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BOUNCING BALL MODES AND QUANTUM CHAOS

NICOLAS BURQ AND MACIEJ ZWORSKI

ABsTrACT. Quantum ergodicity of classically chaotic systems has been studied extensively
both theoretically and experimentally, in mathematics, and in physics. Despite this long
tradition we are able to present a new rigorous result using only elementary calculus. In the
case of the famous Bunimovich billiard table shown in Fig.1 we prove that the wave functions
have to spread into any neighbourhood of the wings.

The quantum/classical correspondence is a puzzling issue that has been with us since the
advent of quantum mechanics hundred years ago. Many aspects of it go back to the New-
ton/Huyghens debate over the wave vs. corpuscular theories of light.

On the surface of our existence we live in a world governed by laws of classical physics. That
does not mean that we know precisely how fluids flow or solids move. They are described by
highly non-linear rules which are hard to unravel mathematically. Even the simplest classical
motion, that of a ball bouncing elastically from confining walls poses many unanswered questions
— see http://www.dynamical| systems.org/billiard/ for a fun introduction.

If we investigate deeper, or if we simply use any modern technical device, we come in contact
with quantum mechanics. It is governed by a different set of rules which mix wave and matter.
The simplest description of a wave comes from solving the Helmholtz equation:

(—A=N)u=0, A=92+02, (v,y) €Q, uloa=0.

Here we put our wave inside of a two dimensional region ). In classical wave mechanics the
limit A — oo is described using geometrical optics where the waves propagate along straight
lines reflecting in the boundary 0f2. Roughly speaking, we expect something similar in the clas-
sical/quantum correspondence with the Helmholtz equation replaced by its quantum mechanical
version, the Schrédinger equation. For many fascinating illustrations of this we refer to the web
art gallery of Rick Heller: http://www.ericjhellergallery.com.

Many researchers on different aspects of semiclassical analysis have been interested in the the
correspondence of solutions to the equation above and the classical geometry of balls bouncing
from the walls of Q: Biécker, Cvitanovié¢, Eckhardt, Gaspard, Heller, Sridhar, in physics, and
Colin de Verdiére, Melrose, Sjostrand, Zelditch, in mathematics, to mention some (see [2],[3] for
references to the physics literature, and [],[3],[6] for mathematics).

Billiard tables for which the motion is chaotic are a particularly interesting model to study'.
One of the most famous is the Bunimovich billiard table shown in Fig.1. By adding two circular
“wings” to a rectangular table the motion of a reflecting billiard ball becomes chaotic, or more
precisely, hyperbolic, in the sense that changes in initial conditions lead to exponentially large
changes in motion as time goes on.

TOf course one would not want to play billiards on a table like that, and a completely integrable rectangular
one can pose enough of a challenge. While discussing billiards and the classical/quantum correspondence we
cannot resist mentioning that Pyotr Kapitsa (Nobel Prize in Physics ’78) was fond of saying that trying to detect
the quantum nature of physical processes at room temperature was like trying to investigate the physical laws
governing the collision of billiard balls on a table aboard a ship going through rough seas.
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FIGURE 1. An experimental image of bouncing ball modes in a Bunimovich
stadium cavity — see [I] and http://www.bath.ac.uk/~pyscmd/acoustics. With
a certain amount imagination one can see our theorem in this picture.

As a model for studying quantum phenomena in chaotic systems this billiard table has become
popular in experimental physics. A genuinely quantum example is shown in Fig.2 — it comes from
the scanning tunnelling microscope work of Eigler, Crommie, and others [{].

FIGURE 2. Quantum corral in the shape of the Bunimovich stadium. Courtesy
of IBM® Research.

One question which is still mysterious to mathematicians and physicists alike is if the states
of this system (that is, solutions of the equation above) can concentrate on the highly ustable
closed orbits of the classical billiard. Quantum unique ergodicity states that there is no such
concentration — see [8],[9],[6] and references given there. In the arithmetic case, that is for
billiards given by arithmetic surfaces where the motion is given by the geodesic flow, spectacular
advances have been recently achieved by Bourgain, Lindenstrauss [I0], and Sarnak, while for the
popular quantization of the Arnold cat map impressive results were produced by Bonechi, De
Biévre, Faure, and Nonnenmacher [I1]], and also by Kurlberg and Rudnick [TZ].

Here we describe an elementary but striking result in the billiard case. It follows from adapting
the first author’s earlier work in control theory. Although motivated by the more general aspects
of [I3] we give a simple self contained proof.
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For a state u(x,y) what counts is its probability density, |u(z,y)|*drdy — we assume here that
|u|? is normalized to have integral 1 over 2. We say that it is bounded from below in a region if
its integral over that region is bounded from below by a positive constant. With this terminology
we have, roughly speaking,

Theorem. For any normalized state of the Bunimouvich billiard table, the probability density in
any neighbourhood of the wings of the table is bounded from below independently of the energy
A2

In particular, the result says that single bouncing ball orbits (that is orbits following an interval
perpendicular to the horizontal straight boundaries) cannot produce localized waves. Our result
allows concentration on the full invariant set of all vertical orbits over R — that is consistent
with the existing physical literature — both numerical and experimental — see [2] and [I]. In [T3]
we show a stronger result, namely that the neighbourhood of the wings can be replaced by any
neighbourhood of the vertical intervals between the wings and the rectangular part. The proof
of that predictable (to experts) improvement is however no longer elementary and is based on

The proof of theorem depends on the following unpublished result of the first author (see [13]
for detailed references and background material):

Proposition. Let A = 92 + 02, be the Laplace operator on the rectangle R = [0,1], x [0, al,.
Then for any open w C R of the form w = w, % [0, aly , there exists C such that for any solutions
of

(_A - A2)11’ = f + azg on R7 U[(’)R: 05

with an arbitrary A > 0 we have

[ tutey)Pasdy < ¢ ( [ s+ ot ) Praody + [

w

|u(:b,y)|2dxdy> )

Proof. We decompose u, and f + 0,g in terms of the basis of L*([0,a]) formed by the Dirichlet
eigenfunctions e (y) = \/2/asin(2kry/a),

1) ul@y) => e@u@),  f@y)+0g(@,y) =Y ex@)(fr(z) + drgi(x))
k k

we get for ug, fr the equation
(2 +2)uk = fi +0ugr,  wp(0) =up(1) =0, z=x*—(2kn/a)’.

It is now easy to see that

2) / () Pz < ( / (@) + lgn(@) )z + / , |uk<x>|2dx) ,

where C' is independent of \;. In fact, let us first assume that w, = (0,8), 6 > 0, and z = A2,
with ImX\; < C. We then choose x € C°([0,1]) identically zero near 0 and identically one on
[6/2,1]. Then

(02 + A7) (xuk) = Fr, Fro = X(fr + 0ugr) + 202 x00ur + O2xus .

We can now use the explicit solution given by

@) = - / “sin(h (2 — 9)) Fly)dy
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All the terms with 0, ¢g; and 0,u can be converted to g and wuy by integration by parts (with
boundary terms 0 at both ends). Due to the )\fl factor that produces no loss and the estimate
follows. The argument is symmetric under the = — —x change, so we can place our control
interval anywhere.

It remains to discuss the case z < —C < 0. Then the estimate (@) follows from integration by
parts (where now we do not need wy):

1 L 7 1 L
/ (fk(x)uk(:t) — gk(:t)(?wuk(:t» de = / (fr(x) + Opgr(z))u(x)dx =
0 0

/ (=02 — 2Jup(x)un(@)de = / (10 (@)]? + |2l [us () 2) de
0 0

By the Cauchy-Schwartz inequality, the left hand side is bounded from above by

(/01 (Ife (@) + lgr(2)[?) dx); (/01 (lug () |? + [8ur(z)[?) dw)

Since |z| > C > 0, @) follows from elementary inequalities (see [I3, Lemma 4.1] for a general
microlocal argument). We can now sum the estimate in k to obtain the proposition. O

1
2

We can now present a more precise version of the theorem. For a yet finer version we refer
the reader to |13, Theorem 3’| and |13, Fig.5].

Theorem’. Consider § the Bunimovich stadium associated to a rectangle R. With the convention
of Fig.1, let Ry be any rectangle with the horizontal sides contained in the sides of R, strictly
contained in R, and with R\ Ry having two components.

There exists a constant C' depending only on & and Ry such that for any solution of the
equation

(—A—A2)U:f7 u[a(l:07 AZOa

we have

/ |v(x,y>|2da:dysc< / \f (@, y)Pdudy + / |v<x,y>|2dxdy> .
Q Q Q\Rl

The “wings” of the billiard table in the original statement are given by Q\ R;. We apply the
second theorem with f = 0 to obtain the first one.

Proof. Let us take x,y as the coordinates on the stadium, so that x is the horizontal direction,
y the vertical direction, and the internal rectangle is [0, 1], x [0,a],. Let us then consider v and
f satisfying (—A — A?)u = f, u = 0 on the boundary of the stadium, and x(z) € C°(0, 1) equal
to 1 on [g,1 —¢]. Then x(x)u(x,y) is solution of

(A= N)xu=xf+[Axu inR
with Dirichlet boundary conditions on dR. Since [A, x]u = 20,(x'u) — x”u we can apply the
proposition to obtain

/R |x<x>u<x,y>|2dxdys0( /R (@) )Py + |u<x,y>|2da:dy)

We

where w, is a neighbourhood of the support of d;x. Since we can choose it to be contained in
R\ Ry, the theorem follows. O
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We conclude by remarking that the same argument holds in the setting discussed recently in

[15] and [6], since in the argument above the rectangle can be replaced by a torus.
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