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Abstract
The solution of the interface problem is only in H1+α(Ω) with α > 0 possibly

close to zero and, hence, it is difficult to be approximated accurately. This paper
studies an accurate numerical method on quasi-uniform grids for two-dimensional
interface problems. The method makes use of a singular function representation
of the solution, dual singular functions, and an extraction formula for stress
intensity factors. Using continuous piecewise linear elements on quasi-uniform
grids, our finite element approximation is shown to be optimal, O(h), accurate in
the H1 norm. This is confirmed by numerical experiments for interface problems
with α < 0.1. An O(h1+α) error bound in the L2 norm is also established by
the standard duality argument. For small α, this improvement over the H1 error
bound is negligible. However, numerical tests presented in this paper indicate
that the L2 norm accuracy is much better than the theoretical error bound.

Key words. Interface singularity, Finite Element, Singular function, Stress inten-
sity factor
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1 Introduction

Let Ω be an open, bounded polygonal domain in R2. Consider the following model
interface problem  −∇ · (a∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)
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where the diffusion coefficient a(x) is a given piecewise constant function and f is
a given function in L2(Ω). (Here and thereafter we use the standard notation and
definition of the Sobolev spaces.)

It is well-known that the solution of (1.1) is in H1+α(Ω) with α > 0 possibly close
to zero (see [15]). Such low regularity of the solution makes lower order finite element
approximations on quasi-uniform grids inaccurate. There were several approaches in
the literatures for overcoming this difficulty, for example, local mesh refinement (see
[1, 19]) and the p (or hp) version of the finite element method (see [20, 21]). To achieve
optimal convergence of lower order finite elements on quasi-uniform grids, a class of
finite element methods studied by various researchers is to make use of the singular
function representation of the solution. This includes the singular function method
(see, e.g., [10, 8]), the dual singular function method (see [9, 2, 3]), and the multigrid
version of the dual singular function method (see [4]).

Solutions of many partial differential equations have singular function represen-
tations: a decomposition as the sum of regular and singular parts of the solution.
Moreover, the singular part has an explicit form and the unknown coefficient of the
singular part, the so-called stress intensity factor, is given by the extraction formula
depending on the given data and the original solution. The singular and dual singular
function methods augment approximation spaces by using the singular and/or dual
singular functions. As an alternative, in this paper we develop, analyze, and test an
accurate finite element method that also uses both the singular and dual singular func-
tions. Differing from other methods of this type, our method aims for approximation
of the regular part of the solution that is much smoother than the solution itself. Once
the regular part of the solution is computed, then the stress intensity factors and the
solution itself can be calculated with negligible cost and without degrading accuracy.
So the key of our method is to derive a well-posed and smoother problem for the regular
part of the solution. This is done by developing a new extraction formula for the stress
intensity factors in terms of the regular part of the solution, which is similar to but more
complicated than our previous work [6] for Poisson problems with corner singularities.
Since this new problem is H2 regular in each sub-domain, we show that the standard
continuous piecewise linear finite element approximation on quasi-uniform grids has
optimal, O(h), accuracy in the H1 norm. This, in turn, implies that approximations
to the stress intensity factors and the original solution are O(h) accurate in the abso-
lute value and the H1 norm, respectively. This theoretical prediction is confirmed by
numerical results for interface problems in H1+α with α < 0.1 and with singular points
at either corner or interior.

To establish the L2 norm error bound, we adapt the standard duality argument. In
order to achieve an extra order accuracy in the L2 norm, it requires that the properly
chosen adjoint problem has the full H2 regularity and yields the L2 norm of the error.
At this stage, we are unable to find an adjoint problem satisfying both the requirements.
Hence, we use an adjoint problem with a simplified right-hand side that naturally gives
the L2 norm of the error but has only H1+α regularity. With this choice, we can only
prove O(h1+α) error bound in the L2 norm. For small α > 0, obviously this theoretical
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error bound improves only a little over the H1 norm error bound. Since the regular
part of the solution is piecewise H2, it is possible that the approximation accuracy in
the L2 norm is much better than the theoretical bound. One of the purposes of this
paper is to demonstrate numerically that this is indeed true.

The paper is organized as follows. Section 2 introduces the two-dimensional inter-
face problem, its singular function representation of the solution, and an extraction
formula for the stress intensity factors. Section 3 derives the variational problem for
the regular part of the solution via a newly developed extraction formula and estab-
lishes its well-posedness by the Fredholm alternative. Section 4 introduces the finite
element method and estimates error bounds in both the H1 and L2 norms. Finally,
numerical results are presented in Section 5.

2 Interface Singularities

Let Ωj (j = 1, ..., J) be open, polygonal subdomains of Ω and let {Ωj}Jj=1 be a partition
of the domain Ω

Ωi ∩ Ωj = ∅ for i 6= j and
J⋃
j=1

Ω̄j = Ω̄.

Let ΩΣ =
⋃J
j=1 Ωj. Assume that the diffusion coefficient a is piecewise constant with

respect to the partition
a(x) = aj > 0 in Ωj (2.1)

for j = 1, ... , J . Let Γij = ∂Ωi ∩ ∂Ωj denote the common edge of Ωi and Ωj and let
nj be the outward unit normal vector to the boundary ∂Ωj of Ωj. Then problem (1.1)
can be rewritten as: find u ∈ H1

0 (Ω) such that

−aj ∆u = f in Ωj (2.2)

for j = 1, ... , J with interface conditions

ai
∂u

∂ni

∣∣∣∣
Γij

+ aj
∂u

∂nj

∣∣∣∣
Γij

= 0 (2.3)

for i, j = 1, ... , J such that Γij 6= ∅ (see [13]).
For simplicity of presentation, assume that there is only one interface vertex p

located at the origin. Extension to the domain with a finite number of reentrant corners
[6] and interface vertices is straightforward. For interface problems, it is well-known
that the solution has a singular function representation (see [13, 14, 15, 16, 17]).

Let Ωm1 ,Ωm2 , . . . ,ΩmI
be the subdomains sharing p as a common vertex. Let δ > 0

be a small number such that p is the only vertex of the subdomians inside the disc
D(p, δ) centered at p with radius δ. When p belongs to the boundary of the domain Ω,
let polar coordinates (r, θ) be chosen so that D(p, δ)∩Ωmi

= {(r, θ) : 0 < r < δ, ωi−1 <
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θ < ωi} for 1 ≤ i ≤ I, where ω0 = 0, and ωI = ω be the angle between the two
edges of ∂Ω emanating from p. When p belongs to the interior of the domain Ω, the
subdomians {Ωmi

}Ii=1 completely surround p. So we may have the polar coordinates
such that ω0 = 0 and ωI = 2π. Let λk = (αk)

2 and Θk(θ) for k ≥ 1 be, respectively,
the positive eigenvalues and the corresponding eigenfunctions of the Sturm-Liouville
problem at the vertex: in subintervals (ωi−1, ωi) (i = 1, ... , I)

−Θ′′(θ) = λΘ(θ), (2.4)

on interfaces ωi (i = 1, ... , I − 1)

lim
θ→ω−i

Θ(θ) = lim
θ→ω+

i

Θ(θ) and ami
lim
θ→ω−i

Θ′(θ) = ami+1
lim
θ→ω+

i

Θ′(θ), (2.5)

and on boundaries θ = 0, θ = ω or 2π

lim
θ→0+

Θ(θ) = lim
θ→ω−

Θ(θ) = 0 if p ∈ ∂Ω, (2.6)

lim
θ→0+

Θ(θ) = lim
θ→(2π)−

Θ(θ) and am1 lim
θ→0+

Θ′(θ) = amI
lim

θ→(2π)−
Θ′(θ) if p ∈ Ω, (2.7)

where the eigenfunctions are normalized as follows

I∑
i=1

∫ ωi

ωi−1

ami
Θj(θ)Θk(θ) dθ = δjk :=

 1 if j = k,

0 if j 6= k.
(2.8)

Let α1 ≤ . . . ≤ αL be all α,ls that satisfy 0 < αl < 1. Define the singular functions
and the dual singular functions by

sl(r, θ) = rαlΘl(θ) and s−l(r, θ) = r−αlΘl(θ), (2.9)

respectively. Note that sl and s−l are twice differentiable and harmonic in each subdo-
main Ωj ( ∆sl = ∆s−l = 0 in Ωj). It is easy to see that for i = 1, ... , I

sl ∈ H1+αl−ε(Ωmi
) and s−l ∈ H1−αl−ε(Ωmi

) (2.10)

for any ε > 0. On the interface Γmimi+1
= ∂Ωmi

∩ ∂Ωmi+1
, the second equation in (2.5)

implies

ami

∂sl
∂nmi

∣∣∣∣
Γmimi+1

+ ami+1

∂sl
∂nmi+1

∣∣∣∣
Γmimi+1

= 0, (2.11)

ami

∂s−l
∂nmi

∣∣∣∣
Γmimi+1

+ ami+1

∂s−l
∂nmi+1

∣∣∣∣
Γmimi+1

= 0. (2.12)
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Set

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω and B(r1) = B(0; r1).

Define a family of cut-off functions of r for a fixed ω as follows

ηρ(r) =


1 in B(ρR

2
),

15
16

{
8
15
−
(

4r
ρR
− 3

)
+ 2

3

(
4r
ρR
− 3

)3
− 1

5

(
4r
ρR
− 3

)5
}

in B̄(ρR
2

; ρR),

0 in Ω \ B̄(ρR),

(2.13)

where ρ is a parameter in (0, 2] and R ≤ δ/2 is a fixed number.

Remark 2.1 It is easy to check that ηρ ∈ C2(Ω) satisfies the following inequalities

|ηρ| ≤ 1, |∂rηρ| ≤ C ρ−1, and |∂rrηρ| ≤ C ρ−2, (2.14)

where ∂r and ∂rr denote the respective first and second order partial differential oper-
ators with respect to r. Similarly, ∂θ and ∂θθ are the partial differential operators with
respect to θ. Here and thereafter, we use C with or without subscripts in this paper
to denote a generic positive constant, possibly different at different occurrences, that is
independent of ρ and the mesh size h introduced in subsequent sections but may depend
on the domain Ω.

Remark 2.2 The singular functions sl and the dual singular functions s−l, both given
in (2.9), are defined in each subdomain Ωj and infinitely differentiable there. However,
their values and derivatives may not be defined on the interfaces Γij = ∂Ωi ∩ ∂Ωj, so
we need to notify that some of the inner products or norms of functions containing
such singular functions or their derivatives are the summation of their values on each
subdomain Ωj. For that reason we indicate the situation by using subindex ΩΣ as
follows;

(a ∆ (ηρ sk), η2 s−l)ΩΣ
=
∑
j

(aj ∆ (ηρ sk), η2 s−l)Ωj

and
‖∆ (η2 s−l)‖2

ΩΣ
=
∑
j

‖∆ (η2 s−l)‖2
Ωj
.

Similarly, we use the subindex to emphasize the smaller supports in the norms and
inner products as in ‖∆(η2s−l)‖B(R;2R) or (aφ,∆(η2s−l))B(R;2R) in the section 3 and
thereafter. Although we use these subindices to reduce the possible confusion or to
emphasize the smaller supports but will omit or use only one of them to avoid possible
confusion by the overuses, if necessary ([5]).

Using the cut-off function defined above, the solution of (2.2) has the following
singular function representation

u = w +
L∑
l=1

κlηρsl, (2.15)

5



where w ∈ H2(Ωj) for 1 ≤ j ≤ J is the regular part of the solution and κl for 1 ≤ l ≤ L
is the so-called stress intensity factors. The stress intensity factors can be expressed in
terms of the following extraction formula (see, e.g., [5]):

κl =
1

2αl

I∑
i=1

∫
Ωmi

[fηρs−l + ami
u∆(ηρs−l)]dx, (2.16)

where Ωmi
are the subdomains sharing p as a common vertex. Moreover, the following

regularity estimate holds

L∑
l=1

|κl|+
J∑
j=1

‖w‖H2(Ωj) ≤ C ‖f‖L2(Ω). (2.17)

We end this section with a modification of Green’s theorem for the regular part of the
solution.

Lemma 2.1 Let w ∈ H2(Ωj) be the regular part of the solution in (2.15), then∑
j

∫
Ωj

aj∇w · ∇vdx = −
∑
j

∫
Ωj

(∇ · aj∇w) vdx, (2.18)

for any v ∈ H1
0 (Ω).

Proof: On each subdomain Ωj, since aj is a constant, it is then easy to see that∫
Ωj

aj∇w · ∇v dx =
∫
∂Ωj

aj
∂w

∂nj
v ds−

∫
Ωj

(∇ · aj∇w) v dx (2.19)

for w ∈ H2(Ωj) and v ∈ H1
0 (Ω). Note that ηρ sl satisfies the interface condition in (2.3)

and, hence, so does the regular part of the solution, w. Then summing (2.19) over
j = 1, · · · , J and using the interface condition for w, we have (2.18).

3 Well-Posed Variational Problem for w

This section is the core of the method, which derives a variational problem for the
regular part of the solution and proves its well-posedness. The key step of the derivation
is to establish a new extraction formula for the stress intensity factors in terms of w
(see Lemma 3.1).

Lemma 3.1 The stress intensity factors κl for 1 ≤ l ≤ L can be expressed in terms of
w corresponding to ρ ≤ 1 by the following extraction formula

κl =
1

2αl

I∑
i=1

∫
Ωmi

[fη2s−l + ami
w∆(η2s−l)] dx, (3.1)

where Ωmi
are the subdomains sharing p as a common vertex.
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Proof: On each Ωj, applying −a ∆ to the equation in (2.15) with ρ ≤ 1 and using
the first equation in (1.1) give

f = −a ∆w −
L∑
k=1

κk a ∆(ηρsk), on each Ωj.

Multiplying by η2 s−l, integrating over the each subdomain Ωj and summation yield

(f, η2 s−l)ΩΣ
= −(a ∆w, η2 s−l)ΩΣ

−
L∑
k=1

κk (a ∆ (ηρ sk), η2 s−l)ΩΣ
.

Similar arguments as the proof of Lemma 2.2 in [6] to each subdomains Ωj and their
sum leads to

(a ∆w, η2 s−l)ΩΣ
= (aw, ∆ (η2 s−l))ΩΣ

,

since the diffusion coefficient a is piecewise constant and the dual singular function
s−l and w satisfy the interface conditions by (2.12) and the comment in the proof of
Lemma 2.1.

Now, to establish the extraction formula in (3.1) it suffices to show that

(a ∆(ηρ sk), η2s−l)ΩΣ
= −2αl δlk, (3.2)

where δlk is the Kronecker delta. To this end, a straightforward calculation using (2.4)
gives

∆ (ηρ sk) = ∆ (ηρ r
αk Θk(θ)) =

(
(2αk + 1)rαk−1∂rηρ + rαk∂rrηρ

)
Θk(θ).

It then follows from properties of the dual singular function and the cut-off functions,
the fact that η2 = 1 in [ρR

2
, ρR] for ρ ≤ 1, and the orthogonality property in (2.8) that

(a ∆ (ηρ sk), η2 s−l)ΩΣ

=
∫ ωI

ω0

∫ ρR

ρR
2

a
(
(2αk + 1)r−1∂rηρ + ∂rrηρ

)
rαk−αlΘk(θ)Θl(θ)r drdθ

=
∫ ρR

ρR
2

((2αk + 1)∂rηρ + r∂rrηρ) r
αk−αl dr

∫ ωI

ω0

a Θk(θ)Θl(θ) dθ

= δlk

∫ ρR

ρR
2

((2αk + 1)∂rηρ + r∂rrηρ) r
αk−αl dr,

which implies (3.2) for k 6= l. For k = l, (3.2) follows from the fact that∫ ρR

ρR
2

[(2αl + 1)∂rηρ + r∂rrηρ] dr = [2αlηρ(r) + r∂rηρ(r)]
ρR
ρR
2

= −2αl.

This completes the proof of the lemma.
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Substituting the singular function representation of u in (2.15) into the model equa-
tion in (2.2), multiplying by a test function v ∈ H1

0 (Ω), integrating over domain Ω,
and using Lemma 2.1 yield

∫
Ω

a∇w · ∇v dx−
L∑
l=1

κl

∫
ΩΣ

a∆(ηρsl) · v dx =
∫
Ω
fv dx.

Using the extraction formula of κl in (3.1) and regrouping terms give

∫
Ω

a∇w · ∇vdx −
L∑
l=1

1

2αl

(
I∑
i=1

∫
Ωmi

ami
w∆(η2s−l) dx

)∫
ΩΣ

a∆(ηρsl) · v dx

=
∫
Ω
fv dx+

L∑
l=1

1

2αl

(
I∑
i=1

∫
Ωmi

fη2s−l dx

)∫
ΩΣ

a∆(ηρsl) · v dx.

Define the bilinear and linear forms by

a(w, v) = (a∇w,∇v)−
L∑
l=1

1

2αl
(aw ,∆(η2s−l))ΩΣ

(a ∆(ηρsl), v)ΩΣ
(3.3)

and

g(v) = (f, v) +
L∑
l=1

1

2αl
(f, η2s−l)(a ∆(ηρsl), v)ΩΣ

, (3.4)

respectively. Then the variational problem for the regular part of the solution is to
find w ∈ H1

0 (Ω) such that

a(w, v) = g(v) ∀ v ∈ H1
0 (Ω). (3.5)

Remark 3.1 Since sl ∈ H1+αl−ε(Ωmi
) and s−l ∈ H1−αl−ε(Ωmi

) for any ε > 0 and
∆(η2s−l) and ∆(ηρsl) equal zero around the vertex p, the integrals in both (3.3) and
(3.4) are well-defined. The second terms in the respective bilinear and linear forms
provide a singular correction so that w ∈ H2(Ωj).

In the remainder of this section, we establish the well-posedness of problem (3.5)
by the use of the Fredholm alternative (see, e.g., [11]) in H1

0 (Ω). To this end, note first
that the singular and dual singular functions have the following forms (see [18])

sl = rαl(cli sinαlθ + dli cosαlθ) and s−l = r−αl(cli sinαlθ + dli cosαlθ) in Ωmi
,

where coefficients cli and dli depend on the diffusion coefficient a. A lengthy and
elementary calculation (see [6] for a similar but simpler computation) gives the following
upper bounds of η2s−l and ηρsl on the respective B(R; 2R) and B(ρR).
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Lemma 3.2 For any 0 < ρ ≤ 1, we have that

‖∆(η2s−l)‖B(R;2R) ≤ C R−αl−1 (3.6)

and that

‖ηρsl‖B(ρR) ≤ C (ρR)1+αl and ‖∆(ηρsl)‖B(ρR) ≤ C(ρR)αl−1. (3.7)

To obtain the continuity and coercivity bounds of the bilinear form, we further need
the well-known Poincaré-Friedrichs inequality

‖v‖ ≤ C ‖∇v‖ (3.8)

and, particularly (see, e.g., [6]),

‖v‖B(R;2R) ≤
2ωR

π
‖∇v‖ (3.9)

for any v ∈ H1
0 (Ω).

Lemma 3.3 For 0 < ρ ≤ 1, there exist positive constants C0, C1, and C2 such that

C0 ‖φ‖2
1 ≤ a(φ, φ) +

C1

R2
‖φ‖2 ∀ φ ∈ H1

0 (Ω) (3.10)

and that
a(φ, ψ) ≤ C2 ‖φ‖1 ‖ψ‖1 ∀ φ, ψ ∈ H1

0 (Ω). (3.11)

Proof: For any φ and ψ in H1
0 (Ω), it follows from the Cauchy-Schwarz inequality,

Lemma 3.2, and (3.9) that∣∣∣∣ 1

2αl
(aφ,∆(η2s−l))B(R;2R)(a ∆(ηρsl), ψ)B(ρR)

∣∣∣∣
≤ ā2

2αl
‖∆(η2s−l)‖B(R;2R)‖∆(ηρsl)‖B(ρR)‖φ‖B(R;2R)‖ψ‖B(ρR)

≤ C
ā2

R2

ραl

αl
‖φ‖B(R;2R) ‖ψ‖B(ρR) ≤ C

ā2

R

ραl

αl
‖φ‖ ‖∇ψ‖, (3.12)

where ā = max
1≤j≤J

{aj}. Now, the inequality in (3.11) is an immediate consequence of the

Cauchy-Schwarz inequality and (3.12). Let a = min
1≤j≤J

{aj}, by using (3.12) with ψ = φ

and the ε-inequality, we have that, for any ε > 0

a(φ, φ) ≥ a ‖∇φ‖2 − C
ā2

R

(∑
l

ραl

αl

)
‖φ‖B(R;2R) ‖∇φ‖

≥
(

a− C
ā2

R

(∑
l

ραl

αl

)
ε

)
‖∇φ‖2 − C ā2

εR

(∑
l

ραl

αl

)
‖φ‖2

B(R;2R).
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Choosing ε = a
(
C ā2

R

(∑
l

ραl

αl

))−1

/2 gives that

a(φ, φ) ≥ a

2
‖∇φ‖2 − ā4

aR2

(∑
l

ραl

αl

)2

‖φ‖2.

Now, (3.10) follows from the Poincaré-Friedrichs inequality in (3.8).

Now, consider the following bilinear form

aµ(w, v) = a(w, v) + µ(w, v)

for µ ≥ 0. Let Tµ : H1
0 (Ω) → H−1(Ω) be the corresponding operator of the bilinear

form aµ(·, ·), where H−1(Ω) is the dual space of H1
0 (Ω) with standard dual norm

denoted by ‖ · ‖−1.

Theorem 3.1 For 0 < ρ ≤ 1, we have that

(1) problem (3.5) has a unique solution w in H1
0 (Ω) with w ∈ H2(Ωj) for all j;

(2) there exists a positive constant γ suth that

γ‖φ‖1 ≤ sup
ψ∈H1

0 (Ω)

a(φ, ψ)

‖ψ‖1

(3.13)

for any φ ∈ H1
0 (Ω).

Proof: It follows from Lemma 3.3 that Tµ : H1
0 (Ω) → H−1(Ω) is a regular operator

(i.e., it is one-to-one and onto and its inverse is bounded) for µ ≥ C1R
−2 where C1

is given in Lemma 3.3 and its Fredholm index independent of µ is zero. Hence, T0

satisfies the Fredholm alternative: either T0 is regular or T0w = 0 has a nontrivial
solution. Since g is in H−1(Ω), to show the existence and uniqueness of problem (3.5),
it suffices to prove that the second case does not hold. To this end, we note that

a(w, v) = (T0w, v) = 0 ∀ v ∈ H1
0 (Ω).

For any v ∈ D∞
0 (Ω), integrating by parts and using Lemma 2.1 and the interface

condition in (2.11) give

0 = a(w, v)

= −(∇ · (a∇w), v)−
L∑
l=1

1

2αl
(aw, ∆(η2s−l))ΩΣ

(∇ · (a∇(ηρsl)), v)

= −
(
∇ · a∇

{
w +

L∑
l=1

1

2αl
(aw, ∆(η2s−l))ΩΣ

(ηρsl)

}
, v

)
,
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which, together with the fact that D∞
0 (Ω) is dense in H1

0 (Ω), implies

∇ · a∇ŵ = 0 in Ω.

Here, ŵ ≡ w +
L∑
l=1

1
2αl

(aw, ∆(η2s−l))(ηρsl). Since ŵ vanishes on the boundary, ŵ is

identically zero on Ω̄. Hence, w is a linear combination of ηρsk. Because ∆(η2s−l) = 0
on B(R) and the support of ηρsk ⊂ B(R), we have

(a ηρsk, ∆(η2s−l))ΩΣ
= 0 ∀ k.

This implies that w is identically zero on Ω̄.
To show the validity of the inf-sup condition in (3.13), we use the fact that the

inverse of T0 is bounded; i.e., there exists a positive constant γ such that

‖T−1
0 ‖H−1(Ω)→H1

0 (Ω) ≤
1

γ
.

This implies that, for any φ ∈ H1
0 (Ω),

γ‖φ‖1 ≤ ‖T0φ‖−1 = sup
ψ∈H1

0 (Ω)

a(φ, ψ)

‖ψ‖1

,

which completes the proof of (3.13) and, hence, the theorem.

Corollary 3.1 Let w and κl be the solution of (3.5) and the stress intensity factors
defined in (3.1), respectively. For 0 < ρ ≤ 1,

u = w +
L∑
l=1

κlηρsl (3.14)

is the solution of (2.2).

4 Finite Element Approximation

This section analyzes the standard finite element approximation to w based on the
variational problem in (3.5). The analysis is similar to that in [6] but is more involved
in details. To this end, let Th be a partition of the domain Ω into triangular finite
elements; i.e., Ω = ∪K∈Th

K with h = max{diam K: K ∈ Th}. Assume that any K ∈ Th
is a subset of Ωj or K∩Ωj = ∅ and the triangulation Th is regular. Let Vh be continuous
piecewise linear finite element space; i.e.,

Vh = {φh ∈ C0(Ω): φh|K ∈ P1(K), ∀ K ∈ Th, φh = 0 on ∂Ω} ⊂ H1
0 (Ω),

where P1(K) is the space of linear functions on K. It is well-known that

inf
φh∈Vh

(‖φ− φh‖+ h|φ− φh|1) ≤ CAh
1+t‖φ‖1+t,Ω (4.1)
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for any φ ∈ H1
0 (Ω) ∩H1+t(Ω) and 0 ≤ t ≤ 1. (4.1) is also valid on the subdomain Ωj.

The finite element approximation to w is to seek wh ∈ Vh such that

a(wh, v) = g(v) ∀ v ∈ Vh. (4.2)

To establish the L2 norm error bound, we employ the standard duality argument.
However, the standard choice of the adjoint problem does not yield an upper bound of
the L2 norm error in terms of the corresponding bilinear form. Instead, we choose the
following adjoint problem with a simplified right-hand side

a(v, z) = (w − wh, v) ∀ v ∈ H1
0 (Ω). (4.3)

Lemma 4.1 For 0 < ρ ≤ 1, problem (4.3) has a unique solution z in H1
0 (Ω). More-

over, the solution z is in H1+α1−ε(Ω) for any ε > 0 and satisfies the regularity estimate

‖z‖1+α1−ε ≤ C ‖w − wh‖. (4.4)

Proof: Similar proof as that of Theorem 3.1 shows that the adjoint problem in (4.3)
has a unique solution in H1

0 (Ω) and that there exists a positive constant γ′ such that

γ′‖ψ‖1 ≤ sup
φ∈H1

0 (Ω)

a(φ, ψ)

‖φ‖1

∀ ψ ∈ H1
0 (Ω).

Let z be the solution of (4.3), by the Cauchy-Schwarz inequality we then have that

‖z‖1 ≤
1

γ′
sup

φ∈H1
0 (Ω)

a(φ, z)

‖φ‖1

=
1

γ′
sup

φ∈H1
0 (Ω)

(w − wh, φ)

‖φ‖1

≤ 1

γ′
‖w − wh‖. (4.5)

It is easy to check that the solution, z ∈ H1
0 (Ω), of problem (4.3) satisfies

∇ · a∇z = −
∑
l

a

2αl
(a ∆(ηρ sl), z)ΩΣ

∆(η2s−l)− (w − wh) ≡ g1. (4.6)

Since g1 is in L2(Ω), then z is in H1+α1−ε(Ω) for any ε > 0 and satisfies

‖z‖1+α1−ε ≤ C ‖g1‖.

Now, the regularity bound in (4.4) follows from the triangle and Cauchy-Schwarz in-
equalities, (4.5), and Lemma 3.2 that

‖g1‖ ≤ C
(

ā

2αl
|(a∆(ηρs), z)B( ρR

2
;ρR)| ‖∆(η2s−l)‖B(R;2R) + ‖w − wh‖

)
≤ C ‖w − wh‖.

This proves the inequality in (4.4) and, hence, the lemma.

The next theorem establishes error bounds of the finite element approximation in
the L2 and H1 norms.
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Theorem 4.1 For 0 < ρ ≤ 1, there exists a positive constant h0 such that for all
h ≤ h0 (4.2) has a unique solution wh in Vh. Moreover, let w ∈ H2(Ω) be the solution
of (3.5), then we have the following error estimates

‖w − wh‖1 ≤ C h‖f‖ (4.7)

and for any ε > 0
‖w − wh‖ ≤ C h1+α1−ε‖f‖. (4.8)

Proof: We first establish error bounds in (4.7) and (4.8) for any solution to problem
(4.2) that may exist. Then, for f ≡ 0, the uniqueness of the solution to problem (3.5)
and the error bound in (4.7) imply that wh ≡ 0. Hence, (4.2) has a unique solution wh
in Vh since it is a finite dimensional problem with the same number of unknowns and
equations.

To establish error bounds, note first the orthogonality property

a(w − wh, v) = 0 ∀ v ∈ Vh. (4.9)

By choosing v = w−wh in equation (4.3) and using the orthogonality property in (4.9)
and the continuity bound in (3.11), we have that

‖w − wh‖2 = a(w − wh, z) = a(w − wh, z − Ihz) ≤ C ‖w − wh‖1‖z − Ihz‖1 (4.10)

where Ihz ∈ Vh is the nodal interpolant of z. By the approximation property and the
regularity estimate in (4.4), we have

‖z − Ihz‖1 ≤ C hα1−ε‖z‖1+α1−ε ≤ C hα1−ε‖w − wh‖

which, combining with (4.10), gives

‖w − wh‖ ≤ C hα1−ε‖w − wh‖1. (4.11)

Now, it follows from Lemma 3.3, orthogonality property (4.9), and inequality (4.11)
that for any v ∈ Vh

C0‖w − wh‖2
1 ≤ a(w − wh, w − wh) + C1R

−2 ‖w − wh‖2

= a(w − wh, w − v) + C1R
−2 ‖w − wh‖2

≤ C ‖w − wh‖1‖w − v‖1 + CR−2 h2(α1−ε)‖w − wh‖2
1,

which, together with (4.1) and (2.17), implies the validity of error bound (4.7) for
sufficiently small h. Error bound (4.8) is a direct consequence of (4.11) and (4.7). This
completes the proof of the theorem.

Remark 4.1 By using a delicate analysis as in [6], the ε in the L2 norm estimate can
be removed

‖w − wh‖ ≤ C h1+α1‖f‖. (4.12)
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Remark 4.2 Approximations to the stress intensity factors and the solution of (2.2)
can be computed according to (3.1) and (3.14) as follows

κl,h =
1

2αl
(awh,∆(η2s−l))B(R;2R) +

1

2αl
(f, η2s−l)B(2R) (4.13)

and
uh = wh +

∑
l

κl,hηρsl, (4.14)

respectively. It is easy to show that

|κl − κl,h| ≤ C h1+α1‖f‖, (4.15)

for all l and that

‖u− uh‖1 ≤ Ch‖f‖ and ‖u− uh‖ ≤ C h1+α1‖f‖. (4.16)

Remark 4.3 The system of algebraic equations arising from (4.2) consists of the stan-
dard coefficient matrix from the diffusion operator and a perturbation from the integral
terms which are only nonzero on a strip away from the interface vertex. The pertur-
bation is rank one and the algebraic system can be solved by the Sherman-Morrison
formula or the standard multigrid method applied to nonsymmetric problems (see [7]).

5 Numerical Experiment

Since the variational problem in (3.5) for w is not a standard elliptic problem, the
error estimates on the finite element approximation developed in the previous section
are quite limited. For example, it requires the mesh size to be sufficiently small and
the L2 norm error bound seems pessimistic. The purpose of this section is to present
numerical results that either conform to the theory or show numerically that those
limitations are probably not real.

The first numerical test is on an interface problem with a corner singular point.
Consider the Γ-shaped domain with vertices (1, 1), (−1, 1), (−1,−1), (0,−1), (0, 0),
and (1, 0), and partition the domain into three squares Ω1, Ω2, and Ω3 as depicted in
Fig.1. Let the diffusion coefficient a(x) be piecewise constant, i.e., a(x) = ai on Ωi,
taking values

a1 = a3 = 1 and a2 = 100.

Then the corresponding interface problem (1.1) has only one interface vertex at the
origin, and its only singular function has the form of

s = rα Θ(θ) (5.1)
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Figure 1: A Γ-shaped domain partitioned into three squares and its partitions.

with α = 0.089658901772145... and Θ(θ) = Ci sin(αθ)+Di cos(αθ) on Ωi for i = 1, 2, 3.
Let η2 be the cut-off function defined in Section 2 with R = 1/8. Choose the right-hand
side function in (2.2) to be

f = −ai

(
− 6

ai
x(y2 − y4) +

1

ai
(x− x3)(2− 12y2) + ∆(η2s)

)
on Ωi

so that the exact solution is
u = wρ + ηρs,

where ηρ is the cut-off function with R = 1/8 and 0 < ρ ≤ 1 and wρ is the regular part
of the solution having the form of

wρ =
1

ai
(x− x3)(y2 − y4) + (η2 − ηρ)s on Ωi

for i = 1, 2, 3.
Table 1 reports numerical results of the discretization error of the regular part of

the solution in the respective L2, L∞, and H1 norms for ρ = 1. Even though the errors
change with respect to various values of ρ, the difference is insignificant. It seems that
the finite element approximation is not restricted to the small mesh size. As predicted
in the theory, the method achieves the optimal accuracy, O(h), in the H1 norm. The
order of the accuracy in the L2 norm established in Theorem 4.1 for this example is less
than 1.1. But numerical results depicted in all these three tables clearly show that it
is most likely to be around 2 despite some oscillation. We also report numerical results
on the approximation to the stress intensity factor.
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h 2−5 2−6 2−7 2−8 2−9 2−10

L2 5.0549e-03 1.8321e-03 4.8524e-04 1.1252e-04 2.1761e-05 5.84033e-06
Order 1.4642 1.9167 2.1085 2.3704 1.897623

L∞ 3.2061e-02 1.9981e-02 1.4292e-03 1.2309e-03 1.5529e-04 6.32335e-05
Order 0.6822 3.8053 0.2156 2.9866 1.296204

H1 1.2451e-01 6.1012e-02 1.7750e-02 9.1545e-03 4.2923e-03 2.1391e-03
Order 1.0291 1.7812 0.9552 1.0927 1.004734

κ 1.8632 1.3415 1.0399 1.0207 1.0035 1.00111
Order 1.337809 3.0097425 0.946758 2.564204 1.656795

Table 1. Discretization Error for ρ = 1.0
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Figure 2: A square partitioned into four squares.

Similar observations as above hold true for the interface problem having interior
interface points, which is presented in the next example. Consider an interface problem
defined on a square [−1, 1] × [−1, 1] with an interior singular point at the origin. Let
the domain be partitioned into four squares Ω1, Ω2, Ω3, and Ω4 as depicted in Fig.2
and let the piecewise constant diffusion coefficient a(x) = ai on Ωi take values

a1 = a3 = 1, a2 = 100, and a4 = 200.

Then this problem has only one interface vertex at the origin, and its only singular
function has the form of

s = rαΘ(θ),

with α = 0.109946076427188... and Θ(θ) = Ci sin(αθ)+Di cos(αθ) on Ωi (i = 1, 2, 3, 4).
Let η2 and ηρ be the same cut-off functions as in the previous example and choose the
right-hand side function in (2.2) to be

f = −ai

(
− 6

ai
x(y2 − y4) +

1

ai
(x− x3)(2− 12y2) + ∆(η2s)

)
on Ωi
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so that the exact solution has the form of

u = wρ + ηρs,

where wρ is the regular part of the solution having the form of

wρ =
1

ai
(x− x3)(y2 − y4) + (η2 − ηρ)s on Ωi

for i = 1, 2, 3, 4. Numerical results with ρ = 1 are reported in Table 2.

h 2−5 2−6 2−7 2−8 2−9

L2 3.4046e-03 1.4409e-03 3.5434e-04 8.4647e-05 1.50076e-05
Order 1.240520 2.023764 2.065624 2.495766

L∞ 2.3212e-02 1.4278e-02 1.0331e-03 8.7804e-04 1.1126e-04
Order 0.701081 3.788762 0.234623 2.980337

H1 9.8171e-02 4.9687e-02 1.4708e-02 7.6175e-03 3.5761e-03
Order 0.982431 1.756231 0.949243 1.090958

κ 1.77842 1.29826 1.03691 1.01819 1.00316
Order 1.383978 3.014487 1.020866 2.525149

Table 2. Discretization Error for interface ρ = 1
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