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Abstract. We consider the problem of scheduling operations in bufferless robotic cells that produce
identical parts. Maximizing the long-term average throughput of parts is an important
problem in both theory and practice. We define an appropriate state space required to
analyze this problem and show that cyclic schedules which repeat a fixed sequence of robot
moves indefinitely are the only ones that need to be considered. For the different classes
of robotic cells studied in the literature, we discuss the current state of knowledge with
respect to cyclic schedules. Finally, we discuss the importance of two fundamental open
problems concerning optimal cyclic schedules, special cases for which these problems have
been solved, and attempts to solve the general case.
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1. Introduction. The robotic cells considered in this paper consist of a number
of machines served by a central robot. Parts are brought to an input station by an
input conveyor and the finished parts are removed from an output station by an output
conveyor. As in a classical flowshop [34], each part being processed passes successively
from the input station, through the machines in a fixed sequence, and finally to the
output station. Each machine performs a specific process on each part and can contain
only one part at a time. There are no buffers for intermediate storage of parts at the
machines, and any part in the cell is always either on one of the machines or in the
robot arm. All intermachine transfers are handled by the robot arm.

A three-machine robotic cell is illustrated in Figure 1. After loading a part onto
a machine, either the robot waits at the machine for it to finish its processing of
the part, or it moves to another machine to unload a part as soon as that machine
has finished processing it, or it moves to the input station to pick up a new part.
Neither the machines nor the robot can be in possession of more than one part at any
given time. This and the lack of internal buffers impose a blocking condition: a part
cannot be removed from its current machine unless the next machine in the sequence
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Fig. 1 A three-machine robotic cell.

Fig. 2 A robot with a part at a welding machine.

is unoccupied. Such cells that have no limitation on the time that a completed part
may remain on a machine are common in semiconductor manufacturing [3, 21, 28, 32,
33, 38, 39]. Figure 2 shows the robot with a part at a welding machine which could be
one of the machines of the cell shown in Figure 1. Although this study focuses only
on these cells, called free-pickup cells, the reader should be aware of two other types
of cells: in no-wait cells, a part must be removed from a machine as soon as that
machine has competed its processing. Such conditions are commonly seen in steel
manufacturing or plastic molding, where the raw material must maintain a certain
temperature, or in food canning to ensure freshness [1, 2, 11, 24, 26, 30]. In interval
processing time cells, which generalize free-pickup cells and no-wait cells, each stage
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has a specific interval of time—a processing time window—for which a part can be
processed on that stage. Such cells are commonly found in an electroplating line for
printed circuit boards, typically served by an overhead hoist [10, 12, 29].

A standard performance measure used to evaluate the operation of robotic cells
is the long-term throughput, which is defined as the average number of finished parts
produced per unit of time. A systematic study of the problem of finding optimal
sequences of parts and robot moves to maximize the long-term throughput was started
by Sethi et al. [35]. Here, we discuss this objective for a robotic cell producing identical
parts.

The purpose of this paper is to introduce the readers of this journal to the field of
robotic cell scheduling. We provide a theoretical background, a new result concerning
the dominance of a certain class of solutions, and descriptions of two fundamental
open problems. It is hoped that this will stimulate research in this field by the SIAM
community.

2. The Basic Model and Its Variants. We now introduce the basic model of
robotic cell scheduling. For a more thorough overview, we refer the reader to surveys
by Crama et al. [13] and by Dawande et al. [16].

The m machines of the robotic cell are denoted by M1,M2, . . . ,Mm. Let M =
{1, 2, . . . ,m}. The input station is denoted by M0 and the output station by Mm+1.
We denote the processing time of a part on machine Mi by pi, i ∈ M . The time
required by the robot arm either to load a part onto a machine or to unload a part
from a machine Mi is εi ≥ 0. This includes unloading from M0 (picking a part from
the input station) or loading onto Mi+1 (dropping a part into the output station). The
robot’s travel time between machines Mi and Mj is δij , 0 ≤ i, j ≤ m+ 1. We assume
that all data are rational. This is equivalent to assuming that all data are integral:
if the data are rational, we may multiply all values by a common denominator to
make them integral. Additionally, we assume that all actions and their durations are
deterministic, that parts are always available at the input station, and that processing
on each machine is non-preemptive.

Three classes of robotic cells, differing in the intermachine travel time and the
loading/unloading time, have been considered in the literature.

1. In additive travel-time robotic cells, the robot’s travel time is δi ≥ 0 for travel
between machines Mi and Mi+1, and the total time required to travel between
machines Mi and Mj , i �= j, is

∑j−1
h=i δh, if i < j, and

∑i−1
h=j δh, if j < i. The

time to load (resp., unload) a part onto (resp., from) machine Mi is εi ≥ 0
(some studies simplify this model by assuming δi = δ and εi = ε∀i). Studies
which use this travel-time metric include [6, 14, 35].

2. In constant travel-time robotic cells, the robot’s travel time between any pair
of machines Mi and Mj , i �= j, is a constant δ ≥ 0. The time to load (resp.,
unload) a part onto (resp., from) any machine Mi is a constant ε ≥ 0. Studies
which use this travel-time metric include [17, 19].

3. In Euclidean robotic cells, the robot travel time from Mi to Mj , i �= j, is δij ≥
0, and the travel times satisfy the triangle inequality δij + δjk ≥ δik ∀i, j, k.
The time to load (resp., unload) a part onto (resp., from) machine Mi is
εi ≥ 0. If, in addition, the travel times are symmetric, i.e., δij = δji ∀i, j,
we refer to such cells as Euclidean symmetric robotic cells. Studies which use
this travel-time metric include [1, 9, 29, 30].

The travel time from a machine to itself is zero, i.e., δii = 0. The problem data
consist of the following: (i) processing time pi on machine Mi, i ∈ M ; (ii) the travel
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times from machine Mi to Mj , i �= j; and (iii) the loading and unloading times
εi, 0 ≤ i ≤ m+ 1, as defined above.

For a complete description of the movement of parts in a robotic cell, we first need
to formalize the transfer of parts, by the robot arm, between successive machines.

Definition. For each i, i = 0, . . . ,m, activity Ai consists of the following se-
quence:

1. The robot unloads a part from Mi.
2. The robot travels with this part from Mi to Mi+1.
3. The robot loads this part onto Mi+1.

We will use sequences of activities to specify the movement of parts in the cell.
Example 1. A sequence of four activities {A0, A2, A3, A1} represents the following:

the robot picks up a part from M0, moves to M1, loads the part onto M1 (and leaves
it to be processed on that machine); moves to M2 and waits until the part on M2
has completed processing, unloads the part from M2, moves to M3, and loads it onto
M3; waits at M3 for the entirety of the part’s processing, unloads the part from M3,
moves to M4, and drops it there; moves to M1, waits until the part on M1 has been
processed, unloads it from M1, moves to M2, and loads it onto M2.

Note that the sequence of activities that describes the robot’s loaded moves also
completely determines its empty moves.

Since we are considering a bufferless robotic cell, not all sequences of activities
are feasible. For example, consider the sequence of activities

π = {A0, A2, A3, A1, A3, A2, A1, A0}.

Here, after the first execution of activity A3, machine M3 does not have a part on
it. At the second execution of activity A3, the robot attempts to unload a nonexistent
part from M3. In general, for an activity sequence to be feasible it should not instruct
the robot to load a machine which currently contains a part or to unload a machine
which does not have a part on it.

For any given feasible sequence of activities π = 〈Ai〉, we define the following.
Definitions. A schedule is a function S(Ai, t) that assigns a starting time to the

tth execution of activity Ai (i = 0, 1, . . . ,m; t ∈ N). The long run average throughput,
generally referred to as simply throughput, of S is equal to limt→∞

t
S(Am,t)

provided
the limit exists [14].

Obtaining a feasible infinite sequence of activities that maximizes throughput is
a fundamental problem of robotic cell scheduling. Such a sequence of robotic moves
is called optimal. Most of the theoretical studies of robotic cell models have focused
on a specific class of solutions, namely cyclic solutions (or cyclic schedules), in which
some particular sequence of activities is repeated cyclically. The primary reason for
the focus on cyclic schedules is their prevalence in industrial implementations: cyclic
schedules are easy to implement, analyze, and control and are therefore preferred by
practitioners. However, there is no result in the literature that shows dominance of
cyclic schedules, i.e., the sufficiency of considering only cyclic schedules to maximize
throughput over all possible schedules (cyclic and noncyclic). We show this dominance
result in section 4.

3. Cyclic Schedules. Cyclic production employs a repeatable sequence of activ-
ities. For example, {A0, A2, A4, A3, A1} is a sequence of activities that produces a
part in a four-machine cell. Such a sequence can be repeated, with each repetition
producing a single part. In general, since a part must be processed on all m machines
and then placed into the output station, m+1 different activities (exactly one of each
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of the m+1 activities A0, A1, . . . , Am) are required to produce a part. More precisely,
we have the following definition.

Definition. A k-unit activity sequence is a sequence of robot moves which loads
and unloads each machine exactly k times.

During cyclic operations, we can restate the definition of feasibility as follows: for
i = 1, . . . ,m − 1, between any two occurrences of Ai there must be exactly one Ai−1
and exactly one Ai+1. This condition implies that between any two instances of A0
there is exactly one A1, and between any two instances of Am there is exactly one
Am−1. Note that all 1-unit activity sequences are feasible.

An assumption in most studies is that the sequence of robot moves is active.
Definition. An activity sequence is called active if the robot always executes the

next operation, whatever that may be, as soon as possible.
For active sequences, all execution times for the robot’s actions (i.e., the schedule

S(Ai, t)) are uniquely determined once the sequence of activities and the initial state
are given. The robot’s only possible waiting period can occur at a machine at which
the robot has arrived to unload, but the machine has not completed processing its
current part. It is known that there is an active sequence which is optimal within the
class of 1-unit cycles [37].

Definition. A k-unit cycle is the performance of a feasible k-unit activity se-
quence in a way which leaves the cell in exactly the same state as its state at the
beginning of those moves.

We denote cycles by parentheses, e.g., (A0, A2, A4, A3, A1). For present purposes,
we can define a robotic cell’s state by the location of the robot and by which machines
currently contain a part. We provide a more rigorous definition of state in section 4.
Most studies do not require a rigorous statement of the cell’s state because they
consider only steady state operations, which we now define.

Definitions (see [14]). A robotic cell repeatedly executing a k-unit cycle π of robot
moves is operating in steady state if there exist constants T (π) and N such that for
every Ai, i = 0, . . . ,m, and for every t ∈ Z+ such that t > N , S(Ai, t+k)−S(Ai, t) =
T (π). The quantity T (π) is called the cycle time of π.

It has been shown [7] that, given a feasible initial state, repeating a k-unit activity
sequence will enable the robotic cell to reach a steady state (or cyclic solution) in
finite time. Therefore, in studies that maximize the long-run average throughput
(i.e., assume that the cells operate in steady state for an infinite time), there is no
contribution from the initial transient phase. Hence, there is no loss of generality by
studying only the steady state behavior.

The per unit cycle time of a k-unit cycle π is T (π)/k. This is the reciprocal of
the throughput and is easier to calculate directly. Therefore, rather than maximizing
throughput, studies generally focus on minimizing per unit cycle time.

In general, given a k-unit cycle, computing the cycle time is straightforward but
not immediate. We list the six possible 1-unit cycles for the 3-machine robotic cell
of Figure 1 and illustrate the computation of the cycle time for one of them. Let πj
denote the jth 1-unit cycle, j = 1, . . . , 6: π1 = {A0, A1, A2, A3}, π2 = {A0, A2, A1,
A3}, π3 = {A0, A1, A3, A2}, π4 = {A0, A3, A1, A2}, π5 = {A0, A2, A3, A1}, and
π6 = {A0, A3, A2, A1}. Note that πj is defined by a permutation of activities Ai,
i = 1, . . . ,m.

Example 2. Consider the activity sequence π5 = {A0, A2, A3, A1}. We describe
the computation of the cycle time T (π5) for constant travel-time cells, i.e., the travel
time between any two machines is a constant δ (see Figure 3). The robot picks up a
part from M0 (ε), moves to M1 (δ), loads the part on M1 (ε); moves to M2 (δ) and
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Fig. 3 Pictorial representation of the 1-unit cycle in Example 2.

waits until the part on M2 has completed processing (w2), unloads a part from M2 (ε),
moves to M3 (δ), and loads the part on M3 (ε); waits until the part on M3 has been
processed (p3), unloads the part from M3 (ε), moves to M4 (δ), and drops the part at
M4 (ε); moves to M1 (δ), waits until the part on M1 has been processed (w1), unloads
a part from M1 (ε), moves to M2 (δ), and loads it onto M2 (ε), then returns to M0 (δ).

The cycle time expression T (π5) can be derived as follows:

T (π5) = ε+ δ + ε+ δ + w2 + ε+ δ + ε+ p3 + ε+ δ + ε+ δ + w1 + ε+ δ + ε+ δ

= 7δ + 8ε+ p3 + w1 + w2,

where w1 = max{0, p1 − w2 − p3 − 4δ − 4ε} and w2 = max{0, p2 − 3δ − 2ε}. By
substituting w1 and w2 into T (π5), we get T (π5) = max{7δ+8ε+p3, 3δ+4ε+p1, 4δ+
6ε + p2 + p3}. The cycle times for the 1-unit cycles π1, π2, π3, π4, and π6 can be
computed similarly.

Sethi et al. [35] showed that there are exactly m! 1-unit cycles for an m-machine
robotic cell. Brauner [4] described an algorithm to generate all k-unit cycles in an
m-machine robotic cell. Since the number of distinct k-unit cycles grows rapidly, both
with k and m (see, e.g., [8]), obtaining the optimal cyclic solution by explicit enumer-
ation is impractical. That the maximum throughput rate over all cyclic solutions is
obtained by repeatedly executing an optimal 1-unit cycle has been proven for additive
travel-time cells for m = 2 [35] and for m = 3 [6, 15]. In fact, for m = 2, the optimality
of 1-unit cyclic solutions has been shown over all solutions, cyclic and noncyclic [35].
For m = 4, Brauner and Finke [5, 7] have constructed problem instances in which the
throughput of a 2-unit cycle is better than that of an optimal 1-unit cycle.

Using similar ideas, it can be shown that for constant travel-time cells, repeating
an optimal 1-unit cycle provides the best throughput among all cyclic solutions for
m = 2 and m = 3. However, for m = 4, there are instances in which the throughput of
a 2-unit cycle in such cells is better than that of an optimal 1-unit cycle. We provide
an example in section 5.

4. Operating Policies and Dominance of Cyclic Solutions. We now show that
under the assumption of rational (or, equivalently, integer) data, it is sufficient to
consider the class of cyclic schedules to maximize throughput over all schedules. To
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do so, we analyze the operations of a robotic cell as a sequence of states, rather than
as a sequence of activities.

To define a general operating sequence for the cell, we first discuss a notion of the
state of the cell.

Definition. The state of a robotic cell is specified by the following data:
• the occupancy state of each machine, that is, whether a machine contains a
part or it is empty;
• if a machine contains a part, then the time remaining on its current process-
ing;
• the location of the robot;
• the occupancy state of the robot, that is, whether the robot arm has a part or
not.

Before we formalize the state space, note that since we are interested in max-
imizing the throughput of the cell, it is not necessary to consider “wasteful” robot
activities such as unnecessary waiting at a location or moving to a location without
performing at least one of the loading or unloading operations. Also, since this is a
deterministic problem, it is sufficient to define decisions regarding the robot’s moves
only at those epochs when the robot has just finished loading or unloading a part at
a machine. It follows that it is sufficient to consider the state only at these epochs.1

Thus, we can represent the state of the cell by the (m+1)-tuple S = (s1, . . . , sm+1),
where si ∈ {−1, ri}, i ∈ M . If si = −1, machine Mi has no part on it; otherwise ri
is the time remaining in the processing of the current part on Mi. sm+1 ∈ {Ai, i =
0, . . . ,m} denotes that the robot has just completed activity Ai (i.e., loaded a part
onto machine Mi+1). For example, if m = 4, we could have S = (5, 0,−1, p4, A3): the
part on M1 has five time units of processing remaining, M2 has completed processing
a part and that part still resides on M2, and M3 is empty. The robot has unloaded a
part from M3, carried it to M4, and just completed loading it onto M4.

There is another important observation to be made here. Note that even with
integer data, the remaining processing times are in general real numbers. However,
since we need to consider the system state only at the epochs mentioned above, the
state description will be integral, provided the initial state of the system is restricted
to be in integer terms. This restriction can be imposed without loss of generality since
some initial adjustments can be made at the beginning to bring the state to integral
terms, and the time taken to make these adjustments is of no consequence in the
context of the long-term average throughput criterion. Thus, in any state description
S = (s1, . . . , sm+1), si ∈ {−1, ri}, we have ri ∈ {k ∈ Z : 0 ≤ k ≤ pi} ∀i. We thus have
a finite-state dynamic system. Let S denote the set of all possible state descriptions.
For a given cell, we can trivially state the total number of distinct state descriptions in
S. Each si, i = 1, . . . ,m, has pi + 2 possible values and sm+1 has (m+ 1). Therefore,
(m+ 1)

∏m
i=1(pi + 2) is the number of all possible state descriptions.

Note that not all state descriptions, as defined above, denote feasible states.
For example, for a 4-machine cell, the description S = (∗,−1,−1, ∗, A2) (where “*”
represents any value for the corresponding entry) represents an infeasible state: the
robot has just loaded a part onto M3, so M3 cannot be empty. To compute a tighter
bound on the number of feasible states, we make the following observations:

1In the stochastic setting, say, when the processing times are random variables, a throughput
maximizing operation may require the robot arm to change its traversal path while the robot is in
transition, when new information becomes available. To allow for this, a continuous state space and
continuous decision making over time would be required.
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(i) for i = 1, 2, 3, . . . ,m− 1, if sm+1 = Ai, then si+1 = pi+1 and si = −1;
(ii) if sm+1 = A0, then s1 = p1;
(iii) if sm+1 = Am, then sm = −1.

Each state description satisfying the conditions above represents a feasible state. Let
F denote the set of all feasible states. It is easy to see that the total number of feasible
states is bounded as follows:

|F| ≤
m−1∑

i=1

m∏

j=1
j �∈{i,i+1}

(pj + 2) +
m∏

j=2

(pj + 2) +
m−1∏

j=1

(pj + 2).

We are now ready to define an operating sequence. From here on, we will use the
word state to mean a feasible state.

Definition. An operating sequence for the cell is an infinite sequence of succes-
sive states resulting from feasible operations of the cell starting from an initial state.

It is important to note that not every infinite sequence of states is feasible. For
example, the state S1 = (5, 0,−1, p4, A3) followed by S2 = (5, 0,−1, 0, A4) results in
an infeasible sequence if p4 + ε4 + δ45 + ε5 > 0: since S2 is the next state of the cell
after state S1, after the robot loads a part onto machine M4 (state S1), it waits at
that machine for the entire duration while M4 is processing the part. The robot then
unloads the part from M4 and loads it onto M5. However, since machine M1 is busy
processing its part during this time, at the instant the robot finishes loading machine
M5 (state S2), the processing time remaining on M1 is max{0, 5−p4−ε4−δ45−ε5} < 5.

Definition. A policy for the cell is a function d : F → F such that there exists a
state S ∈ F for which the infinite sequence T (d, S) ≡ {S, d(S), d2(S), . . . , dn(S), . . .}
is an operating sequence.

Lemma 1. For any robotic cell, there exists a throughput maximizing operating
sequence which can be generated by a policy.

Proof. Consider an optimal operating sequence, say, Σ, and suppose that there
exists no policy that can generate it. Then, for some state S, the action taken by Σ
is different at two (or more) instances when the cell is in state S. Without loss of
generality, we can assume that state S occurs in Σ infinitely often, for if the number
of occurrences of a state is finite, the segment of Σ up to the last instance of that
state can be deleted without affecting its long-term throughput.

Call the average number of finished parts produced per unit of time for the seg-
ments of Σ between two successive occurrences of S the segment-throughput. If all
of the segment-throughputs are equal, we can replace each of these segments by any
one segment and maintain the throughput of Σ. Otherwise, replacing a segment hav-
ing a smaller value of segment-throughput with one having a larger value contradicts
the optimality of Σ. Thus, there exists a throughput maximizing operating sequence
which can be generated by a policy.

Given that the cell is currently in state S ∈ F , the functional image d(S) of a
policy d completely specifies the transition to the next state, and thus completely
defines the robot’s action. Together, a policy d and an initial state S0 ∈ F generate
a unique operating sequence {S0, d(S0), d2(S0), . . . , dn(S0), . . .}. We would like to
emphasize that an initial state is required to specify an operating sequence generated
by a policy. To illustrate, suppose F = {S1, S2, . . . , S6} and d is defined as follows:
d(Si) = Si+1, i = 1, 2, 4, 5; d(S3) = S1, d(S6) = S4. If the initial state is S1, we
obtain the sequence {S1, S2, S3, S1, S2, S3, . . .}. If the initial state is S4, we obtain
{S4, S5, S6, S4, S5, S6, . . .}.
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Let ρ(d, S) be the throughput of the operating sequence T (d, S). The maximum
throughput, ρ(d), obtainable from a policy d is then maxS∈F{ρ(d, S) : T (d, S) is an
operating sequence}. Note that the maximum exists since |F| is finite. The maximum
throughput of the cell is obtained by maximizing ρ(d) over all policies d. Since a
policy is a function with domain and range on the finite set F , the total number of
distinct policies is at most |F||F|. Moreover, since an operating sequence is completely
specified by a policy and an initial state, the total number of operating sequences is
at most |F|(|F|+1). We record these observations below.

Lemma 2. The total number of policies is at most |F||F|. The total number of
operating sequences is at most |F|(|F|+1).

The finiteness of F implies that the infinite sequence of states resulting from
any policy is a repeating sequence. Consequently, the sequence of robot actions is a
repeating sequence. Every policy repeats a minimal sequence of robot moves. The
minimal sequence is a state-preserving sequence: the state of the cell at the beginning
is identical to the state of the cell at the end of the sequence. We therefore refer to
a sequence resulting from a policy as a cyclic sequence. The discussion above and
Lemma 1 yield the following result.

Theorem 3. There exists a cyclic sequence of robot moves which maximizes
long-term throughput of the robotic cell.

It is therefore sufficient to optimize over the class of cyclic sequences. This result
provides a sound basis for the widely used industry practice of specifying the operation
of a robotic cell via cyclic sequences.

5. Fundamental Open Problems. In the previous section, we derived an upper
bound on the cardinality of the set of feasible states F . Note that, by definition, a
k-unit cycle has k(m+ 1) distinct states (or k(m+ 1) activities in the terminology of
section 3). It follows that an upper bound on the number of parts produced by any
throughput maximizing cycle is

η =
|F|

(m+ 1)
.

Let Ck, k = 1, . . . , η, denote the class of all k-unit cycles. Then the k-unit cycle
C∗k with T (C∗k) = minCk∈Ck T (Ck) can be executed indefinitely to obtain a k-unit
cyclic solution with maximum throughput. A cyclic solution with cycle time T (C∗) =
mink=1,...,η T (C∗k) then maximizes the throughput over all cyclic solutions.

Thus, from an algorithmic point of view, the following problems become relevant:
1. Problems k-OPT. For additive (resp., constant, Euclidean) travel-time cells,

provide algorithms to find an optimal k-unit cycle for a given k, 1 ≤ k ≤ η.
2. Problem OPT. For additive (resp., constant, Euclidean) travel-time cells, pro-

vide an algorithm to find an optimal k-unit cycle over all k, 1 ≤ k ≤ η.
First, we would like to emphasize the need for efficient and practicable algorithms

for solving these problems. Since the number of cyclic solutions is finite, a complete
enumeration of such solutions (or any other method that requires enumerating a pro-
hibitively large search space) will provide a valid answer to these problems; however,
such methods do not provide a satisfactory resolution as they cannot be implemented
in practice within reasonable time. In terms of computational complexity theory [18],
we either want to obtain a polynomial-time algorithm for a problem or show that it is
NP-hard. While demonstrating that a problem is NP-hard does not completely rule
out practicable solution methods for solving it to optimality, the use of heuristics to
obtain approximate solutions becomes much more acceptable in such a case.
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Second, note that the most significant among these problems is Problem OPT,
the problem of obtaining a cyclic schedule with maximum throughput. While solving
Problems k-OPT, k = 1, 2, . . . , η, automatically solves Problem OPT, it may not be
necessary to do so. In fact, as we mention below, for all the special cases in which
problem OPT has been solved, the result follows without analyzing the individual
problems k-OPT, k = 1, 2, . . . , η. Over the past decade, a significant amount of
research in the scheduling of robotic cells has, directly or indirectly, focused on an-
swering these two problems. We now discuss the results available for these problems
and our attempts at solving the unresolved questions.

For the three classes of robotic cells discussed in section 1, Problem k-OPT has
been resolved for k = 1. For additive travel-time cells, Crama and van de Klundert
[14] used dynamic programming to obtain a polynomial-time algorithm for an optimal
1-unit cycle. For constant travel-time cells, Dawande et al. [17] proposed a polynomial-
time algorithm that repeatedly uses a solution of the shortest path problem in directed
acyclic graphs within a binary search procedure. Brauner, Finke, and Kubiak [9]
showed that the problem of finding an optimal 1-unit cycle in Euclidean travel-time
cells is NP-hard in the strong sense.

No algorithmic results are available for Problems k-OPT, k ≥ 2. However, we do
know that these problems are relevant since examples showing that the throughput
of an optimal 2-unit cycle is strictly better than the throughput of the optimal 1-unit
cycle have been demonstrated. In other words, there exist instances of cells in which
T (C∗2 ) < T (C∗1 ). For additive travel-time cells, Brauner and Finke [5, 7] showed such
instances. For constant travel-time cells, since no examples have been published, we
provide the following.

Example 3. Consider a 4-machine robotic cell where the processing times of
machines Mi, i = 1, . . . , 4, are 21, 3, 1, and 23, respectively. Let δ = 4 and ε = 0. The
optimal 2-unit cycle is

C∗2 = (A0, A4, A3, A1, A0, A4, A2, A3, A1, A2)

with a per unit cycle time of 39.5, while an optimal 1-unit cycle is C∗1 = (A0, A4, A3, A2,
A1) with a cycle time of 40. The optimality of C∗1 and C∗2 is verified by evaluating
the cycle times of all 1-unit and 2-unit cycles, respectively.

For Problem OPT, two different types of results are available: (i) those that solve
the problem under specific conditions on the problem data, and (ii) those that provide
a bound on the optimal throughput in terms of the throughput of an optimal 1-unit
cycle.

As discussed in section 2, the problem data consists of the number of machines
and their processing times, the intermachine travel times for the robot, and the time
required to load (resp., unload) a part onto (resp., from) a machine. Under different
conditions on the problem data, several results use the following two-step procedure
to solve Problem OPT.

1. Obtain an upper bound on the maximum throughput over all cyclic solutions.
For a k-unit cycle Ck, this is typically done by estimating a lower bound on
the per-unit cycle time, T (Ck)

k . Here, the analysis uses quantities such as
the minimum number of robot moves involved, the number of loadings and
unloadings, and the minimum processing time required.

2. Provide a specific cyclic solution that achieves the upper bound (derived in
step 1 above) on the throughput, thus establishing its optimality.
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For an example of a 1-unit cycle that is known to be optimal over all k-unit cycles
under certain conditions, consider the reverse cycle in an m-machine cell: πD =
(A0, Am, Am−1, . . . , A1). To perform πD, the robot unloads a part from the input
station (M0), carries it to M1, and loads M1. It then travels to Mm, unloads Mm,
and carries that part to the output station (Mm+1). It repeats this sequence for
i = m− 1,m− 2, . . . , 1: travel to Mi, unload Mi, carry the part to Mi+1, load Mi+1.
After loading M2 (which completes activity A1), the robot completes the cycle by
traveling to the input station (M0). At each machine, before unloading a part from
it, the robot may have to wait for that machine to complete processing.

The following results detail the circumstances under which repeating the 1-unit
cycle indefinitely is an optimal cyclic solution.

Theorem 4 (see [16]). Cycle πD is optimal in a Euclidean travel-time cell if

max
1≤i≤m

{pi + δi,i+1 + δi+1,i−1 + δi−1,i + 4ε} ≥ 2(m+ 1)ε+
m∑

i=0

δi,i+1 +
m+1∑

i=2

δi,i−2 + δ1,m.

Corollary 5 (see [17]). Cycle πD is optimal in a constant travel-time cell if
max1≤i≤m pi + 3δ + 4ε ≥ 2(m+ 1)(δ + ε).

Corollary 6 (see [14]). Cycle πD is optimal in an additive travel-time cell in
which δi = δ and εi = ε ∀i if max1≤i≤m pi + 4δ + 4ε ≥ 4mδ + 2(m+ 1)ε.

Theorem 7 (see [17]). πD is optimal in a constant travel-time cell if pi ≥ δ ∀i.
Theorem 8 (see [16]). πD is optimal in an additive travel-time cell in which

δi = δ and εi = ε ∀i if

pi + pi+1 ≥ (4m− 6)δ + 2(m− 2)ε, i = 1, . . . ,m− 1.

The second type of result for Problem OPT estimates the gap between the
throughputs of the optimal cyclic solution and the optimal 1-unit cyclic solution.
There are at least two reasons that motivate the estimation of this gap. (i) On the
one hand, if the gap is very small, it can be used to devise new search methods that
start with the optimal 1-unit solution and seek to improve its throughput by local
search. Here, the hope is that the small gap can be closed by a structured, limited
search and thus result in an efficient algorithm. On the other hand, a large gap indi-
cates that fundamentally new methods (from those employed for finding an optimal
1-unit cycle) are likely to be required to obtain an optimal cyclic solution. (ii) Ad-
ditionally, the gap is useful to assess the benefit of the optimal cyclic solution over
that of an optimal 1-unit cyclic solution. This can be significant insight, especially
in practice. For additive cells, Crama and van de Klundert [14] showed that the
throughput of an optimal 1-unit cycle is at least 1

2 that of an optimal cyclic solution.
Geismar, Dawande, and Sriskandarajah [20] improved this ratio to 2

3 . For constant
(resp., Euclidean) cells, the best known ratio is 2

3 (resp., 1
4 ) [20]. Clearly, these ratios

are too weak to pursue the local search strategy mentioned in (i) above. However,
it is important to note that none of these ratios has been shown to be tight; i.e., for
none of the classes of cells has it been shown that the above bounds are the largest
possible for the ratio of the throughput of an optimal 1-unit cycle to the throughput
of an optimal cyclic solution. Thus, the precise estimation of the gap remains open
for the various classes of cells.

Another direction that we have attempted to explore is that of using mathematical
programming formulations. Here, the idea is to express the problem of maximizing
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throughput of a cyclic solution as either a linear program or an efficient integer linear
program (e.g., one in which the constraint matrix is totally unimodular [31]). For
a given k-unit cyclic solution, the computation of its cycle time (and, hence, its
throughput) can indeed be expressed as a linear program [21, 28]. However, our
attempts to formulate the problem of searching over all k-unit cyclic solutions have
been unsuccessful so far.

We conclude this paper by mentioning two other problems that have not been
addressed in the literature but might be helpful in understanding the structure of
cyclic solutions in robotic cells.

It is not known whether the maximum throughput of a cell over the class of k-
unit cycles is an increasing function of k, k ≥ 1. For example, it is not known if the
maximum throughput over all 3-unit cycles is at least as large as that over all 2-unit
cycles. Indeed, nothing is known about the behavior of the maximum throughput
with respect to k. However, if we define Problem ≤k-OPT as that of determining
a throughput maximizing cyclic solution over all l-unit cycles, 1 ≤ l ≤ k, then it
follows immediately that the throughput of an optimal solution of ≤k-OPT is a weakly
increasing function of k. However, there are no results on the rate of change of this
increase. For instance, if the increase is decreasing in k (i.e., diminishing marginal
increase), it might be reasonable to expect that Problem OPT attains its optimal
solution at a relatively small (as compared to η) value of k.

The dominance of cyclic solutions and most of the algorithmic results for robotic
cells assume that all cell data are rational. This is a reasonable assumption in practice
and greatly reduces the state space of the cell. Results for arbitrary real data, while
not necessary for practical applications, seem to be much more challenging mathe-
matically, and none are available in the literature.
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