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BOUNCING BALL MODES AND QUANTUM CHAOS

NICOLAS BURQ AND MACIEJ ZWORSKI

Abstrat. Quantum ergodiity of lassially haoti systems has been studied extensively

both theoretially and experimentally, in mathematis, and in physis. Despite this long

tradition we are able to present a new rigorous result using only elementary alulus. In the

ase of the famous Bunimovih billiard table shown in Fig.1 we prove that the wave funtions

have to spread into any neighbourhood of the wings.

The quantum/lassial orrespondene is a puzzling issue that has been with us sine the

advent of quantum mehanis hundred years ago. Many aspets of it go bak to the New-

ton/Huyghens debate over the wave vs. orpusular theories of light.

On the surfae of our existene we live in a world governed by laws of lassial physis. That

does not mean that we know preisely how �uids �ow or solids move. They are desribed by

highly non-linear rules whih are hard to unravel mathematially. Even the simplest lassial

motion, that of a ball bouning elastially from on�ning walls poses many unanswered questions

� see http://www.dynamial systems.org/billiard/ for a fun introdution.

If we investigate deeper, or if we simply use any modern tehnial devie, we ome in ontat

with quantum mehanis. It is governed by a di�erent set of rules whih mix wave and matter.

The simplest desription of a wave omes from solving the Helmholtz equation:

(−∆− λ2)u = 0 , ∆ = ∂2

x + ∂2

y , (x, y) ∈ Ω , u↾∂Ω= 0 .

Here we put our wave inside of a two dimensional region Ω. In lassial wave mehanis the

limit λ → ∞ is desribed using geometrial optis where the waves propagate along straight

lines re�eting in the boundary ∂Ω. Roughly speaking, we expet something similar in the las-

sial/quantum orrespondene with the Helmholtz equation replaed by its quantum mehanial

version, the Shrödinger equation. For many fasinating illustrations of this we refer to the web

art gallery of Rik Heller: http://www.erijhellergallery.om.

Many researhers on di�erent aspets of semilassial analysis have been interested in the the

orrespondene of solutions to the equation above and the lassial geometry of balls bouning

from the walls of Ω: Bäker, Cvitanovi¢, Ekhardt, Gaspard, Heller, Sridhar, in physis, and

Colin de Verdière, Melrose, Sjöstrand, Zeldith, in mathematis, to mention some (see [2℄,[3℄ for

referenes to the physis literature, and [4℄,[5℄,[6℄ for mathematis).

Billiard tables for whih the motion is haoti are a partiularly interesting model to study

†
.

One of the most famous is the Bunimovih billiard table shown in Fig.1. By adding two irular

�wings� to a retangular table the motion of a re�eting billiard ball beomes haoti, or more

preisely, hyperboli, in the sense that hanges in initial onditions lead to exponentially large

hanges in motion as time goes on.

†
Of ourse one would not want to play billiards on a table like that, and a ompletely integrable retangular

one an pose enough of a hallenge. While disussing billiards and the lassial/quantum orrespondene we

annot resist mentioning that Pyotr Kapitsa (Nobel Prize in Physis '78) was fond of saying that trying to detet

the quantum nature of physial proesses at room temperature was like trying to investigate the physial laws

governing the ollision of billiard balls on a table aboard a ship going through rough seas.
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Figure 1. An experimental image of bouning ball modes in a Bunimovih

stadium avity � see [1℄ and http://www.bath.a.uk/∼pysmd/aoustis. With

a ertain amount imagination one an see our theorem in this piture.

As a model for studying quantum phenomena in haoti systems this billiard table has beome

popular in experimental physis. A genuinely quantum example is shown in Fig.2 � it omes from

the sanning tunnelling mirosope work of Eigler, Crommie, and others [7℄.

Figure 2. Quantum orral in the shape of the Bunimovih stadium. Courtesy

of IBM

r© Researh.

One question whih is still mysterious to mathematiians and physiists alike is if the states

of this system (that is, solutions of the equation above) an onentrate on the highly ustable

losed orbits of the lassial billiard. Quantum unique ergodiity states that there is no suh

onentration � see [8℄,[9℄,[6℄ and referenes given there. In the arithmeti ase, that is for

billiards given by arithmeti surfaes where the motion is given by the geodesi �ow, spetaular

advanes have been reently ahieved by Bourgain, Lindenstrauss [10℄, and Sarnak, while for the

popular quantization of the Arnold at map impressive results were produed by Bonehi, De

Bièvre, Faure, and Nonnenmaher [11℄, and also by Kurlberg and Rudnik [12℄.

Here we desribe an elementary but striking result in the billiard ase. It follows from adapting

the �rst author's earlier work in ontrol theory. Although motivated by the more general aspets

of [13℄ we give a simple self ontained proof.

http://www.bath.ac.uk/~pyscmd/acoustics
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For a state u(x, y) what ounts is its probability density, |u(x, y)|2dxdy � we assume here that

|u|2 is normalized to have integral 1 over Ω. We say that it is bounded from below in a region if

its integral over that region is bounded from below by a positive onstant. With this terminology

we have, roughly speaking,

Theorem. For any normalized state of the Bunimovih billiard table, the probability density in

any neighbourhood of the wings of the table is bounded from below independently of the energy

λ2
.

In partiular, the result says that single bouning ball orbits (that is orbits following an interval

perpendiular to the horizontal straight boundaries) annot produe loalized waves. Our result

allows onentration on the full invariant set of all vertial orbits over R � that is onsistent

with the existing physial literature � both numerial and experimental � see [2℄ and [1℄. In [13℄

we show a stronger result, namely that the neighbourhood of the wings an be replaed by any

neighbourhood of the vertial intervals between the wings and the retangular part. The proof

of that preditable (to experts) improvement is however no longer elementary and is based on

[14℄.

The proof of theorem depends on the following unpublished result of the �rst author (see [13℄

for detailed referenes and bakground material):

Proposition. Let ∆ = ∂2
x + ∂2

y , be the Laplae operator on the retangle R = [0, 1]x × [0, a]y.
Then for any open ω ⊂ R of the form ω = ωx× [0, a]y , there exists C suh that for any solutions

of

(−∆− λ2)u = f + ∂xg on R , u↾∂R= 0 ,

with an arbitrary λ ≥ 0 we have

∫

R

|u(x, y)|2dxdy ≤ C

(
∫

R

(|f(x, y)2|+ |g(x, y)|2)dxdy +

∫

ω

|u(x, y)|2dxdy

)

.

Proof. We deompose u, and f + ∂xg in terms of the basis of L2([0, a]) formed by the Dirihlet

eigenfuntions ek(y) =
√

2/a sin(2kπy/a),

(1) u(x, y) =
∑

k

ek(y)uk(x), f(x, y) + ∂xg(x, y) =
∑

k

ek(y)(fk(x) + ∂xgk(x))

we get for uk, fk the equation

(

∂2

x + z
)

uk = fk + ∂xgk, uk(0) = uk(1) = 0 , z = λ2 − (2kπ/a)
2
.

It is now easy to see that

(2)

∫ 1

0

|uk(x)|
2dx ≤ C

(
∫ 1

0

(|fk(x)|
2 + |gk(x)|

2)dx +

∫

ωx

|uk(x)|
2dx

)

,

where C is independent of λ1. In fat, let us �rst assume that ωx = (0, δ), δ > 0, and z = λ2
1,

with Imλ1 ≤ C. We then hoose χ ∈ C∞
c ([0, 1]) identially zero near 0 and identially one on

[δ/2, 1]. Then
(

∂2

x + λ2

1

)

(χuk) = Fk , Fk = χ(fk + ∂xgk) + 2∂xχ∂xuk + ∂2

xχuk .

We an now use the expliit solution given by

χ(x)uk(x) =
1

λ1

∫ x

0

sin(λ1(x− y))Fk(y)dy .
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All the terms with ∂xgk and ∂xuk an be onverted to gk and uk by integration by parts (with

boundary terms 0 at both ends). Due to the λ−1

1
fator that produes no loss and the estimate

follows. The argument is symmetri under the x 7→ −x hange, so we an plae our ontrol

interval anywhere.

It remains to disuss the ase z ≤ −C < 0. Then the estimate (2) follows from integration by

parts (where now we do not need ωx):

∫ 1

0

(

fk(x)uk(x)− gk(x)∂xuk(x)
)

dx =

∫ 1

0

(fk(x) + ∂xgk(x))uk(x)dx =

∫ 1

0

(−∂2

x − z)uk(x)uk(x)dx =

∫ 1

0

(

|∂xuk(x)|
2 + |z||uk(x)|

2
)

dx .

By the Cauhy-Shwartz inequality, the left hand side is bounded from above by

(
∫ 1

0

(

|fk(x)|
2 + |gk(x)|

2
)

dx

)

1

2
(
∫ 1

0

(

|uk(x)|
2 + |∂xuk(x)|

2
)

dx

)

1

2

.

Sine |z| > C > 0, (2) follows from elementary inequalities (see [13, Lemma 4.1℄ for a general

miroloal argument). We an now sum the estimate in k to obtain the proposition. �

We an now present a more preise version of the theorem. For a yet �ner version we refer

the reader to [13, Theorem 3

′
℄ and [13, Fig.5℄.

Theorem

′
. Consider Ω the Bunimovih stadium assoiated to a retangle R. With the onvention

of Fig.1, let R1 be any retangle with the horizontal sides ontained in the sides of R, stritly
ontained in R, and with R \R1 having two omponents.

There exists a onstant C depending only on Ω and R1 suh that for any solution of the

equation

(−∆− λ2)v = f , u↾∂Ω= 0 , λ ≥ 0 ,

we have

∫

Ω

|v(x, y)|2dxdy ≤ C

(

∫

Ω

|f(x, y)|2dxdy +

∫

Ω\R1

|v(x, y)|2dxdy

)

.

The �wings� of the billiard table in the original statement are given by Ω \R1. We apply the

seond theorem with f = 0 to obtain the �rst one.

Proof. Let us take x, y as the oordinates on the stadium, so that x is the horizontal diretion,

y the vertial diretion, and the internal retangle is [0, 1]x × [0, a]y. Let us then onsider u and

f satisfying (−∆− λ2)u = f , u = 0 on the boundary of the stadium, and χ(x) ∈ C∞
c (0, 1) equal

to 1 on [ε, 1− ε]. Then χ(x)u(x, y) is solution of

(−∆− λ2)χu = χf + [∆, χ]u in R

with Dirihlet boundary onditions on ∂R. Sine [∆, χ]u = 2∂x(χ
′u) − χ′′u we an apply the

proposition to obtain

∫

R

|χ(x)u(x, y)|2dxdy ≤ C

(
∫

R

|χ(x)f(x, y)|2dxdy +

∫

ωε

|u(x, y)|2dxdy

)

where ωε is a neighbourhood of the support of ∂xχ. Sine we an hoose it to be ontained in

R \R1, the theorem follows. �
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We onlude by remarking that the same argument holds in the setting disussed reently in

[15℄ and [6℄, sine in the argument above the retangle an be replaed by a torus.
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