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Abstract. We discuss numerical schemes for various forms of the Landau–Lifshitz equation.
A new simple projection method is introduced and is shown to be unconditionally stable. The
advantages over other schemes are also demonstrated numerically.
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1. Introduction. The Landau–Lifshitz equation which describes the evolution
of magnetization in continuum ferromagnets plays an important role in the under-
standing of nonequilibrium magnetism. In this paper, we will discuss various numer-
ical methods for the Landau–Lifshitz equation in the form

mt = −m×∆m− γm× (m×∆m),(1.1)

where m : Ω ⊂ Rd → S2, d=1, 2, 3, γ is a damping parameter. The boundary
condition is taken to be

∂m

∂n
= 0(1.2)

on Γ = ∂Ω. Equation (1.1) is the result of the Landau–Lifshitz equation

mt = −m× h− γm× (m× h)(1.3)

after neglecting lower order terms [7], [8]. In (1.3), h = − δF
δm where the free energy F

is given by

F (m) =

∫
Ω

{
1

2
|∇m|2 +Φ(m) +m · ∇u

}
d3x.(1.4)

Here Φ is a function of m, and u solves

∇ ·
(
∇u+mχΩ

)
= 0(1.5)

on R3, with χΩ being the indicator function of Ω.
Although the nonlocal term in (1.4) also presents very important computational

issues, in this paper we will concentrate on the questions raised by the leading order
term in (1.4), thereby neglecting the last two terms at the right-hand side of (1.4).
In this case h = ∆m and (1.3) reduces to (1.1). The three terms in (1.4) are the
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exchange, anisotropy, and magnetostatic energies, respectively. A term of the form∫
Ω
m · Hd3x should be added to the right-hand side of (1.4) if there is an external

field H. It is easy to see that (1.3) can also be written as

mt − γm×mt = −(1 + γ2)m× h(1.6)

or

γmt +m×mt = −(1 + γ2)m× (m× h).(1.7)

Equation (1.6) is sometimes referred to as the Gilbert equation.
The following identities will be useful later:

−m× (m× h) = h− (m,h)m,(1.8)

−m× (m×∆m) = ∆m+ |∇m|2m,(1.9)

where we have used the fact that (m,m) = 1.
Two special cases of (1.1) are of particular interest. They correspond to γ = 0

and γ = +∞.
mt = −m×∆m,(1.10)

mt = −m× (m×∆m),(1.11)

or

mt = ∆m+ |∇m|2m.(1.12)

Equation (1.11) is the equation describing the heat flow of harmonic maps to S2 [12].
It has been studied extensively in the geometry and geometric analysis literature.
In contrast, (1.10) describes the Hamiltonian (or symplectic) flow of harmonic maps
to S2. At this point, there is much less literature on (1.10). Although the two
models (1.11) and (1.12) are mathematically equivalent [4], (1.11) gives many more
numerically stable solutions than that of (1.12), as we show in section 2.

Even though it is generally expected, and for special situations of (1.11) rigorously
proved [1], that the solutions of (1.1), (1.10), (1.11) develop finite time singularities,
we will restrict our attention to smooth solutions of these equations, leaving the
discussions on singular solutions to future publications.

In this paper, various numerical schemes will be discussed. In particular, a sim-
ple projection scheme is proposed to solve (1.11) which is implicit and uncondition-
ally stable. Time step size is an important issue for the numerical solution of the
Landau–Lifshitz equation since the fastest time scale in the application of (1.3) is
on the order of picoseconds. This means that straightforward explicit time stepping
procedures will suffer from very severe constraints on the size of the time step. On the
other hand, implicit schemes will have to deal with the severe nonlinearity present in
the equation in the form of the Lagrange multiplier for the constraint that the length
of m is 1. Here we propose a time stepping method in the form of a projection method
that circumvents both problems.

The paper is organized as follows. In section 2, we explain the differences between
the performance of numerical schemes for (1.11) and (1.12). Convergence of the spatial
discretizations is also proved. In section 3, an implicit projection scheme is proposed
and its unconditional stability is proved. Numerical examples are given in section 4
to demonstrate that the performance of the projection scheme is better than most of
the other numerical schemes.
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2. Spatial discretizations. Most discussions in this section will be in the set-
ting of semidiscrete schemes, i.e., time will be kept continuous. For simplicity of
presentation, we will assume that we are working with a uniform grid Ωh with size h.
The numerical results we present in this section are computed with sufficiently small
∆t that the numerical error from time discretization is basically negligible.

On a regular finite difference grid, there are two obvious ways to discretize (1.1).
The first is

dmh

dt
= −mh ×∆hmh − γmh × (mh ×∆hmh).(2.1)

The second is

dmh

dt
= −mj ×∆hmh + γ(∆hmh + |∇mh|2mh).(2.2)

Here ∆h and ∇h are the standard discretization of ∆ and ∇, respectively, using
centered differences. Other difference approximations can be used. But it suffices to
discuss this simplest case.

Both (2.1) and (2.2) provide convergent and second order accurate approximations
for smooth solutions of (1.1). This is relatively easy to establish for (2.1).

Theorem 1. Let m(x, t) ∈ L∞([0, T ], H4) be a smooth solution of (1.1) with
initial data

m(x, 0) = m0(x)

and let mh be the solution of (2.1) with the same initial data on a uniform grid Ωh.
Then we have

max
x∈Ωh

|m(x, t)−mh(x, t)| ≤ c(t)h2,(2.3)

where c(t) depends only on m.
The proof of this result will be given at the end of this section.
Even though both (2.1) and (2.2) give second order approximations to (1.11),

their actual performance is very different. Note that (2.1) preserves the normalization
exactly:

d

dt
(mh,mh) = 0

and (2.2) does not. Let us examine the numerical solutions for the heat flow of
harmonic maps by comparing the results of the following two schemes:

dmh

dt
= −mh × (mh ×∆hmh)(2.4)

or

dmh

dt
= ∆hmh + |∇hmh|2mh.(2.5)

In Figures 1 and 2, we plot the time history of the error computed by these two
methods, for the exact solution

me(x, t) = (sinx cos t, sinx sin t, cosx)(2.6)
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Fig. 1. Time history of the error divided by h2 computed using (2.4) with 64 spatial grid points.

on [0, π] with Dirichlet boundary condition. For (2.6) to be an exact solution of (1.11),

a forcing term f = ∂me

∂t +me × (me × ∂2me

∂x2 ) has to be added to the right-hand side
of (1.11). We can see that while the error for (2.4) remains small, the error for (2.5)
grows exponentially fast with time.

The origin of the exponential growth of the error for (2.5) can be understood from
the following argument.

Consider the equation

mt = ∆m+ |∇m|2m.(2.7)

Let e = (m,m)− 1. It is easy to see that e satisfies
et = ∆e+ 2|∇m|2e.(2.8)

This shows that if e is not identically zero, then e grows exponentially fast. Since the
solutions of (2.5) do not preserve the normalization exactly, we expect (mh,mh)−1 to
grow exponentially fast. This means that the error |m−mh| will exhibit exponential
growth.

A simple fix for this problem is to consider instead the following equivalent form
of (2.7):

mt = (m,m)∆m+ |∇m|2m(2.9)
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Fig. 2. Time history of the error divided by h2 computed using (2.5) with 64 and 128 spatial
grid points, respectively.

and replace (2.5) by

dmh

dt
= (mh,mh)∆hm+ |∇hm|2mh.(2.10)

For (2.9), (2.8) changes to

et = (m,m)∆e.(2.11)

The term that was responsible for the exponential growth of e in (2.8) is now elimi-
nated.

In Figure 3, we plot the error for the same exact solution as in (2.6) with (2.5)
replaced by (2.10). We can see that the exponential growth of the error is now replaced
by linear growth.

Proof of Theorem 1.

∂m

∂t
= −m×∆m− γm× (m×∆m),

dmj

dt
= −mj ×∆hmj − γmj × (mj ×∆hmj).

Let m̃j(t) = m(xj , t). We have

dm̃j

dt
= −m̃j ×∆hm̃j − γm̃j × (m̃j ×∆hm̃j) +O(h2).
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Fig. 3. Time history of the error divided by h2 computed using (2.10) with 64 and 128 spatial
grid points, respectively.

Denote ej = mj − m̃j ; then

dej
dt
= −mj ×∆hej − ej ×∆hm̃j

− γ[mj × (mj ×∆hej) +mj × (ej ×∆hm̃j)

+ ej × (m̃j ×∆hm̃j)] +O(h2)(2.12)

and

∑
j

(
dej
dt

,∆hej

)
= −

∑
j

(
ej ×∆hm̃j ,∆hej

)

+ γ
∑
j

|mj ×∆hej |2 − γ
∑
j

(
mj × (ej ×∆hm̃j),∆hej

)

− γ
∑
j

(
ej × (m̃j ×∆hm̃j),∆hej

)
+
∑
j

(
O(h2),∆hej

)

= I1 + I2 + I3 + I4
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and

1

2

d

dt

∑
j

(∇hej ,∇hej)h
d + γ

∑
j

|mj ×∆hej |2hd =
∑
j

(
ej ×∆hm̃j ,∆hej

)
hd

+ γ
∑
j

(
mj × (ej ×∆hm̃j),∆hej

)
hd

+ γ
∑
j

(
ej × (m̃j ×∆hm̃j),∆hej

)
hd −

∑
j

(
O(h2),∆hej

)
hd

= I1 + I2 + I3 + I4,

1

2

d

dt

∑
j

(∇hej ,∇hej)h
d ≤ |I1|+ |I2|+ |I3|+ |I4|.(2.13)

Let us assume for the time being that there exists a T ∗ < T , such that (s.t.)

max
j

|∇hmj | ≤ 2C0(2.14)

for 0 ≤ t ≤ T ∗, where C0 is chosen so that

C0 > max
0≤t≤T

|∇m|.

Then

|I1| ≤ |m|3,∞
∑
j

|∇hej |2hd,

|I2| ≤ C0|m|3,∞
∑
j

|∇hej |2hd,

|I3| ≤ C0|m|3,∞
∑
j

|∇hej |2hd,

where d ≤ 3 is the dimension. Notice that the O(h2) term is smooth. Summation by
parts in I4 leads to

|I4| ≤
∑
j

O(h2)|∇hej |hd ≤ O(h4) +
∑
j

|∇hej |2hd.

Equation (2.13) implies that

hd
∑
j

|∇hej |2 ≤ Ch2,(2.15)

where C depends on C0 and m only.
The assumption (2.14) can be dealt with using Strang’s trick. Namely, we con-

struct a correction to the exact solution in the form

m̄(x, t) = m(x, t) + h2m1(x, t)



1654 WEINAN E AND XIAO-PING WANG

s.t. m̄ satisfies the difference equation with higher order accuracy:

dm̄j

dt
= −m̄j ×∆hm̄j − γm̄j × (m̄j ×∆hm̄j) +O(h4),

where m̄j(t) = m̄(xj , t). For this purpose, it is necessary and sufficient thatm1 satisfy

m1t = − 1
12
m×D4m−m×∆m1 −m1 ×∆m

+ γ

[
1

12
m× (m×D4m) +m× (m×∆m1)

]
,(2.16)

where

D4 =
∑
i

∂4
xi
.

The initial condition is m1(x, 0) = 0 and boundary condition is
∂m1

∂n |Γ = 0. Equation
(2.16) is a second order linear parabolic system in m1. The existence and uniqueness
follows from the general theory in [5].

We have, for h small enough,

max
j

|∇m̄j(t)| ≤ C0(2.17)

for 0 ≤ t ≤ T . From continuity, there exist δ small enough, s.t.

max
j

|∇hmj(t)| ≤ 2C0(2.18)

for 0 ≤ t ≤ δ. This means that T ∗ > δ.
Proceeding as in (2.12)–(2.15), we get

hd
∑
j

|∇h(m̄−mj)|2 ≤ Ch4

for 0 ≤ t ≤ δ for some C depending on C0 and m̄ only. Therefore

|∇(m̄j −mj)|2 ≤ Ch4−d ≤ Ch,

|∇mj |2 ≤ 2(|∇m̄j |2 + Ch) ≤ 3C2
0

when h is small enough. This shows that the condition (2.18) will never be violated
and T ∗ can be any preset positive value T if h is small enough, depending only on T .
This completes the proof.

3. Temporal discretization. Again we will look first at the equation for the
heat flow of harmonic map, (1.12), and then extend our results to the Landau–Lifshitz
equation (1.1).

The main purpose of this section is to construct time discretization procedures
that have good stability property. Since we are mainly concerned with temporal
discretizations, we will keep the spatial variables continuous.
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3.1. Projection method for the heat flow of harmonic maps. The main
idea is to rewrite (1.11) as

mt = ∆m+ λm(3.1)

and view λ = |∇m|2, or λ = −(m,∆m) as the Lagrange multiplier for the pointwise
constraint (m,m) = 1.

Projection method is a fractional step procedure in which an intermediate mag-
netization field, called m∗, is first computed by disregarding the constraint and the
Lagrange multiplier. The intermediate field m∗ is then projected to S2 to obtain the
numerical solution at the next time step. The simplest example of such a projection
method is the following algorithm:

Knowing {mn}, {mn+1} is computed by the following:
Step 1: Solve

m∗ −mn

∆t
= ∆m∗(3.2)

with the boundary condition

∂m∗

∂n
|Γ = 0.(3.3)

Step 2:

mn+1 =
m∗

|m∗| .(3.4)

The simplicity of such a scheme is obvious.
Direct calculation of local truncation error shows that the scheme is of first order

accuracy. More generally, consider the equation

mt = h− (m,h)m = −m× (m× h).(3.5)

The analog of the projection method (3.2)–(3.4) for this equation is

m∗ −mn

∆t
= h(tn+1),(3.6)

mn+1 =
m∗

|m∗| .(3.7)

It is easy to check that this method is first order accurate.
To verify the first order convergence of the projection method, we again use the

exact solution (2.6) for (1.11) with a forcing term. Table 3.1 gives emax

∆t where emax

is the maximum error.
For this particular example, the scheme provides an accuracy slightly higher than

first order.
Next we prove that (3.2)–(3.4) is unconditionally stable and convergent with first

order accuracy.
Theorem 2. Let m(x, t) ∈ L∞([0, T ], H3) be a smooth solution of (1.12) with

initial data m(x, 0) = m0(x). Let m∆t be the numerical solution of (3.2)–(3.4) with
the same initial data. Then we have

max
x∈Ω

|m(x, tn)−m∆t(x, t
n)| ≤ C(tn)∆t,(3.8)

where tn = n∆t, n = 1, 2, 3, . . . and C(t) depends only on m.
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Table 3.1

emax/∆t
T ∆t=0.01 ∆t=0.005 ∆t=0.0025

0.2000 0.1100 0.0878 0.0679
0.4000 0.1172 0.0907 0.0684
0.6000 0.1197 0.0915 0.0684
0.8000 0.1207 0.0918 0.0684
1.0000 0.1211 0.0919 0.0684

Proof. We begin by rewriting (3.2)–(3.4) as

mn+1 =
(I −∆t∆)−1mn

|(I −∆t∆)−1mn| .(3.9)

It is understood in (3.9) that the Neumann boundary condition is imposed when
inverting I −∆t∆. Standard local truncation error analysis gives

m(x, tn+1) =
(I −∆t∆)−1m(x, tn)

|(I −∆t∆)−1m(x, tn)| +O(∆t2)(3.10)

if m satisfies (1.12).
In order to deal with the nonlinear recursion relation that arises in the analysis of

the error, we will need an adaptation of Strang’s trick [11] by constructing a correction
of the exact solution of (1.12) which satisfies (3.10) to higher order accuracy. To do
this, let

m̃(x, t) = m(x, t) + ∆tm1(x, t) + ∆t
2m2(x, t).(3.11)

We will choose m1 and m2 s.t.

m̃(x, tn+1) =
(I −∆t∆)−1m̃(x, tn)

|(I −∆t∆)−1m̃(x, tn)| +O(∆t3).(3.12)

This is a tedious but straightforward calculation. The key steps of this calculation
are summarized below.

|(I −∆t∆)−1m̃|2 = 1 + 2∆t(m,m1 +∆m)

+ ∆t2
(
2(m,m2 +∆

2m+∆m1) + |m1 +∆m|2
)
+O(∆t3),(3.13)

|(I −∆t∆)−1m̃|−1 = 1−∆t(m,m1 +∆m)

− ∆t2(m,m2 +∆
2m+∆m1)− ∆t

2

2
|m1 +∆m|2

+
3

2
∆t2(m,m1 +∆m)

2 +O(∆t3),(3.14)

(I −∆t∆)−1m̃

|(I −∆t∆)−1m̃| = m+∆tm1 +∆t
2m2 +∆t∆m+∆t

2∆m1 +∆t
2∆2m

− ∆t(m,m1 +∆m)m−∆t2(m,∆m1)m

− ∆t2(m,m1 +∆m)m1 −∆t2(m,m1 +∆m)∆m

− ∆t2
[
(m,m2 +∆

2m) +
1

2
|m1 +∆m|2

− 3

2
(m,m1 +∆m)

2
]
m+O(∆t3).(3.15)
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From (3.15), we see that in order to satisfy (3.12), m1 and m2 must obey

(m1,m) = 0,(3.16)

∂m1

∂t
+
1

2

∂2m

∂t2
= ∆m̃1 − (m,∆m)m̃1

−
{
(m,∆m̃1) +

1

2
|m̃1|2

− 3

2
(m,∆m)2 + (m,m2)

}
m,(3.17)

where m̃1 = m1 +∆m. We can rewrite (3.17) as

∂m1

∂t
= ∆m1 + a(x, t)m1 + b(x, t)− µm,(3.18)

where a(x, t) = |∇m|2, b(x, t) = ∆2m+|∇m|2∆m− 1
2mtt are known functions depend-

ing on m(x, t). µ(x, t) can be viewed as the Lagrangian multiplier for the constraint
(3.16). In Appendix A, we show that with initial and boundary conditions

m1(x, 0) = 0,
∂m1

∂n

∣∣∣
Γ
= 0(3.19)

there exists a unique µ(x, t) s.t. the solution m1(x, t) of the linear equation (3.18)
satisfies (3.16). Once m1 is determined, m2 is chosen so that (3.17) and (3.18) are
consistent. This completes the construction of m̃.

Now we can proceed with the error estimates. Let en(x) = mn(x)−m̃(x, tn), m̄ =
(I −∆t∆)−1m̃(tn), ẽ = m� − m̄. Then from (3.12), we have

en+1 = mn+1 − m̃(x, tn+1) =
m�

|m�| −
m̄

|m̄| +O(∆t3).(3.20)

Using the elementary inequality∣∣∣∣∣ m
�

|m�| −
m̄

|m̄|

∣∣∣∣∣ ≤ max
(

1

|m�|,
1

|m̄|
)
|m� − m̄|,(3.21)

we obtain

|en+1| ≤ max
(

1

|m�|,
1

|m̄|
)
|ẽ|+O(∆t3).(3.22)

Lemma 1. Assume that

(I −∆)u = f,(3.23)

∂u

∂n

∣∣∣
Γ
= 0,(3.24)

where u = (u1, u2, u3), f = (f1, f2, f3). Then

max
x

|u| ≤ max
x

|f |.(3.25)
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Proof. A direct computation gives

∆|u| = 1

|u|

[
(u,∆u) + |∇u|2 − |(u,∇u)|2

|u|2
]
.(3.26)

Therefore

(I −∆)|u| = |u| −∆|u|
=
1

|u| (u, f)−
1

|u|
(
|∇u|2 − |(u,∇u)|2

|u|2
)

≤ 1

|u| (u, f) ≤ |f |.(3.27)

We also have ∂
∂n |u| = 0 at the boundary. Now (3.25) follows directly from the strong

maximum principle.
Continue now with the proof of the theorem. We have from (3.22) and the previous

lemma that

|en+1| ≤ max
(

1

|m�|,
1

|m̄|
)
|en|+O(∆t3).(3.28)

Let T � be a time (which may depend on ∆t) s.t.

1

|m∗| ≤
1

|m̄| +∆t(3.29)

for 0 ≤ t ≤ T �. Since 1
|m̄| ≤ 1 + C∆t for some constant C which depends only on t

and m, we get

|en+1| ≤ (1 + C∆t)|en|+O(∆t3)(3.30)

for a different C. Therefore

|en+1| ≤ C0∆t
2(3.31)

if n∆t ≤ T �. Here C0 does not depend on ∆t.
Now let us estimate T �. Assume that (3.29) holds for 0 ≤ t ≤ n∆t. Then for

t = (n+ 1)∆t,

1

|m�| −
1

|m̄| ≤
|m� − m̄|
|m�||m̄| ≤ Co∆t

2

|m�||m̄| ≤
C∆t2

|m∗| .(3.32)

Hence

1

|m�| ≤
1

1− C∆t2
1

|m̄|
≤ 1

|m̄| + C1∆t
2,(3.33)

where C1 does not depend on ∆t. If ∆t is small enough s.t. C1∆t < 1, we see that
(3.29) is still satisfied at (n+ 1)∆t. This argument shows that T � can be any preset
positive value T by choosing ∆t small enough, depending only on T . This completes
the proof.
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3.2. The second order scheme. Our next task is to look for the second order
versions of the projection method. It is easy to check that the two-step method

m� −mn

∆t
= ∆

m� +mn

2
,(3.34)

mn+1 =
m�

|m�|
gives only a first order accurate approximation. However, we can add correction terms
to (3.34) to achieve the second order accuracy.

We solve the heat flow of harmonic map

mt = ∆m+ |∇m|2m(3.35)

with the following scheme:

m∗ −mn

∆t
= α∆m∗ + f(mn) + ∆tg(mn),(3.36)

mn+1 =
m∗

|m∗| ,(3.37)

where α, f , and g are to be determined so that the scheme is second order, i.e.,

m|t=tn+1 =
(I − α∆t∆)−1(m+∆tf + (∆t)2g)

|(I − α∆t∆)−1(m+∆tf + (∆t)2g)| |t=tn +O((∆t)
3)(3.38)

=
H(t)

|H(t)| |t=tn +O((∆t)
3),

where

H(t) = (I − α∆t∆)−1(m(t) + ∆tf(m(t)) + (∆t)2g(m(t)))(3.39)

≈ m+∆t(f + α∆m) + (∆t)2(g + α∆f + α2∆2m).(3.40)

Simple calculations (in Appendix B) show that we shall take

f =
1

2
∆m

and

g = ∇(|∇m|2) · ∇m,
i.e., gj = ∇(|∇m|2) · ∇mj for j = 1, 2 and 3. Therefore, we have a second order
scheme

m∗ −mn

∆t
=
1

2
(∆m∗ +∆mn) + ∆t∇(|∇mn|2) · ∇mn,(3.41)

mn+1 =
m∗

|m∗| .(3.42)

Note that (3.41) is no longer unconditionally stable because of the correction term.
However, it is easy to see that the CFL condition is dt

dx ≤ C. For the example (S6) in
section 4, C is calculated numerically to be 0.509.
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Table 3.2

emax/∆t
T ∆t=0.01 ∆t=0.005 ∆t=0.0025

0.200000 3.831069 3.179168 2.555914
0.400000 4.015820 3.355095 2.747515
0.600000 4.230660 3.535197 2.950982
0.800000 4.399771 3.680398 3.126004
1.000000 4.558102 3.825170 3.287008

3.3. Extension to the Landau–Lifshitz equation. To extend the projection
method to the Landau–Lifshitz equation, we will use (1.7). To simplify writing we

will omit the coefficients γ and 1+γ2

γ and consider

mt +m×mt = −m× (m×∆m) = ∆m+ |∇m|2m.(3.43)

The simplest projection scheme for (3.43) is given by the following two-step procedure:

m∗ −mn

∆t
+mn × m∗ −mn

∆t
= ∆m∗(3.44)

with the boundary condition ∂m∗
∂n |Γ = 0, and

mn+1 =
m∗

|m∗| .(3.45)

We can formally write (3.44)–(3.45) as

mn+1 =
(I +mn ×−∆t∆)−1mn

|(I +mn ×−∆t∆)−1mn| .(3.46)

It is easy to see that the scheme is first order accurate. Similar calculations give a
second order scheme as follows:



m∗−mn

∆t +mn × m∗−mn

∆t = 1
2 (∆m

∗ +∆mn)

+(∆t)2{∇(|∇mn|2) · ∇mn + 1
2 |∇mn|2B∆mn},

mn+1 = m∗
|m∗| ,

(3.47)

where

B = (I +mn×)−1 − I.

Again, convergence of the scheme (3.44) and (3.45) is verified by computing the exact
solution (2.6) for (3.43) with a forcing term. Table 3.2 shows the ratio of the maximum
error to ∆t for different ∆t. A slightly better than first order accuracy is obtained in
this case.

4. Comparison of the performances of various numerical schemes. In
this section, we present numerical results for (1.11), (1.12), and (2.9) in one dimension.
We will compare the results for various schemes. The equations are solved on interval
[0, π] with initial conditions

m(x, 0) =


 cos(x/2) sin(x)
sin(x/2) sin(x)

cos(x)


 .



NUMERICAL METHODS FOR THE LANDAU–LIFSHITZ EQUATION 1661

The “exact” solution is calculated by the fourth order Runge–Kutta scheme in
time and the second order center difference with 800 grid points and ∆t = 10−6.

We will give numerical results for the following schemes:

(1) Forward Euler for (1.11):

mn+1 −mn

∆t
= −mn × (mn ×∆hm

n). (S1)

(2) Forward Euler for (1.12):

mn+1 −mn

∆t
= ∆hm

n + |∇hm
n|2mn. (S2)

(3) Forward Euler for (2.9):

mn+1 −mn

∆t
= (mn,mn)∆hm

n + |∇hm
n|2mn. (S3)

(4) Backward Euler for (1.12):

mn+1 −mn

∆t
= ∆hm

n+1 + |∇hm
n|2mn. (S4)

(5) The first order projection method for (1.12):


m∗−mn

∆t = ∆hm
∗,

mn+1 = m∗
|m∗| .

(S5)

(6) The second order projection method for (1.12):




m∗−mn

∆t = ∆h
m∗+mn

2 +∆t∇h(|∇hm
n|2)∇hm

n,

mn+1 = m∗
|m∗| .

(S6)

Table 4.1 shows the error for these schemes with ∆t = 0.0001, ∆x = π/200. For
(S2), the error grows too fast. Stable results for (S3), (S4), (S5) can also be obtained
with ∆t as large as 0.1 for the ∆x given above. For (S6), ∆t is slightly restrictive to
0.08. However, (S1) can be run only for ∆t = 0.0001 due to CFL condition.

The results show that for the first order schemes, the accuracy for (S1) and (S5)
are comparable and both are much better than (S2), (S3), and (S4). However, (S5)
is unconditionally stable (although more expensive) while (S1) is restricted by the
CFL condition. Therefore the projection scheme is a better scheme not only for its
simplicity but also for its stability and accuracy.

5. Appendix A: A proof of existence of the Lagrangian multiplier. Let
G(x, y, t) be the Green’s function for the equation

ut = ∆u+ a(x, t)u

with boundary condition

∂u

∂n

∣∣∣
Γ
= 0;
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Table 4.1

T S1 S2 S3 S4 S5 S6
0.5 0.75291E-05 0.60626E-01 0.48056E-04 0.34438E-04 0.93681E-05
1.0 0.63458E-05 0.80183E-01 0.11777E-03 0.14998E-04 0.41371E-05
1.5 0.59942E-05 0.11340E+00 0.24742E-03 0.51972E-05 0.14723E-05
2.0 0.59510E-05 0.12362E+00 0.46078E-03 0.24537E-05 0.67426E-06
2.5 0.59471E-05 0.12292E+00 0.81217E-03 0.24376E-05 0.55257E-06
3.0 0.59468E-05 0.12275E+00 0.13906E-02 0.24354E-05 0.54592E-06
3.5 0.59468E-05 0.12273E+00 0.23421E-02 0.24350E-05 0.54819E-06
4.0 0.59468E-05 0.12273E+00 0.39047E-02 0.24350E-05 0.55060E-06
4.5 0.59468E-05 0.12273E+00 0.64647E-02 0.24350E-05 0.55304E-06
5.0 0.59468E-05 0.12273E+00 0.10642E-01 0.24350E-05 0.55573E-06

CPU(seconds) 22.64 28.66 44.45 40.60 56.21

the solution of (3.18) is given by

m1(x, t) =

∫ t

0

∫
Ω

G(x, y, t− s)(b(y, s)− µ(y, s)m(y, s))dyds.

If we require

(m1,m) = 0,

then we have ∫ t

0

∫
Ω

G(x, y, t− s)µ(y, s)(m(y, s),m(x, t))dyds

=

∫ t

0

∫
Ω

G(x, y, t− s)(b(y, s),m(x, t))dyds = f(x, t).(5.1)

Differentiating with respect to t, we have

µ(x, t) +

∫ t

0

∫
Ω

Gt(x, y, t− s)µ(y, s)(m(y, s),m(x, t))dyds

+

∫ t

0

∫
Ω

G(x, y, t− s)µ(y, s)(m(y, s),mt(x, t))dyds

= ft(x, t).(5.2)

Applying the Laplacian to (5.1), we have∫ t

0

∫
Ω

∆G(x, y, t− s)µ(y, s)(m(y, s),m(x, t))dyds

+ 2
∑
k

∫ t

0

∫
Ω

Gxk
(x, y, t− s)µ(y, s)(m(y, s),mxk

(x, t))dyds

+

∫ t

0

∫
Ω

G(x, y, t− s)µ(y, s)(m(y, s),∆m(x, t))dyds

= ∆f(x, t).(5.3)

Equations (5.2)–(5.3) give

µ(x, t) +

∫ t

0

∫
Ω

G(x, y, t− s)µ(y, s)(m(y, s),mt(x, t))dyds
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− 2
∑
k

∫ t

0

∫
Ω

Gxk
(x, y, t− s)µ(y, s)(m(y, s),mxk

(x, t))dyds

−
∫ t

0

∫
Ω

G(x, y, t− s)µ(y, s)(m(y, s),∆m(x, t))dyds

−
∫ t

0

∫
Ω

G(x, y, t− s)a(x, t− s)µ(y, s)(m(y, s),m(x, t))dyds

= ft −∆f = f∗(x, t).(5.4)

We are going to prove the existence of solution µ(x, t) for (5.4) by a fixed point
argument.

Since m(x, t) is given, we may assume that

sup
x,y∈Ω;s≤t≤T

{
|(m(y, s),∇m(x, t))|, |(m(y, s),∆m(x, t))|,

|(m(y, s),mt(x, t))|, |a(x, t− s)(m(y, s),m(x, t))|
}
≤ M,

where M is a constant. The Green’s function G(x, y, t) satisfies the following proper-
ties (see, e.g., [3]): ∫

Ω

|G(x, y, t)|dy ≤ C1, 0 < t < T,(5.5)

∫
Ω

|∇xG(x, y, t)|dy ≤ C2√
t
, 0 < t < T.(5.6)

Here C1, C2 are constants. It is easy to see that (5.5)–(5.6) are true for the heat kernel

K(x, y, t) =
1

2n(πt)
n
2
exp

[
−
∑
(xi − yi)

2

4t

]

and K(x, y, t) is the leading approximation to G(x, y, t) near the singularity [3].

The fixed point argument is formulated as follows:

µn+1(x, t) +

∫ t

0

∫
Ω

G(x, y, t− s)µn(y, s)(m(y, s),mt(x, t))dyds

− 2
∑
k

∫ t

0

∫
Ω

Gxk
(x, y, t− s)µn(y, s)(m(y, s),mxk

(x, t))dyds

−
∫ t

0

∫
Ω

G(x, y, t− s)µn(y, s)(m(y, s),∆m(x, t))dyds

−
∫ t

0

∫
Ω

G(x, y, t− s)a(x, t− s)µn(y, s)(m(y, s),m(x, t))dyds

= ft −∆f = f∗(x, t).(5.7)

Let

An(t) = sup
{
|µn(x, s)− µn−1(x, s)| | x ∈ Ω, 0 < s < t

}
;
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then we have the following estimate from (5.7):

An+1(t) ≤ C

∫ t

0

1√
t− s

An(s)ds+ C

∫ t

0

An(s)ds

for some constant C. A standard fixed point argument will then show that µn(x, t)
converges uniformly and therefore we have a unique solution for (5.4).

6. Appendix B: Derivation of the second order scheme. On the right-
hand side of (3.39)

H

|H| +O((∆t)3) = m+∆t(f + α∆m− (m, f + α∆m)m)

+ (∆t)2(g + α∆f + α2∆2m− (m, f + α∆m)(f + α∆m)

− (m, g + α∆f + α2∆2m)m− 1
2
|f + α∆m|2m

+
3

2
(m, f + α∆m)2m) +O((∆t)3).

The left-hand side of (3.39) can be expanded to

mt=tn+1 = m+mt∆t+
1

2
mtt(∆t)

2|t=tn +O((∆t)3).

In order that (3.38) is satisfied, we need

mt = f + α∆m− (m, f + α∆m)m(6.1)

and

1

2
mtt = g + α∆f + α2∆2m− (m, f + α∆m)(f + α∆m)

− (m, g + α∆f + α2∆2m)m− 1
2
|f + α∆m|2m

+
3

2
(m, f + α∆m)2m.(6.2)

From (3.35), we have that

1

2
mtt =

1

2
(∆m+ |∇m|2m)t

=
1

2
∆2m+

1

2
∆(|∇m|2)m+∇(|∇m|2)∇m

+ |∇m|2∆m+ (∇m ·∆∇m)m+ 3
2
|∇m|4m.(6.3)

Equations (3.35) and (6.1) imply that

f = (1− α)∆m.

We will take α = 1
2 , f =

1
2∆m. Assuming (g,m) = 0 and equating the right-hand

side of (6.2) and (6.3), we have

g = ∇(|∇m|2)∇m.
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Therefore we have a second order scheme

m∗ −mn

∆t
=
1

2
(∆m∗ +∆mn) + ∆t∇(|∇mn|2)∇mn,(6.4)

mn+1 =
m∗

|m∗| .(6.5)
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