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1 Introduction

Suppose the goals of a group of agents, which we will refer to as a society, can
be summarized in a mapping that prescribes the socially desirable outcomes
as a function of certain underlying parameters. A first example consists of
the allocation of goods via on-line auctions. The auctioneer may want to
allocate the goods efficiently (i.e., assign them to those consumers that value
them the most) or perhaps in a way that maximizes her expected revenue.
Who should be allocated the goods and at what price will depend on the
consumers’ valuations for the goods, which are their private information. As
a second example, suppose that a public project, such as a highway, is being
proposed. When the public authority decides whether the project should
be undertaken, she should be comparing its cost to the social surplus being
created as a result of its construction (because of lower commuting time and
an overall improvement in citizens’ welfare), and perhaps fairness consider-
ations should also be taken into account in the stipulation of the monetary
payments that each agent will be asked to contribute (those who live near
the new highway will be asked to pay less, for instance). Again, some essen-
tial aspects in this decision involve information privately held by the agents:
apart from their individual valuations, the true cost of construction may be
uncertain. A third class of examples is that of voting problems. A set of vot-
ers must elect a candidate for a political position. The set of social goals can
be identified here with different political agendas (going from the left to the
right of the political spectrum). Of course, each voter’s individual political
preference is also his private information. Finally, consider the renovation
of a house. This will typically involve a contractual relationship between a
home owner and a contractor. Its goal could be the efficient execution of the
work, in terms of timing and quality of materials utilized. Several aspects
of this relationship (e.g., how many days the plumber was expected to come
but didn’t show up, or how many phone calls the contractor made to find
an appropriate plumber) will be impossible to verify by an outsider, such as
a court of justice.!

Any of these examples can be characterized as an implementation prob-
lem. That is, the question is whether one can design a mechanism or insti-
tution where the agents will interact by taking actions in such a way that
the socially desirable outcome is implemented, no matter what is the agents’
private information. Let us appreciate why the problem is non-trivial. First,

1Some of these and other examples are presented in Subsection 2.1, after the necessary
notation is introduced.



note that the private information will in general affect the social goal, i.e., the
social choice is not a constant function. Second, agents’ private preferences
will have an impact on the way each of them behaves in the mechanism,
i.e., what is best for each of them is also varying with their information.
And third, as soon as they realize that they are interacting in the context
of the mechanism, and prior to taking their actions, they will be making
conjectures about what actions the other agents are likely to take, because
every agent’s action in principle will have an effect on the final outcome.
These considerations make it clear that the methodology to be employed
must involve game theory, which studies the behavior of rational strategic
agents in situations of conflict.?

In formalizing the problem, we shall introduce the notion of an environ-
ment. An environment consists of a set of agents, a set of social alternatives
or outcomes, agents’ preferences over these outcomes, and the information
possessed by each agent regarding the environment itself. To be clear, the
mechanism designer (also called planner, outside enforcer, court of justice,
etc.) is always at an informational disadvantage with respect to the agents,
who, as a collective entity, know more about the true environment than
does the designer. But in addition, one can consider complete informa-
tion environments, in which every agent knows every relevant aspect of the
environment (e.g., each other’s preferences), or incomplete information en-
vironments, in which even agents may be asymmetrically informed. Aside
from being the first step of analysis, complete information environments are
also important in certain applications, typically involving a small number
of agents: think of the contractual relationship described above, in which
the exact events that have happened in the course of the renovations are
commonly known by home owner and contractor.

The theory of implementation or mechanism design is concerned with
the study and formalization of these “Social engineering” problems, and it
provides answers to the important question of whether and how it is possible
to implement different social choice rules. In this article, I will attempt to
survey some of the central findings of implementation theory.? In doing so,
I will confine my attention to static mechanisms, i.e., those in which each
agent takes only one action, and at the time he takes it, he is unaware of the

2See Myerson (1991) and Osborne and Rubinstein (1994) for two excellent comprehen-
sive books on the subject.

3For other surveys, the reader is referred to Maskin (1985), Moore (1992), Palfrey
(1992, 2002), Corchén (1996), Jackson (2001) and Maskin and Sjostrom (2002). These
are all excellent surveys for specialists. My attempt here is to reach out of the usual
audience of implementation theory.



actions taken by the others. The theory combines its normative foundation,
stemming from the relevance of the socially desirable goal, with a realistic
positive component, because in designing the mechanism that will do the
job, the “right” incentives will have to be given to the agents so that the
desired outcome results from self-interested strategic behavior.

It is also important to observe that the theory does not rely on the
existence of a mechanism designer who is someone other than the agents.
Indeed, there my be no such entity, as in the case of the contract relationship.
In cases like this, a contract (mechanism) can be designed by the two signing
parties with an eye to providing the right incentives to both in pursuit of a
commonly agreed goal. The contract will have to be written on the basis of
verifiable information that, in the event of a dispute, an outside court will
be able to settle. The role of the outside party here is not to design the
mechanism, but simply to enforce it.

This survey will concentrate on two different modes of strategic behav-
ior for the agents in the mechanism. First, we shall explore the possibilities
of implementation in mechanisms where agents use dominant strategies. A
strategy is dominant for an agent if it is always his best response, regardless
of the actions taken by others. Whenever dominant strategies can be found
in mechanisms, the corresponding implementation is quite robust because
it is clear what each agent will end up doing, i.e., using his dominant strat-
egy. The most important result of implementation in dominant strategies is
the Gibbard-Satterthwaite theorem, which offers a striking negative result:
essentially, if there are at least three social alternatives and the designer
has very poor information so that she cannot rule out any of the possible
agents’ preferences in her design problem, the only social choice functions
that can be implementable in dominant strategies are dictatorial: for these,
the program of decentralizing decisions as done in a mechanism is defeated,
because they could be imposed by a dictator.

To confront this bad news, the literature has proceeded in two different
ways. First, it turns out that, if the designer is not completely in the dark so
that she can impose certain restrictions on the preference domain, possibility
results arise. In this case, it is crucial to identify the specific rules that can be
implemented, because as was just pointed out, whenever one can implement
in dominant strategies, one should do it. The second way out is based on
considering a different behavioral assumption for the agents.

Indeed, one can argue that requiring dominance is too demanding. Per-
haps one should not expect agents to “tell the truth” regardless of what the
others say, but one could hope for agents to “tell the truth” as their best re-
sponse to the others also “telling the truth.” Formally, what this entails is to



replace the game theoretic solution concept from dominance to equilibrium.
A Nash equilibrium is a profile of actions, one for each agent, that constitute
best responses to one another.* Under complete information and using Nash
equilibrium, the key necessary condition for implementability of a social
choice rule is called monotonicity (defined in Subsection 2.2), and it turns
out that, in many relevant classes of environments, monotonicity is com-
patible with a range of interesting social rules. Some other times, though,
monotonicity is still a restrictive condition and then Nash implementability
is not possible. For cases like these, it is important to take advantage of
the following valuable insight: there is a sense in which monotonicity is an
extremely weak condition, if one allows the designer to use random mech-
anisms and the notion of implementability is slightly relaxed from exact
to approximate implementation. Then, it has been shown that essentially
every social rule, as long as it satisfies a basic ordinality condition, is ap-
proximately implementable in Nash equilibrium.

With incomplete information, the equilibrium notion is Bayesian Nash
equilibrium. The key necessary condition for implementability is called in-
centive compatibility, which says that a social rule must be such that truthful
behavior in it is an equilibrium phenomenon. It is easy to see why this be-
comes a necessary condition: if even when all the others behave truthfully,
there is at least one agent who has an incentive to misrepresent his informa-
tion, the final outcome may be compromised and the desired social rule will
not be realized. Incentive compatibility is an important constraint, and in
fact, it has become the central condition in the economic theory of informa-
tion. In addition, a second condition, termed Bayesian monotonicity, is also
necessary. This is an extension of the monotonicity condition for incomplete
information environments, and it is sometimes extremely restrictive. Fortu-
nately, the approximate approach to implementation is almost as successful
as it is with complete information: it turns out that incentive compatibility
alone almost always characterizes the set of rules that are approximatley
implementable in Bayesian Nash equilibrium.

One should pay tribute to history and, at least, mention briefly the
classic early contributions. As antecedents, one must begin with the early

4The equilibrium paradigm can be understood, at the very least, as the benchmark
compatible with the agents’ common knowledge of rationality. It can also be seen as
the limit of certain dynamic adjustment processes (see Young (1998) for a survey of the
learning and evolutionary literatures as possible foundations for equilibrium). Also, in
the mechanisms of implementation theory, there is an appealing “focal point” element of
their equilibria: namely, “telling the truth,” which makes them easy to be “learnable”
(see Chen (forthcoming) for supporting experimental evidence.)



thinkers in the fields of moral philosophy and political economy, fascinated
as they were with the problem of how to reconcile the “private vices” —selfish
behavior— and the “public benefits” —socially desirable goals— (e.g., Mandev-
ille (1732), Smith (1776)). Another noteworthy set of precursors came much
later. In the first half of the 20th century, socialist and non-socialist writers
participated in a debate concerning the advantages of a market system —in
terms of decentralized information— versus socialist economies —where all
decisions are centrally taken— (Lange (1936, 1937), Hayek (1945)). All these
effirts culminated in the fundamental theorems of welfare economics, which
relate the performance of decentralized markets to the efficiency of the sys-
tem (see, for example, Mas-Colell, Whinston and Green (1995, Chapter 16)).
In a path-breaking work in mathematical social choice, Arrow (1951) shed
light on the problem of aggregating individual preferences into social rank-
ings, and obtained his famous impossibility theorem: there does not exist
any non-dictatorial social ranking that is compatible with basic reasonable
properties of individual preferences. Arrow’s result is a first instance of the
difficulties encountered later, for example in the theory of implementation in
dominant strategies, although his work did not take agents’ incentives into
account. Within standard economic theory, the difficulties created to mar-
ket performance by the presence of public goods were advanced in Samuel-
son (1954) and by asymmetric information in Akerloff (1970) and Mirrlees
(1971). All these contributions prepared the ground for the seminal work
of Hurwicz (1960, 1972). Hurwicz’s work can be justly called the beginning
of the theory of implementation, whose essential components we shall now
describe.

2 Preliminaries

We shall consider implementation in the context of a general social choice
problem. For simplicity in the presentation, we shall be concerned with
finite societies — finite sets of agents— and finite sets of social alternatives.’

Let N = {1,...,n} be a finite set of agents with n > 2. Let A =
{a1,as9,...,a;} be a finite set of social alternatives or outcomes. This set of
outcomes is fixed, taken as a primitive, independent of the information held
by the agents and not available to the designer.%

®Most of the theory has been developed without the assumption of finite alternatives,
but for finite sets of agents; see Mas-Colell and Vives (1993) for results involving a con-
tinuum of agents.

STf the set of alternatives also depends on the agents’ private information, the problem



The private information held by the agents is summarized in the concept
of a state. The true state will not be verifiable by outsiders (the designeror
the court); rather, the agents will have to be given the necessary incentives
to reveal it truthfully. We denote by ¢ a typical state and by 7 the domain of
allowable states. At state ¢, each agent ¢« € N is assumed to have a complete
and transitive preference relation »! over the set A. We denote by >! its
strict preference part, and by ~! its indifference relation. We denote by ==
(=4, =t ..., =t) the profile of preferences in state t. We shall sometimes
write (=!, ="' .) for the profile of preferences in state ¢, where = .= (=!
,...,E;f_l, i’?ﬂ, ..., =L); the same notational convention will be followed
for any profile of objects. Agent i’s preferences in state ¢ are represented
by a real function, his (Bernoulli) utility function u;(-,t) : A x T — R, i.e.,
u;(a,t) > u;(b,t) if and only if a =1 5.7

Fix a state t. We shall refer to the collection E = (N, A, (=!);cn) as
an environment. Let £ be the class of allowable environments (since N and
A will remain fixed throughout, this class corresponds to all the allowable
preference profiles).

At times we shall consider an extension of the model, where lotter-
ies over alternatives are also possible. A lottery is a probability distri-
bution over alternatives. Let /A denote the set of probability distribu-
tions over A. Preferences over lotteries on A are assumed to take the
von Neumann-Morgenstern expected utility form (von Neumann and Mor-
genstern (1944)). That is, abusing notation slightly, given a lottery f in state
t, which prescribes alternative a with probability f(a,t), we write u;(f,t)
to refer to agent i’s expected utility evaluation of lottery f in state ¢, i.e.,
wif,8) = Ypen fla,huila ).

A social choice rule (SCR) F is a mapping F : £ +— 24\ {0}.% A social
choice function (SCF) is a single-valued SCR, and it is denoted by f. When
lotteries are permitted, random SCRs and SCF's are defined similarly, where
A replaces A in the definition. Again, since N and A are fixed, we shall
sometimes abuse notation slightly and write F(t) or F/(=!) instead of F(FE).

Social choice rules (SCRs) are the objects that the designer would like

is more complex because the designer does not know what is really feasible. The classic
contribution here is Hurwicz, Maskin and Postlewaite (1995). See also Tian (1989, 1993,
1994), Serrano (1997), Hong (1998), Dagan, Serrano and Volij (1999) for papers that
tackle this problem.

"The symbol R denotes the set of real numbers, R’ the I-dimensional Euclidean space,
R its non-negative orthant, and R}, the interior of this orthant. Also, Z denotes the set
of integer numbers, and Z4 the set of non-negative integers.

8Given two sets Sp and Sa, 51\ S2 denotes the set of elements that belong to S1 and
do not belong to Sa. Also, 2% denotes the power set of S, i.e., the set of all its subsets.



to implement: in each state, she would like to realize some set of outcomes,
but unfortunately, she does not know the true state. The implementation
problem is precisely when and how this information held by the agents can
be elicited so that the desired SCR is successfully implemented. To do this
job, the key notion is that of a mechanism.

A mechanism T' = ((M;);cn, g) describes a message or strategy set M; for
agent ¢ and an outcome function g : [[,c 5 M; — A. A random mechanism
has the range of the outcome function being A. We shall use M_; to express
H#i M;, and thus, a strategy profile is m = (m;, m_;), where m; € M; and
m_; € M_;.

Mechanisms are a representation of the social institution through which
the agents interact with the designer and with one another: each agent sends
a message to the designer, who chooses an outcome as a function of these
strategy choices. We shall only consider static mechanisms in this survey,
i.e., those in which each agent sends only one message, and when he does
that, he does not know what messages the other agents will be sending.”
Of course, he can conjecture what those messages might be, and that is the
role for the different game theoretic solution concepts that will be employed.
Note that a mechanism will in general be played differently by an agent in
different states because his preferences over outcomes may change across
them. Thus, it makes sense to think of (I', E) as the game induced by
the mechanism I" in environment E. We shall confine our attention in this
survey to pure strategies: thus, messages are non-random actions.

Let S be a game theoretic solution concept. Given the game (T, E),
we denote by S(I', E') the set of strategy profiles that are recommended by
S in the game (I', E). The corresponding set of outcomes will be denoted
9(S(T, B)).

We shall say that the SCR F' is S-implementable if there exists a mecha-
nism I' = ((M;)ien, g) such that for every E € &, one has that g(S(T', E)) =

The solution concept S represents a specific benchmark of rationality
that agents obey in a game. Thus, fix S as a theory of behavior for the
agents. Then, two requirements are embodied in the definition of imple-
mentability: first, the rational play in the mechanism on the part of the
agents produces an outcome prescribed by the desired rule; and second, for
each outcome prescribed by the rule, there is a way to implement it when

9For the very positive results achieved with dynamic mechanisms under complete in-
formation, the reader is referred to Abreu and Sen (1990) and Moore and Repullo (1988).
See Baliga (1999), Bergin and Sen (1998) and Brusco (1995) for dynamic mechanisms
under incomplete information.



agents behave according to the theory of behavior S.'°

We shall be concerned in the next sections with the different results
offered by the theory, as a function of the solution concept employed, and
also as a function of the information held by the agents. First, a very
appealing solution concept is the idea of dominant strategies. One should
aim to construct mechanisms where agents have a dominant strategy, i.e.,
regardless of what other agents do in the mechanism, each of them always
wants to choose his dominant message, and this message does not entail
any misrepresentation of his information. Dominance is of course a very
strong requirement to describe agents’ rational behavior. A less demanding
form of rationality in the mechanism is captured by the idea of a Nash
equilibrium (Nash (1950a)), in which each agent’s message is a best response
to the equilibrium messages sent by the others: actions are optimal given
expectations, and expectations are justified given the equilibrium actions.
Second, one can consider complete information environments, in which the
state is common knowledge among the n agents, or incomplete information
environments, where this is not the case.!’ The two considerations are
related: there is a sense, as we will see, in which dominance is compatible
with both types of information.

We shall say that a solution concept is invariant if the outcomes it
prescribes are independent of equivalent utility representations of the same
preferences. Most well-known game theoretic solution concepts (and cer-
tainly those based on best responses, such as dominance and equilibrium)
are invariant.

2.1 Examples

The following examples give an idea of the range of applications covered by
the theory. We present for now the fundamentals of each example, and we
shall come back to each of them in the next sections, after going over the
corresponding relevant results.

Example 1 Voting. Let E be an environment, where N is a set of electors
(for simplicity, take n to be an odd integer). Let A = {a,b} be the set of
candidates. Suppose all preferences are strict, i.e., either a =t b or b =! a

10This notion is sometimes referred to as full implementation, as opposed to partial or
weak implementation, which only asks for the first requirement.

1 An event is said to be common knowledge if everyone knows it, everyone knows that
everyone knows it, everyone knows that everyone knows that everyone knows it, and so
on (see Aumann (1976)).



for alli € N and for allt € T. A state t is a specification of the political
preferences of each agent in society (e.g., 80% of electors truly prefer a to b,
and 20% b to a). Denote by N the set of agents that prefer a to b in state
t, and let N} = N\ N{. One standard SCR is majority voting, in which the
alternative preferred by the majority is implemented.

Example 2 A public decision problem. Suppose a community of n agents is
interested in undertaking a public project (e.g., the construction of a bridge
or a highway, or allocating an amount of public funds to defence). Let D =
{di,...,dp} denote the k different possible public decisions. Agents have
preferences over public decisions and money of the quasilinear form: agent
i’s wtility function is u;(d,t;) + x;, where we shall interpret u; as consumer
i’s valuation of public decision d € D when t; is his private information (his
true valuation for each decision d is indexed by the variable t;); the amount
x; 18 a monetary transfer —tax or subsidy— to agent i. A state t is a profile
of the t;’s, indicating the true preferences of the community for each public
decision. We take the set A of social alternatives to be

A={(dx1,...,z,) :d€D, Vi,z; eR,Y x; <0},
iEN

Thus, although individual subsidies are possible, the project should be funded
with the taxes collected for this purpose.

Define an SCF f associated with the decision d*(ti,...,t,) for an arbi-
trary state t = (t1,...,t,) as that decision that mazimizes ), n ui(d,t;),
that is, d*(t1,...,tn) is the efficient decision if the true state is t because it
generates the highest sum of valuations for the public project. The question
is whether we can implement this efficient decision.

Example 3 An exchange economy of private goods. Consider the following
environment E, where N is a set of consumers. Consumer i’s consump-
tion set is X; = Rﬂr, and each consumer i initially holds an endowment
w; € X;.'2 That is, each agent holds and consumes non-negative amounts
of I commodities.® Consumer i’s wealth is the market value of his initial

2Tn the economic theory of markets, it is useful to separate the consumption and
production sides of an economy. In an exchange economy, we abstract from production
considerations: the existing goods have already been produced and are in the hands of the
consumers. Therefore, the only economic issues concern the reallocation of these goods
among consumers through exchange.

13T follow most of the literature on exchange economies, we depart in this example
from our assumption of a finite set of alternatives. Thus, we allow infinitely divisible
commodities.



endowment, i.e., p-w;, where p is a vector of market prices. Let the set
of alternatives A be the set of allocations or redistributions of the aggregate
endowment w =,y w;. That is,

A={(z1,...,2p) : Vi,z; € X}, le <w}.

iEN
A state t is a specification of the true preferences of each consumer. Each
agent 1 is assumed to have a complete and transitive preference relation
over the consumption bundles in X;, i.e., his preferences depend only on
his private consumption of goods, and not on that of the other agents: let
z,y € A; then, x =! y if and only if (x;,2—;) =t (yi,2";) for any z_;, 2" ;,
for all i € N and for all t € T. In addition, we shall make the standard
assumptions that the preference relation =} satisfies:

e monotonicity: z; = y; whenever z;, >y, for every k=1,...,1,
o convezity: if T, y; =z, VA € [0,1], Az + (1 — Ny; =t 2, and

e continuity: for every pair of sequences {x*} and {y"}, limy, oo {x"} =

z¥ and limy, oo {y"} = y¥, if for all m 7 =t 4™, then z} =! yF.

The following rule occupies a central position in economics. The Wal-
rasian or competitive SCR assigns to each exchange economy the set of its
competitive market equilibrium allocations. That is,

F(E)={zxcA:IpcR\{0}:y~ta; implies p-y>p-wV¥iec N}

An assignment of goods to consumers is a Walrasian or competitive equilib-
rium allocation if there exist prices such that: (1) each consumer receives
in equilibrium a bundle that is top ranked for him among the bundles he
can afford, and (2) the aggregate consumption prescribed by the equilibrium
allocation is feasible.

Example 4 King Solomon’s dilemma.'* Two women, Ann and Beth, are
claiming to be the mother of a baby. Thus, there are two possible states: tg,
in which Ann is the true mother, and tg, where the mother is Beth. There
are four possible outcomes: A = {a,b,c,d}, where a is to allocate the baby
to Ann, b to allocate it to Beth, ¢ is to cut the baby in half, and d is the
ominous death-all-around outcome. Ann and Beth’s preferences in the two
states are as follows:

a>3b>3¢c>%d; b>c-Baxgd

!4 This example is taken from Glazer and Ma (1989).

10



a>ic>ﬁb>ﬁd; b>ﬁBa>ﬁBc>ﬁBd.

Consider the SCF that allocates the baby to the true mother, i.e., f(ty) =
a and f(tg) =b. This is the SCF that King Solomon had in mind, but he
had a very hard time implementing it. In fact, he cheated.'> He proposed
a mechanism and then he changed it while it was being played. Namely, he
asked the two mothers to report the state, and the outcome he was going to
use prescribed a if the unanimous announcement was to, b after unanimous
report of tg, and ¢ otherwise. However, when the reports turned out to be
non-unanimous, and Ann, the true mother, began to cry in fear of outcome
¢ and changed her announcement to tg, he implemented a following the
unanimous report of tg. Had Beth known this, she would have probably also
started to cry, with the consequent big mess for Solomon.

2.2 Some Properties of SCRs

We are now interested in describing some important basic properties of
SCRs. Ultimately, our aim is the description of those SCRs that are or
are not implementable. To begin with, since agents’ preferences over alter-
natives are the important primitive, the theory should be independent of
equivalent utility representations of the same preferences. Thus, if one does
not allow randomizations, the results will be independent of any monoton-
ically increasing transformation of utility scales. If risk preferences must
play a role because of the presence of randomness through lotteries, due to
the expected utility hypothesis, the statements will be preserved under any
positive affine transformation of utility functions. These considerations lead
to the first basic property of SCRs.

In this and the next two sections, we shall always respect the following
notational convention: let environment E correspond to state ¢ and prefer-
ence profile =, while E’ corresponds to ¢’ and **.

An SCR F is ordinal if, whenever F(E) # F(E'), there must exist an
agent i € N and two alternatives a,b € A such that a =} b and b >—§, a.

That is, for the social choice to change, at least one preference reversal
among alternatives must happen. This excludes cardinal rules, in which the
social choice may vary with agents’ preference intensity, even if no change
in the relative ranking of alternatives takes place for any of them.!6

15 Although the Bible reports this story as proof of his divine wisdom, we ought to
question it. Those of us who have had some student cheating on an exam may have the
same reaction towards this form of “divine wisdom.”

5One famous cardinal rule is the utilitarian SCR, where the sum of agents’ utilities is
maximized.
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Proposition 1 If the SCR F is implementable in any invariant solution
concept, it is ordinal.

Proof: Suppose that F(E) # F(E'), but that no change in the prefer-
ence rankings exists between states t and ¢ corresponding to the two en-
vironments. Therefore, S(I', F) = S(I', E’), implying that g(S(T', E)) =
g(S(T', E")), which contradicts that F' is implementable. ]

Apart from ordinality, the following properties will feature prominently
in the results in the sequel.

An SCR F is Pareto-efficient or simply efficient if for every E and every
a € F(FE), there does not exist b € A such that b = a for every i € N.

Efficiency is a traditional normative desideratum for economics. If an
SCR is not efficient, it chooses some alternative that every agent in society
ranks below some other fixed alternative. This provides a strong argument
against the former alternative as being part of the social choice.

An SCR F is unanimous if, whenever a =! b for all b € A for all i € N,
a€F(E).

Unanimity simply says that if an alternative is top ranked by all indi-
viduals, it should be part of the social choice.

An SCR F satisfies no-veto if, whenever a =t b for all b € A and for all
individuals ¢ but perhaps one j, then a € F(FE).

This is slightly weaker than unanimity. No-veto says that an alternative
will be in the social choice if (n — 1) agents rank it at the top of their
orderings.

An SCR F' is Maskin monotonic or simply monotonic if for every a €
F(E), whenever a ! b implies that a =! b, one has that a € F(E").

The logic of this property is the following. Suppose a is in the social
choice when preferences are =‘. Monotonicity says that, if preferences have
changed to =! in such a way so that no alternative that was indifferent or
worse than a has become now better than a, ¢ must remain in the social
choice. We shall refer to such a change in preferences as a monotonic change
in preferences around a. In other words, for a to disappear from the social
choice in environment E’, it is necessary that at least one individual 7 has a
preference reversal around a in going from E to E’ (for him, there was an
alternative b such that a =! b, but b >f/ a).

An SCR F is dictatorial if there exists an agent ¢ € N such that, for
every E and every a € F(E), a =! b for every b € A.

This means that the SCR follows the preferences of a dictator. Most
people (presumably, everyone but the dictator) would probably object to
this property.
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3 Implementation in Dominant Strategies

The first way in which one may want to capture agents’ rational behavior
in a mechanism is the idea of dominance. We begin by defining the notion
of a dominant strategy.

Let I' = ((M;)ien, g) be a mechanism. Message 1; is a dominant strategy
for agent i at state ¢ whenever

g(mi,m_;) i;f g(mi,m_;) Vm, e M;,Ym_; € M_;.

That is, regardless of what the other agents may choose, agent i can never
go wrong by choosing m; if it is dominant. When dominant strategies exist
in a game, the prediction of behavior is quite robust; in particular, agent
1’s behavior is independent of his beliefs about how the others will play the
mechanism.!” It is in this sense, if agent i knows his preferences at state
t, that the information he has about the other agents’ preferences and his
beliefs about how they will play is irrelevant: that is, if he has a dominant
strategy, he should choose it, regardless of the other agents’ preferences.

Given a mechanism I' played in state ¢, we denote by D;(I',t) the set of
dominant strategies that agent i has in state t. Let D(I',t) = [[;cy Di(I', 1)
be the set of dominant strategy profiles, and g(D(T',t)) the set of corre-
sponding outcomes.

We shall say that the SCR F' is implementable in dominant strategies if
there exists a mechanism I' = ((M;);cn, g) such that, at every state t € T,
g(D(D,1)) = F(2).

Thus, when dominant strategy implementability is possible, it will pro-
vide a very robust form of implementation of an SCR. For the rest of the
section, we shall concentrate on an important class of specific domains.

In an independent domain of preferences: the set of states calT takes the
form T = [[;c ny 7i, where 7; is the set of types for agent i. Each type t; € T;
is here identified with a preference relation tﬁi over the set A. Thus, with
independent domains, the preference profile at state t = (¢1,t2,...,t,) is
= (i?, t?, ..., =), Note how the assumption of independent domains
is simply the requirement that the set of states has the structure of a Carte-
sian product. As such, at each state, each agent knows his preferences; we
will study more general cases in the section on incomplete information.

A direct revelation mechanism, or simply a direct mechanism, for SCF
f is a mechanism in which the message sets are M; = 7; for every ¢ € N
and the outcome function g = f.

7The only small wrinkle to take care of is the possible presence of ties, i.e., agent ¢ may
have more than one dominant strategy, and in this case he is indifferent between them.
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That is, in a direct mechanism, each agent is simply asked to report his
type, anhd the resulting outcome is the one prescribed by f following the
reports.

An SCF f is truthfully implementable in dominant strategies (or domi-
nant strategy incentive compatible) if for every agent i € N, reporting the
truth is a dominant strategy in the direct mechanism for f. An SCR F
is truthfully implementable in dominant strategies if every SCF f, single-
valued selection of F, is truthfully implementable in dominant strategies.

One important result in the theory of implementation is the revelation
principle, and we will present it in Section 5. For now, we present a result
for implementation in dominant strategies that can be viewed as a stronger
version of the revelation principle. This result may explain why the literature
on implementation in dominant strategies has for the most part concentrated
on direct mechanisms and SCFs (instead of more general mechanisms, and
multi-valued SCRs):

Proposition 2 Assume independent domains and suppose all preference
relations are strict. An SCR F is implementable in dominant strategies if
and only if it is truthfully implementable in dominant strategies. Moreover,
F must be single-valued.

Proof: Suppose that F' is truthfully implementable in dominant strategies,
and choose a single-valued selection thereof, which we call g* with associated
direct mechanism I'*. Suppose there exist profiles of dominant strategies ¢
and t’ in I'* when the true state is t. Then, there must be at least one agent
i for whom t; # t/. Since both ¢; and ¢, are dominant for agent i, it follows
that for every t_;, g*(ti,t—;) = g*(t},£_;). Since this holds for every agent i
for whom t; # ¢, it follows that ¢*(t) = ¢*(¢'). Thus, if there are multiple
dominant strategy profiles, their outcomes must be the same. This last
argument also demonstrates that F’ must be single-valued, and therefore, it
is implementable in dominant strategies.

Suppose now that F' is implementable in dominant strategies. That is,
there exists a mechanism I' such that for every state t, each agent i has a
dominant strategy m;(t) satisfying that g(m(t)) € F(t). By independent
domains, one can write that m;(t) = m;(t;) because agent i’s preferences do
not depend on t_;.

Consider the direct mechanism I'*, where ¢g* is a single-valued selection
of F', g*(t1,...,tn) = g(mi(t1),...,mu(ty)). Since for each i € N, m;(t;) is
dominant in I', one has that:

g(mi(ti),m_i) tfl g(mi,m_i) sz c Mi,Vm_i S M—i,
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where, by strict preferences, the indifference happens only when g(m;(t;),m_;) =
g(mi,m_;). By a similar argument as above, if an agent has more than one
dominant strategy in I', they must prescribe the same outcomes. Since this

is true for each such agent, it follows that F' must be single-valued.

In addition, the above preference comparison holds for the m;s and the
m_;s that are dominant for some ¢; and t_;. It follows that declaring the
truth is also dominant in the direct mechanism I'*. This shows that F is
truthfully implementable in dominant strategies.

|

Laffont and Maskin (1982) present other conditions under which this re-
sult holds. However, when indifferences are allowed, even under independent
domains, truthful implementation of an SCF in dominant strategies does not
imply its full implementation, nor that it is a singleton. Examples are easy
to construct. Outside of independent domains, truthful implementability in
dominant strategies is also a necessary condition for full implementability.
This last fact justifies that we now focus on truthful implementability in
dominant strategies of SCFs. A necessary condition for this is strategy-
proofness.

An SCF f is strategy-proof if for every ¢ € N, for every t_; € 7_; and
for every t;,t; € T;, one has that

f(tit—q) =5 f(ti,t—s).

Strategy-proofness means that, no matter what the value of t_; is —
information held by the others about their preferences—, no agent would ben-
efit from misrepresenting his own information. It is easy to see how strategy-
proofness is necessary for truthful implementation in dominant strategies.
With independent domains, it is also sufficient.!®

If the allowable domain is rich enough, most rules are not strategy-proof.
This is the content of the next pages, which will arrive at an important
conclusion, that provided by the Gibbard-Satterthwaite theorem (proved
independently by Gibbard (1973) and Satterthwaite (1975)).

We shall present a proof of the Gibbard-Satterthwaite theorem that
combines elements of Reny (2001) and Mas-Colell, Whinston and Green
(1995).1 We begin by showing a result that is stronger than the Gibbard-

8Beyond independent domains, the difficulty is the insufficiency of the direct revelation
mechanism with strategy sets T;.

9Reny’s proof follows closely the elegant proofs of Arrow’s impossibility theorem of
Geanakoplos (1996). See also alternative proofs due to Barbera (1983) and Benoit (1999).
The proof that we present will be consistent with our maintained assumption of a finite
set of alternatives. See Barberd and Peleg (1990) for the more general case.
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Satterthwaite theorem. By relying on monotonicity, it will connect nicely
with results in the next sections.

Consider the unrestricted domain of strict preference profiles; call it 7%,
ie.,

T5 ={(t1,...,ty) €calT : Vi € Nya~'b if and only if a = b}.

Thus, we begin by exploring preference profiles in which there are no in-
differences. This will be the case for our next two results. Later we shall
consider also preference profiles with indifferences.

Proposition 3 Suppose the allowable domain is T°. If |A| > 3 and f :
T% — A is a unanimous and monotonic SCF, it is dictatorial.

Proof:
Step 1. Consider any two alternatives a,b € A and a preference profile such
that a is top ranked for every agent and b is bottom ranked for every agent.
By unanimity, the social choice is a. Consider agent 1’s ranking and, in it,
raise b one position at a time. By monotonicity, as long as b does not rise
over a the social choice remains a. When b jumps over a in 1’s ranking,
the only possible social choices are either a or b, also by monotonicity. If
it remains being a, begin the same process with agent 2, and so on. The
point is that there must exist one agent for whom when a falls below b in his
ranking, the social choice switches to b: by unanimity, otherwise we would
end up with a profile where b is top ranked for all agents and is not the
social choice, a contradiction. Call this individual j.

To be clear, refer to the profile right before preference between a and b
change for agent j as profile t!, i.e.,

b={a=i...

b >}1_1 a1>]1-_1
a >]1- b>; -
a>jyq--->mj b
a=L...=Lb
yielding that f(~!) = a.
Call the profile that results from switching a and b in agent j’s preferences
profile ¢2:

16



yielding that f(>~2) = b.

Step 2: Next consider the profiles t¥ and ¢?" as the following variants of
profiles t' and t2, respectively: for agents i < j, send a to the bottom of
their rankings, and for agents ¢ > j send a to the second place from the

b=%axi...

b2 a3 ...
2 2

b-ja>-j...

2 2
>y - b

a=2...=2b

bottom of their rankings. That is,

and

We claim that f(~!") = a and f(=?) = b. First, recall that f(~2) = b.
In going from =2 to =2, no change in preferences around b has taken place.
Therefore, since f is monotonic, f (>2/) = b. Next, note that in going from
~2" to =1, the only change takes place in the ranking of alternatives a and b
for agent j. Monotonicity therefore implies that f (>1’) must be either a or
b. However, it cannot be b: monotonicity then would imply that f(>=') = b,
which is a contradiction. Therefore, as claimed, f(>~'") = a.

b1 -V
1 1
b>j1,_1 ...1,>j_1a

a>jll,)>j ot
cee i1 @ b
1 1
=pa>=y b

n

b2 ... x%a

2/ 2/
b>j/_1...,>j_1a
b= a-% ...

2 2
ce i1 @ =i b

=2 a2

n
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Step 3. Let ¢ be a third alternative, distinct from a and b. Consider the
following preference profile (%) obtained from t!" in a way that results in a
not changing rankings with any alternative for any individual:

=Fe=tb=ta

3 3 3
cemip e b g a
ax3ex3b>3 .

3 3 3
...>j+1c>j+1a>j+1b

oS3 a 3.

Since f(>='") = a, monotonicity implies that f(>3) = a.
Step 4: Next, from profile t3, just switch preferences between a and b for
agents i > j to get profile t*. That is,

o-textb-ta

4 4 4
Zj_lf>j_41b>j_1a
a>j;:>jsz... \
cemip Cri b a

coo=te=th -1 a.

Since in going from =3 to =%, preferences involving alternatives other
than a and b are unaffected, monotonicity implies that f(>=*) is either a or b.
However, it cannot be b: if it were and we had a change in preferences so that
¢ becomes top-ranked for every individual, monotonicity would imply that
the social choice then would continue to be b, causing an eventual violation
of unanimity. Therefore, f(~%) = a.

Step 5: Note that any profile where a is top ranked for agent j can be
generated from profile t* in a monotonic way with respect to a. Therefore,
monotonicity implies that for any such profile, the social choice remains a.

Thus, for alternative a, agent j is a dictator over states that involve only
strict preferences. Since a was chosen arbitrarily, this establishes that for
each alternative, one can find a dictator over strict preference profiles. But
one cannot have more than one dictator: suppose agent j is the dictator
for alternative a and agent j' for alternative a’. Consider a strict preference
profile = in which alternative a is top ranked for agent j and @’ is top ranked
for agent j'. Because agent j is a dictator for a, one has that f(>) = a,
and since j' is a dictator for a/, one has that f(>) = d/, a contradiction.
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Therefore, there is only one dictator for every alternative over all preference
profiles in 7.
|
Next, we relate the assumptions of the previous theorem to strategy-
proofness (a version of this result appears in Dasgupta, Hammond and
Maskin (1979)).

Proposition 4 If f : T — A is strategy-proof and onto, then it is unani-
mous and monotonic.

Proof: Let > be a profile such that f(>) = a and consider a monotonic
change in preferences around a to get to profile =’. That is, for every agent 1,
a >; b implies that a >} b. We claim that f(>') = a, so that f is monotonic.

To see this, we first show that f(>],>_1) = a. By strategy-proofness,
f=) =1 f(-4,=21) if f(-) # f(>],>-1). Since the preference change
for agent 1 is monotonic around f(>), one gets that f(>) =} f(>],>_1),
which contradicts strategy-proofness at the profile ='. Hence, as claimed,
f(>'/17 -1) = a.

Since we can get from profile = to profile =" by changing agents’ prefer-
ences one at a time in the same way, it follows that f(>') = a, as we wanted
to show. Thus, f is monotonic.

To show unanimity, choose a € A. Since f is onto, there exists > such
that f(>) = a. By monotonicity, f(>') = a if >’ is obtained from > simply
by pushing a to the top of every agent’s ranking. Monotonicity again implies
that for any preference profile =" where a is top-ranked for each individual,
f(=") = a, which shows unanimity.

|

Our next step is to also consider profiles with indifferences, i.e., states
outside of the set 7°. Indeed, these two previous propositions are important
in establishing the Gibbard-Satterthwaite theorem:

Proposition 5 If |A| > 3, the domain of preferences includes all possible
strict rankings, and f is strategy-proof and onto, f is dictatorial.

Proof: The previous two propositions already imply the result over the
domain 7°. Thus, consider a preference profile = in which indifferences
occur.

We argue by contradiction, i.e., suppose f is not dictatorial. Call j the
agent that is a dictator for f over all profiles in 7°, assume that f(>) = a
and there exists b € A such that b >—§-j a. Let b be top-ranked for agent j

t .
under preferences > jﬂ .
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Consider now another preference profile =’ such that:
e (i) =/ is a strict preference relation for all i € N;

e (ii) for all i # j, a = b >/ ¢ for every ¢ # a,b; and
e (iii) b =} a =’ ¢ for every c # a,b.

Let k # j and consider the profile (=},>_x). By strategy-proofness
applied at this profile, we must have that f(>),>_x) = a = f(>). With
the same logic, and moving agents other than j one by one from preference
=i to =%, we conclude that f(=;, i’_j) =a=f(»).

Next, note that strategy-proofness at profile =’ implies that f(=’) is
either a or b. However, it cannot be b, by strategy-proofness applied to
agent j at profile (=;, =" ;). Thus, f(=') = a, which contradicts that j is a
dictator over strict profiles. We conclude that f is dictatorial.

|

The unrestricted domain of strict preferences assumption is strong be-
cause every possible strict ordering of alternatives must be allowed. On the
other hand, there are some interesting subdomains to which the impossibility
result extends. Remarkably, though, there are also important subdomains
in which possibility results arise, such as that of quasilinear preferences (Ex-
ample 2).20 Likewise, the assumption of having at least three alternatives
also matters, as we are about to see in Example 5. Finally, versions of the
impossibility result have been obtained for SCRs that are not single-valued
and that use lotteries over alternatives.?!

Example 5 Recall Example 1. Consider the majoritarian SCF f: f(E) = a
whenever |NE| > |N{|, and f(E) = b otherwise. Suppose we use a direct
revelation mechanism, in which each agent is simply asked to report his
preferences (say, by reporting his top ranked alternative), and the outcome
function implements the mojoritarian rule on the basis of the collected re-
ports. In the above notation, let M; = {a,b} for everyi € N be the message
set, and g(m) = f(m). It is easy to see that reporting the truth is a dom-
inant strategy in this mechanism, i.e., regardless of what the other agents
report, no agent has an incentive to lie about his preferences. To see this,
note that agent i’s report changes the outcome only when it is pivotal, i.e.,

200ther restrictions, such as separability (Barbers, Sonnenschein and Zhou (1991)) or
single-peakedness of preferences (Sprumont (1991)) also yield very interesting positive
results.

21See Barbers (1977), Barberd, Bogomolnia and van der Stel (1998), Barberd, Dutta
and Sen (2001), Benoit (2002), Ching and Zhou (2002), and Duggan and Schwarz (2000).
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when there is a tie between the two alternatives in the reports of the other
agents, and then he prefers to tell the truth. Thus, f is implementable in
dominant strategies, but it is not dictatorial.

Example 6 Recall the efficient decision of FExample 2. Consider a direct
revelation mechanism, in which every agent is asked his type, agent i then
announces m; and then d*(m) is undertaken and certain transfers x;(m)
are imposed.

The Vickrey-Clarke-Groves (Vickrey (1961), Clarke (1971), Groves (1973))
mechanism implements the efficient decision in dominant strategies.?> That
is, regardless of the other agents’ announcements, agent i will always want
to tell the truth. This is done by setting transfers x;(m) = 3, ,; uj(d*(m), m;)+
hi(m_;), where we choose the functions h;(-) to ensure that ) ;. x;(m) = 0.
Now we show that every agent i € N maximizes his utility at m; = t; re-
gardless of the other agents’ announcements. Suppose not, that is, there
erist announcements m_; for the other agents such that agent i of type
t; prefers to announce T; rather than t;. Namely,

wi(d* (rgm—i), )+ > i (d (ri,m_g),my) > w(d* (t,mog), t)+ Y i (d” (8, m—;), my),
JF#i J#i

but this inequality contradicts the definition of d* for the state (t;,m_;).
Therefore, this mechanism induces truth telling as a dominant strategy.?3

4 Implementation in Nash Equilibrium: Complete
Information

One important message delivered by the Gibbard-Satterthwaite theorem of
the previous section is that implementation in dominant strategies has very
limited success over the unrestricted domain of preferences when there are
at least three alternatives, since only dictatorial rules can be implemented.
One possible way out of this strongly negative result, as Example 6 demon-
strated, is to restrict the domain of allowable preferences to some relevant
subdomain. The other way out is the one that we explore in this section,

22Vicrey’s work deals with the allocation of a private good for money through an auction
procedure. The reader can see that this can be another application of the model in this
example.

ZThere are difficulties concerning balanced-budget transfers for general functions w;(-);
see D’Aspremont and Gerard-Varet (1979) and Green and Laffont (1979) for results tack-
ling this problem.
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and it concerns a change in the theory of behavior that we will have for the
agents when confronting a mechanism. Instead of dominance, the new idea
will be that of an equilibrium.

We assume that there is complete information among the agents, i.e.,
all n agents know the true state ¢, all know that they know it, and so on.
This assumption is especially justified when the implementation problem
concerns a small number of agents that hold good information about one
another (think, for example, of a setting in which two parties are trying
to write a contract, and that they know something about each other that
would be very difficult to verify for an outside enforcer). We also drop the
assumption of independent domains of preferences.

Given a mechanism I" = ((M;)ien, g) played in state ¢, a Nash Equilib-
rium of the mechanism I' in state t is a strategy profile m* such that:

At a Nash equilibrium, each agent is choosing a strategy that is a best re-
sponse to the equilibrium strategies employed by the others. Note the “fixed
point” idea between actions and expectations embodied in the concept: each
agent ¢ chooses m; because he expects the others to play m*,, and these
expectations are justified because each of the others have no incentive to
choose something else if they all stick to m*. Thus, while dominance re-
quires an agent to choose his strategy regardless of what the others play, the
equilibrium logic asks an agent to choose his strategy as a best response to
what he conjectures the others will be doing.

Given a mechanism I' = ((M;);en,g) played in state ¢, we denote by
N(T,t) the set of Nash equilibria of the game induced by I' in state t.
Likewise, g(N (T, t)) denotes the corresponding set of Nash equilibrium out-
comes.

We shall say that an SCR F' is Nash implementable if there exists a
mechanism I' = ((M;);en, g) such that for every t € T, g(N (T, t)) = F(¢t).

A first observation is in order. To achieve (full) implementability, in
general we will have to go well beyond direct mechanisms. Assume the
existence of a universally bad alternative (for example, an allocation that
gives zero amounts of all goods to every consumer in an exchange economy).
Given the complete information assumption, a direct mechanism for an SCF
f would ask each agent to report the state. Let us then use a simple direct
mechanism, in which if all agents agree on the announced state , f(f) is
implemented, while the bad alternative results otherwise. Note how, in ad-
dition to the “good” Nash equilibrium of the mechanism, in which all agents
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report the true state, ¢t = t, there are multiple equilibrium outcomes corre-
sponding to any other unanimous announcement. It follows that, to achieve
our notion of implementability, we will have to employ more sophisticated
mechanisms.

We shall now be concerned with the investigation of necessary and suf-
ficient conditions on SCRs that are Nash implementable. The next funda-
mental result is due to Maskin (1999).24

Proposition 6 If an SCR F is Nash implementable, it is monotonic.

Proof: Suppose the true state is ¢, and let a € F(t). Because F' is Nash
implementable, there exists a mechanism I" and a Nash equilibrium thereof
m* played in state ¢ such that g(m*) = a. Now consider a monotonic change
in preferences around a to get to state t’. Since no alternative has risen in
any agent’ preference ranking with respect to a, the profile m* continues to
be a Nash equilibrium of T' in state . That is, a € g(N(T',t’)) and, since F’
is Nash implementable, a € F ('), but then F' is monotonic.
|
Thus, monotonicity is a necessary condition for Nash implementability
in any environment. The next question we may want to ask is how restric-
tive monotonicity is. When applied to SCFs on the unrestricted domain of
preferences, monotonicity is a very demanding condition. Recall Proposi-
tion 3, which establishes that with at least three alternatives monotonicity
and unanimity imply that the SCF is dictatorial.?> Note that Proposition 3
can be extended to domains that allow indifferences: indeed, one can add
a sixth step to the existing proof, in which one can undo indifferences in a
monotonic way around the alternative chosen by the SCF to end up showing
that there exists a dictator. Maintaining the unrestricted domain assump-
tion, monotonicity is still a very strong requirement for SCRs: Hurwicz and
Schmeidler (1978) show that monotonicity is incompatible with efficiency.
However, for multi-valued SCRs defined over many interesting restricted
domains, monotonicity is more permissive. For example, one can show that
the Walrasian SCR of Example 3 is monotonic in certain domains (see Ex-
ample 7 below). Also, the SCR that assigns to each social choice problem the
set of its efficient alternatives is monotonic in any environment. In general,

24 Although the first version of his results for Nash implementation was circulated in an
MIT working paper in 1977, Maskin could not implement their publication until 22 years
later.

% See Mueller and Satterthwaite (1977), Dasgupta, Hammond and Maskin (1979) and
Saijo (1987).
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we can conclude that monotonicity is compatible with a range of interesting
social goals in relevant domains.

Our next step is to inquire about the sufficient conditions for Nash im-
plementability. As it turns out, Proposition 6 has almost a converse, at least
for the case of three or more agents. The next result is also due to Maskin
(1999).26

Proposition 7 Letn > 3. If an SCR F' is monotonic and satisfies no-veto,
it is Nash implementable.

Proof: The proof is based on the construction of a canonical mechanism
that will Nash implement F' under the two conditions assumed.

Consider the following mechanism I' = ((M;);en,g), where agent i’s
message set is M; = A x T x Z, (recall that A is the set of alternatives,
T the set of allowable states, and Z the set of non-negative integers). We
shall denote a typical message sent by agent i by m; = (a’,t%,2%). The
outcome function ¢ is defined in the following three rules:

e (i) If for every agent i € N, m; = (a,t,0) and a € F(t), g(m) = a.

e (ii) If (n — 1) agents i # j send m; = (a,t,0) and a € F(t), but agent
j sends m; = (a’,t/,27) # (a,t,0), then g(m) = a if o/ >§ a, and
g(m) = a’ otherwise.

e (iii) In all other cases, g(m) = o/, where @’ is the alternative chosen
by the agent with the lowest index among those who announce the
highest integer.

We now have to show that for all ¢ € 7, the set of Nash equilibrium
outcomes of the mechanism I' coincides with F'(¢), i.e., g(N (T, t)) = F(t).
Step 1: For all t € T, F(t) C g(N(T,t)). Fix state t € 7. Let a € F(t) and
consider the following strategy profile used by the agents, where each agent
i € N chooses m! = (a,t,0). First, note that this profile falls under Rule
(i) of the outcome function and a would be implemented. Furthermore,
no agent ¢ has an incentive to deviate from m;: by deviating, he could
only hope to induce Rule (ii) (because Rule (iii) is not accessible with a
unilateral deviation from this strategy profile). But since the strategy profile
m* includes a unanimous report of the true state, agent 7 could only change

26We present a proof due to Repullo (1987); see alternative proofs in Williams (1986)
and Saijo (1988).
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the outcome if he chose an alternative that he does not prefer to a. Thus,
there is no unilateral profitable deviation and m™* is a Nash equilibrium.
Step 2: For allt € T, g(N(T',t)) C F(t). Fix astate t € T. Let 1 € N(T,¢)
and let a be the corresponding outcome according to the outcome function
g. If a is a result of either Rule (ii) or Rule (iii), there exists j € N such that
every k # j can induce his top ranked outcome by choosing a high enough
integer. Therefore, @ must be top ranked for at least (n — 1) agents, and by
no-veto, a € F(t).

We are left with @ being a result of Rule (i). That is, there is a unanimous
report m = (a,t,0) with & € F(), but ¢ # t, i.e., a false state is being
reported. If @ € F(t), we are done. So suppose that a ¢ F(t). That
is, @ € F(t) and @ ¢ F(t). Since F is monotonic, in going from state #
to state ¢, a preference reversal around a must have occurred, i.e., there
exists i € N and b € A such that a =! b and b ! . Then, consider the
following deviation on the part of agent ¢ from m: let agent ¢ send message
m}, = (b,+,-). By doing this, outcome b is implemented and agent i profits
from the deviation (recall that his true preferences are the ones described
in profile t), thereby contradicting that m is a Nash equilibrium. Thus, this
case is impossible and the proof is complete.

|

In closing the gap between necessary and sufficient conditions, it is first
important to note the following domain of environments:

An environment is economic if, as part of the social alternatives, there
exists a private good —e.g., money— over which all agents have a strictly
positive preference.

Note then that in economic environments the no-veto condition is vacu-
ously satisfied, because it is never the case that an alternative is top ranked
by (n — 1) individuals. We obtain the following corollary:

Corollary 1 Consider economic environments and let n > 3. An SCR F
is Nash implementable if and only if it is monotonic.

In general, though, no-veto is not a necessary condition for Nash imple-
mentability, and monotonicity alone is not sufficient (see Maskin (1999)).27
Necessary and sufficient conditions were provided for general environments
in Moore and Repullo (1990).

The two-agent case is somewhat special. Recall Rule (ii) in the canonical
mechanism of the proof of Proposition 7. With more than two agents, it

27 Although there are other environments where monotonicity alone is enough to guar-
antee Nash implementability (e.g., Moulin (1983)).
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is possible to detect unilateral deviations from an otherwise unanimous an-
nouncement, while this is not true if one considers two-agent environments.
Nonetheless, this difficulty can be circumvented, and necessary and suffi-
cient conditions were provided in Moore and Repullo (1990) and Dutta and
Sen (1991).

One final observation is worth making. The canonical mechanism in the
proof of Proposition 7 is necessarily quite abstract, as it is able to handle a
large number of social choice problems. In particular, the device in Rule (iii),
called an integer game, has received much criticism for being unnatural.?®
However, one should not lose track of the main purpose of the current exer-
cise, and that is the characterization of rules that are Nash implementable.
As such, integer games are just a method of proof employed in establishing
this important result. It should be true, though, and indeed this is the case,
that more realistic mechanisms can be constructed when one deals with a
specific application of the theory.

We now revisit some of our examples.

Example 7 Recall the exchange economy of FExample 3. It is easy to see
that the Walrasian rule is manipulable (not strategy-proof), in the sense that
agents may have an incentive to misrepresent their true preferences. For ex-
ample, consider a specific domain consisting of two economies. In both, the
set of agents is N = {i,j}, there are two consumption goods 1 and 2, and the
initial endowment is w; = (3,9) and w; = (9,3). Suppose there is no uncer-
tainty about the preferences of agent i, which are represented by the utility
function u;(x;1,x0) = xinxie. However, while in state t, agent j’s utility
function is u;((zj1,x2),t) = xjxjo, in state t', it is uj((zj1,x2),t") =
x?lxjg. The reader can check that the unique competitive allocation in state
t assigns the bundle (6,6) to each consumer (supported by prices p* = (1,1)),
while in state t' it is the allocation ((60/13,20/3),(96/13,16/3)) (supported
by prices p* = (13/9,1)). Note how u;((96/13,16/3),t) > u;((6,6),t), and
therefore, if asked by the planner about his preferences before the Walrasian
rule is implemented, agent j has an incentive to lie.

One possible way out for the designer is to take advantage of the fact that
the state is common knowledge among the agents (complete information).
The hope is that the truth can be elicited, if not as a dominant strategy (as
we have just established), perhaps as the Nash equilibrium of some mecha-
nism. The key is to show that, in the specified environments, the Walrasian

28The lack of compactness of the strategy set implied by the use of Z, is not a great
concern: it can be remedied by introducing a modulo game (a compactified version of the
integer game); see Jackson (1992) for an insightful critique.
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SCR is monotonic. This is indeed the case if one considers economies in
which the Walrasian allocations assign positive amounts of all goods to each
consumer, as the reader can check. Difficulties with monotonicity appear at
the boundary of the consumption set (see Hurwicz, Maskin and Postlewaite
(1995)).

There are interesting domains of economies where the Walrasian SCR
assigns strictly positive bundles to each consumer. For example, suppose that
all I goods considered in the model are essential to subsistence (all bundles
along the azes of the non-negative orthant are strictly less preferred than
those in its interior) and assume that each consumer holds initially positive
amounts of all goods. Then, it follows from Corollary 1 that the Walrasian
SCR is Nash implementable in this domain of allowable environments when
there are at least three consumers.??

Example 8 Recall Example 4 and the Solomonic rule prescribed there. It
turns out that this SCF is not easy to implement. First, it follows from our
discussion in Example 4 that it is not implementable in dominant strategies.
Moreover, it is not implementable in Nash equilibrium either, because it is
not monotonic (recall Proposition 6). That is, note that the social choice
changes from state t, to state tg, even though no alternative that was less
preferred than a for either woman has become now preferred to a. Therefore,
there does not exist any mechanism that can implement the Solomonic rule
in Nash equilibrium.

4.1 Virtual Implementation in Nash Equilibrium

Thus far we have understood that monotonicity is the key condition behind
Nash implementability, and we have seen that in certain environments (e.g.,
as in Example 7), it is a permissive condition in that it is compatible with
interesting social goals. However, as pointed out in Example 8 (recall also
the work cited in footnote 25), some other times it imposes severe restrictions
on the set of Nash implementable rules.

In this subsection, two important changes are introduced in the model.
First, the set of alternatives considered is the set /A of lotteries over the
set A, and second, the designer will content herself with approximately im-
plementing her SCR, instead of implementing it exactly.?® One can easily

Indeed, apart from the canonical mechanism of the proof of Proposition 7, mechanisms
tailored to the Walrasian SCR for private and public goods have been proposed in Hurwicz
(1979), Schmeidler (1980), Walker (1981), Dutta, Sen and Vohra (1995).

30 Although I prefer the more accurate name of “approximate implementation,” the
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justify both changes. On the one hand, lotteries are devices used often in
the allocation of resources. On the other hand, the approximation to the
desired SCR will be an arbitrarily close one, i.e., for all € € (0,1), the de-
sired SCR will be implemented with probability (1 — €), while something
else will be allowed to happen with probability €. The effects of these two
changes on the scope of the theory of implementation will be striking. This
is an amazing insight, first obtained independently by Matsushima (1988)
and Abreu and Sen (1991).

Let us now recall some of our definitions, properly adapted to the con-
sideration of lotteries.

Let A ={aq,aq,...,axr} be the finite set of social alternatives. Let A be
the set of lotteries (probability distributions) over the set A, i.e.,

k
A:{(pbp%"'vpk)ele_: ijzl}
j=1

An SCR F is now a non-empty valued mapping F : T +— 22\ {(}. Of course,
non-random alternatives and non-random SCRs are covered as particular
cases of these definitions.

Let A4 be the subset of A of strictly positive lotteries, i.e.,

k
A+:{(p17p27"'7pk)eRﬁ:_+z Z]%:l}
j=1

As we shall see shortly, the set A1 will play an important role in the analysis.

In order to speak of virtual implementation, a notion of “closeness” is
called for. Given two lotteries p,p’ € A, d(p,p’) will refer to the Euclidean
distance between them, i.e.,

k
d(p,p') = D> _(p; — )",

j=1

Given two SCRs F' and H, we define the following distance between them
at state t. For every state t € 7, let m; be a bijection, m : F(t) — H(t).
Then,

A(F(t), H(t) = sup d(p,m(p)).
pEF(t)

literature has referred to this approach as virtual implementation.
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Recall also that in the mechanism I' = ((M;)ien, g), the outcome func-
tion g : [T,y Mi — A, and that g(N(I',)) denotes the set of Nash equilib-
rium outcomes of the mechanism I' in state t.

We shall say that an SCR F is wvirtually Nash implementable if for
every € > 0, there exists a mechanism I' such that for every state t € 7,
A(F(t), g N (D, 1)) < e.

Note how (exact) Nash implementability corresponds to this definition,
when € = 0. virtual implementability allows the designer to “make a mis-
take” with respect to her true goals, but that “mistake” can be made ar-
bitrarily small. Stated in slightly different terms, virtual implementability
amounts to exact implementability of a near-by rule.

Following our line of inquiry, we are interested in identifying the neces-
sary and sufficient conditions for virtual Nash implementability. The next
striking result is due to Matsushima (1988) and Abreu and Sen (1991).

We have to adapt the notion of ordinality appropriately, since the true
set of alternatives is now the set of lotteries: this means that risk preferences
are taken into account. Recall that environment E corresponds to state ¢,
while £’ does to t':

An SCR F is ordinal if, whenever F(E) # F(E'), there must exist an
agent i € N and two lotteries p,p’ € A such that u;(p,t) > w;(p/,t) and
wi(p',t') > wi(p,t’). That is, the concept of ordinality remains as before:
for the social choice to change between two environments, a change in the
relevant preferences must happen; in this case, these are von neumann-
Morgenstern risk preferences over lotteries. In particular, the validity of
Proposition 1 still holds: as long as we use game theory based on expected
utility, ordinality remains a necessary condition for implementability in any
game theoretic solution concept. The surprise is now that, with at least
three agents, ordinality is also sufficient for virtual Nash implementability.

We shall also make the following very weak regularity assumption on
environments:

An environment E € & satisfies no-total-indifference (NTT) if no agent
is indifferent among all alternatives in A. That is, for each agent ¢ € N and
each state t € 7, there exist a,a’ € A such that a ~! d'.

Proposition 8 Consider environments satisfying NTI, and let n > 3. Any
ordinal SCR F is virtually Nash implementable.

Proof: Consider first SCRs F' whose range is contained in Ay. We claim
that any such SCR is monotonic. Consider two states ¢t and . Let p € F(t)
and p ¢ F(t'). Since F' is ordinal, there exists ¢ € N and lotteries p’ and
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p” such that u;(p',t) > u;(p”,t) and u;(p”,t') > w;(p/,¢'). Since agent i’s
preferences are of the expected utility form, this means that

k k

> 0] = pjui(a;,t) <0 while Y (p] - phui(a;, ') > 0.
J=1 =

Therefore, choosing A > 0 small enough, one has:

k k

> [P+ —p)uilag, t) < ui(p,t) while > [p+A@]—p)lui(ag, ') > ui(p,t'),
j=1 J=1

which implies that F' is monotonic (notice how we used that p € A in the
last step).

By our NTI assumption, it is also clear that any F' whose range is con-
tained in Ay satisfies no-veto (because no lottery in A, is top ranked for
any agent). Therefore, by Proposition 7, F' is exactly Nash implementable.

Finally, consider an SCR F whose range is not contained in A . Notice
that for any such F' and for every € > 0, there exists an SCR F, with
range contained in A, such that d(F(t), F.(t)) < e. That is, there exists an
arbitrarily close Nash implementable SCR, which means that F' is virtually
Nash implementable.

|

The result for the case of two agents is also quite permissive, but the
existence of a “bad alternative” for both agents is necessary. This bad
alternative will be used to punish deviations from non-unanimous reports
of the state. The existence of such an alternative is guaranteed in economic
environments, for example. To get a better feel for the notion of virtual
implementation, we revisit once again the problem facing King Solomon.

Example 9 Recall our Examples 4 and 4, where we had concluded that
the Solomonic rule is not exactly Nash implementable. We will now show
that it is virtually Nash implementable. To do this, we construct an explicit
mechanism that King Solomon could use.

Recall Ann (A) and Beth’s (B) preferences, which are represented by
utility functions in each state:

ua(a,te) > ua(byte) > ua(e ty) > uald, ty)
’LLB(b, ta) > ’LLB(C, ta) > UB(a,ta) > ’LLB(d, ta)

in state to, and



in state tg. The specific utility values will not matter.

Consider the following mechanism I' = ((M;)i=a,B,9): for i = A, B,
let My = T x T x Zy, that is, each woman is asked to report the state
twice and a non-negative integer. Let a typical message sent by woman i
be m; = (m},m2,m?). For a fized ¢ € (0,1), the outcome function g is
described in the next rules:

(i) If mly # ml, g(m) = d.

o (ii.a) IFml = ml =m3 = m3, = 1,,
g(m) = (1 —€)a +ec.
o (ii.b) If my =mp =mi =my =tg,
g(m) = (1 —€)b+ ec.
o (iii.a) If mb = m = m3, = t, # m3,
g(m) = (1 - €)a + ed.
o (iiib) If mly = mly = m? = t5 # m,
g(m) = (1 —€)b+ ed.
o (iv.a) Ifml = ml = m3 =t # m3,
g(m) = (1 - €)a+¢€[(1/2)a + (1/2)c].
o (ivb) [fmly = mly = m3 = t5 £ md,
g(m) = (1 = e)b+€[(1/2)b+ (1/2)c].
o (v.a) If my =mp = to #mj =mip,
gm) = (1= €)a+¢[(3/4)a+ (1/4)c] if m >md,
g(m) = (1 — e)a + €[(3/4)c + (1/4)a)  otherwise.
e (v.b) If m}y =mp =tz #m% = mj,

glm) = (1 —e)b+€[(3/4)b+ (1/4)c] if m%H >m?3,
gim) = (1 —e)b+¢€[(3/4)c + (1/4)b]  otherwise.

The reader can check that the only Nash equilibria of this mechanism oc-
cur under Rule (ii.a) in state to and under Rule (ii.b) in state tz. Moreover,
this is true for any € € (0,1). Therefore, the proposed mechanism virtually
Nash implements the Solomonic SCF.
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5 Implementation in Bayesian Nash Equilibrium:
Incomplete Information

We shall now consider environments in which the state ¢t = (¢1,t2,...,t,)
is not common knowledge among the n agents. We shall denote by T the
set of states compatible with an environment, i.e., a set of states that is
common knowledge among the agents. As such, T' C 7, the domain of
allowable states. Note that, under complete information, T = {t}, i.e., the
set of states compatible with an environment is the singleton containing the
state.

Let T = [[,c v Ti, where T; denotes the (finite) set of agent i’s types. The
interpretation is now that ¢; € T; describes the private information possessed
by agent . This private information will concern different aspects: (i) it may
be about his own preferences, as in private values models (an art auction,
where one’s true valuation for the painting is one’s private information), (ii)
it may concern someone else’s preferences, as in a common value problem
(one may hold valuable information that is key to ascertain the true value
of the object being transacted), or (iii) it may be about aspects other than
preferences (even if there is no uncertainty about preferences, one agent may
hold more information than the others regarding the future distribution of
individual wealth). We will use the notation ¢_; to denote (;) ;. Similarly,
T.i= Hj;éi T;.

Each agent has a prior belief —probability distribution— ¢; defined on T,
which may or may not be commonly shared. We make an assumption of
non-redundant types: for every ¢ € N and t; € T}, there exists t_; € T_;
such that ¢;(t) > 0. For each ¢ € N and t; € T;, the conditional probability
of t_; € T_;, given t; is the posterior belief of type t; and it is denoted
qi(t—; | t;). Let T* C T be the set of states with positive probability. We
assume that agents agree on the states in 7%, i.e., for all i € N, ¢;(t) = 0 if
and only if ¢ ¢ T™.

The pair of objects consisting of sets of types and prior beliefs is referred
to as an information structure. As defined, we are allowing a great deal
of asymmetric information held by the agents in our model (note that the
complete information structure consists of a singleton set of states and a
degenerate distribution for each agent that assigns probability 1 to that
state).

Recall that A denotes the (finite) set of social alternatives or outcomes,
and A the set of lotteries over A.
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Given agent i’s state ¢ utility function u;(-,t) : A x T +— R33! the (in-
terim/conditional) expected utility of agent i of type t; corresponding to an
SCF f:T — A is defined as:

Ui(flt) = > a(tiltus(F(t g te), (1))

tLiETfi

An environment with incomplete information is alist E = (N, A, (u;, T;, ¢;)ien)-
A domain is a class of environments that fix the set A of social alternatives,
where each environment is common knowledge among the agents.??

The only informational difference between the agents and the planner is
that each agent ¢ has received his private information ¢; (has “learned his
type”). In contrast, while the planner knows that if agent i has received the
private information ¢;, agent i’s posterior belief is ¢;(t—; | t;) and his condi-
tional expected utility is U;(- | ¢;), she does not know the true ¢; observed by
agent 7. Since the social choice that the planner wishes to make in general
will depend on the agents’ private information, the problem is once again
when and how the planner will be able to elicit it.

For simplicity in the presentation, we shall consider only single-valued
rules. A social choice function (SCF) f is a mapping f : T + A.33 Let F
denote the set of SCFs. Again, random SCFs map into A, and we will use
them later, when we talk about virtual implementation.

Two SCFs f and h are equivalent (f =~ h) if f(t) = h(t) for every ¢t € T*
(see Jackson (1991) for a discussion on equivalent rules).

We shall work with economic environments, as already defined in Sec-
tion 4. Actually we could weaken that definition of an economic environment
and all our results would go through: we could define it to be one in which
there exist at least two agents with different top-ranked alternatives and
there is no-total-indifference.?*

Consider a mechanism I' = ((M;)ien, g) imposed on an incomplete infor-
mation environment F. Note that in the present environments, a mechanism
induces a game of incomplete information. Recall that a direct mechanism

31 As the reader will have noticed, the domain of the utility function has already been
extended to take account of lotteries. On the other hand, making T instead of 7 the
second part of the domain is without loss of generality, as will become clear in the sequel.

32Just like under complete information, it will not be necessary to endow the domain
of environments with a Bayesian structure, i.e., it is not important what priors on the
different environments are held by the designer.

33QGiven that we assume that T itself is common knowledge among the agents, there is
no loss of generality in being concerned with SCFs whose domain is 7" instead of 7.

34This weaker definition would cover the example of King Solomon.
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for an SCF f is one with M; = T; for all i € N and whose outcome function
is f itself.

A Bayesian Nash equilibrium of I is a profile of strategies o* = (07 )ien
where o] : T; — M; such that Vi € N, Vt; € T;,

Ui(g(a®)|ti) = Ui(g(c*;,00)|t:) Vo : T — M;.

Observe that a Bayesian Nash equilibrium, or simply a Bayesian equi-
librium, is nothing but a Nash equilibrium of the expanded game “played
by the types” of the agents.?® Therefore, what is crucial to the concept
continues to be the dual property of: (a) best responses to expectations,
and (b) expectations being justified by every type’s optimal play.

Denote by B(I') the set of Bayesian equilibria of the mechanism I'. Let
g(B(TI")) be the corresponding set of equilibrium outcomes.

An SCF f is Bayesian implementable if there exists a mechanism I' =
((M;)ien, g) such that g(B(I)) ~ f.

Note that we will continue to require full implementability. Historically,
though, the literature began by requiring only truthful implementability, as
we define next. This led to the fundamental notion of incentive compati-
bility, found in early works like Dasgupta, Hammond and Maskin (1979),
Myerson (1979, 1981), D’Aspremont and Gerard-Varet (1979), and Harris
and Townsend (1981).

We shall say that an SCF f is truthfully implementable or incentive
compatible if truth-telling is a Bayesian equilibrium of the direct mechanism
associated with f, i.e., if for every ¢ € N and for every t; € T;,

Dotcer, Glt—iltui(f(tit—), (tist—i)) > D0 e, @ilt—ilti)ui(f (] t-0), (tist-i))
vih € T;.

That is, an SCF f is incentive compatible whenever, if one expects the
other agents to be truthful, one does not have an incentive to misrepresent
his private information and report ¢, to the designer when one’s true type is
t;. A fundamental result in the theory is known as the revelation principle
(e.g., Myerson (1991)), and it justifies the central position occupied in the
theory of incentives by direct mechanisms. The reason is that any Bayesian
equilibrium of any game of incomplete information is outcome-equivalent to

35In fact, there are game theorists that object to this change of name. They would
argue that one should still refer to this concept as Nash equilibrium. I sympathize with
this view, but I will follow the majority and will retain the adjective “Bayesian” in it, to
emphasize the incomplete information component. Hopefully, Reverend Bayes will not be
too annoyed at the game theory community because of this.
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the truth-telling equilibrium of a suitably defined direct mechanism. There-
fore, by exploring the class of direct mechanisms, one is able to track down
all possible equilibrium behavior that could take place in any game imposed
over a given set of outcomes. For our purposes, the relevance of incentive
compatibility is given by the following result.

Proposition 9 If f is a Bayesian implementable SCF, there exists an SCF
f, [~ f, that is incentive compatible.

Proof: Let f be Bayesian implementable. Therefore, there exists a mecha-
nism I' = ((M;);en, g) and a Bayesian equilibrium o of I' such that g(o(t)) =
f(t) for every t € T*. By the revelation principle, since o is a Bayesian equi-
librium, one has that for all 7« € N and for all ¢; € Tj,

Ui(g(o)|ti) = Ui(g(mj, o—i(t—;))|t;) Vmj € M;.

This means that the SCF g(o) is incentive compatible, but g(o) =~ f.
|

Thus, incentive compatibility is a real constraint to the set of Bayesian
implementable rules.?® The intuition is straightforward: an SCF that is not
incentive compatible is never to be realized, because even if the other agents
are expected to behave truthfully, there are incentives for at least one agent
to behave as if his private information were diffferent.

We now investigate whether there are other necessary conditions for
Bayesian implementability. The answer will turn out to be “yes,” and one
way to understand why is to observe that direct mechanisms associated with
incentive compatible SCFs typically have the problem of multiple equilib-
ria.?” These considerations were first made in Postlewaite and Schmeidler
(1986), and further developed in Palfrey and Srivastava (1989a), Mookherjee
and Reichelstein (1990) and Jackson (1991), leading to the identification of
a new condition. Before we present it, we need to go over some definitions.

36See Example 7 and, to make it an environment with incomplete information properly
speaking, suppose agent j’s preferences were his private information. Then, the SCF that
assigns the Walrasian allocation in each state is not incentive compatible. Strenghthening
this point, important impossibility results associated with incentive compatibility can be
obtained (e.g., Myerson and Satterthwaite (1983)).

37This may happen already under complete information: suppose there are two agents
and two states in T, t = (t1,t2) and t' = (t],t5). Let A = {a,b,c}, and for i = 1,2
ui(e,t) = ui(c,t') = 0, wi(a,t) = ui(b,t') = 1, ui(b,t) = ui(a,t’) = 2. Let f(t) = a,
f(#') =band f(t1,t5) = f(t},t2) = c. Note that f is incentive compatible. However, the
lying profile is also an equilibrium of the direct mechanism, and moreover, it dominates the
truth-telling one. With examples like this, one is led to consider the multiple equilibrium
problem seriously.
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Consider a strategy in a direct mechanism for agent 4, i.e., a mapping
a; = (i(ti)),er, « Ti — T;. A deception a = (a;)ien is a collection of such
mappings where at least one differs from the identity mapping. That is,
when agents are using a deception, at least one type of one agent is lying to
the planner.

Given an SCF f and a deception «, let [f o a] denote the following SCF:
[foal(t) = f(a(t)) for every t € T. That is, [f o a] is the SCF that would
be implemented if the planner wanted to implement f but the agents were
to use the deception «: then, in each state t, instead of realizing f(¢), the
outcome f(«(t)) would result.

Finally, for a type t; € T;, an SCF f and a deception a, let fq,,)(t") =
[t ai(t;)) for all ¢ € T. That is, the SCF fg ) is what would be
implemented if the planner wished to implement f, all agents other than i
were to be truthful, and agent i would report that his type is a;(t;).

We shall say that an SCF f is Bayesian monotonic if for any deception
a, whenever foa % f, there exist i € N, t; € T; and an SCF y such that

Ui(y o« ‘ ti) > Uz(f o« ‘ ti) while Uz(f ‘ t;) > Ui(yai(ti) ‘ té),Vt; eT;. (*)

In the spirit of monotonicity, Bayesian monotonicity justifies a change in
the social choice on the basis of a preference reversal around it. Specifically,
if f is the social choice, but « is a deception that undermines it (in the sense
that f o v is no longer socially optimal), there must exist an SCF y and a
type t; that prefers y to f if the deception « is used, while at the same time
y is not better than f for any type in 7; when every agent is truthful. The
import of the condition is given by the following result.

Proposition 10 If f is a Bayesian implementable SCF, there exists an
SCF f, f ~ f, that is Bayesian monotonic.

Proof: Without loss of generality, let f = f. Since f is Bayesian im-
plementable, there exists a mechanism I' = ((M;);en,g) and a Bayesian
equilibrium o of I" such that g(o) = f.

Since ¢ is a Bayesian equilibrium, it follows that for every ¢ € N
and for every t; € T;, the set of outcomes {g(m},o_;(t—;))}mep, must
be contained in the set ®; consisting of all the SCFs y Satis}’ying that
Ui(flti) = Ui(yg, ) lt:) for every (Bi(ti))yer; : Ti = T; for all t; € T;. That
is, no unilateral deviation on the part of type ¢;, including those in which
he would pretend to be type (;(t;), is profitable from his point of view.

Now fix a deception « that undermines f, i.e., foa % f. Since f is
Bayesian implementable, the strategy profile ¢ o o, where for every i € N
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each type t; behaves as in o;(c;(t;)) cannot be a Bayesian equilibrium. That
is, there must exist a type t; who can force an outcome y o« via a unilateral
deviation from oo« and that he prefers to foa. Furthermore, if yoa can be
so induced, then the corresponding y could also be induced via a unilateral
deviation from o, and thus it must belong to ®;. But this is the preference
reversal asked in equation (*) by Bayesian monotonicity.
|
The following characterization of Bayesian implementable SCFs for ex-
change economies (recall Example 3) is related to a result due to Jackson
(1991).3 We present a simple direct proof of this result.

Proposition 11 Consider an exchange economy and an SCF [ that never
assigns the zero bundle to any agent. If there exists f ~ f that is incentive
compatible and Bayesian monotonic, then f is Bayesian implementable.

39

Proof: Without loss of generality, let f = f. We shall assume that the
aggregate endowment is the only top ranked bundle of goods for each agent
in each state. The proof constructs a canonical mechanism that implements
f in Bayesian equilibrium, whenever f satisfies the required properties. We
describe the mechanism presently; note that it is augmented with respect to
the direct mechanism for f.

Consider the mechanism I' = ((M;);en, g), where M; = T; X F X Z, i.e.,
each agent is asked to report his type, an SCF and a non-negative integer.
The outcome function g is as follows:

o (i)Ifforalli € N,m; = (t;, f,0), g(m) = f(t), where t = (t1,t2,...,tp).

e (ii) If for all j # i, m; = (t;, f,0) and m; = (t},vy, z;), we can have two
cases:

— (ii.a) If for all ¢; and for all a;(t;), Ui(ya, @, [ti) < Ui(flti), g(m) =
y(t5, t—i).
— (ii.b) Otherwise, g(m) = f(t;,t_;).

38 Jackson (1991) provides a characterization of set-valued rules when there are at
least three agents. For those rules, in addition to incentive compatibility and Bayesian
monotonicity, there is a third condition that is also necessary and sufficient: the set-valued
rule must be closed under the concatenation of different common knowledge events. This
issue does not arise if one considers only SCFs.

39The zero bundle condition on f is added to give this simple proof. In general, such a
requirement is not part of the characterization.
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e (iii) In all other cases, the total endowment of the economy is awarded
to the agent of smallest index among those who announce the largest
integer.

We now prove the proposition. First, we show that f can be supported by
a Bayesian equilibrium of this mechanism. Consider the following strategy
profile, where agent i of type t; announces m;(t;) = (¢;, f,0). If this profile
is played, Rule (i) is imposed and the outcome f(t) results when the true
state is .

By incentive compatibility, agent ¢ of type ¢; would not want to change
his type report (in this case, the outcome would still fall under Rule (i).
Changing his integer would produce an outcome under Rule (ii) and the
equilibrium outcome f(¢) would result. Finally, he could change his an-
nounced SCF to y, but then y would be implemented only when for all
types of player i, y is not preferred to f. The same goes if he were to devi-
ate modifying his announced type and SCF: some y,, ;) would result only
when it is not better than f for any type of agent i. Therefore, the proposed
profile is a Bayesian equilibrium, and its outcome is f.

In equilibrium, the outcome will never fall under Rule (iii): a type who is
not winning the integer game has an incentive to announce an integer larger
than those announced by every type of every agent. This will increase his
expected utility (note that f never assigns the aggregate endowment to any
agent).

Rule (ii) also conflicts with equilibrium: one of the agents j # i can
deviate and announce an SCF with all resources awarded to him, as well as
the highest integer across all types. This would increase his expected utility.

Thus, all equilibrium strategies fall under Rule (i), i.e., f is unanimously
announced and all agents announce the integer 0. However, we could have
that type t; of agent ¢ announces type «a;(t;) instead of a truth telling report.
When the true type profile is ¢, this would result in the outcome f o« being
implemented.

If foa = f, we are done, i.e., we have multiple equilibria, but with
the same outcome. Thus, suppose that f o« % f. Because f is Bayesian
monotonic, there exists a type t; and an SCF y exhibiting the preference
reversal in equation (*). Then, let type ¢; deviate from his equilibrium
message, and instead send m/(t;) = («i(t;),y,0) (his alledged equilibrium
message was (a;(t;), f,0)). The result is that y o« is implemented, instead of
foa; to see this, note that Rule (ii.a) is being used thanks to the properties
of y. However, this is a profitable deviation for type t;, which contradicts
that this profile is a Bayesian equilibrium.
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|
Therefore, full Bayesian implementability is equivalent to incentive com-
patibility and Bayesian monotonicity in economic environments. We al-
ready saw that incentive compatibility is sometimes a real constraint that
may crowd out interesting social rules. Our next attempt is to get a better
understanding of the strength of Bayesian monotonicity (see Palfrey and
Srivastava (1987), in which interesting rules are shown to satisfy Bayesian
monotonicity in certain domains).? In general, though, Bayesian monotonic-
ity turns out to be a very demanding condition, representing a serious ob-
stacle to implementability. This is argued in the following example.

Example 10 *' Consider an exchange economy as those described in Ex-
amples 8 and 7. Let N = {1,2,3,4}. There is a single commodity -money-
and all consumers have 1 dollar as endowment in each state. The set of
allocations may again be infinite or finite: either we admit infinitely di-
visible money, or only all feasible assignments of dollars and cents to the
four consumers. The sets of types are Ty, = {ty, ), t}} for k = 1,2, while
T; = {tj,t;-} for 7 = 3,4. There are only three states which arise with pos-
itive probability: T = {t,t',t"}, where t = (t1,t2,t3,t4), t' = (¢}, 85,85, t))
and t" = (t],t5,¢5,t)). Agents 1 and 2 are fully informed, so that for
k = 1,2, the posterior probability distributions are:

ae(tltr) = a.(t'|t,) = a(t"|t]) = 1, E=1,2.

Agents 3 and 4 are fully informed only when they are of type t;, i.e., for
i =34, qitlt;) =1, but

q3(t'[t5) = 0.25, q3(t"|t3) = 0.75,
qa(t'|th) = 0.75, qa(t"|t}) = 0.25.
The utility functions are as follows:
ui(z,s) = x?i(s), Ai(s) € (0,1) VseT, VieN.

Note first that incentive compatibility is not a constraint in this envi-
ronment. The presence of at least two fully informed agents in each state
guarantees that truth-telling is always a Bayesian equilibrium of the direct

40Gee also Matsushima (1993), where it is shown that Bayesian monotonicity is a trivial
condition in environments with quasilinear utilities.

“1Variants of this example were developed in Palfrey and Srivastava (1987), Chakravorti
(1992) and Serrano and Vohra (2001).
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mechanism for any SCF: one can punish unilateral deviations from truth-
telling with the zero bundle for every agent.

In contrast, Bayesian monotonicity is very restrictive in the present ex-
ample. Let f be an SCF such that for some s € T*, s £ t, f(s) # f(t). Then
f is not Bayesian monotonic. To see this, consider a deception o such that
every type of every agent reports that he is of type t;: «;(s;) = t; for every
s; € T; for all i € N. For this deception, foa % f since f o« is a constant
SCF that assigns f(t) in every state. Bayesian monotonicity requires then
the existence of a type s; and an SCF y exhibiting the preference reversal of
equation (*). Since f o« specifies f(t) in every state, it follows that

foralli and alls € T, Ui(foa | s;) = Zslﬂ_eTﬂ_ qi(s";|8)ui ((f(t), (s, 8i))-

Since for each i, u;(-, s) represents the same ordinal preferences in each state
s € T, it follows that for all i and s € T, whenever U;(f | a;(s;)) > Us(y |
a;(87)), Ui(foa | s;) > Ui(yoa«a | s;). This is sufficient to assert that
one cannot find a reversal as specified in (*). Thus, Bayesian monotonicity
implies that f must be constant over T™*.

To finish the example, we remark that, if one wants to take into account
the property rights implied by the initial endowments, one should consider
SCFs in which each type ends up with an interim utility no lower than 1. In
addition, if one adds efficiency considerations to the social optimum, such an
SCF cannot be constant: while it must prescribe the endowment point in state
t, for insurance reasons, types ty and t) should write contracts between them
to trade part of their endowments. It follows that no such SCF is Bayesian
implementable. That is, any mechanism that has a Bayesian equilibrium
supporting the desired rule will also have an equilibrium in which every type
pretends to be of type t;.

Therefore, in environments like those in Example 10, exact Bayesian
implementability reduces to constant SCFs (and of course, a planner does
not need any sophisticated theory of implementation to impose those). We
remark also that Bayesian monotonicity is always a necessary condition for
Bayesian implementability, even in two-agent environments. The sufficiency
result showed in Proposition 11 also holds for two-agent environments: this
is done because the mechanism relies on f, the SCF to be implemented,
being announced in the equilibrium strategy profile. Thus, the difficulty of
identifying a deviator from the “right” announcement does not arise, even
if one considers only two-agent settings.
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5.1 Virtual Implementation in Bayesian Equilibrium

Given the limitations of Bayesian implementability and the remarkable pos-
itive results of virtual Nash implementation, it makes sense to investigate
the virtual approach to implementation in Bayesian environments. This was
done in Abreu and Matsushima (1992b), Duggan (1997) and Serrano and
Vohra (2001, 2002). We begin the subsection with a few more definitions.

Recall that A denotes the set of probability distributions over the set A of
social alternatives. A (random) social choice function (SCF) f is a function
f:T— A. A (random) mechanism T' = ((M;)ien, g) describes a message
set M; for agent i and an outcome function g : [[;,c 5 M; — A. Recall that
B(T") is the set of Bayesian equilibria of I' and g(B(T")) the corresponding
set of outcomes.

Consider the following metric on SCFs:

d(f,h) =max{|f(a |t) —h(a|t)| |t €T" a € A}.

An SCF f is virtually Bayesian implementable if Ve > 0 there exists an
SCF f€ such that d(f, f¢) < e and f€ is exactly Bayesian implementable.

In investigating the conditions that will characterize virtual Bayesian im-
plementability, note first that a new application of the revelation principle
implies that incentive compatibility continues to be a necessary condition
(the proof is very similar to that of Proposition 9).#2 In addition, the fol-
lowing condition has been shown to be also necessary, as well as sufficient
in conjunction with incentive compatibility (Serrano and Vohra (2002)).

An SCF f is wvirtually monotonic if for every deception «, whenever
f % f oa«, there exists ¢ € N, t; € T;, an incentive compatible SCF x and
an SCF y such that

U(yoa | t;) > Ui(xoa|t;) while Ui(x | t}) > Ui(yai(ti) | t0),Vt, € T;. (%)

It is instructive to compare virtual monotonicity with Bayesian monotonic-
ity. The difference between the two is that the preference reversal in (**)
can happen around any incentive compatible SCF z in the environment, not
necessarily around f as was required in equation (*). Clearly, in the class
of incentive compatible SCFs, virtual monotonicity is weaker than Bayesian
monotonicity.

42 Abreu and Matsushima (1992b) and Duggan (1997) provide two independent con-
ditions that, together with incentive compatibility, are sufficient (these are measurability
and incentive consistency, respectively). These two conditions are permissive, but they are

not necessary; in fact, they are sometimes stronger than Bayesian monotonicity (Serrano
and Vohra (2001)).
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Instead of stating and proving the characterization theorem, in order to
convey the very positive nature of the results achieved with virtual Bayesian
implementation, we introduce the following condition on an environment.

An environment F satisfies type diversity if there do not exist i € N,
ti,t; € T;, t; # t,, B € Ry; and v € R such that

Ui(alt;) = BU;(alt)) +v Va € A.

This condition has a simple interpretation: it requires that the interim
preferences over pure alternatives of different types of an agent be differ-
ent. In the space of preferences, type diversity is generically satisfied by an
environment if there are at least three alternatives.*?

Proposition 12 In economic environments satisfying type diversity, an SCF
[ is virtually Bayesian implementable if and only if there exists an equivalent
SCF f that is incentive compatible.

Proof: Without loss of generality, let f = f. We already know that in-
centive compatibility is always a necessary condition for virtual Bayesian
implementability. It remains to show sufficiency.

First of all, it can be shown that type diversity guarantees the existence
of random SCF's [;(t;) that are constant over T and that satisfy that

Us(Li(t)|t) > Ui(l;(E)|t:)  Vts € Ty, Vt; € Ty, th # ¢

In addition, our assumption of economic environments ensures no-total-
indifference.

We now construct a mechanism that virtually implements f in Bayesian
equilibrium. Let I' = ((M;)ien, g), where M; = T; x T; x A X Z. A typical
message sent by agent ¢ will be denoted m; = (t},t?, ai,z;). A strategy of
agent i is denoted o;, where o; : T; — M;. Let t* = (t1,t1,...,t}) be the
profile of first type reports, and 2 = (t3,¢2,...,t2) be the profile of types
reported in second place by each agent.

Let L = {((li(t:))t,eT)ien)} be the collection of all (constant) SCF's
implied by type diversity. Let L(t) = {(l;(t;))ien} and | = ﬁ > ier - Note
that the SCF [ is constant over all t € T. For any a € A and \ € [0,1] let
a(\) = da+ (1 =ML

For € € (0,1), the outcome function (e-close to f) is defined as follows.

43In environments satisfying type diversity, Abreu-Matsushima’s measurability, Dug-
gan’s incentive consistency and Serrano-Vohra'’s virtual monotonicity are satisfied by every
SCF. Therefore, the proof below does not need to rely on any of these conditions. We
borrow this proof from an earlier draft of Serrano and Vohra (2002).
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e (i) If there exists j € N such that for all i # j, m; = (¢,t;,a;,0), and
Zj =0:
_(1_ AL oy &7
g(m) = (1= f (") + 5 > L) + 51
iEN
e (ii) If there exists j € N such that for all ¢ # j, m; = (¢;,t;,a;,0), and
z; > 0:
_(1_ AL 2y 1+ ST
g(m) = (1= f(t) + 5 %:Vlz(tz) + 50

e (iii) Otherwise, denoting by h the agent with the lowest index among
those who announce the highest integer:

g(m) = (1= (1) + 5 i)+ san

Zh
zp+ 1

).

A strategy profile where for each i € N and each t; € T;, m;(t;) =
(ti,tiya;,0) is a Bayesian equilibrium of the mechanism I". To see this, note
that changing the first type report is not a profitable deviation because f
is incentive compatible and because U;(l;(t;) | t;) > U;(li(t}) | t;) for any
t: # t;. The latter condition also implies that it is not profitable to change
the announcement of the number and the second type report. Changing
the announced alternative a; does not alter the outcome. Therefore, the
proposed strategy profile is a Bayesian equilibrium of T'.

Next, note that using the standard argument for the integer game, an
equilibrium cannot happen under Rule (iii), or under Rules (II) or (i) when
an agent is announcing different types. In the last two cases, the reason is
simply that the integer game can be triggered by a unilateral deviation.

Finally, there cannot be an equilibrium of I' under Rule (i) where all
agents report the same type twice and the number 0, but where these type
reports are not truthful. Otherwise, given the properties of the SCFs [;(¢;),
any agent who is not reporting his true type could increase his expected
utility by reporting his true type in second place and choosing a number
greater than 0. Thus every equilibrium corresponds to case (i), for all t € T,
with all agents reporting their types truthfully.

|

Example 11 Consider the exchange economy of Example 77, and note
that type diversity is satisfied whenever the constants \i(s) are all differ-
ent. Thus, for almost every environment in this example, every SCF is
virtually Bayesian implementable.
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6 Concluding Remarks and Other Topics

The results reported in this survey identify the class of social choice rules
that can be implementable under complete and incomplete information when
the agents are assumed to play either dominant or equilibrium strategies. We
have learned that implementation in dominant strategies is very restrictive
if the planner has no information about agents’ preferences, so that she
must consider the unrestricted domain of preferences. On the other hand,
positive results emerge on restricted domains, leading to the identification
of interesting SCRs, whose implementation is therefore particularly robust.
For implementation in Nash equilibrium, the key condition is monotonicity,
which allows for more permissive results, especially when set-valued goals
are considered. If one turns to incomplete information, implementation in
Bayesian equilibrium is more restrictive: apart from incentive compatibility,
there are obstacles related to Bayesian monotonicity, which may be quite
demanding.

The virtual approach to implementation stands out as an extremely per-
missive theory. Almost always one can virtually implement any incentive
compatible social rule. This approach may be especially successful in ap-
plications, where one should allow some degree of freedom in making “mis-
takes” in the implementation of the rule and in the exact specification of
agents’ preferences. In dealing with specific applications, one should strive
for the design of mechanisms less abstract than the ones constructed in this
survey. Modern technology makes this concern less pressing, though, at least
if one expects this theory to inspire the design of mechanisms to be played
over a computer network: for example, random devices, modulo games and
alike can easily be implemented via computer protocols.

We close with a brief discussion of other important topics that have
been touched upon by the theory of implementation. The list is not meant
to be comprehensive, and apoligies are due to the authors whose work I am
ignoring.

Other solution concepts: One can adopt different forms of behavior of
agents other than dominance and Nash equilibrium. This would correspond
to employing other game theoretic solution concepts, including undomi-
nated equilibrium (Palfrey and Srivastava (1989b, 1991), Jackson, Palfrey
and Srivastava (1994), Sjostrom (1994)), dominance solvability and iterative
elimination of dominated strategies (Moulin (1979), Abreu and Matsushima
(1994)), trembling-hand perfect Nash equilibrium (Sjostrom (1993)), strong
Nash equilibrium (Maskin (1979)). The key issue analyzed here is how the
necessary conditions identified for these concepts compare to monotonicity.
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Although one cannot make a general statement, one can sometimes get more
permissive results.

Commitment issues: The theory presented in the current paper assumes
that the designer can commit to the mechanism she proposes, or if there is no
designer, that the outside enforcer will be able to enforce the outcome pre-
scribed in the mechanism, whatever this is. Suppose, however, that some of
the outcomes prescribed are not efficient. Then, agents have an incentive to
renegotiate them before they go to the enforcer. The constraints that rene-
gotiation imposes on implementability were studied in Maskin and Moore
(1999) (see Rubinstein and Wolinsky (1992) for a different approach). Some
other times the outcome prescribed leaves agents worse than they started
with, raising the issue of whether they would want to participate in such a
mechanism (Jackson and Palfrey (2001) study this problem of voluntary im-
plementation). Finally, the possibility of having the planner as a player was
introduced in Baliga, Corchén and Sjostrom (1997) and Baliga and Sjostrom
(1999).

Simplicity and robustness: One criticism raised against the canonical
mechanism is that it may be too complex. If the designer has good infor-
mation about certain aspects of preferences, (e.g., the rates at which agents
want to substitute the consumption of one good for another), it is possible
to write simpler mechanisms that rely on a small number of parameters,
such as prices of marketted goods (e.g., Dutta, Sen and Vohra (1995)). One
can argue that relying on simpler mechanisms leads to more robust imple-
mentation. Other ways to model robustness have taken the form of double
implementation (i.e., the mechanism is able to implement in two —or more—
solution concepts, as in Yamato (1993)), or continuous implementation (by
constructing continuous outcome functions, as in Postlewaite and Wettstein
(1989)).

Applications: As we said above, less abstract, more realistic mechanisms
can be designed when one deals with a specific application. One important
research agenda in game theory, known as the Nash program, aims to design
mechanisms that implement specific cooperative solutions. In doing so, an
explicit desideratum of such mechanisms is their “appeal” in terms of real-
istic ways for agents to interact; see the celebrated implementation of the
Nash bargaining solution via Rubinstein’s game of alternating offers (Nash
(1950b), Rubinstein (1982), Binmore, Rubinstein and Wolinsky (1986)).44
It is especially remarkable when one finds successful uses of mechanisms in

44 Gerrano (1997) proposes a general approach to understand the Nash program under
the theory of implementation.
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the real world. Mechanisms have sometimes been put in place by intended
expert design (e.g., the design of matching markets for hospitals and resi-
dents; see Roth (2002)). Perhaps even more amazing is that mechanisms
are sometimes the consequence of wise ancient tradition (Cabrales, Calvé-
Armengol and Jackson (2003) report on a cooperative of farmers in Andorra;
for centuries, these families of farmers have been making payments to the
cooperative to provide fire insurance, and it turns out that the mechanism
used Nash-implements an almost efficient allocation).

Bounded rationality: Some early attempts were made to understand the
properties of learning Nash equilibria in mechanisms that implement Wal-
rasian allocations (Jordan (1986)). More recently, Cabrales (1999), and
Cabrales and Ponti (2000) analyze the convergence properties of several
dynamic processes in some of the canonical mechanisms. Some of their con-
clusions are quite interesting. For example, it turns out that the type of
learning process specified in Cabrales (1999) for the canonical mechanism of
Nash implementation always converges to the Nash equilibria of the mech-
anism, thereby dispelling the claim that this mechanism is far too complex;
see also Sandholm (2002) for an interesting application of evolutionary im-
plementation. Finally, Eliaz (2002) studies a model in which a number of
agents are faulty (their behavior is totally unpredictable); even their identity
is unknown to the designer. Interestingly, his results can also be related to
monotonicity.
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