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BOUNCING BALL MODES AND QUANTUM CHAOS

NICOLAS BURQ AND MACIEJ ZWORSKI

Abstra
t. Quantum ergodi
ity of 
lassi
ally 
haoti
 systems has been studied extensively

both theoreti
ally and experimentally, in mathemati
s, and in physi
s. Despite this long

tradition we are able to present a new rigorous result using only elementary 
al
ulus. In the


ase of the famous Bunimovi
h billiard table shown in Fig.1 we prove that the wave fun
tions

have to spread into any neighbourhood of the wings.

The quantum/
lassi
al 
orresponden
e is a puzzling issue that has been with us sin
e the

advent of quantum me
hani
s hundred years ago. Many aspe
ts of it go ba
k to the New-

ton/Huyghens debate over the wave vs. 
orpus
ular theories of light.

On the surfa
e of our existen
e we live in a world governed by laws of 
lassi
al physi
s. That

does not mean that we know pre
isely how �uids �ow or solids move. They are des
ribed by

highly non-linear rules whi
h are hard to unravel mathemati
ally. Even the simplest 
lassi
al

motion, that of a ball boun
ing elasti
ally from 
on�ning walls poses many unanswered questions

� see http://www.dynami
al systems.org/billiard/ for a fun introdu
tion.

If we investigate deeper, or if we simply use any modern te
hni
al devi
e, we 
ome in 
onta
t

with quantum me
hani
s. It is governed by a di�erent set of rules whi
h mix wave and matter.

The simplest des
ription of a wave 
omes from solving the Helmholtz equation:

(−∆− λ2)u = 0 , ∆ = ∂2

x + ∂2

y , (x, y) ∈ Ω , u↾∂Ω= 0 .

Here we put our wave inside of a two dimensional region Ω. In 
lassi
al wave me
hani
s the

limit λ → ∞ is des
ribed using geometri
al opti
s where the waves propagate along straight

lines re�e
ting in the boundary ∂Ω. Roughly speaking, we expe
t something similar in the 
las-

si
al/quantum 
orresponden
e with the Helmholtz equation repla
ed by its quantum me
hani
al

version, the S
hrödinger equation. For many fas
inating illustrations of this we refer to the web

art gallery of Ri
k Heller: http://www.eri
jhellergallery.
om.

Many resear
hers on di�erent aspe
ts of semi
lassi
al analysis have been interested in the the


orresponden
e of solutions to the equation above and the 
lassi
al geometry of balls boun
ing

from the walls of Ω: Bä
ker, Cvitanovi¢, E
khardt, Gaspard, Heller, Sridhar, in physi
s, and

Colin de Verdière, Melrose, Sjöstrand, Zeldit
h, in mathemati
s, to mention some (see [2℄,[3℄ for

referen
es to the physi
s literature, and [4℄,[5℄,[6℄ for mathemati
s).

Billiard tables for whi
h the motion is 
haoti
 are a parti
ularly interesting model to study

†
.

One of the most famous is the Bunimovi
h billiard table shown in Fig.1. By adding two 
ir
ular

�wings� to a re
tangular table the motion of a re�e
ting billiard ball be
omes 
haoti
, or more

pre
isely, hyperboli
, in the sense that 
hanges in initial 
onditions lead to exponentially large


hanges in motion as time goes on.

†
Of 
ourse one would not want to play billiards on a table like that, and a 
ompletely integrable re
tangular

one 
an pose enough of a 
hallenge. While dis
ussing billiards and the 
lassi
al/quantum 
orresponden
e we


annot resist mentioning that Pyotr Kapitsa (Nobel Prize in Physi
s '78) was fond of saying that trying to dete
t

the quantum nature of physi
al pro
esses at room temperature was like trying to investigate the physi
al laws

governing the 
ollision of billiard balls on a table aboard a ship going through rough seas.
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Figure 1. An experimental image of boun
ing ball modes in a Bunimovi
h

stadium 
avity � see [1℄ and http://www.bath.a
.uk/∼pys
md/a
ousti
s. With

a 
ertain amount imagination one 
an see our theorem in this pi
ture.

As a model for studying quantum phenomena in 
haoti
 systems this billiard table has be
ome

popular in experimental physi
s. A genuinely quantum example is shown in Fig.2 � it 
omes from

the s
anning tunnelling mi
ros
ope work of Eigler, Crommie, and others [7℄.

Figure 2. Quantum 
orral in the shape of the Bunimovi
h stadium. Courtesy

of IBM

r© Resear
h.

One question whi
h is still mysterious to mathemati
ians and physi
ists alike is if the states

of this system (that is, solutions of the equation above) 
an 
on
entrate on the highly ustable


losed orbits of the 
lassi
al billiard. Quantum unique ergodi
ity states that there is no su
h


on
entration � see [8℄,[9℄,[6℄ and referen
es given there. In the arithmeti
 
ase, that is for

billiards given by arithmeti
 surfa
es where the motion is given by the geodesi
 �ow, spe
ta
ular

advan
es have been re
ently a
hieved by Bourgain, Lindenstrauss [10℄, and Sarnak, while for the

popular quantization of the Arnold 
at map impressive results were produ
ed by Bone
hi, De

Bièvre, Faure, and Nonnenma
her [11℄, and also by Kurlberg and Rudni
k [12℄.

Here we des
ribe an elementary but striking result in the billiard 
ase. It follows from adapting

the �rst author's earlier work in 
ontrol theory. Although motivated by the more general aspe
ts

of [13℄ we give a simple self 
ontained proof.

http://www.bath.ac.uk/~pyscmd/acoustics
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For a state u(x, y) what 
ounts is its probability density, |u(x, y)|2dxdy � we assume here that

|u|2 is normalized to have integral 1 over Ω. We say that it is bounded from below in a region if

its integral over that region is bounded from below by a positive 
onstant. With this terminology

we have, roughly speaking,

Theorem. For any normalized state of the Bunimovi
h billiard table, the probability density in

any neighbourhood of the wings of the table is bounded from below independently of the energy

λ2
.

In parti
ular, the result says that single boun
ing ball orbits (that is orbits following an interval

perpendi
ular to the horizontal straight boundaries) 
annot produ
e lo
alized waves. Our result

allows 
on
entration on the full invariant set of all verti
al orbits over R � that is 
onsistent

with the existing physi
al literature � both numeri
al and experimental � see [2℄ and [1℄. In [13℄

we show a stronger result, namely that the neighbourhood of the wings 
an be repla
ed by any

neighbourhood of the verti
al intervals between the wings and the re
tangular part. The proof

of that predi
table (to experts) improvement is however no longer elementary and is based on

[14℄.

The proof of theorem depends on the following unpublished result of the �rst author (see [13℄

for detailed referen
es and ba
kground material):

Proposition. Let ∆ = ∂2
x + ∂2

y , be the Lapla
e operator on the re
tangle R = [0, 1]x × [0, a]y.
Then for any open ω ⊂ R of the form ω = ωx× [0, a]y , there exists C su
h that for any solutions

of

(−∆− λ2)u = f + ∂xg on R , u↾∂R= 0 ,

with an arbitrary λ ≥ 0 we have

∫

R

|u(x, y)|2dxdy ≤ C

(
∫

R

(|f(x, y)2|+ |g(x, y)|2)dxdy +

∫

ω

|u(x, y)|2dxdy

)

.

Proof. We de
ompose u, and f + ∂xg in terms of the basis of L2([0, a]) formed by the Diri
hlet

eigenfun
tions ek(y) =
√

2/a sin(2kπy/a),

(1) u(x, y) =
∑

k

ek(y)uk(x), f(x, y) + ∂xg(x, y) =
∑

k

ek(y)(fk(x) + ∂xgk(x))

we get for uk, fk the equation

(

∂2

x + z
)

uk = fk + ∂xgk, uk(0) = uk(1) = 0 , z = λ2 − (2kπ/a)
2
.

It is now easy to see that

(2)

∫ 1

0

|uk(x)|
2dx ≤ C

(
∫ 1

0

(|fk(x)|
2 + |gk(x)|

2)dx +

∫

ωx

|uk(x)|
2dx

)

,

where C is independent of λ1. In fa
t, let us �rst assume that ωx = (0, δ), δ > 0, and z = λ2
1,

with Imλ1 ≤ C. We then 
hoose χ ∈ C∞
c ([0, 1]) identi
ally zero near 0 and identi
ally one on

[δ/2, 1]. Then
(

∂2

x + λ2

1

)

(χuk) = Fk , Fk = χ(fk + ∂xgk) + 2∂xχ∂xuk + ∂2

xχuk .

We 
an now use the expli
it solution given by

χ(x)uk(x) =
1

λ1

∫ x

0

sin(λ1(x− y))Fk(y)dy .
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All the terms with ∂xgk and ∂xuk 
an be 
onverted to gk and uk by integration by parts (with

boundary terms 0 at both ends). Due to the λ−1

1
fa
tor that produ
es no loss and the estimate

follows. The argument is symmetri
 under the x 7→ −x 
hange, so we 
an pla
e our 
ontrol

interval anywhere.

It remains to dis
uss the 
ase z ≤ −C < 0. Then the estimate (2) follows from integration by

parts (where now we do not need ωx):

∫ 1

0

(

fk(x)uk(x)− gk(x)∂xuk(x)
)

dx =

∫ 1

0

(fk(x) + ∂xgk(x))uk(x)dx =

∫ 1

0

(−∂2

x − z)uk(x)uk(x)dx =

∫ 1

0

(

|∂xuk(x)|
2 + |z||uk(x)|

2
)

dx .

By the Cau
hy-S
hwartz inequality, the left hand side is bounded from above by

(
∫ 1

0

(

|fk(x)|
2 + |gk(x)|

2
)

dx

)

1

2
(
∫ 1

0

(

|uk(x)|
2 + |∂xuk(x)|

2
)

dx

)

1

2

.

Sin
e |z| > C > 0, (2) follows from elementary inequalities (see [13, Lemma 4.1℄ for a general

mi
rolo
al argument). We 
an now sum the estimate in k to obtain the proposition. �

We 
an now present a more pre
ise version of the theorem. For a yet �ner version we refer

the reader to [13, Theorem 3

′
℄ and [13, Fig.5℄.

Theorem

′
. Consider Ω the Bunimovi
h stadium asso
iated to a re
tangle R. With the 
onvention

of Fig.1, let R1 be any re
tangle with the horizontal sides 
ontained in the sides of R, stri
tly

ontained in R, and with R \R1 having two 
omponents.

There exists a 
onstant C depending only on Ω and R1 su
h that for any solution of the

equation

(−∆− λ2)v = f , u↾∂Ω= 0 , λ ≥ 0 ,

we have

∫

Ω

|v(x, y)|2dxdy ≤ C

(

∫

Ω

|f(x, y)|2dxdy +

∫

Ω\R1

|v(x, y)|2dxdy

)

.

The �wings� of the billiard table in the original statement are given by Ω \R1. We apply the

se
ond theorem with f = 0 to obtain the �rst one.

Proof. Let us take x, y as the 
oordinates on the stadium, so that x is the horizontal dire
tion,

y the verti
al dire
tion, and the internal re
tangle is [0, 1]x × [0, a]y. Let us then 
onsider u and

f satisfying (−∆− λ2)u = f , u = 0 on the boundary of the stadium, and χ(x) ∈ C∞
c (0, 1) equal

to 1 on [ε, 1− ε]. Then χ(x)u(x, y) is solution of

(−∆− λ2)χu = χf + [∆, χ]u in R

with Diri
hlet boundary 
onditions on ∂R. Sin
e [∆, χ]u = 2∂x(χ
′u) − χ′′u we 
an apply the

proposition to obtain

∫

R

|χ(x)u(x, y)|2dxdy ≤ C

(
∫

R

|χ(x)f(x, y)|2dxdy +

∫

ωε

|u(x, y)|2dxdy

)

where ωε is a neighbourhood of the support of ∂xχ. Sin
e we 
an 
hoose it to be 
ontained in

R \R1, the theorem follows. �
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We 
on
lude by remarking that the same argument holds in the setting dis
ussed re
ently in

[15℄ and [6℄, sin
e in the argument above the re
tangle 
an be repla
ed by a torus.
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