufficiently small” by choosing them such that
ws, (h) << ale), k << B(e)h and w; (k)k << a(e)h which yields (recall a(e) < pj)

. 1
hpsj = hws, (h) = B(€) "k — ws (k) > Zhpss
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for some constant C' > 0 and thus

ws, (h) ko ws (k)k
<C < + + —
! wi BER T hug

which implies the desired estimate for wy () + 7 since p; > a(e). Since all values in this
resulting inequality are independent from v > 0 this also implies the estimate for v = 0.

The inequality for u.(z) — uf,h(a:) follows with the same technique and the obvious modi-

fications using ws; note that here the convexity of Q is also needed in Lemma, 6.1 used in
case (iii). Proceeding in this way we end up with the analogous estimate to (6.12)

hw(se (h) + Iijk
~ hinfyeg, jg1=1 (2, )

which leads to the desired result here without using the assumptions on k and h. [l
Proof of Proposition 5.6

For any measurable and bounded ¢ and any z € € denote the solution of (2.10) by
&(t,z,q(+)). Fixe > 0, €1 > 0and ey € (0, €) arbitrary and pick some 2 € ). Then by the op-
timal control representation of U (2.10)—(2.11) there exists a solution &, (t) = £(¢, %, g, (+))
with |ge, (£)| = 1 and a time T¢, > 0 such that &, (T¢,) € 0Q and

/oTE1 0(8er (1), ey (£))dt + g (&, (Tey)) < U(x) + €x.

We now divide the connected components K¢, i € I of K, into two classes by defining
IL:={i€I|f(z) > e—e for all z € K.}

and Iy = I'\ I;. Then by the continuity of H there exists a constant y(ez) with y(e2) — 0
as €5 — 0 such that

|6 (z,p) — 0(z,p)| < y(e2) for all x € K, i€ 14, |p| = 1. (6.13)

Furthermore by the uniform continuity of f every set K¢, i € I, has a volume bounded
from below by some uniform constant depending on €2 and hence there are only finitely
many of these sets; we may number them by ¢ =1,..., N.

Now we define for each of these K?, i = 1,..., N which is hit by the trajectory &, times
t* and t', by

t =inf{t € [0,T.,]| &, (t) € Ki} and ', = sup{t € [0,T.,]| &, (t) € K}
where we omit those sets K; for which [ti_,tﬂ_] C [t]_ ,ti] for some j # ¢ holds. This gives

us a finite number r of pairwise disjoint intervals [¢* ,#! ] which we assume to be numbered
according to their order, i.e. t{ <! fori=1,...,r — 1.

i g+ We have by (6.13) and by the fact that outside K,

the functions § and ¢, coincide the estimate

For each trajectory piece 551(')|[

ti+1

[ 186 (0.0 () = 6l (0. ()]t < (¢ = ) (ea)

t,
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For the points &, (t") and ¢, (%) we choose controls g;(-) satistying |¢;(¢)| = 1 and yielding
E(Tin&e, (82),qi(+)) = &e (), €(T3n €6y (1), qi(+)) € K for all t € [0, 7;] and 7; < d(K}) which
is possible by the definition of d(-) and the structure of the dynamics (2.10). We now define
a sequence of times ¢;, ¢ =0,...,r by

to=0, 1=t i =ti+n+ " ), i=1,...,r =2, ty=t, 1 +7+ (T, — ")
and a measurable function ¢(-) by

Ger (1), t € [to,t1)
Cj(t) = Qi(t - ti)a ' t e [tiati + Ti)
Qe (t —ti — 7 + 1), tE[ti+ T tis1)

This construction yields that
E(t,z,q(-)) =&, (t) for all t € [to,t1]
and
&t 2,G(-) =& (t —t; — 7 + 1) for all t € [t + 7, ti1], i =1,...,7 — 1

thus in particular it follows that &(t,,z,G(-)) = &, (It,) and — defining t% := 0 — we
obtain

wle) -~ g6, () < [ (é"(t £,()),d(0))de
r 1

B[
[

§(ta,d(+), q(t) ) dt

ﬁ@
»—AO

<y / (€ )qel(t))dtJr(ti_“—ti)7(62)+n+16(6)>
=0
< U@) = g6 (To)) + a1+ Tey(e2) + d(Ko)e(e)

Now letting first e2 — 0 and then ¢; — 0 we obtain the assertion since u, > U is obvi-
ous. 0
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