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Setting Parameters by Example

David Eppsteirt

Abstract

We introduce a class of “inverse parametric optimizatiorsigpems, in which one is given both a
parametric optimization problem and a desired optimaltgmiy the task is to determine parameter val-
ues that lead to the given solution. We describe algorithmnsélving such problems for minimum
spanning trees, shortest paths, and other “optimal subgmpblems, and discuss applications in mul-
ticast routing, vehicle path planning, resource alloggtand board game programming.

1 Introduction

Many cars now come equipped with route planning softwarestiggests a path from the current location to
a desired destination. Similar services are also availablbe internet (e.g., from http://maps.yahoo.¢om/).
But although these routes may be found by computing shqugghs in a graph representing the local road
system, the “distance” may be a weighted sum of several satheer than actual mileage: expected travel
time, scenic value, number of turns, tolls, efc] [19]. Digiet drivers may have different preferences among
these values, and may not be able to clearly articulate theferences. Can we automatically infer the
appropriate weights to use in the sum by observing the rageslly chosen by a driver?

More abstractly, we define dnverse parametric optimizatioproblem as follows: we are given as in-
put both aparametric optimizatiorproblem (that is, a combinatorial optimization problemtsas shortest
paths, but with the element weights being linear combinagtiof certain parameters rather than fixed num-
bers), and also a desired optimal solution for the prolfle@ur task is to determine parameter values such
that the given solution is optimal for those values.

Along with the path planning problem described above, omeficel many other applications in which
one must tune the parameters to an optimization problem:

e In many online services such as web page hosting, data isirsenstar topology from a central
server to each user. But in multicast routing of video an@ioktigh-bandwidth information, network
resources are conserved by sending the data along the efdgédsee, in which some users receive
copies of the data from other users rather than from theaesgrver. Natural measures of the quality
of each edge in this routing tree include the edge’s bandivictingestion, delay, packet loss, and
possibly monetary charges for use of that link. Since ondindmminimum spanning trees efficiently
in the distributed settind]8], it is natural to try to modeis routing problem using minimum spanning
trees. Given one or more networks with these parametersxardples of desired routing trees, how
can we set the weights of each quality measure so that theedestes are the minimum spanning
trees of their networks?
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e Bipartite matching, or thassignment problems a common formalism for grouping indivisible re-
sources with resource consumers. For instance, the finst@gayiven for matching by Ahuja et af] [2]
is to assign recently hired workers to jobs, using weightelan such values as aptitude test scores
and college grades. One might set the weight of an edge frorkewito jobj to bea; - pj, whereg;
is the (known) set of aptitudes of the worker, gids the (unknown) set of parameters describing the
combination of aptitudes best fitting the job. Again, it isural to ask for a way to automatically set
the parameters of each job, based on experience assigmvigymsly hired workers to those jobs.

e Many board games, such as chess, checkers, or Othello, galaymal well by programs based on
relatively simple alpha-beta searching algorithms. Hawvethese programs use relatively complex
evaluation functions in which the evaluation of a given posican be the sum of hundreds or thou-
sands of terms. Some of these terms may represent the grésgambalance of a game (e.g., in
chess, one usually normalizes the score so that a pawn ik Waaint, while a knight may be worth
2.5-3 points) while others represent more subtle featurgiece placement, king safety, advanced
pawns, etc. The weight of each of these terms may be indilWdadjusted in order to improve the
quality of play. Although there have been some preliminaqyegiments in using evolutionary learn-
ing techniques to tune these weigHts| [21], they are cuyrerstlially set by hand. The true test of a
game program is in actual play, but programs are also oftegttby usingest suiteslarge collections
of positions for which the correct move is known. If we areegiva test suite, can we automatically
set evaluation weights in such a way that a shallow alpha-$edrch can find each correct move?

1.1 New Results

We show the following theoretical results:

e For the inverse parametric minimum spanning tree problerid case that the number of parameters
is a fixed constant, we provide a randomized algorithm witlkedr expected running time, and a
deterministic algorithm with worst case running ti|®(amlog2 n).

e For the minimum spanning tree, shortest path, matchingp#mer “optimal subgraph” problems for
which the optimization problem can be solved in polynomiiakt, we show that the inverse optimiza-
tion problem can also be solved in polynomial time by meanthefellipsoid method from linear
programming, even when the number of parameters is large.

In addition, although we do not provide theoretical resfdtghis case, we discuss the game tree search
problem and describe how to fit it into the same inverse patracraptimization framework.

In cases where the initial problem is infeasible (there ispacameter setting leading to the desired
optimum), our techniques provide a witness for infeadipila small number of alternative solutions, one of
which must be better than the given solution for any paransetiting. One can then examine these solutions
to determine whether the initial solution is suboptimal drether additional parameters should be added to
better model the users’ utility functions.

1.2 Relation to Previous Work

Although there has been considerable work on parametrgiores of optimization problems such as min-
imum spanning treeq][1] and shortest path$ [23], we are nateawf any prior work in inverting such
problems to produce parameter values that match giveni@mutOne could compute the set of solutions
available over the range of parameter values, and compese #olutions to the given one, but the number
of different solutions would typically grow exponentiallyith the number of parameters.



The inverse parametric optimization problems consider@ lare most closely related parametric
search which describes a general class of problems in which osdlseparameters of a parametric problem
in order to optimize some criterion. However in most appiaress of parametric search, the criterion being
optimized is a numeric function of the solution (e.g. theéoréietween two linear weights) rather than the
solution structure itself. Megiddd [[L6] describes a veryeal technique for solving parametric search
problems, in which one simulates the steps of an optimimalgorithm, at each conditional step using the
algorithm itself as an oracle to determine which conditidiranch to take. However this technique does
not seem to apply to our problems, because the given optimaltsre (e.g. a single shortest path) does not
give enough information to deduce the conditional branébk®~ved by a shortest path algorithm.

The vehicle routing problem discussed in the introducti@s mtroduced by Rogers and Langlgy][19].
However, they used a weaker model of optimization (a hithbing procedure) and a stronger model of
user interaction requiring the user to specify preferemta@ssequence of choices between pairs of routes.

2 Minimum Spanning Trees

In this section, we consider thieverse parametric minimum spanning tree prohlémwhich we are given
a fixed treeT in a network in which the weight of each edgés a linear functionw(e) = ce - p (Wherep
represents the unknown vector of parameter settingsarapresents the known value of edgaccording
to each parameter). Our task is to find a valug stich thafl is the unique minimum spanning tree for the
weightsw(e).

If we fix a given spanning tre€ in a network, a pair of edgee, f) is defined to be awapif TU{f } —{e}
is also a spanning tree; that isgifs an edge irT, f is not an edge i, ande belongs to the cycle induced
in T by f. T is the unique minimum spanning tree if and only if for everyapwe, f), the weight off is
greater than the weight ef

Thus we can solve the inverse parametric minimum spannéegaroblem as a linear program, in which
we have one variable per parameter, and one consfgintce) - p > 0 per swap. If the number of variables
is a fixed constant, a linear program may be solved in timatiirethe number of constraints J17]; however
here the number of constraints may®emn).

We show how to improve this by a randomized algorithm whidtesalinear time and a deterministic
algorithm which takes timé\)(mlog2 n). Both algorithms are based on (different) random samplihges
for low dimensional linear programming, due to Clarksfgn [3]

2.1 Randomized Spanning Tree Algorithm

Clarkson [B] showed that, if one randomly samptesonstraints from a-dimensional linear program with
n constraints, and computes the optimum for the subprogramisting only of the sampled constraints,
then the expected number of the remaining constraintsteidlay this optimum is at most(n— k) /(k+ 1).
Further, if any constraint is violated, at least one of dheonstraints involved in anlgase(minimal subset
of constraints having the same solution as the overall propbelongs to the set of violated constraints. If
no constraint is violated, the problem is solved.

This suggests the following randomized algorithm for theemse parametric minimum spanning tree
problem, wherel = O(1) is a fixed constant. We definepatential swagor the given tre€T to be a pair
(e,f) wheree belongs toT andf does not, regardless of whethe f) is actually a swap. For technical
reasons, we need to define a unique optimal parameter sptfimgany subset of constraints, which we
achieve by introducing an arbitrary linear objective fumat



Figure 1. (a) A weighted tre€; (b) Auxiliary tree used to find heaviest edges on pathB.in

1. Let setSbe initialized to empty.
2. Repeat times:

(a) Let setRbe a random sample df,/mnpotential swaps.
(b) Find the optimal parameter settipgor constraints frorRU S,
(c) Add the constraints violated lp/to S.

3. Find the optimal parameter settipdor constraints frons.

Each iteration increases the size of the intersectio8 with the optimal base, so the loop terminates
with a correct solution. The expected number of edges add&lirt each iteration i€O(,/mn), so the
expected size dbis O(dy/mn) = O(m). If d = O(1), the step in which we fing can be performed in time
O(dy/mn) = O(m) by fixed dimensional linear programming techniques. It neasi¢o determine how we
tell whether a potential swa(e, f) is really a swap (so we can determine whether to use it as &raomor
ignore it in step (b)), and how to find the set of violated coaists (step (c)).

To test a potential swap, we simply build a least common dacesta structureg[J20] on the given tree
T (with an arbitrary choice of root). The pdie, f) is a swap if both endpoints efare on the path from one
of the endpoints of to the common ancestor of the two endpoints.

To find the violated constraints f@, we also use least common ancestors, on an auxiliary tregischw
internal nodes represent edges and leaves represenesestit (Figure[1). We build this auxiliary tree by
choosing the root to be the maximum weight eédaccording tq) in T, with the two children of the root
being auxiliary trees constructed recursively on the tmmpgonents oflf — {e}. This construction takes
time O(nlogn). The least common ancestor of two leaves in this auxiliagg tlepresents the maximum
weight edge on the path between the corresponding vertfc€s Bherefore, iff is a given non-tree edge,
we can find a swaype, f) giving a violated constraint (if one exists) by using thixiéiary tree to find the
maximum weight edge on the path betwd&nhendpoints. If this gives us a violated swap, we continue
recursively on the subpaths betwedeand the endpoints o, until all swaps involvingf have been listed.
Each swap is found i©(1) time, and the expected number of swaps corresponding tatetkonstraints
is O(y/mn), so the total expected time for this procedure (includirgtiime to construct the auxiliary tree)
is O(m+ nlogn).



Lemma 1. We can solve the inverse parametric minimum spanning tr@g¢mn, for any constant number
of parameters, in randomized expected tim@Q- nlogn).

In order to remove the unnecessary logarithmic factor frbim bound, we resort to another round of
sampling. However this time we sample tree edges rathersivaps.

Lemma 2. Let S be a randomly chosen sample of k edges from tree T, leh @daand tree T be formed
from G and T respectively by contracting the edges in $, and lefp be the optimal parameter setting for
the inverse parametric minimum spanning tree problem defiryeG and T. Then the expected number of
the remaining edges of T that take part in a constraint vy this optimum is at mostri-k—1) /(k+1).

Proof: Consider selecting in the following way: choose a random permutation on the edgd’, and

let Sbe the firsk edges in the permutation. Lebe the(k + 1)st edge in the permutation. Then sireis
equally likely to be any remaining edge, the expected nurobedges that take part in a violated constraint
is justn — d — 1 times the probability thas takes part in a violated constraint. But this can only hagpen
e is one of the at modl edges involved in the optimal base 81U {e}. Since this subset is just the first
k + 1 edges in the permutation, and any permutation of this subszjually likely, this probability is at
mostd/(k+1). O

Thus we can apply the following algorithm:

1. Let setSbe initialized to empty.
2. Repeat times:

(a) LetsetRbe arandom sample df/n edges ofT.

(b) Contract the edges ih— (RU S) to produceT’ andG'.

(c) Find the optimal parameter settipgor T’ andG’ using the algorithm of Lemmg 1.
(d) Add toSthe tree edges that take part in a constraint violated.by

3. Contract the edges iIh— Sto producel’ andG'.

4. Find the optimal parameter settipgor T’ andG’ using the algorithm of Lemn{3 1.

The arguments for termination and correctness are the ssbefare. It remains to explain how we find
the set of violated tree edges. This can be done in @frea(m, n)) by an algorithm of Tarjan[[22], but
using this algorithm directly would lead to a nonlinear @letime bound. More recent minimum spanning
tree verification algorithmgJ4, 1.3] can be used to find thdatexl non-tree edges, but not the tree edges.
However, in our case we can perform this verification taskieffitly due to the expected small number of
differences betweem and the minimum spanning tree fpr

Lemma 3. In the algorithm above, the tree edges that take part in aatéml constraint can be found in
expected linear time.

Proof: We use the linear time randomized minimum spanning treeiéthgo of Karger et al.[[1]1], and let
X denote the set of edges that are in the MST and nbt iote thatX has exactly as many edges as ar€ in
and not in the MST; since each edge in the latter set takesnpastiolated swap constraint, the expectation
of |X| is O(y/n) by Lemma[P. Then it is easy to see that, if tree eelggkes part in any violated constraints,
at least one must be the constraint corresponding to $e/&p, wheref is the minimum weight edge X
forming a swap witte.



Figure 2. (a) Restricted partition of order 2; (b) multi-d¢dpartition.

To find this minimum weight swap for each tree edge, we cohifaas follows. WhileT has a degree-
one vertex that is not adjacent to any edg&Xjrwe remove it and its incident edge; that edge can not take
part in any swaps witi. While T has a degree-two vertex that is not adjacent to any edgewre remove
it and merge its two incident edges into a single edge; thesetiges share the same minimum swap edge.

After this contraction process, the contracted ffebasO(|X|) vertices with degree less than three, and
thereforeO(|X|) total vertices. We apply Tarjan’s nonlinear minimum spagrtree verification algorithm
to this contracted tree to find the best swapifor each contracted tree edge. We then undo the contraction
process and propagate the best swap information to thenatigee edges. Finally, once we have computed
the best swape, f) for each tree edge we simply computev(e) andw(f) and compare the two weights to
determine whether this swap leads to a violated constraint.

Theorem 1. We can solve the inverse parametric minimum spanning taagm, for any constant number
of parameters, in randomized linear expected time.

Proof: The problem is solved by the algorithm above. In each itenatthe expected size of the set added
to Sis O(v/n), so the total size dRU Sis O(dy/n) = O(y/n). In each iteration we add one more member of
the optimal base t&, so the algorithm terminates with the correct solution. $teps in which we find the
optimal parameter setting fa’ andG’ can be performed by applying Lemrfja 1; sifiéehasO(,/n) edges,
the time for these steps @(m+ y/nlogn) = O(m). The step in which we find the edges that take part in a
violated constraint can be performed in linear expectee timLemmd]3.0

2.2 Deterministic Spanning Tree Algorithm

To solve the inverse parametric minimum spanning tree proldeterministically, we derandomize a differ-
ent sampling technique also based on a method of Clarkkomif8jever, as in our randomized algorithm,
we modify this technique somewhat by sampling edges insiéadnstraints.

We begin by applying thenulti-level restricted partitiortechnique of Fredericksoffi] [B], 7] to the given
treeT.

By introducing dummy edges, we can assume without loss aérgdity thatT is binary and that the
roott of T has indegree one. These dummy edges will only be used to fermpartition and will not take
part in the eventual optimization procedure.

Definition 1. A restricted partition of order z with respect to a rooted dnip tree T is a partition of the
vertices of V such that:



1. Each set in the partition contains at most z vertices.
2. Each set in the partition induces a connected subtree of T.

3. For each set S in the patrtition, if S contains more than cerex, then there are at most two tree
edges having one endpoint in S.

4. No two sets can be combined and still satisfy the otheritiond.

Such a partition (foz = 2) is depicted in Figurf] 2(a). In general such a partition easily be found
in linear time by merging sets until we get stuck. Alternalyy by working bottom up we can find an
optimal partition in linear time. We will defer until latehoosing a value for, for now we leave it as a free
parameter.

Lemma 4 (Frederickson[]7]) Any order-z partition of a binary tree T has(@)/z) sets in the partition. For
z= 2 we can find a partition with at mo&n/6 sets.

Contracting each set in a restricted partition gives againary tree. We form anulti-level partition[[]]
by recursively partitioning this contracted binary tree(fe[2(b)).

We now use these partitions to construct al$etf paths inT. We include inII the path inT between
any two vertices that are in the same set at some level of ttitigga Note that, although the vertices at
higher levels of the partition correspond to contractedregs ofT, the path inT between two such subtrees
can still be unambiguously defined.

Lemma 5. The set of paths defined above has the following properties:
e There are @nz) paths.
e Each edge in T belongs to(& log, n) paths.

e Any path in T can be decomposed into the disjoint union@g)n) paths.

Proof: The first property follows immediately from Lemrph 4, sinceleaet of the partition contributes
O(Z) paths, there ar®(n/z) sets at the bottom level of the partition, and the number tsf decreases at
least geometrically at each level. Similarly, the secoraperty follows, since an edge can belong)(zz)
paths per level and there ap¢log, n) levels.

Finally, to prove the third property, Igtbe an arbitrary path iff. We describe a procedure for decom-
posingp into few pathst; € I1. More generally, suppose we have a pattontained in a sé8at some level
of a multi-level decomposition (note that the whole trednis $et at the highest level of the partition). Then
Scan be decomposed into at masets at the next level of the partitiophas endpoints in at most two of
these sets, and may pass completely through some othefketgfore p can be decomposed into the union
of two smaller paths in the sets containing its endpointgetieer with a single path, connecting those two
sets. By repeating this decomposition recursively at eewdl bf the tree, we obtain a decomposition into
at most two paths per level, @(log, n) paths overall.O

We now describe how to use this path decomposition in ourgeveptimization problem. For each path
m € 11, let A; denote the set of edges Tnbelonging torj, and letB; denote the set of edges@— T such
that; is part of the decomposition of the tree path between eack’sdgdpoints. The total size of all the
setsAj andB; is O((m+ nZ)log, n), and all sets can be constructed in time linear in their iz,

Apair (e f) is aswap if and only if there is sonedor whiche € A; andf € B;. With this decomposition,
the inverse parametric minimum spanning tree problem besaquivalent to asking for a paramegtesuch
that, for each, the weight of every member &4 is less than the weight of every membeBpf
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Figure 3. Example-net, fore = 1/2: every vertical line segment that crosses/2 lines in the overall arrangement
also crosses at least one of the two heavy lines.

For a single value af one could solve such a problem bydat 1)-dimensional linear program in which
we augment the parameters by an additional variable thatist@ined to be greater than each A; and
less than each € B;, however adding a separate variable for eagbuld make the dimension nonconstant.

Instead, we use a standard derandomization technique fsomputational geometry;nets If we graph
the weight of each edge in(d+1)-dimensional space, where the parameter values are indepevariables
and the weight is the dependent variable, the result is arplge. For any s&$ of these hyperplanes, and
anye > 0, define are-net for vertical line segments to be a subSetuch that, if any vertical line segment
intersects at least|§ hyperplanes irS, the same segment must intersect at least one hyperpla8e in
(Figure[B). More generally, if the members®&re given costs, annet must contain at least one member
of any subset that is formed by intersecting the hyperplantsa vertical segment and that has total cost at
leaste times the total cost db. If 1 /e = O(1), ane-net of sizeO(1) can be found in time linear if§ [[L4].

Our algorithm can then be described as follows. We will usel/3d.

1. Use a recursive patrtition to find the sé{sandB;.
2. Assign unit cost to each edge in the graph.
3. Repeat until terminated:

(a) Construct-netsA! andB; for eachA; andB;.

(b) Let Sbe the set of swaps involving onbynet members. Find the optimal parameter setting
for constraints frons

(c) Findthe maximum weighd; of an edge in each; and the minimum weight; of an edge in each
B;, where weights are measured according.ttf a; < b;j for eachi, terminate the algorithm.

(d) Find the maximum weight{ of an edge in each{ and the minimum weighl/ of an edge in
eachB{. Double the cost of each edgeAawith w(e) > &, and each edge iB; with w(e) < b.

The set of edges i for which the costs are doubled is defined by the intersecid® with a vertical
line segment: the segment with parameter coordinatasd with weight coordinate beweahandoo. It
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does not contain any member Af, so it must have total cost at mastimes the cost oA;. Therefore each
iteration increases the total cost of all the ggtéand similarlyB;) by a factor of at most + ¢ = 1+ 1/3d.

If there is any constraint violated by the solutipn then at least one violated constraint must be a
member of thal-swap base defining the optimal overall solution. Note h@wmévat, in any iteration of the
loop, & < b because of how we computgd so any violated constraint coming from a sw@pf) must
havew(e) > af or w(f) < bf. Therefore at least one of thel 2dges involved in the optimal base must have
its cost doubled, and the cost of the optimal base increasaddztor of at least 3 1/2d.

Since the base’s cost increases at a rate faster than thedstait can only continue to do so for
O(dlogn) iterations before it overtakes the total cost, an impoktsibi So at some point within those
O(dlogn) iterations the algorithm must terminate the loop.

Theorem 2. We can solve the inverse parametric minimum spanning t@aqm, for any constant number
of parameters, in worst case timg@logn Iogm/n n.

Proof: We use the algorithm described above, setting max2, ./m/n). Therefore, the total size of the
setsA; andB; (and the total time to find these sets and to perform eacHidajas O(mlogm/n n). Sinced
is constant, there a@(logn) iterations, and the total time 8(mlognlogy,, n). O

3 Other Optimal Subgraph Problems

We now describe a method for solving inverse parametricyapéition on a more general classagtimal
subgraph problemsn which we are given a graph with parametric edge weightisnanst find the minimum
weight suitable subgraphwhere suitability is defined according to the particulasljpem. The minimum
spanning tree problem considered earlier has this formh) thié suitable subgraphs simply being trees.
The shortest path and minimum weight matching problems ladse this form. In order to solve these
problems, we resort to the ellipsoid method from linear paiogming. This has the disadvantage of being
not strongly polynomial nor very practical, but its advaygs are in its extreme generality — not only can
we handle any optimal subgraph problem for which the opttinin version is polynomial, but (unlike our
MST algorithms) we are not limited to a fixed number of pararset

A good introduction to the ellipsoid method and its appimas in combinatorial optimization can be
found in the book by Grotschel, Lovasz, and Schrijygr [9].

Lemma 6 (Grotschel, Lovasz, and Schrijvdt [9], p. 158jor any polyhedron P defined by a strong separa-
tion oracle, and any rational linear objective function fp@can find the point in P maximizing f in time
polynomial in the dimension of P and in the maximum encodingth of the linear inequalities defining P.

Thestrong separation oracleequired by this result is a routine that takes as inplfdémensional point
and either determines that the point iFhior returns a closed halfspace containihgnd not containing the
test point. One slight technical difficulty with this appebais that it requires the polyhedron to be closed
(else one could not separate it from a point on one of its bagnidcets) while our problems are defined by
strict inequalities forming open halfspaces. To solve fhablem, we introduce an additional parameter
measuring the separation of the desired optimal subgraph dther subgraphs, and attempt to maxindize

Theorem 3. Let (G, X) be an inverse parametric optimization problem in which G graph with para-
metric edge weights, X is the given solution for an optimbbsaph problem, and there exists a polynomial
time algorithm that either determines that X is the uniquénogl subgraph or finds a different optimal
subgraph Y. Then we can solve the inverse parametric optifmizproblem for(G, X) in time polynomial

in the number of parameters, in the size of the graph, andémtlaximum encoding length of the linear
functions defining the edge weights of G.



Proof: We define a polyhedroR by linear inequalitiesv(X) < w(Y) — 6 wherew denotes the weight of a
subgraph for the given poimt, Y can be any suitable subgraph, ahi$ an additional parameter. To avoid
problems with unboundedness, we can also introduce additimormalizing inequalities-1 < p < 1
Clearly, there exists a poirip, d) with 6 > 0 in P if and only if p gives a feasible solution to the inverse
parametric optimization problem.

Although there can be exponentially many inequalities, s &asily define an oracle that either termi-
nates the entire algorithm successfully or acts as a strepagration oracle: to test a poifg, 4), simply
compute the optimal subgraphfor the weights defined bg. If X = Y, we have solved the problem. If
w(X) <w(Y) — 4, the point is feasible. Otherwise, return the halfspagg) < w(Y) — .

Therefore, we can apply the ellipsoid method to find the pmiaximizingé on P. If the method returns
a point withé > 0 or terminates early witX = Y, we must have solved the problem, otherwise the problem
must be infeasible O

Corollary 1. We can solve the inverse parametric minimum spanning theetest path, or matching prob-
lems in time polynomial in the size of the given graph and enghcoding length of its parametric weight
functions.

As a variant of this result, by using an algorithm for findihg secondest subgraph, we can complete
the ellipsoid method without early termination and find sgpaeter value for whiclX is optimally separated
from other subgraphs. Efficient second-best algorithmsiaogn for minimum spanning treef [¢,] 12] 13],
shortest pathg10], and matchirjg][18]; in general the st:dx@st subgraph is the best subgraph within all
graphs formed by deleting one edgexXofrom G.

4 Game Tree Search

As described in the introduction, we would like to be ableutoet the weights of a game program'’s evaluation
function so that a shallow search (to some fixed d&jtmakes the correct move for each position in a given
test suite. However, because of the possibility of makimgright move for the wrong reasons, this problem
seems to be highly nonlinear. So, in order to apply our irv@arametric optimization technique to this
problem, we need some further assumptions.

Define anunavoidable sebf positions for a given player and degdihto be a set of positions, each of
which occurD half-moves from the present situation, such that, no mattett the opponent does, the given
player can force the game to reach some position in the seate lyenerally, we can define an unavoidable
set for any subset of positions to be a set such that, if theegards within that subset, the player on move
can force it to be in the unavoidable set. For any given pmsitbne can prove that one particular move is
best by exhibiting an unavoidable ggtfor the positions reachable from that move (from the perthgec
of the player to move) and an unavoidable Beffrom the perspective of the other player) for the positions
reachable from the other moves, such that the minimum eN@tuaf any position in4; is greater than the
maximum evaluation of any position B). Minimax or alpha-beta search can be interpreted as finditiy b
of these sets.

For a given position in a test suite, we will assume that thetjpm can be solved correctly by searching
sufficiently deeply: that is, there exists a defh > D such that, if we search (with some untuned or
previously-tuned evaluation function) to defdd we will find the correct move, and not only that but we
will find a correct depth> strategy: unavoidable sefs andB; at depthD such that any good evaluation
function should evaluate all positions M greater than all positions iB;. We will therefore say that an
evaluation functiorevaluates the position correcifit evaluates all positions i greater than all positions
in B;. If it does (and it implements a correct minimax search ra)tiit must make the correct move in the
given position.
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Thus, the problem of finding an evaluation function that eatds each test suite position correctly can
be cast into the same form used in the deterministic minimpamising tree algorithm: a family of setg
andB;, and a requirement that the parameter choice correcthts®mrnembers ofy; from the members of
B;. However, there are two problems with using theet based sampling approach of that algorithm. First,
the game evaluation problem seems likely to have many maeers than the minimum spanning tree
problem, casting into doubt the requirement that the nurabparameters be a fixed constant. And second,
doing a deep search to compute and store the unavoidabléosetach test suite position could be very
costly.

Instead, we take the same approach used for the other otilngtaph problems, of using the ellipsoid
method for linear programming with a separation oracle. his tase, the separation oracle consists of
running a depthd search on each test position, until one is found at which ttemg/move is made. Once
that happens, we can compwWgandB; for that one position, using a deep search, and compare bhesva
of the evaluation function on those sets. (In fact the urdatde sets by which the shallow search “proves”
that it has the correct move for its evaluation must intdrée@ndB; in at least one member, so we can
do this comparison by a single shallow search.) If this separ oracle finds aa € A andb € B; that
have evaluations in the wrong order, it returns a constthattthe evaluation ad should be greater than the
evaluation of. Otherwise, if it fails to find a separating constraint, weyrstill not evaluate each position
correctly, but we must make the correct move in each position

Theorem 4. If there exists a setting of weights for an evaluation fwrctihat evaluates each position of
a given test suite correctly, then we can find a setting thakamaach move correctly. The algorithm for
finding this setting performs a polynomial number of itevasi, where each iteration makes at most one
shallow search on each position of the suite, together wingle deep search on a single suite position.

5 Conclusions

We have discussed several problems of inverse parametiigipgtion, provided general solutions to a wide
class of optimal subgraph problems based on the ellipsottiadeand faster combinatorial algorithms for
the inverse parametric minimum spanning tree problem.

One difficulty with our approach comes from infeasible irgpuivhat if there is no linear combination
of parameters that leads to the desired solution? Rogertamgley [I9] observe a similar phenomenon
in their vehicle routing experiments, and suggest seagcfon additional parameters to use. This search
may be aided by the fact that infeasible linear programs eawitnessed by a small number of mutually
inconsistent constraints: in the path planning problemcarefindd + 1 paths, one of which must be better
than the given path for any combination of known paramet8tadying these paths may reveal the nature
of the missing parameters. Alternatively, a search for adinprogramming solution with few violated
constraints [5] may provide a parameter setting for whitghuser's chosen solution is near-optimal.

A natural direction for future research is in dealing witmhoearity. Problems in which the solution
weight includes low-degree combinations of element wai¢gs are used in game programming to represent
interactions between positional features) may be dedit lwitincluding additional parameters for each such
combination. But what about problems in which the elemenglts are nonlinear combinations of the
parameters? For instance, if the parameters are coorslinhf®ints, any problem involving comparisons
of distances will involve quadratic functions of those atinates. The question of finding coordinates such
that a given tree is the Euclidean minimum spanning tree efpibints is known to be NP-harf] [5], but
if the points’ coordinates depend only on a constant numbg@amameters one can solve the problem in
polynomial time. Can the exponent of this polynomial be miadependent of the number of parameters?

It may be possible to extend our spanning tree methods to ota&oids. E.g., transversal matroids
provide a formulation of bipartite matching in which the glalis are on the vertices of one side of the bipar-
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tition, rather than the edges. Can we solve inverse paranteinsversal matroid optimization efficiently?
Are there natural applications of this or other matroidalgems?

Another open question concerns the existence of combiah#&lgorithms for the inverse parametric
shortest path problem. It is unlikely that a strongly polyrial algorithm exists without restricting the
dimension: one can encode any linear programming fedgilmiibblem as an inverse parametric shortest
path (or other optimal subgraph) problem, by using a padnaéle of edges for each constraint. But is there
a strongly polynomial algorithm for inverse parametric rsést paths when the number of parameters is
small?
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