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Abstract. We focus in this paper on some reconstruction/restoration methods whose aim is to
improve the resolution of digital images. The main point here is to study the ability of such methods
to preserve one-dimensional (1D) structures. Indeed, such structures are important since they are
often carried by the image “edges.” First we focus on linear methods, give a general framework to
design them, and show that the preservation of 1D structures pleads in favor of the cancellation of the
periodization of the image spectrum. More precisely, we show that preserving 1D structures implies
the linear methods to be written as a convolution of the “sinc interpolation.” As a consequence,
we cannot cope linearly with Gibbs effects, sharpness of the results, and the preservation of the
1D structure. Second, we study variational nonlinear methods and, in particular, the one based on
total variation. We show that this latter permits us to avoid these shortcomings. We also prove
the existence and consistency of an approximate solution to this variational problem. At last, this
theoretical study is highlighted by experiments, both on synthetic and natural images, which show
the effects of the described methods on images as well as on their spectrum.
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1. Introduction. This paper deals with some reconstruction/restoration meth-
ods. These methods aim to recover a function defined on an open subset Ω of R

2 from
a sampled one, defined on Ω ∩ Z

2. This latest data is assumed to be obtained itself
by the composition of a convolution and a sampling applied on an unknown original
function of Ω. More precisely, given Ω an open set of R

2, we have

um,n = (s ∗ v) (m,n) ,(1.1)

where (m,n) belongs to Ω ∩ Z
2, ∗ denotes the continuous convolution, s and v map

R
2 onto R, and u maps Ω ∩ Z

2 onto R. Note that in this paper we will not take into
account the edge effects in the vicinity of ∂Ω; we will only focus on the cases where
Ω = R

2, or Ω = (N T)2, the torus of size N .
Restoration and reconstruction are commonly distinguished in the fact that they

respectively aim at recovering v or s ∗ v on Ω. Moreover, they both differ from
interpolation, which aims at obtaining a “nice” function w, defined on Ω, such that
w(m,n) = um,n, for (m,n) ∈ Ω ∩ Z

2. So, formally, this paper is concerned both
with linear reconstructions (linear is used in the sense that the reconstruction of a
sum of functions is the sum of the reconstructions) and some nonlinear restoration
methods. However, since it is equivalent to linearly deconvolve a linear reconstruction
or to directly expect a sharpest linear reconstruction, we do believe that these notions
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Table 1
Methods under our scope.

Section 2 Section 3

Type of zooming Reconstruction Restoration

Type of method Linear Nonlinear, maximum a posteriori

Initial functional space l∞(Z2) N -periodic elements of l∞(Z2)

Final functional space L∞(R2) L2((NT)2)

are similar (even if formally the restoration is a more general problem). Indeed, in
practice, we just expect a “good” function of Ω from a sampled one.

However, we summarize in Table 1 the methods which fall under the scope of
this paper. We remark that the use of N -periodic functions (with N an integer) is
equivalent to considering Ω = [0, N ]2. Note also that some results similar to the one
presented here are stated in [15], in the case of linear oversampling when the initial
images are N -periodic and the result is defined over (NT)2 (the torus of size N).

There have been several approaches in order to solve some problems of reconstruc-
tion/restoration. We can distinguish two main kinds: the linear and the nonlinear
ones. Most of the linear methods aim to approximate the “sinc interpolation” (or
“zero-padding”) which consists in filling the lost part of the spectral domain with 0.
This latest method is often considered as optimal because of the Shannon sampling
theorem [24]. The shortcoming of this method is that the induced filter is badly
localized in space domain (which yields a large algorithmic complexity for a linear in-
terpolation) and oscillates. Some have reduced the algorithmic complexity (see [28])
in order to compute it, but most of the techniques propose to approximate it (see, for
instance, [19, 26]). Here, we will mathematically formalize in section 2 the framework
of linear reconstructions, and we will show that most of the usual shortcomings of
such methods cannot be simultaneously avoided. Consequently, it is not surprising to
find numerous techniques to manage these shortcomings or that compare some linear
reconstructions (see [14, 17]).

Nonlinear methods generally take into account the local behavior of the initial
function and adapt the reconstruction with regard to this behavior (see [2, 3, 25]).
This essentially allows one to treat in a different manner the smooth zones and the
vicinity of the edges inside the images. These reconstructions can yield good results
but depend on the tool that determines the local behavior. Thus, they have several
sources of shortcomings, and therefore, it is difficult to qualify their results. There
also exist some variational techniques, the aim of which is to restore images. This will
be commented on in section 3.3.

This paper is mainly concerned with the way the reconstruction/restoration meth-
ods under our scope deal with edges. More precisely, since edges arising in image
processing are generally smooth (along the direction orthogonal to the one of gradi-
ent), they can be locally regarded as having a one-dimensional (1D) structure. (They
are almost constant along the edge direction.) Therefore, we choose to model edges
by what we call cylindric functions (those which are constant along a direction). We
will see some conditions, which must satisfy the reconstruction/restoration methods
under our scope, in order to preserve such functions. At last, we will validate this
theoretical study by some experiments (see section 4).

This paper is organized as follows. In section 2, we focus on linear reconstructions
in the case Ω = R

2. Then we give a general property satisfied by such operators
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Table 2
Generic linear interpolation.

Name Form Regularity

Zero-crossing Z(u) =
∑

m,n um,nδm,n Measure

Duplication Z(u)(x, y) =
∑

m,n um,n1|]− 1
2
, 1
2
]2 (x−m, y − n) Piecewise const.

Zero-padding Z(u)(x, y) =
∑

m,n um,nsinc2(x−m, y − n) C∞

and define cylindric functions. Thereafter, we will prove that linear reconstructions
that preserve cylindric images can be expressed in terms of a convolution of the sinc
interpolation.

In section 3, we deal with variational restoration methods, in the case where Ω =
[0, N [2 withN ∈ N. These methods minimize a convex “energy” E among the function
satisfying (1.1). Since we do believe the total variation is a good candidate to image
restoration, we state our results in this particular case. Within this framework, we will
show that the method is properly defined both theoretically and numerically. Then
we exhibit some particular total variation based restorations that preserve cylindric
images. The end of the section is devoted to other variational methods. This includes
some argument in favor of the total variation and makes a link between some quadratic
variational restorations and linear reconstructions.

Finally, some commented experiments are displayed in section 4.

2. Linear reconstructions and cylindric functions. In this section, we will
characterize translation invariant linear reconstructions with regard to a geometric
invariance property: the ability of a linear reconstruction to preserve images constant
along a direction.

Let us introduce the framework and some notations that will be used throughout
the section. We focus on the reconstruction of functions of l∞(Z2) such that the
reconstructed images do belong to L∞(R2). With that in mind, we need to define

ĥ : R
2 → R, the Fourier transform of h ∈ L1(R2), by

ĥ(ξ, η) =

∫

R2

h(x, y)e−2iπ(ξx+ηy)dxdy

for (ξ, η) ∈ R
2. Similarly, we also define the Fourier transform of a function h ∈ l1(Z2)

by

ĥ(ξ, η) =
∑

(m,n)∈Z2

hm,ne
−2iπ(ξm+ηn)

for (ξ, η) ∈]− 1
2 ,

1
2 ]2. One can refer to [16] for general properties of Fourier transforms.

We will also denote by E∗ the dual space of any linear space E (see [23]).
Moreover, we define, in Table 2, the main generic linear interpolations, where

δm,n stands for the Dirac delta function at the point (m,n) and sinc2(t1, t2) =

sinc(πt1)sinc(πt2) with sinc(t) = sin(t)
t

for t 6= 0 and sinc(0) = 1. Note that the
zero-crossing is not really an interpolation since the result is not a function but a
measure.

Let us first give some simple definitions and classical facts.
Definition 2.1. Let Z be a linear operator continuous from l∞(Z2) into L∞(R2).

Z is called translation invariant if for any u ∈ l∞(Z2), any (m,n) ∈ Z
2, and any
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(x, y) ∈ R
2,

Z(Tm,n(u))(x, y) = Z(u)(x−m, y − n) ,

where Tm,n denotes the translation of (m,n) of a function of l∞(Z2) (Tm,n(u)(k, l) =
u(k −m, l − n)).

We also define a weak notion of locality as follows.
Definition 2.2. Let Z be a linear operator continuous from l∞(Z2) into L∞(R2).

Letting uN = u|{−N,...,N}2 the restriction of u to {−N, . . . , N}2 for any u ∈ l∞(Z2)
and any N ∈ N, we call Z local if for any u ∈ l∞(Z2) and any (x, y) ∈ R

2,
limN→∞ Z(uN )(x, y) exists and

Z(u)(x, y) = lim
N→∞

Z(uN )(x, y) .

This notion avoids a linear operator that would not only depend on the local
behavior of the function but also on its global one. Indeed, the Hahn–Banach theorem
[29] permits us to extend an operator of the kind

u→ Z(u)(x, y) = lim
|(m,n)|→∞

um,n

(which is initially defined on {u ∈ l∞(Z2), lim|(m,n)|→∞um,n exists}) to l∞(Z2). Such
an operator is linear, translation invariant, and continuous from l∞(Z2) into L∞(R2)
but does not reconstruct images in an interesting manner since the result is constant
on R

2. The above notion of locality ruled such operators out of our framework.
Linear operators that are both translation invariant and local can easily be char-

acterized in terms of a convolution. More precisely, we have the following proposition.
Proposition 2.3. Let Z be a linear, local, and translation invariant operator

continuous from l∞(Z2) into L∞(R2). Then there exists a unique convolution kernel
h ∈ L1(R2) and C > 0 such that

∀(x, y) ∈ R
2,

∑

(m,n)∈Z2

|h(x−m, y − n)| < C(2.1)

and

∀u ∈ l∞(Z2), ∀(x, y) ∈ R
2, Z(u)(x, y) =

∑

(m,n)∈Z2

um,n h (x−m, y − n) .

The converse statement is also true.
Note that this result is close to classic ones (see [16, sections 2.1 and 3.2]). Its

proof can be found in [15].
The operators described by this proposition are therefore some convolutions of

the zero-crossing interpolation with a convolution kernel h. So it seems useless to
describe local and translation invariant linear reconstructions in terms other than the
ones related to this convolution kernel.

Also note that (2.1) implies that h belongs to L1(R2). (So the assertion h ∈
L1(R2) does not have any consequence on the above proposition.) Moreover, since
h ∈ L1(R2), its Fourier transform exists and is a continuous function belonging to
L∞(R2). That is a point that will often be used in the rest of the section.

In the following, we will focus on a particular set of linear, local, and translation
invariant operators, continuous from l∞(Z2) to L∞(R2), that are the regular ones.
Regular will be used in the sense explained in the following definition.
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Definition 2.4. Let Z be such as in Proposition 2.3. Z is called regular if the
kernel h defining Z satisfies

∀(ξ, η) ∈ R
2,

∑

(k,l)∈Z2

|ĥ(ξ + k, η + l)| < C .(2.2)

This notion is clearly a notion of regularity. Indeed, functions satisfying (2.2)
are continuous. Conversely, functions, the third derivatives of which are in L1(R2),
satisfy (2.2).

Under this assumption of regularity, the Poisson formula holds; in other words,
we have the following lemma.

Lemma 2.5. Let h ∈ L1(R2) satisfy (2.1) and (2.2); then h also satisfies

∀(ξ, η) ∈ R
2,

∑

(m,n)∈Z2

h(m,n)e−2iπ(ξm+ηn) =
∑

(k,l)∈Z2

ĥ(ξ + k, η + l) .(2.3)

This result is classic (see [16, 30]) and expresses the Fourier transform (the left-
hand side term of (2.3)) of a sampling of a function according to the Fourier transform
of the function.

Let us now state our definition of linear zooms.
Definition 2.6. Let Z be a linear, local, translation invariant, and regular

operator continuous from l∞(Z2) into L∞(R2). Z is called linear zoom if Z transforms
an image constant along an axis direction into an image constant along the same axis
direction.

This definition of a linear zoom simply expresses the need for satisfying some
basic properties such as a weak notion of locality, translation invariance (doing linear
reconstruction, there are no reasons to a priori deal in different ways with the different
parts of the initial image), regularity of the result, and continuity (which leads to the
stability of the zoom), and also to impose them to restore correctly horizontal and
vertical structures. Note also that this latter, in the case of signals, would be that
the reconstruction of a constant signal is constant. Moreover, in such a case we could
have stated a proposition similar to Proposition 2.7.

Now we are going to characterize these objects using h (the kernel that defines Z).
Proposition 2.7. Let Z be a linear, local translation invariant, and regular op-

erator continuous from l∞(Z2) into L∞(R2). Let h be the convolution kernel defining
Z. Z is a linear zoom if and only if

∀k ∈ Z \ {0}, ∀ξ ∈ R, ĥ(k, ξ) = ĥ(ξ, k) = 0 .(2.4)

Proof. The proof is similar to the one of Proposition 2.9 below.
Note that we could as well have stated the conclusion of the proposition by saying

that there exists h such that

∀u ∈ l∞(Z2), Z(u) = h ∗ ud ,

where ud denotes the duplication interpolation of the image u. Indeed, the Fourier
transform of 1|]− 1

2 ,
1
2 ]2 satisfies (2.4) and only vanishes on {(ξ, η) ∈ R

2, ξ ∈ Z,

or η ∈ Z}.
Now we are going to state the definition of cylindric images. As we said in the

introduction, these images have the property of fluctuating in only one direction. In
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the case of functions of L∞(R2), we will simply define them as functions u ∈ L∞(R2)
such that there exists (α, β) ∈ R

2 \ {(0, 0)} and v ∈ L∞(R) satisfying

u(x, y) = v(αx+ βy)

for (x, y) ∈ R
2.

Note that it is more difficult to define cylindric images of l∞(Z2). Indeed, we
remark that for any u ∈ l∞(Z2) and any (α, β) ∈ R

2 such that the line αx+ βy = 0
has an irrational slope, there exists a function v ∈ L∞(R), such that

∀(m,n) ∈ Z
2, um,n = v(αm+ βn) .(2.5)

This is simply due to the fact that all the αm+ βn (with m and n in Z) are distinct
in R.

So, defining cylindric functions of l∞(Z2) as the ones that satisfy (2.5), we have to
limit ourselves to functions v such that the sampling does not create any aliasing. (We
consider u is obtained by a sampling of the function V (x, y) = v(αx+βy).) Therefore,
we preserve the cylindric sight of the initial function. Consequently, the function v in
(2.5) has to be band-limited. More precisely, we use the following definition.

Definition 2.8. Let u ∈ l∞(Z2). u is called cylindric if and only if there exists
a direction (α, β) ∈ R

2 \ {(0, 0)} and ṽ ∈ (L∞(Iα,β))
∗

such that

∀(m,n) ∈ Z
2, um,n =

∫

Iα,β

ṽ(ξ)e2iπ(αm+βn)ξdξ ,(2.6)

where Iα,β is the largest interval such that ∀ξ ∈ Iα,β , − 1
2 < αξ ≤ 1

2 and − 1
2 < βξ ≤ 1

2 .
Such an image will be called cylindric along the direction (α, β).

First, we remark that (2.6) should have been written using duality notation.
However, we will abuse this notation even if it is formally valid only for ṽ ∈ L1(Iα,β).

Moreover, note that (2.6) forces u to belong to l∞(Z2) and that, for any given
(α, β), the definition of Iα,β ensures that u satisfies (2.5) for the same couple (α, β)
and a given function v ∈ L∞(R).

Note also that, since Definition 2.8 is relatively restrictive, the sinc interpolation
defined in the introduction gives an exact reconstruction for cylindric images (see [24]).
We know, in other respects, that it yields oscillatory results (since the convolution
kernel associated with the sinc interpolation oscillates). This latter behavior will not
be taken into account by the analysis of cylindric functions.

Now let us state a proposition similar to Proposition 2.7 about linear zooms that
preserve cylindric images. Note, once again, that the idea of being interested in the
preservation of cylindric images is driven by the observation that a classical artifact
in image reconstruction is the creation of staircase edges.

Proposition 2.9. Let Z be a linear zoom and let h be the convolution kernel
that defines Z. Assume that for any direction (α, β) ∈ R

2 \ {(0, 0)} and any image u
cylindric along the direction (α, β), Z(u) is also cylindric along the direction (α, β).
Then

∀(ξ, η) ∈ R
2 such that |ξ| > 1

2
or |η| > 1

2
, ĥ(ξ, η) = 0 .(2.7)

Conversely, any linear, local, and translation invariant operator continuous from
l∞(Z2) into L∞(R2) associated with a kernel h satisfying (2.7) is a linear zoom and
preserves cylindric images along any direction.
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Note that, heuristically, this proposition means that linear zooms preserving cylin-
dric images can be expressed in terms of a convolution of the sinc interpolation. Un-
fortunately, we cannot give the proposition in this form since the sinc interpolation is
not continuous from l∞(Z2) into L∞(R2).

In order to prove Proposition 2.9, we first state the following lemma.
Lemma 2.10. For any couple (α, β) ∈ R

2 such that the line defined by αx+βy = 0
has an irrational slope and for any (ak,l)k,l ∈ l1(Z2),

∀t ∈ R,
∑

(k,l)∈Z2

ak,le
−2iπ(βk−αl)t = 0 =⇒ ∀(k, l) ∈ Z

2, ak,l = 0 .(2.8)

Proof. Note that for any (ak,l)k,l ∈ l1(Z2),
∑

(k,l)∈Z2 ak,le
−2iπ(βk−αl)t is in L∞(R)

and so it has a computable Fourier transform in the sense of tempered distributions.
Therefore, the left part of (2.8) becomes

∑

(k,l)∈Z2

ak,l δ(βk−αl) = 0 .

So, it is easy to check that, since the (βk − αl) are all distinct, this implies

∀(k, l) ∈ Z
2, ak,l = 0 .

Proof of Proposition 2.9. Let (α, β) ∈ R
2 \ {(0, 0)} and let u ∈ l∞(Z2) be a cylin-

dric function along the direction (α, β). We know that there exists ṽ ∈ (L∞(Iα,β))
∗

linked with u by (2.6) and that there exists h ∈ L1(R2) such that

Z(u)(x, y) =
∑

(m,n)∈Z2

h(x−m, y − n)um,n .

Using (2.6), (2.1), and the continuity of the operator defined by ṽ on L∞(Iα,β),
we can write

Z(u)(x, y) =

∫

Iα,β

ṽ(ξ)
∑

(m,n)∈Z2

h(x−m, y − n)e2iπ(αm+βn)ξdξ .

Then, if we write hx,y(x
′, y′) = h(x+ x′, y + y′), we have

Z(u)(x, y) =

∫

Iα,β

ṽ(ξ)
∑

(m,n)∈Z2

hx,y(m,n)e−2iπ(αm+βn)ξdξ .

Using the Poisson formula (2.3), we get

Z(u)(x, y) =

∫

Iα,β

ṽ(ξ)
∑

(k,l)∈Z2

ĥx,y(αξ + k, βξ + l)dξ .(2.9)

This formula expresses the fact that the spectrum of Z(u) is the one of u, peri-
odized and weighted by h (see Figure 1).

Expressing the fact that Z(u) is cylindric along the direction (α, β), we know that

∀t ∈ R, Z(u)(x, y) − Z(u)(x− βt, y + αt) = 0 ,
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1/2

1/2

-1/2

-1/2

-1

-1

1

1

-2

-2 2

2

Fig. 1. The spectrum of the linear zoom is a weighted periodization of the initial image spectrum.
This figure represents the support of a linear zoom of an image cylindric along the direction (2, 1).
(The dashed segments are also in the direction (2, 1).)

which, using (2.9), gives

∀t ∈ R,

∫

Iα,β

ṽ(ξ)
∑

(k,l)∈Z2

ĥx,y(αξ + k, βξ + l)
[
1 − e−2iπ(βk−αl)t

]
dξ = 0 .

Since this equality holds for any ṽ ∈ (L∞(Iα,β))
∗
, we finally have for any t ∈ R

∑

(k,l)∈Z2

ĥx,y(αξ + k, βξ + l) e−2iπ(βk−αl)t =
∑

(k,l)∈Z2

ĥx,y(αξ + k, βξ + l) .

Therefore, using Lemma 2.10, we finally find that if Z preserves cylindric functions
along any direction, ĥ(ξ, η) = 0 for any (ξ, η) ∈ C with

C = ∪
(k,l)6=(0,0)

Ck,l

and

Ck,l = {(αξ + k, βξ + l), (α, β) ∈ R
2 \ {(0, 0)} such that the line

−βy + αx = 0 has an irrational slope and ξ ∈ Iα,β} .

It is easy to check that Ck,l is dense in ]k− 1
2 , k+ 1

2 ]×]l− 1
2 , l+

1
2 ] and that C is dense

in R
2\] − 1

2 ,
1
2 [2.

The result follows from the fact that (2.1) imposes ĥ to be continuous.
The converse statement directly follows from (2.9).
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We remark that in this proof we could have avoided the use of (α, β) such that
αx+ βy = 0 has an irrational slope. Indeed, going a little bit further in the analysis
(see Figure 1), we could have obtained

Ck,l =
{
(αξ + k, βξ + l), (α, β) ∈ R

2 \ {(0, 0)}
such that − βk + αl 6= 0 and ξ ∈ Iα,β} .

Note that even the restriction of this Ck,l to the couples (α, β), such that αx+βy = 0
has a rational slope, is dense in [k − 1

2 , k + 1
2 ] × [l − 1

2 , l +
1
2 ].

At this point, in order to determine an h yielding good results, the most important
remaining problem is the locality of h. (Otherwise we have blurred and/or oscillating

results and large computation cost.) Note that, since ĥ is compactly supported, we can
neither expect h to be well located nor to yield sharp results. However, we can suggest
to readers that they learn about prolate functions [13], which are a way to deal with
the Heisenberg uncertainty principle (see [16]). Unfortunately, such functions define
reconstructions which lead to blurred results (see section 4).

Now, this analysis shows us that linear reconstructions cannot yield fully satisfac-
tory results, in the sense that they cannot completely avoid all the artifacts mentioned
above. This is simply due to the fact that the erasure of these artifacts yields to con-
tradictory properties of the kernel h. Therefore, if one still wants to reconstruct
images linearly, one has to balance all these shortcomings with regard to the expected
properties the reconstructed images shall satisfy.

3. Variational image restorations. In this section we will focus on possibly
nonlinear restorations. Formally, we have to talk about restoration since we do take
into account the whole degradation suffered by the image (including the convolution).

Let us introduce the framework and some notations that will be used throughout
the section.

First, these restorations are based on functional minimization, so we turn to a
finite dimensional case in order to get proper results. Therefore, a sampled image u is
assumed to be periodic of period N . (For commodity we will assume in the following
that N is even.) The discrete Fourier transform (DFT) of such a u is defined for any
(ξ, η) ∈ {−N

2 + 1, . . . , N2 }2 by

ûξ,η =

N−1∑

m,n=0

um,ne
−2iπ ξm+ηn

N .

Since the sampled images are periodic of period N , we define the zoomed images
on the torus of size N , (NT)2. (But by an abuse of the language we will note it
T

2). In addition and despite a lack of generality we are able only to state results in
the space L2(T2) (and not L∞(T2)). However, we have not found any case (neither
theoretical nor numerical) where the sup-norm of the result tends to infinity. The

Fourier series of an image w ∈ L2(T2) is defined on
(

1
N

Z
)2

by

ŵ k
N

, l
N

=

∫

T2

w(x, y)e−2iπ (kx+ly)
N

for (k, l) ∈ Z
2. The inverse Fourier transform, in such a case, is defined by

w(x, y) =
1

N2

∑

(k,l)∈Z2

ŵ k
N

, l
N
e2iπ

(kx+ly)
N

for (x, y) ∈ T
2.
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In the following, in order to distinguish Fourier series from DFTs, we will de-
note ŵ k

N
, l
N

by ŵ( k
N
, l
N

) in the case of the Fourier series. Moreover, the frequency

coordinates will often be written ( ξ
N

+ k, η
N

+ l) with (ξ, η) ∈ {−N
2 + 1, . . . , N2 }2 and

(k, l) ∈ Z
2 to give prominence to the frequency on which it aliases.

Moreover, we present the method in the case of a regularity criterion that is the
total variation, but most of the results can be extended to other kinds of energies
that would satisfy properties such as “lower semicontinuity” and “compactness” and
which satisfy

E(h ∗ w) ≤ ‖h‖1E(w)

for h ∈ L1(T2). However, we present this work in the case of the total variation since
we do believe it is the most suitable for image reconstruction (see section 3.3.2).

Now let us present the method under study and the associated results.

3.1. Total variation based restoration. As far as we know, the use of the
total variation in image processing was first introduced in [21]. It has since been
studied by several authors and under several points of view in [1, 4, 6, 7, 8, 11, 18, 22].
To our knowledge, its use in image oversampling was first introduced in [10]. Here,
the idea is to apply a maximum a posteriori regularization approach to the problem
of image zooming. With that in mind, we first have to define the set of all possible
images of L2(T2) that are sampled in the discrete N -periodic image u ∈ l∞(Z2).

As we said in the introduction, we assume the sampled image u is deduced from a
continuous one v by the composition of a convolution and a multiplication by a Dirac
comb. So, the set of all the candidates to be the result of the restoration is defined
by the following.

Definition 3.1. Let N be a strictly positive integer, let u ∈ l∞(Z2) be an N-
periodic function, and let s ∈ L2(T2). We define Ws,u, the set of all the functions
w ∈ L2(T2) that satisfy

∀(m,n) ∈ {0, . . . , N − 1}2, um,n = (s ∗ w)(m,n) .(3.1)

In other terms, Ws,u is the set of the images which yield u after a convolution
with s and a sampling.

In this definition, the smoothing s can be arbitrary, but in practice we mainly
focus on two simple kernels yielding good properties when used to restore N -periodic
cylindric functions (in axis or in any direction). These are the “mean kernel”

sm(x, y) = 1|]− 1
2 ,

1
2 ]2(x, y)(3.2)

for (x, y) ∈ T
2 and the “frequency extrapolation kernel” (or “sinc”) se defined by its

Fourier series

ŝe
(
k

N
,
l

N

)
= 1|{− 1

2+ 1
N

,..., 12}
2

(
k

N
,
l

N

)
(3.3)

for (k, l) ∈ Z
2. (Note that se belongs to L∞(T2) and, consequently, L2(T2).) In

this latter case, frequencies of w higher than 1
2 in modulus are simply set free by the

constraint (3.1) (see (3.4) below).
We remark that, since the convolution and the sampling operator are linear, for

any convolution kernel s, Ws,u is an affine subspace of L2(T2).
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In order to interpret the degrees of freedom we have inside Ws,u, we express (3.1)
in frequency domain. A Poisson formula (similar to (2.3) but adapted to periodic
functions) yields

ûξ,η =
∑

(k,l)∈Z2

ŝ

(
ξ

N
+ k,

η

N
+ l

)
ŵ

(
ξ

N
+ k,

η

N
+ l

)
,(3.4)

where (ξ, η) ∈ {−N/2 + 1, . . . , N/2}2.
Looking at (3.4), we see that the degrees of freedom mentioned above are simply

the repartition of ûξ,η onto (ŵ( ξ
N

+ k, η
N

+ l))k,l. Moreover, (3.4) gives us a sufficient
condition for Ws,u not to be empty. In the following we will assume that ŝ does not
vanish on {− 1

2 + 1
N
, . . . , 1

2}2, so that for any N -periodic u ∈ l∞(Z2) the function uc

defined by

ûc
(
ξ

N
+ k,

η

N
+ l

)
=

{
ûξ,η

ŝ( ξ
N

, η
N

)
if (k, l) = (0, 0),

0 otherwise
(3.5)

for (ξ, η) ∈ {−N/2 + 1, . . . , N/2}2 and (k, l) ∈ Z
2 belongs to Ws,u.

At this point, we have to select an element of Ws,u, given u and s. We propose
here to choose the one that is the most “regular,” in the sense that its total variation
is minimal, say,

Z(u) = argmin(|Dw|(T2)), among w ∈ Ws,u .(3.6)

One can refer to [9] for general results on total variation. We just recall that

|Dw|(T2) = sup

{∫

T2

w div(ϕ), ϕ ∈ C1(T2,R2) compactly supported and ‖ϕ‖∞ ≤ 1

}

and that it is a seminorm equal to
∫

T2 |∇w|, when w is C1. Moreover, we will call
BV (T2) the space of functions belonging to L1(T2) and having a finite total variation,
and the associated norm is ‖.‖BV = ‖.‖1 + |D.|(T2).

3.1.1. Existence and uniqueness of a solution. Let us state the proposition
ensuring the existence of a solution to (3.6).

Proposition 3.2. Let N ∈ N, u ∈ l∞(Z2) N-periodic, and let s ∈ L2(T2) such
that ŝ does not vanish on {− 1

2 + 1
N
, . . . , 1

2}2 and ŝ(k, l) = 0 for any (k, l) ∈ Z
2\{(0, 0)};

then (3.6) admits a solution v ∈ Ws,u ∩BV (T2).
Note that, looking at (3.4), ŝ(k, l) = ŝ( 0

N
+ k, 0

N
+ l) = 0, for any (k, l) ∈

Z
2 \ {(0, 0)}, simply forces functions of Ws,u to have the same mean.

Proof. The following proof is similar to the one presented in [6] in the deblurring
case. Let vn be a sequence minimizing the total variation and satisfying the constraint.
(Note that such a sequence exists since (3.5) defines a function of Ws,u which has a
finite total variation.) We remark that, since vn ∈ Ws,u and T

2 is bounded, vn is in
L1(T2) and therefore in BV (T2). So, Sobolev inequalities (see [9, Theorem 1, p. 189]
ensure that there exists C > 0

‖vn‖2 ≤ C |Dvn|(T2) +N

∫

T2

vn.
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So, since
∫

T2 vn is fixed, ‖vn‖2, ‖vn‖1, and ‖vn‖BV are bounded. Therefore, com-
pactness theorems both in BV (T2) and L2(T2) (see [9]) yield that there exists a
subsequence vnj

that converges in L1(T2) and weakly in L2(T2) to a function v ∈
BV (T2) ∩ L2(T2).

It is easy to check that v is a solution of (3.6). Indeed, the weak convergence in
L2 of vnj

ensures that v ∈ Ws,u, and the lower semicontinuity of the total variation
ensures that |Dv|(T2) ≤ lim infj→∞ |Dvnj

|(T2).
The “sinc” function se obviously falls under the scope of the above proposition.

Concerning sm, we have for any (k, l) ∈ Z
2

ŝm(k/N, l/N) = sinc(πk/N)sinc(πl/N)

with sinc(x) = sin(x)
x

if x 6= 0 and 1 otherwise. So sm satisfies the hypotheses of the

above proposition. Moreover, we remark that for any h ∈ L2(T2) such that ĥ does
not vanish on {− 1

2 + 1
N
, . . . , 1

2}2, h ∗ se and h ∗ sm also satisfy the hypotheses of
Proposition 3.2.

We are not necessarily sure of the uniqueness of this solution, since the total
variation is not strictly convex. Nevertheless, we can see that minimizers are “close”
to each other in the sense that for almost every point, where their gradients exist and
are not null, they have the same gradient direction, as explained in [8].

Proposition 3.3 (“Weak Uniqueness”). Let v1 and v2 be two solutions of the
problem (3.6). If we note

Γ =
{
(x, y) ∈ T

2, v1 and v2 are C1 at (x, y) and ∇v1(x, y) 6= 0
}

for any (x, y) ∈ Γ, there exists λ ≥ 0 such that

∇v2(x, y) = λ∇v1(x, y) .

Note that if v1 and v2 are both continuously differentiable on T
2, then this

proposition means that the connected components (in {(x, y) ∈ T
2, ∇v1(x, y) 6=

0 and ∇v2(x, y) 6= 0}) of the level lines of v1 and v2 are identical. Thus, the two
minima somehow differ in a local change of contrast. (One can refer to [5] for an
example of definition of contrast change related to level sets.)

3.1.2. Total variation based restoration and cylindric functions. We are
now going to state two propositions which show the behavior of the total variation
based restoration when dealing with cylindric functions. This leads us to restrict the
set of cylindric functions (defined in Definition 2.8) to the ones that are of period N .
Therefore, taking notations of the Definition 2.8, for any direction (α, β) 6= (0, 0), any
(m,n) ∈ Z

2, and any (t, t′) ∈ Z
2,

∫

Iα,β

ṽ(ξ)e2iπ(αm+βn)ξdξ =

∫

Iα,β

ṽ(ξ)e2iπ(αm+βn)ξ e2iπ(αtN+βt′N)ξdξ.

So, since this equality holds for (m,n) ∈ Z
2, the ṽ measure of {ξ, e2iπ(αtN+βt′N)ξ 6= 1}

is 0. Thus, αNξ and βNξ must belong to Z ((α, β) must be chosen such that the line
αx+βy = 0 has a rational slope) and ṽ must be a sum of Dirac delta functions. More
precisely, we have

∀(m,n) ∈ Z
2, um,n =

∑

ξ∈Ĩα,β

ṽ(ξ)e2iπ(αm+βn)ξ,(3.7)
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where Ĩα,β is a discrete set such that ∀ξ ∈ Ĩα,β , there exists (k, l) ∈ Z
2 such that

αNξ = k and βNξ = l with − 1
2 ≤ αξ ≤ 1

2 and − 1
2 ≤ βξ ≤ 1

2 . Note that, in
such a case, the summation in (3.7) can be done over (k, l) ∈ {−N/2 + 1, . . . , N/2}2

satisfying βk−αl = 0. This means that the DFT of u is supported on the trail of the
line βx− αy = 0 on the grid {( k

N
, l
N

), −N/2 + 1 ≤ k, l ≤ N/2}. Therefore, we state
the following definition.

Definition 3.4. Let u ∈ l∞(Z2) be periodic of period N and (α, β) ∈ Z
2\{(0, 0)}.

u is cylindric along the direction (α, β) if and only if its DFT is supported on
{

(k, l) ∈
{
−N

2
+ 1, . . . ,

N

2

}2

, βk − αl = 0

}
.

We remark that the larger N is, the less the restriction to periodic images is
harmful to the meaning of the results dealing with N -periodic cylindric functions.

The two following propositions give sufficient conditions on s so that (3.6) defines
a zoom that preserves cylindric functions. To do so, we construct a cylindric solution
v′ given a solution v. Unfortunately, we cannot guarantee all the solutions of (3.6) to
be cylindric.

Proposition 3.5. Let N be an integer, u ∈ l∞(Z2) N-periodic and cylindric
along an axis direction. For any kernel s = h ∗ sm (see (3.2)), with h ∈ L2(T2) such

that ĥ does not vanish on {− 1
2 + 1

N
, . . . , 1

2}2, (3.6) admits a solution cylindric along
the same axis direction.

Proof. The proof of this proposition is similar to the one of the next pro-
position.

Proposition 3.6. Let N be an integer, (α, β) ∈ R
2 \ {(0, 0)}, u ∈ l∞(Z2) N-

periodic and cylindric along the direction (α, β). For any kernel s = h∗ se (see (3.3)),

with h ∈ L2(T2) such that ĥ does not vanish on {− 1
2 + 1

N
, . . . , 1

2}2, (3.6) admits a
solution cylindric along the same direction (α, β).

Proof. Let v ∈ Ws,u a solution of (3.6). (We know one exists since s = h ∗ se
satisfies the hypotheses of Proposition 3.2.) Letting M ∈ R, we define the function

vM (x, y) =
1

2M

∫ M

−M

v(x− βt, y + αt)dt(3.8)

for (x, y) ∈ T
2.

Now we are going to show that the limit of vM , when M tends to infinity, exists,
is a solution of (3.6), and is cylindric along the right direction. In order to do this, let
us first estimate |DvM |(T2). We have for any ϕ ∈ C1(T2,R2) compactly supported,
such that ‖ϕ‖∞ ≤ 1 and any M > 0,

∫

T2

vM (x, y)divϕ(x, y)dxdy =
1

2M

∫

T2

∫ M

−M

v(x− βt, y + αt)divϕ(x, y)dtdxdy

=
1

2M

∫ M

−M

∫

T2

v(x− βt, y + αt)divϕ(x, y)dxdydt

≤ 1

2M

∫ M

−M

|Dv|(T2)dt

≤ |Dv|(T2) .

So, for any M > 0,

|DvM |(T2) ≤ |Dv|(T2).
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Therefore, just as in the proof of Proposition 3.2, Sobolev inequalities, combined
with the fact that for any M , vM has the same mean, ensure that ‖vM‖2 and ‖vM‖BV

are bounded. Thus, we can extract a subsequence (vMj
)j∈N that converges in L1, to

a function v′ ∈ BV (T2) ∩ L2(T2) which satisfies

|Dv′|(T2) ≤ lim inf
j→∞

|DvMj
|(T2) ≤ |Dv|(T2).

In order to show that v′ is a solution of (3.6), we still have to prove that v′

belongs to Ws,u. We are going to show, at the same time, that v′ is cylindric of
direction (α, β). Therefore, we compute for j ∈ N and (k, l) ∈ Z

2,

v̂Mj

(
k

N
,
l

N

)
= v̂

(
k

N
,
l

N

)
1

2Mj

∫ Mj

−Mj

e−2iπ(β k
N

−α l
N

)tdt

= v̂

(
k

N
,
l

N

)
sinc

(
2π
βk − αl

N
Mj

)
.

Thus, since vMj
converges in L1 to v′ (and so v̂Mj

converges in l∞ to v̂′), we have for
any (k, l) ∈ Z

2 such that βk − αl = 0

v̂′
(
k

N
,
l

N

)
= lim

j→∞
v̂Mj

(
k

N
,
l

N

)
= v̂

(
k

N
,
l

N

)

and for those such that βk − αl 6= 0

v̂′
(
k

N
,
l

N

)
= lim

j→∞
v̂Mj

(
k

N
,
l

N

)
= 0.

So v′ is cylindric along the direction (α, β). Moreover, since v belongs to Ws,u and u
is cylindric along the direction (α, β), we are sure that v′ ∈ Ws,u.

We remark that the advantage of the total variation based restoration over linear
reconstructions (that preserves cylindric functions) is that it allows us to extrapolate
the frequencies out of {− 1

2 + 1
N
, . . . , 1

2}2. Therefore, here we do not a priori have to
choose between “ringing” and “blurring” artifacts (see section 4).

Also note that in the proof of this proposition we have used only the form of the
constraint and the fact that the total variation decreases after a convolution with a
function h such that

∫
T2 |h| = 1. So, such a proposition can be obtained doing the

same reasoning for other kind of energies such as, for instance,
∫

T2 |L(w)|r, where L
is a differential operator.

3.2. Numerical approximation of the total variation based restoration.

Let us first show two consistency propositions which ensure that a solution of (3.6)
can be approximated numerically. With that in mind, we first define a problem, the
solutions of which are computable and approximate a solution of (3.6).

Let N , u, s be such as in Proposition 3.2 and let K > 1 be an integer; we define
WK

s,u by

w ∈ WK
s,u ⇐⇒

{
w ∈ Ws,u and
∀(k, l) ∈ Z

2 \ {−KN
2 + 1, . . . , KN

2 − 1}2, ŵ( k
N
, l
N

) = 0.
(3.9)

Since WK
s,u is a finite dimensional affine space, its elements can be manipulated

numerically. Therefore, we define the band-limited approximating restoration by

vK = argmin(|Dw|(T2)), among w ∈ WK
s,u .(3.10)
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Note that such a minimum exists since uc ∈ WK
s,u (see (3.5)) and since we minimize

a coercive and convex functional on WK
s,u (a finite dimensional affine space). Note

also that since functions of WK
s,u are C1 we have |Dw|(T2) =

∫
T2 |∇w| for any w ∈

WK
s,u. For any given K > 1, the associated band-limited approximating restoration

represents a zoom of factor K (in the sense that the image resolution is increased by
the factor K). Proposition 3.8 will prove that vK can be used for K large to evaluate
a solution of (3.6).

Unfortunately, we are not able to compute
∫

T2 |∇w| (and so we cannot numerically
minimize it), even for an image in WK

s,u. The problem is that even when |∇w| is defined

everywhere (functions of WK
s,u are band-limited), we cannot integrate it on the torus.

So, we estimate the integral with a Riemann summation and approximate the total
variation by

EK′(w) =
1

K ′2

K′N−1∑

m,n=0

∣∣∣∇w
( m
K ′

,
n

K ′

)∣∣∣ .

We define the solvable restoration (the solution of which are numerically com-
putable) by

vK,K′

= argmin(EK′(w)), among w ∈ WK
s,u .(3.11)

Note once again that vK,K′

exists and that it can be estimated by a method similar
to the one described in [7, 11]. (Note that in [7] and [11] the image degradation is
inclusive of noise.)

The following proposition shows that a solution vK of the band-limited approx-
imating restoration (3.10) can be approximated by the sequence (vK,K′

)K′≥K when
K ′ grows to infinity. One can refer to [4] where the authors boil down to a com-
putable problem by a restriction to piecewise constant functions, in the case of image
deblurring.

Proposition 3.7. Let N and K be two integers (with K > 1), u ∈ l∞(Z2)
N-periodic, and s ∈ L2(T2) satisfying the hypotheses of the Proposition 3.2. For any
K ′ ≥ K, we note vK,K′ ∈ L2(T2) a solution of (3.11). Then, there exists vK ∈
BV (T2) ∩ L2(T2) and a subsequence (vK,K′

j )j∈N such that

lim
j→∞

‖vK,K′

j − vK‖1 = 0

and (vK,K′

j )j∈N weakly converges in L2(T2) to vK .

Moreover, for any such subsequence (vK,K′

j )j∈N, its limit vK is a solution of (3.10)
and

lim
j→∞

EK′
j
(vK,K′

j ) =

∫

T2

|∇vK |.(3.12)

Proof. In order to simplify notations we will forget the index K in vK,K′

and
denote it by vK

′

, the prime symbol reminding us that the index K ′ refers to the
minimization of EK′ .

We remark first that, since for any w ∈ WK
s,u, w is band-limited, we have

lim
K′→∞

EK′(w) =

∫

T2

|∇w| .
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Therefore, limK′→∞EK′(uc) exists (where uc is defined in (3.5)), and we know
that there exists C > 0 such that

EK′(vK
′

) ≤ EK′(uc) ≤ C .(3.13)

Unfortunately, we do not have any compactness theorem for EK′ . However, we
can boil down to compactness in BV since for any w ∈ L2(T2), the frequency support
of which is included in {−K

2 + 1
N
, . . . , K2 − 1

N
}2,

∫

T2

|w(x, y)|dxdy =

∫

T2

∣∣∣∣∣∣
1

N2

∑

(k,l)∈Z2

ŵ

(
k

N
,
l

N

)
e2iπ(

kx+ly
N )

∣∣∣∣∣∣
dxdy

≤
∑

(k,l)∈Z2

∣∣∣∣ŵ
(
k

N
,
l

N

)∣∣∣∣

≤ (KN)2 sup
|k|, |l|<KN

2

∣∣∣∣ŵ
(
k

N
,
l

N

)∣∣∣∣ .(3.14)

Denote ŵk,l the DFT (adapted to images of size K ′N ×K ′N) of w. We have

ŵk,l =

K′N−1∑

m,n=0

w
( m
K ′

,
n

K ′

)
e−2iπ km+ln

K′N = K ′2ŵ

(
k

N
,
l

N

)
,

since ŵ is supported by {−K
2 + 1

N
, . . . , K2 − 1

N
}2 and K ′ ≥ K. Therefore, (3.14) yields

∫

T2

|w| ≤ K2N2

K ′2

K′N−1∑

m,n=0

∣∣∣w
( m
K ′

,
n

K ′

)∣∣∣ .

Applying this to ∂w
∂x

and ∂w
∂y

for a w ∈ WK
s,u, we finally get

∫

T2

|∇w| ≤ C ′EK′(w) ,

where C ′ does not depend on K ′. This, combined with (3.13), yields

∫

T2

|∇vK′ | ≤ C ′C .

We can still do the same reasoning as that presented in the proof of Proposition
3.2, which guarantees the existence of a subsequence (vK

′

j )j∈N and a function v ∈
BV (T2)∩L2(T2), such that vK

′

j converges in L1(T2) and converges weakly in L2(T2)
to v.

We still have to prove that v is a solution of the band-limited approximating
restoration (3.10). First note that the weak convergence in L2 ensures that v ∈ WK

s,u,

since ∀j, vK′

j do belong to WK
s,u.

Let us now prove (3.12). We decompose

EK′

j
(vK

′

j ) −
∫

T2

|∇v| = EK′

j
(vK

′

j ) − EK′

j
(v) + EK′

j
(v) −

∫

T2

|∇v| .
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Therefore, since limK′→∞EK′(v) =
∫

T2 |∇v|, it is then sufficient to prove that

lim
j→∞

EK′

j
(vK

′

j − v) = 0

to get (3.12).
Letting w ∈ L2(T2), the Fourier series of which is supported on {−K

2 + 1
N
, . . . ,

K
2 − 1

N
}2, we have

EK′(w) ≤ 1

K ′2

K′N−1∑

m,n=0

∣∣∣∣
∂w

∂x

( m
K ′

,
n

K ′

)∣∣∣∣ +
1

K ′2

K′N−1∑

m,n=0

∣∣∣∣
∂w

∂y

( m
K ′

,
n

K ′

)∣∣∣∣ .

So, analyzing both summations separately, we have, since K ′ ≥ K,

1

K ′2

K′N−1∑

m,n=0

∣∣∣∣
∂w

∂x

( m
K ′

,
n

K ′

)∣∣∣∣ =
1

K ′2

K′N−1∑

m,n=0

∣∣∣∣∣∣∣
2π

(K ′N)2

K′N
2∑

k, l=−K′N
2 +1

k

K ′N
ŵk,le

2iπ km+ln

K′N

∣∣∣∣∣∣∣
.

Thus, since ŵk,l = 0 for |k| or |l| strictly larger than KN
2 , we have

1

K ′2

K′N−1∑

m,n=0

∣∣∣∣
∂w

∂x

( m
K ′

,
n

K ′

)∣∣∣∣ ≤
1

K ′2

K′N−1∑

m,n=0

πK2

K ′2
sup
k,l

|ŵk,l|

≤ πN2K2

K ′2
sup
k,l

|ŵk,l| .

Once again, we just remark that, since K ′ ≥ K, we have ŵk,l = K ′2ŵ( k
N
, l
N

) and we
obtain

1

K ′2

K′N−1∑

m,n=0

∣∣∣∣
∂w

∂x

( m
K ′

,
n

K ′

)∣∣∣∣ ≤ πN2K2

∫

T2

|w| .

So, there exists C > 0, which does not depend on K ′, such that for any w ∈ L2(T2),
the Fourier series of which is supported by {−K

2 + 1
N
, . . . , K2 − 1

N
}2, we have

EK′

j
(w) ≤ C

∫

T2

|w| .

Applying this to (vK
′

j − v) yields limj→∞EK′

j
(vK

′

j − v) = 0.

Therefore, (3.12) holds and for any w ∈ WK
s,u, we have

∫

T2

|∇w| = lim
j→∞

EK′

j
(w) ≥ lim

j→∞
EK′

j
(vK

′

j ) =

∫

T2

|∇v| ,

which achieves the proof.
The following proposition shows that (vK)K∈N allows us to approximate a solution

v of (3.6).
Proposition 3.8. Let N be an integer, u ∈ l∞(Z2) N-periodic, and s ∈ L2(T2)

satisfying the hypotheses of the Proposition 3.2. If for any K > 1, we note vK ∈
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L2(T2) a solution of (3.10), we know that there exists v ∈ Ws,u and a subsequence
(vKj )j∈N such that

lim
j→∞

‖vKj − v‖1 = 0

and (vKj )j∈N weakly converges in L2 to v.
Moreover, for any such subsequence (vKj )j∈N, its limit v is a solution of (3.6)

and

lim
j→∞

∫

T2

|∇vKj | = |Dv|(T2) .

Proof. First note that the sequence (|DvK |(T2))K∈N decreases. So, the same
reasoning as that presented in the proof of the Proposition 3.2 yields that there exists
v ∈ BV (T) ∩ L2(T2) and a subsequence (vKj )j∈N such that vKj

converges in L1 and
weakly converges in L2 to v. Moreover, we have

|Dv|(T2) ≤ lim inf
j→∞

|DvKj |(T2) .

Once again, the weak convergence in L2 ensures that v ∈ Ws,u.
Nevertheless, we still have to prove that |Dv|(T2) is minimum among the functions

of Ws,u. For that, we are going to build a sequence of functions, indexed by K, of
elements of WK

s,u and which minimizes the total variation.
Letting K > 1 be an integer, we define for any (k, l) ∈ Z

2

ĥK

(
k

N
,
l

N

)
=

{
(1 − |2k|

KN
)(1 − |2l|

KN
) for |k| and |l| ≤ KN

2 ,
0 otherwise.

For any K > 1, hK ∈ L2(T2) ∩ L1(T2) and
∫

T2 |hK | = 1; indeed
∫

T2 hK = 1 since

ĥK(0, 0) = 1 and hK ≥ 0 since it is the convolution of two positive functions (which
are obtained by convolving the Fourier series of a function with itself).

We define an operator PK from Ws,u onto WK
s,u by

PK(w) = hK ∗ w + w′
K ,

where w ∈ Ws,u and w′
K is defined as follows: ŵ′

K is supported on {− 1
2 + 1

N
, . . . , 1

2}2

and for any (ξ, η) ∈ {−N
2 − 1, . . . , N2 }2,

ŵ′
K

(
ξ

N
,
η

N

)

=
1

ŝ
(

ξ

N
, η

N

)
∑

(k′,l′)∈Z2

ŝ

(
ξ

N
+ k

′
,
η

N
+ l

′

)
ŵ

(
ξ

N
+ k

′
,
η

N
+ l

′

)[
1− ĥK

(
ξ

N
+ k

′
,
η

N
+ l

′

)]
.

It is easy to check using (3.4) and (3.9) that PK(w) ∈ WK
s,u for any w ∈ Ws,u.

Let us show that PK(w) converges to w in L2(R2) when K tends to infinity.
Letting K > 3, we have

‖kK ∗ w − w‖2
2 =

1

N2

∑

(k,l)∈Z2

∣∣∣∣ŵ
(
k

N
,
l

N

)∣∣∣∣
2 ∣∣∣∣1 − ĥK

(
k

N
,
l

N

)∣∣∣∣
2

.
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Now let us denote CK = KN(1− (1− 1
logK

)
1
2 ) and split the sum into two pieces: S1,

the sum over all the indexes whose magnitudes are below CK ; and S2, the sum over
the reminding indexes.

Due to the particular form of ĥ, we have for indexes k and l that concern the sum
S1, |1 − ĥK( k

N
, l
N

)| ≤ 1
logK

. This yields

S1 ≤ 1

(logK)2
‖w‖2

2 ,

which guarantees that limK→∞ S1 = 0. Concerning S2, we get

S2 ≤
∑

|k| or |l|>CK

∣∣∣∣ŵ
(
k

N
,
k

N

)∣∣∣∣
2

,

since |1 − ĥK( k
N
, l
N

)| ≤ 1. Therefore, limK→∞ S2 = 0 and we get

lim
K→∞

‖kK ∗ w − w‖2 = 0 .

The same kind of calculus yields

lim
K→∞

‖w′
K‖2 = 0,

and we finally have

lim
K→∞

‖PK(w) − w‖2 = 0 .

Now we are going to show that limK→∞ |DPK(w)|(T2) exists and is smaller
than |Dw|(T2). This is basically a consequence of the fact that |D(hK ∗ w)|(T2) ≤
|D(w)|(T2) and that |Dw′

K |(T2) tends to 0 when K tends to infinity. Let us detail
this.

Let w ∈ Ws,u and ϕ ∈ C1(T2,R2) be compactly supported such that ‖ϕ‖∞ ≤ 1.
We have

∫

T2

PK(w) div(ϕ) =

∫

T2

w div(hK ∗ ϕ) +

∫

T2

w′
K div(ϕ),

≤ |Dw|(T2) +

∫

T2

w′
K div(ϕ).

So, since w′
K and div(ϕ) belong to L2(T2), we can compute I1 =

∫
T2 w

′
K div(ϕ)

in frequency domain and this yields the upper bound (we note ϕ = (ϕ1, ϕ2), ϕ̂i being
the complex conjugate of ϕ̂i for i = 1, 2)

|I1| =
2π

N2

∣∣∣∣∣∣
∑

−N
2 +1≤ξ,η≤N

2

ŵ′
K

(
ξ

N
,
η

N

) [
ξ

N
ϕ̂1

(
ξ

N
,
η

N

)
+

η

N
ϕ̂2

(
ξ

N
,
η

N

)]∣∣∣∣∣∣

≤ 2π‖w′
K‖2


 ∑

−N
2 +1≤ξ,η≤N

2

∣∣∣∣
ξ

N
ϕ̂1

(
ξ

N
,
η

N

)
+

η

N
ϕ̂2

(
ξ

N
,
η

N

)∣∣∣∣
2



1
2

≤ 2π‖w′
K‖2

(
‖ϕ1‖2

2 + ‖ϕ2‖2
2

) 1
2

≤ 2
√

2πN ‖w′
K‖2.
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Therefore, for any ε > 0 and any w ∈ Ws,u there exists Kε > 1 such that for
K ≥ Kε

|DPK(w)|(T2) ≤ |Dw|(T2) + ε .

So, since |Dw|(T2) ≤ lim infK→∞ |DPK(w)|, we have for any w ∈ Ws,u

lim
K→∞

|DPK(w)|(T2) = |Dw|(T2).(3.15)

So, in particular, for a solution w of (3.6), we have

|Dw|(T2) ≤ |DvKj |(T2) ≤ |DPKj
(w)|(T2),

and then |Dw|(T2) = limj→∞ |DvKj |(T2).
This, at last, guarantees

|Dv|(T2) ≤ lim
j→∞

|DvKj |(T2) = |Dw|(T2) ≤ |Dv|(T2) ,

which finishes the proof.
We remark first that we could have stated, in the case of the band-limited approx-

imating restoration (3.10), some propositions similar to Proposition 3.3 (the “weak
uniqueness”) and Proposition 3.6 (that deals with the preservation of cylindric images
for (3.6)). So, since any function w ∈ WK

s,u is continuously differentiable and since
for any such function {(x, y) ∈ T

2, ∇w = 0} is of null measure, we can expect any
solution vK of (3.10) to be cylindric, given an initial cylindric data. Therefore, a
solution v of (3.6) obtained as a limit of a subsequence (vKj )j∈N is also cylindric.

Now, as we said in the introduction of this section, we can only compute a so-
lution of the solvable restoration (given by (3.11)). Now we are going to show the
consequence of the change in the minimizing energy on the behavior of the restoration
when dealing with cylindric images.

Proposition 3.9. Let N , K, and K ′ be some integers with K ′ ≥ K > 1,
(α, β) ∈ Z

2 \ {(0, 0)}, and u ∈ l∞(Z2) N-periodic and cylindric along the direction

(α, β). For any kernel s = h ∗ se with h ∈ L2(T2) such that ĥ does not vanish on
{− 1

2 + 1
N
, . . . , 1

2}2, the solvable restoration (3.11) admits a solution whose Fourier
series is supported on

Sα′,β′ =

{
(k, l) ∈

{
−K

2
+

1

N
, . . . ,

K

2
− 1

N

}2

, β′k − α′l ∈ K ′
Z

}
,

where (α′, β′) ∈ Z
2 are such that α′ ∧ β′ = 1 (∧ denotes the largest common divisor)

and (α′, β′) defines the same direction as (α, β).
Remark that, modulo the uniqueness (we could state a proposition similar to

Proposition 3.3 in the case of (3.11)), this proposition means that the results of the
solvable restoration are not fully cylindric (see the thick line on Figure 2).

Moreover, for (α, β) ∈ Z
2 \ {(0, 0)}, we can define (α′, β′) ∈ Z

2 as a couple
representing the same direction as (α, β), but such that α′∧β′ = 1. Then, since Sα′,β′

is included in Sα,β , the use of such a couple (α′, β′) in the statement of Proposition
3.9 yields a stronger result.

Proof. The proof is similar to the one of Proposition 3.6, except that we have to
take care of the fact that EK′(w) takes into account only the values of w on a discrete
set.
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-1/2

-1/2

1/2

1/2

K'/2

-K'/2

K/2

-K/2

K/2-K/2

Fig. 2. The solid thick line represents the initial spectrum support (cylindric along the direction
(2,−1)). The dashed lines (thick and thin) represent the restriction to the direction (2,−1) of the
possible spectrum support after minimizing EK′ . The dotted lines (thick and thin) represent the
restriction to wrong directions of the possible spectrum support after minimizing EK′ . The thick
lines (solid, dashed, and dotted) represent the possible spectrum support after minimizing EK′ among
WK

s,u.

Let (α′, β′) ∈ Z
2 be such as in the proposition.

Letting K ′ ≥ K, v ∈ WK
s,u, be a solution of (3.11) and M ∈ N, we define the

function vM ∈ L2(T2), in frequency domain, by

v̂M

(
k

N
,
l

N

)
= v̂

(
k

N
,
l

N

)
1

2M + 1

M∑

t=−M

e−2iπ (kβ′
−lα′)

K′N
t(3.16)

for any (k, l) ∈ Z
2.

There is an analogy between this vM and the one defined by (3.8) in that for any
(m,n) ∈ {0, . . . , K ′N − 1}2

vM

( m
K ′

,
n

K ′

)
=

1

2M + 1

M∑

t=−M

v
( m
K ′

− β′t,
n

K ′
+ α′t

)
.(3.17)

Indeed, since v ∈ WK
s,u and K ′ ≥ K, we have

(v̂M )k,l = K ′2v̂M

(
k

N
,
l

N

)

= K ′2v̂

(
k

N
,
l

N

)
1

2M + 1

M∑

t=−M

e−2iπ (kβ′
−lα′)

K′N
t

= v̂k,l
1

2M + 1

M∑

t=−M

e−2iπ (kβ′
−lα′)

K′N
t ,

which in space domain yields (3.17).
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Similarly, we also have for any (m,n) ∈ {0, . . . , K ′N − 1}2

∇vM
( m
K ′

,
n

K ′

)
=

1

2M + 1

M∑

t=−M

∇v
( m
K ′

− β′t,
n

K ′
+ α′t

)

and so

EK′(vM ) ≤ EK′(v).

(Note that it is the point where the vM defined by (3.8) fail.)
We remark that

{
w ∈ L2(T2), Supp(ŵ) ⊂ {−K

2 + 1
N
, . . . , K2 − 1

N
}
}

is a finite di-
mensional space and that EK′(w) = 0 implies

∫
T2 |∇w| = 0. So there exists C > 0

such that for any w ∈ L2(T2) satisfying Supp(ŵ) ⊂ {−K
2 + 1

N
, . . . , K2 − 1

N
}

∫

T2

|∇w| ≤ CEK′(w) .

So,
∫

T2 |∇vM | is bounded and, similar to Proposition 3.6, we know that there exists
vMj

that converges in L1(T2) to a function v′ ∈ BV (T2) ∩ L2(T2).
Moreover, as shown before, there exists C ′ > 0 such that for any w ∈ L2(T2) such

that Supp(ŵ) ⊂ {−K
2 + 1

N
, . . . , K2 − 1

N
}

EK′(w) ≤ C ′

∫

T2

|w| .

So, limj→∞EK′(vMj
− v′) = 0 and

EK′(v′) = lim
j→∞

EK′(vMj
) ≤ EK′(v) .

Moreover, since vMj
converges to v′ in L1(T2), looking at (3.16), we finally have

for any (k, l) ∈ Z
2

v̂′
(
k

N
,
l

N

)
=

{
v̂
(

k
N
, l
N

)
if (kβ′ − lα′) ∈ K ′NZ,

0 otherwise.

This ensures that v′ ∈ WK
s,u and finishes the proof of the announced result.

We remark, however, that the solution v′ of the solvable restoration (3.11) given
in the proof of the proposition satisfies

v′
( m
K ′

,
n

K ′

)
= v′

( m
K ′

− β′t,
n

K ′
+ α′t

)

for any (m,n) ∈ {0, . . . , K ′N − 1}2 and any t ∈ Z.
We remark once again that we could have stated a proposition similar to Propo-

sition 3.6 (which ensures the preservation of cylindric function for (3.6)) in the case
of the band-limited approximating restoration (3.10). So, this proposition has to be
regarded under the scope of Proposition 3.7 (a consistency proposition) which guar-
antees that for K ′ large the cylindric sight of the result is preponderant. Moreover,
we have the following corollary.

Corollary 3.10. Let N and K be two integers and (α, β) ∈ Z
2 \{(0, 0)}. There

exists K ′ ≥ K beyond which the solutions of (3.11) are cylindric along the direction

(α, β), for any kernel s = h ∗ se (see (3.2)), with h ∈ L2(T2) such that ĥ does not
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vanish on {− 1
2 + 1

N
, . . . , 1

2}2 and any u ∈ l∞(Z2) N-periodic and cylindric along the
direction (α, β).

Indeed, looking at the definition of Sα′,β′ (see Proposition 3.9), we see that for K ′

large the lines β′k−α′l = ±K ′ do not intersect the square {−K
2 + 1

N
, . . . , K2 − 1

N
}2 (see

Figure 2). Therefore, for K ′ large, Sα′,β′ is reduced to the trail of the line β′k−α′l = 0
on {−K

2 + 1
N
, . . . , K2 − 1

N
}2 and the solutions of (3.11) are cylindric along the direction

(α, β).
Note also that the case K ′ = K is sufficient to preserve the functions cylindric

along the axis directions (the cases where (α, β) = (1, 0) or (α, β) = (0, 1)).

3.3. Some other variational restoration. As we said previously, most of the
results presented above are also true for restorations based on minimization of other
kind of energies. In this section, we are first going to study a particular case which
yields a linear reconstruction, and we will then explain the reasons that let us think
the total variation is the most adapted to image restoration.

3.3.1. Linear reconstructions associated with a variational restoration.

There is an important link between linear reconstructions and some variational min-
imization of the form

ZL(u) = argmin

(∫

T2

|L(w)|2
)

, among w ∈ Ws,u,(3.18)

where L is a linear and translation invariant operator. (Note that variational mini-
mizations of the same kind have already been introduced in [12].)

In order to describe this link, let us focus on the particular case where L = ∇.
This leads us to search solutions of

Z(u) = argmin

(∫

T2

|∇w|2
)

, among w ∈ Ws,u .(3.19)

Let us state the following proposition which gives the explicit form of a solution
of (3.19). Note that this proposition could be stated in the case of ZL for most of the
linear and translation invariant operator L. (We will explain this more precisely after
having stated the proposition.)

Proposition 3.11. Let N ∈ N, u ∈ l∞(Z2) N-periodic, and let s ∈ L2(T2)
such that ŝ does not vanish on {− 1

2 + 1
N
, . . . , 1

2}2; then (3.19) defines a linear, trans-
lation invariant operator continuous from {u ∈ l∞(Z2), u is N-periodic} to L2(T2).
Moreover, (3.19) admits a unique solution v given by

for any (ξ, η) ∈ {−N
2 − 1, . . . , N2 }2 \ {(0, 0)} and any (k, l) ∈ Z

2,

v̂

(
ξ

N
+ k,

η

N
+ l

)
=

¯̂s( ξ
N

+ k, η
N

+ l)

[( ξ
N

+ k)2 + ( η
N

+ l)2]ψ( ξ
N
, η
N

)
û ξ

N
, η
N
,

where ¯̂s denotes the complex conjugate of ŝ and

ψ

(
ξ

N
,
η

N

)
=

∑

(k,l)∈Z2

|ŝ( ξ
N

+ k, η
N

+ l)|2

( ξ
N

+ k)2 + ( η
N

+ l)2
,

and for any (k, l) ∈ Z
2

v̂(k, l) =

{
û0,0

ŝ0,0
for (k, l) = (0, 0),

0 otherwise.

A proof of this proposition can found in [15].
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As we said previously, this proposition can be generalized to find solutions of
problems of the form (3.18). Indeed, if we note L(w) = h∗w and if there exists C > 0

such that |ĥ( k
N
, l
N

)|2 ≥ C for (k, l) 6= (0, 0), we simply have to replace, in Proposition

3.11, ( ξ
N

+k)2+( η
N

+ l)2 by |ĥ( ξ
N

+k, η
N

+ l)|2. Note that this holds for any differential
operator.

Note also that, when ŝ ∈ l1, the interpolation defined by (3.19) can be extended
to l∞(Z2) (by interpolating the Fourier series of the convolution kernel) in such a way
that it satisfies the hypotheses of the Propositions 2.7 and 2.9. Therefore, since we can
see in Proposition 3.11 that it puts 0 at lost frequencies (where ŝ = 0), Propositions
2.7 and 2.9 yield results similar to Propositions 3.5 and 3.6 but adapted to the problem
(3.19).

We remark also that for any linear and translation invariant interpolation operator
(defined by an h such that |∇h| ∈ L2(T2) and ĥ( ξ

N
, η
N

) 6= 0 for any (ξ, η) ∈ {−N/2 +
1, . . . , N/2}2), (3.19) applied with the kernel

ŝ

(
ξ

N
+ k,

η

N
+ l

)
=

(
( ξ
N

+ k)2 + ( η
N

+ l)2
)

¯̂
h( ξ

N
+ k, η

N
+ l)

∑
(k′,l′)∈Z2

[
( ξ
N

+ k′)2 + ( η
N

+ l′)2
]
|ĥ( ξ

N
+ k′, η

N
+ l′)|2

defines the same interpolation as the one simply defined by h.
Therefore, this analysis gives a parallel between linear, translation invariant re-

constructions and solutions of (3.19). This parallel can be used to describe linear
reconstructions but makes useless the use of (3.19) to reconstruct images.

3.3.2. Discussion on the energy choice. Now we are going to argue for the
choice of the total variation in image restoration within the family of energies

EL,r(w) =

∫

T2

|L(w)|r,

where r ≥ 1 and L is a linear translation invariant isotropic operator; we moreover
consider it homogeneous (typically a differential operator of a fixed order). Homoge-
neous is used in the sense that

∃ ord(L) ∈ R, ∀C > 0, ∀w such that L(w) exists everywhere,

L(w(C .))(x, y) = Cord(L)L(w)(Cx,Cy) .

For commodity we do not distinguish yet the total variation of a function w from∫
T2 |∇w|.

First note that within this family the case r = 1 is the most interesting since
for r > 1 the energy EL,r(w) does penalize more a point at which |L(w)| is large
than it penalizes several points having smaller |L(w)|. This is simply due to the fact
that f(t) = tr is strictly convex for r > 1 and can be regarded as a consequence
of the homogeneity of EL,r(w) with regard to multiplications of w by constant. We
do believe such a behavior is harmful to image quality since it will split large |L(w)|
into several pieces without regard to their orientation. (This orientation generally
oscillates due to the data fidelity term.) This does generally create oscillations close
to points where |L(w)| is large (generally edges). This behavior can be observed in
the case of E∇,2.

Let us focus on the case where r = 1. If we consider an image cylindric along
a direction (α, β) (which models an edge) and a dilation (or contraction) along the
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direction (α, β) (this modifies the edge smoothness), in such a case the homogeneity
of EL,1(w) with regard to this dilation is ord(L) − 1. So, if ord(L) is strictly larger
than 1, EL,1(w) will penalize more sharp edges than smooth ones (indeed, Cord(L)−1

tends to infinity with C) and similarly to previously, the minimization of EL,1(w)
tends to create oscillations close to edges. Moreover, natural images generally present
sharp edges, so we cannot afford to forbid them during the restoration. (Note that
this is an intuitive way to talk about the Sobolev embedding theorem which in 1D
shows that the case ord(L) = 1 and r = 1 is the limit one beyond which the functions
are smoother than continuous.)

A simple way to sum up this is the following 1D proposition.
Proposition 3.12. For any signal w ∈ BV (T) and any homeomorphism f from

T to T,

|D(w ◦ f)|(T) = |Dw|(T).

This result has already been introduced in [8].
Now, the total variation extends

∫
T2 |∇w| in such a way that it is lower semi-

continuous and satisfies some compactness properties. Therefore, the total variation
permits us to state proper results.

There exist, of course, other kinds of energies. Let us cite entropy which has
already been used to restore images (see [27]). The entropy is generally defined, for a
positive function w, by

E(w) = −
∫

T2

w(x, y) log

(
w(x, y)∫

T2 w

)
dxdy .

We remark that a small change of f in a dark part of the image a priori induces a
larger change in the value of the entropy than the same change in a bright region.
Therefore, we believe such a restoration is not adapted to image restoration since it
may not behave in the same way in dark and bright regions of the image.

4. Experiments. We illustrate in this section some propositions and the meth-
ods described above. The methods are the duplication interpolation, the bicubic
reconstruction (see [20]), the “zero-padding” interpolation, a reconstruction using a
Prolate function, and the total variation based restoration. (These are respectively
presented on figures from up to down and from left to right.) In all the experiments,
the data is deduced from a reference image by keeping the low frequencies correspond-
ing to a subsampling of a factor 4. The reference image is also displayed on the lower
right-hand corner of the figures. In order to compare the reconstructed image in front
of the reference, all the presented experiments are zooms of level 4. (The initial image
numbers of row and of column are multiplied by 4.) Moreover, they are generally dis-
played both in space and frequency domain. In this latter case, the presented images
are the spectrum modulus raised to the power 0.01. The experiments are presented as
follows. We start from reconstruction of cylindric image and leave this framework to
conclude with natural images. At last, we give some statistics which give the l2-norm
of the difference between the reconstructions and the reference image and illustrate
the importance of the hypothesis “s = h ∗ se” in the Proposition 3.6.

Figure 3 displays zooms of an initial image (see Figure 3(a)) which is cylindric
along the direction (1, 3). Note that we display only the same extracted part of
the zoomed images. Images 3(b) and 3(c), which correspond to the duplication and
the bicubic reconstructions, do present oscillating edges. In the same time, images
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Fig. 3. (a) The initial image (cylindric along the direction (1, 3)). Part of the images zoomed
by a factor 4 by (b) the duplication interpolation; (c) the cubic convolution reconstruction; (d) the
“zero-padding” interpolation; (e) the reconstruction using the prolate function; (f) the total variation
based restoration. (g) Part of the reference image.

3(d) and 3(e), which correspond to the “zero-padding” and the linear reconstruction
defined by the prolate function, do not. This illustrates Proposition 2.9, since the
convolution kernels associated with the duplication and bicubic reconstructions do
not have Fourier transforms supported on ] − 1

2 ,
1
2 [2, while the “sinc” and the pro-

late functions do. In the same way, image 3(f) is a part of the total variation based
restoration associated with the “sinc function” (s = se) and does not have oscillating
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Fig. 4. Spectra of the images whose extracts are displayed on Figure 3. (a) the reference 3(g);
(b) the duplication 3(b); (c) the total variation based restoration 3(f).

edges. Moreover, image 3(d) oscillates more than the initial image 3(g), while image
3(e) does not (but it is very blurred). We can see that the total variation restoration
(Figure 3(f)), owing to its ability to extrapolate frequencies, has a sharp result which
oscillates less than the initial image 3(g).

Figure 4 represents the Fourier series of some reconstruction of the image 3(a)
(whose extracts are displayed on Figures 3(b), 3(f), and 3(g)). We can see the peri-
odical structure of Figure 4(b) which prevents the preservation of the 1D nature of
image 3(a). Note that the same observation could have been made on the spectrum
of the bicubic reconstruction. On the other hand, looking at Figure 4(c), we can see
the ability of the total variation based restoration to prolong the initial structure out
of ]− 1

2 ,
1
2 [2. (]− 1

2 ,
1
2 [2 is represented by the black square in the center of the figure.)

Moreover, we observe on this spectrum the property announced in Proposition 3.9.
Indeed, we took the same value for K and K ′, and we can see that the Fourier series
of the result is essentially supported on S1,3 (see Proposition 3.9).

We display on Figure 5 the same zooming methods as the ones of Figure 3, in
the case of an image representing a triangle. We can make about this figure the same



28 F. MALGOUYRES AND F. GUICHARD

Fig. 5. Image zoomed by a factor 4 by (a) the duplication interpolation; (b) the cubic convo-
lution reconstruction; (c) the “zero-padding” interpolation; (d) the reconstruction using the prolate
function; (e) the total variation based restoration; (f) the reference image.
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comments as the one made about Figure 3. Moreover, we remark that the horizontal
edge of the triangle is accurately restored by all the linear reconstructions. This
is basically due to the fact that all the associated kernels satisfy the hypotheses of
Proposition 2.7. Moreover, we can see a limit of our model on Figure 5(e). Indeed, we
note some oscillations on the edges in the vicinity of the triangle corners. These are
due to the need of the total variation to erode the corners in order to decrease. Figure
6 displays the spectrum of the images of Figure 5. Figures 6(a) and 6(b) illustrate
Proposition 2.7. (The periodizations of the vertical white line are located at the same
places as the vertical black ones; therefore they are canceled and the horizontal edge
is correctly restored). Moreover, Figure 6(e) shows that the total variation restoration
is the only one which tends to prolong the initial structures of the spectrum.

We display in Figure 7 the same zooming methods as the ones of Figure 3, in
the case of an image representing an ellipse. The ellipse is clearly a limit case of
the cylindric model, since the curvature of its edge is never null. This experiment
shows that the results based on the modeling of edges by cylindric functions still
apply to other kinds of edges, since the conclusions of the preceding experiments still
hold. Moreover, looking at Figures 8(e) and 8(f), we see that the total variation
based restoration permits one to extend the initial spectrum much better than the
duplication or any other linear method that periodizes it.

In order to estimate the relevance of our analysis in the case of a real world
image, we display in Figure 9 the same reconstruction/restoration methods in the
case of an image provided by the Centre National d’Etudes Spatiales. A part of this
image presents oscillations that are essentially cylindric and for which the comments
made for Figure 3 are valid. Moreover, this oscillating zone is almost lost on Figures
9(a) and 9(b). This artifact is due to the spectrum periodization and is similar to
the artifacts usually caused by aliasing. (We added another oscillation in a wrong
direction.) Furthermore, Figure 9(e) shows a shortcoming of the total variation based
restoration, that is, that it tends to create homogeneous zones. We display in Figure
10 the spectra of the images of Figure 9. We observe here the frequency translation
of most of the artifact seen on the spatial representation. In particular, the ability of
the total variation based restoration to preserve cylindric images is translated in its
ability to prolong the initial spectrum structure to the new spectral domain. However,
we see in Figures 10(e) and 10(f) that, even if we extend the structures present in the
original spectrum, the values, given a direction, are different.

We enumerate in the Table 3 the mean square error between the reconstruction
and the reference images. We see that, among linear reconstruction, the zero-padding
always yields the best statistics (which seems normal given the sampling process
yielding the data). Moreover, the total variation based restoration yields better results
than linear ones. These statistics are strongly improved in the cases of artificial images
while this difference is smaller in the case of the natural image. This is classical, but we
could expect to have better statistics for natural images presenting many sharp edges.

At last, Figure 11 shows evidence of the importance of the hypothesis “s = h∗se”
in Proposition 3.6. It represents a small part of the zooms of level 8 of a natural im-
age (a photograph of an eye; note that the contrast has been highly modified). The
difference in all these total variation based restorations holds in the filter s used to
define Ws,u (up-down: the size of the frequencial support of s decreases; see the right
part of Figure 11). On Figure 11(a), the values are fixed for each of every 8 pixels,
the other ones are free of any constraint (ŝ = 1); the “number of constraint points”
increases until Figure 11(d), where the constraint corresponds to the case s = se
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Fig. 6. Spectra of the images displayed on Figure 5.
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Fig. 7. Image zoomed by a factor 4 by (a) the duplication interpolation; (b) the cubic convo-
lution reconstruction; (c) the “zero-padding” interpolation; (d) the reconstruction using the prolate
function; (e) the total variation based restoration; (f) the reference image.
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Fig. 8. Spectra of the images displayed on Figure 7.
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Fig. 9. Image zoomed by a factor 4 by (a) the duplication interpolation; (b) the cubic convo-
lution reconstruction; (c) the “zero-padding” interpolation; (d) the reconstruction using the prolate
function; (e) the total variation based restoration; (f) the reference image.
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Fig. 10. Spectra of the images displayed on Figure 9.
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Fig. 11. Left: the images restored with the total variation restoration (zooms of level 8; the
contrast has been modified). Right: the real part of the Fourier transform of the kernel s used to
restore the image on the left (i.e., this latter belongs to Ws,u).

(see Proposition 3.6). We see in Figure 11 that the zones that suffer “significant”
constraint are visible on Figures 11(a), 11(b), 11(c), but not in Figure 11(d). This is
due to the fact that the points for which the constraint is too weak collapse in order
to make the total variation decrease.
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Table 3
Mean square error between the reconstruction and the reference image.

Image Figure Duplication Bicubic Zero- Prolate Variational
interpolation rec. padding rec. restoration

Cylindric Fig. 3 928 378 347 465 224
Triangle Fig. 5 522 165 133 202 56
Ellipse Fig. 7 92.03 20.06 16.30 26.97 8.88
Natural Fig. 9 289 124 102 148 99
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