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Setting Parameters by Example

David Eppstein∗

Abstract

We introduce a class of “inverse parametric optimization” problems, in which one is given both a
parametric optimization problem and a desired optimal solution; the task is to determine parameter val-
ues that lead to the given solution. We describe algorithms for solving such problems for minimum
spanning trees, shortest paths, and other “optimal subgraph” problems, and discuss applications in mul-
ticast routing, vehicle path planning, resource allocation, and board game programming.

1 Introduction

Many cars now come equipped with route planning software that suggests a path from the current location to
a desired destination. Similar services are also availableon the internet (e.g., from http://maps.yahoo.com/).
But although these routes may be found by computing shortestpaths in a graph representing the local road
system, the “distance” may be a weighted sum of several values other than actual mileage: expected travel
time, scenic value, number of turns, tolls, etc. [19]. Different drivers may have different preferences among
these values, and may not be able to clearly articulate thesepreferences. Can we automatically infer the
appropriate weights to use in the sum by observing the routesactually chosen by a driver?

More abstractly, we define aninverse parametric optimizationproblem as follows: we are given as in-
put both aparametric optimizationproblem (that is, a combinatorial optimization problem such as shortest
paths, but with the element weights being linear combinations of certain parameters rather than fixed num-
bers), and also a desired optimal solution for the problem.1 Our task is to determine parameter values such
that the given solution is optimal for those values.

Along with the path planning problem described above, one can find many other applications in which
one must tune the parameters to an optimization problem:

• In many online services such as web page hosting, data is sentin a star topology from a central
server to each user. But in multicast routing of video and other high-bandwidth information, network
resources are conserved by sending the data along the edges of a tree, in which some users receive
copies of the data from other users rather than from the central server. Natural measures of the quality
of each edge in this routing tree include the edge’s bandwidth, congestion, delay, packet loss, and
possibly monetary charges for use of that link. Since one canfind minimum spanning trees efficiently
in the distributed setting [8], it is natural to try to model this routing problem using minimum spanning
trees. Given one or more networks with these parameters, andexamples of desired routing trees, how
can we set the weights of each quality measure so that the desired trees are the minimum spanning
trees of their networks?

∗Dept. Inf. & Comp. Sci., Univ. of Calif., Irvine, CA 92697-3425, eppstein@ics.uci.edu, http://www.ics.uci.edu/∼eppstein/
1One could more generally allow as input a set of problem-solution pairs, but for most of the problems we consider any such set

can be represented equally well by a single larger problem.
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• Bipartite matching, or theassignment problem, is a common formalism for grouping indivisible re-
sources with resource consumers. For instance, the first example given for matching by Ahuja et al. [2]
is to assign recently hired workers to jobs, using weights based on such values as aptitude test scores
and college grades. One might set the weight of an edge from worker i to job j to beai · pj , whereai

is the (known) set of aptitudes of the worker, andpj is the (unknown) set of parameters describing the
combination of aptitudes best fitting the job. Again, it is natural to ask for a way to automatically set
the parameters of each job, based on experience assigning previously hired workers to those jobs.

• Many board games, such as chess, checkers, or Othello, can beplayed well by programs based on
relatively simple alpha-beta searching algorithms. However, these programs use relatively complex
evaluation functions in which the evaluation of a given position can be the sum of hundreds or thou-
sands of terms. Some of these terms may represent the gross material balance of a game (e.g., in
chess, one usually normalizes the score so that a pawn is worth 1 point, while a knight may be worth
2.5-3 points) while others represent more subtle features of piece placement, king safety, advanced
pawns, etc. The weight of each of these terms may be individually adjusted in order to improve the
quality of play. Although there have been some preliminary experiments in using evolutionary learn-
ing techniques to tune these weights [21], they are currently usually set by hand. The true test of a
game program is in actual play, but programs are also often tuned by usingtest suites, large collections
of positions for which the correct move is known. If we are given a test suite, can we automatically
set evaluation weights in such a way that a shallow alpha-beta search can find each correct move?

1.1 New Results

We show the following theoretical results:

• For the inverse parametric minimum spanning tree problem, in the case that the number of parameters
is a fixed constant, we provide a randomized algorithm with linear expected running time, and a
deterministic algorithm with worst case running timeO(mlog2 n).

• For the minimum spanning tree, shortest path, matching, andother “optimal subgraph” problems for
which the optimization problem can be solved in polynomial time, we show that the inverse optimiza-
tion problem can also be solved in polynomial time by means ofthe ellipsoid method from linear
programming, even when the number of parameters is large.

In addition, although we do not provide theoretical resultsfor this case, we discuss the game tree search
problem and describe how to fit it into the same inverse parametric optimization framework.

In cases where the initial problem is infeasible (there is noparameter setting leading to the desired
optimum), our techniques provide a witness for infeasibility: a small number of alternative solutions, one of
which must be better than the given solution for any parameter setting. One can then examine these solutions
to determine whether the initial solution is suboptimal or whether additional parameters should be added to
better model the users’ utility functions.

1.2 Relation to Previous Work

Although there has been considerable work on parametric versions of optimization problems such as min-
imum spanning trees [1] and shortest paths [23], we are not aware of any prior work in inverting such
problems to produce parameter values that match given solutions. One could compute the set of solutions
available over the range of parameter values, and compare these solutions to the given one, but the number
of different solutions would typically grow exponentiallywith the number of parameters.
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The inverse parametric optimization problems considered here are most closely related toparametric
search, which describes a general class of problems in which one sets the parameters of a parametric problem
in order to optimize some criterion. However in most applications of parametric search, the criterion being
optimized is a numeric function of the solution (e.g. the ratio between two linear weights) rather than the
solution structure itself. Megiddo [16] describes a very general technique for solving parametric search
problems, in which one simulates the steps of an optimization algorithm, at each conditional step using the
algorithm itself as an oracle to determine which conditional branch to take. However this technique does
not seem to apply to our problems, because the given optimal structure (e.g. a single shortest path) does not
give enough information to deduce the conditional branchesfollowed by a shortest path algorithm.

The vehicle routing problem discussed in the introduction was introduced by Rogers and Langley [19].
However, they used a weaker model of optimization (a hill-climbing procedure) and a stronger model of
user interaction requiring the user to specify preferencesin a sequence of choices between pairs of routes.

2 Minimum Spanning Trees

In this section, we consider theinverse parametric minimum spanning tree problem, in which we are given
a fixed treeT in a network in which the weight of each edgee is a linear functionw(e) = ce · p (wherep
represents the unknown vector of parameter settings andce represents the known value of edgee according
to each parameter). Our task is to find a value ofp such thatT is the unique minimum spanning tree for the
weightsw(e).

If we fix a given spanning treeT in a network, a pair of edges(e, f ) is defined to be aswapif T∪{f}−{e}
is also a spanning tree; that is, ife is an edge inT, f is not an edge inT, ande belongs to the cycle induced
in T by f . T is the unique minimum spanning tree if and only if for every swap (e, f ), the weight off is
greater than the weight ofe.

Thus we can solve the inverse parametric minimum spanning tree problem as a linear program, in which
we have one variable per parameter, and one constraint(cf −ce) ·p > 0 per swap. If the number of variables
is a fixed constant, a linear program may be solved in time linear in the number of constraints [17]; however
here the number of constraints may beΘ(mn).

We show how to improve this by a randomized algorithm which takes linear time and a deterministic
algorithm which takes timeO(mlog2 n). Both algorithms are based on (different) random sampling schemes
for low dimensional linear programming, due to Clarkson [3].

2.1 Randomized Spanning Tree Algorithm

Clarkson [3] showed that, if one randomly samplesk constraints from ad-dimensional linear program with
n constraints, and computes the optimum for the subprogram consisting only of the sampled constraints,
then the expected number of the remaining constraints violated by this optimum is at mostd(n−k)/(k+1).
Further, if any constraint is violated, at least one of thed constraints involved in anybase(minimal subset
of constraints having the same solution as the overall problem) belongs to the set of violated constraints. If
no constraint is violated, the problem is solved.

This suggests the following randomized algorithm for the inverse parametric minimum spanning tree
problem, whered = O(1) is a fixed constant. We define apotential swapfor the given treeT to be a pair
(e, f ) wheree belongs toT and f does not, regardless of whether(e, f ) is actually a swap. For technical
reasons, we need to define a unique optimal parameter settingp for any subset of constraints, which we
achieve by introducing an arbitrary linear objective function.
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Figure 1. (a) A weighted treeT; (b) Auxiliary tree used to find heaviest edges on paths inT.

1. Let setSbe initialized to empty.

2. Repeatd times:

(a) Let setRbe a random sample ofd
√

mnpotential swaps.

(b) Find the optimal parameter settingp for constraints fromR∪ S.

(c) Add the constraints violated byp to S.

3. Find the optimal parameter settingp for constraints fromS.

Each iteration increases the size of the intersection ofS with the optimal base, so the loop terminates
with a correct solution. The expected number of edges added to S in each iteration isO(

√
mn), so the

expected size ofS is O(d
√

mn) = O(m). If d = O(1), the step in which we findp can be performed in time
O(d

√
mn) = O(m) by fixed dimensional linear programming techniques. It remains to determine how we

tell whether a potential swap(e, f ) is really a swap (so we can determine whether to use it as a constraint or
ignore it in step (b)), and how to find the set of violated constraints (step (c)).

To test a potential swap, we simply build a least common ancestor data structure [20] on the given tree
T (with an arbitrary choice of root). The pair(e, f ) is a swap if both endpoints ofeare on the path from one
of the endpoints off to the common ancestor of the two endpoints.

To find the violated constraints forp, we also use least common ancestors, on an auxiliary tree in which
internal nodes represent edges and leaves represent vertices ofT (Figure 1). We build this auxiliary tree by
choosing the root to be the maximum weight edgee (according top) in T, with the two children of the root
being auxiliary trees constructed recursively on the two components ofT − {e}. This construction takes
time O(n logn). The least common ancestor of two leaves in this auxiliary tree represents the maximum
weight edge on the path between the corresponding vertices of T. Therefore, iff is a given non-tree edge,
we can find a swap(e, f ) giving a violated constraint (if one exists) by using this auxiliary tree to find the
maximum weight edge on the path betweenf ’s endpoints. If this gives us a violated swap, we continue
recursively on the subpaths betweenf and the endpoints ofe, until all swaps involvingf have been listed.
Each swap is found inO(1) time, and the expected number of swaps corresponding to violated constraints
is O(

√
mn), so the total expected time for this procedure (including the time to construct the auxiliary tree)

is O(m+ n logn).
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Lemma 1. We can solve the inverse parametric minimum spanning tree problem, for any constant number
of parameters, in randomized expected time O(m+ n logn).

In order to remove the unnecessary logarithmic factor from this bound, we resort to another round of
sampling. However this time we sample tree edges rather thanswaps.

Lemma 2. Let S be a randomly chosen sample of k edges from tree T, let graph G′ and tree T′ be formed
from G and T respectively by contracting the edges in T− S, and letp be the optimal parameter setting for
the inverse parametric minimum spanning tree problem defined by G′ and T′. Then the expected number of
the remaining edges of T that take part in a constraint violated by this optimum is at most d(n−k−1)/(k+1).

Proof: Consider selectingS in the following way: choose a random permutation on the edges of T, and
let Sbe the firstk edges in the permutation. Lete be the(k + 1)st edge in the permutation. Then sincee is
equally likely to be any remaining edge, the expected numberof edges that take part in a violated constraint
is justn− d − 1 times the probability thate takes part in a violated constraint. But this can only happenif
e is one of the at mostd edges involved in the optimal base forS∪ {e}. Since this subset is just the first
k + 1 edges in the permutation, and any permutation of this subset is equally likely, this probability is at
mostd/(k+ 1). ✷

Thus we can apply the following algorithm:

1. Let setSbe initialized to empty.

2. Repeatd times:

(a) Let setRbe a random sample ofd
√

n edges ofT.

(b) Contract the edges inT − (R∪ S) to produceT′ andG′.

(c) Find the optimal parameter settingp for T′ andG′ using the algorithm of Lemma 1.

(d) Add toS the tree edges that take part in a constraint violated byp.

3. Contract the edges inT − S to produceT′ andG′.

4. Find the optimal parameter settingp for T′ andG′ using the algorithm of Lemma 1.

The arguments for termination and correctness are the same as before. It remains to explain how we find
the set of violated tree edges. This can be done in timeO(mα(m,n)) by an algorithm of Tarjan [22], but
using this algorithm directly would lead to a nonlinear overall time bound. More recent minimum spanning
tree verification algorithms [4, 13] can be used to find the violated non-tree edges, but not the tree edges.
However, in our case we can perform this verification task efficiently due to the expected small number of
differences betweenT and the minimum spanning tree forp.

Lemma 3. In the algorithm above, the tree edges that take part in a violated constraint can be found in
expected linear time.

Proof: We use the linear time randomized minimum spanning tree algorithm of Karger et al. [11], and let
X denote the set of edges that are in the MST and not inT. Note thatX has exactly as many edges as are inT
and not in the MST; since each edge in the latter set takes partin a violated swap constraint, the expectation
of |X| is O(

√
n) by Lemma 2. Then it is easy to see that, if tree edgee takes part in any violated constraints,

at least one must be the constraint corresponding to swap(e, f ), wheref is the minimum weight edge inX
forming a swap withe.
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Figure 2. (a) Restricted partition of order 2; (b) multi-level partition.

To find this minimum weight swap for each tree edge, we contract T as follows. WhileT has a degree-
one vertex that is not adjacent to any edge inX, we remove it and its incident edge; that edge can not take
part in any swaps withX. While T has a degree-two vertex that is not adjacent to any edge inX, we remove
it and merge its two incident edges into a single edge; these two edges share the same minimum swap edge.

After this contraction process, the contracted treeT′ hasO(|X|) vertices with degree less than three, and
thereforeO(|X|) total vertices. We apply Tarjan’s nonlinear minimum spanning tree verification algorithm
to this contracted tree to find the best swap inX for each contracted tree edge. We then undo the contraction
process and propagate the best swap information to the original tree edges. Finally, once we have computed
the best swap(e, f ) for each tree edgee, we simply computew(e) andw(f ) and compare the two weights to
determine whether this swap leads to a violated constraint.✷

Theorem 1. We can solve the inverse parametric minimum spanning tree problem, for any constant number
of parameters, in randomized linear expected time.

Proof: The problem is solved by the algorithm above. In each iteration the expected size of the set added
to S is O(

√
n), so the total size ofR∪S is O(d

√
n) = O(

√
n). In each iteration we add one more member of

the optimal base toS, so the algorithm terminates with the correct solution. Thesteps in which we find the
optimal parameter setting forT′ andG′ can be performed by applying Lemma 1; sinceT′ hasO(

√
n) edges,

the time for these steps isO(m+
√

n logn) = O(m). The step in which we find the edges that take part in a
violated constraint can be performed in linear expected time by Lemma 3.✷

2.2 Deterministic Spanning Tree Algorithm

To solve the inverse parametric minimum spanning tree problem deterministically, we derandomize a differ-
ent sampling technique also based on a method of Clarkson [3]. However, as in our randomized algorithm,
we modify this technique somewhat by sampling edges insteadof constraints.

We begin by applying themulti-level restricted partitiontechnique of Frederickson [6, 7] to the given
treeT.

By introducing dummy edges, we can assume without loss of generality thatT is binary and that the
root t of T has indegree one. These dummy edges will only be used to form the partition and will not take
part in the eventual optimization procedure.

Definition 1. A restricted partition of order z with respect to a rooted binary tree T is a partition of the
vertices of V such that:

6



1. Each set in the partition contains at most z vertices.

2. Each set in the partition induces a connected subtree of T.

3. For each set S in the partition, if S contains more than one vertex, then there are at most two tree
edges having one endpoint in S.

4. No two sets can be combined and still satisfy the other conditions.

Such a partition (forz = 2) is depicted in Figure 2(a). In general such a partition caneasily be found
in linear time by merging sets until we get stuck. Alternatively, by working bottom up we can find an
optimal partition in linear time. We will defer until later choosing a value forz; for now we leave it as a free
parameter.

Lemma 4 (Frederickson [7]). Any order-z partition of a binary tree T has O(n/z) sets in the partition. For
z= 2 we can find a partition with at most5n/6 sets.

Contracting each set in a restricted partition gives again abinary tree. We form amulti-level partition[7]
by recursively partitioning this contracted binary tree (Figure 2(b)).

We now use these partitions to construct a setΠ of paths inT. We include inΠ the path inT between
any two vertices that are in the same set at some level of the partition. Note that, although the vertices at
higher levels of the partition correspond to contracted subtrees ofT, the path inT between two such subtrees
can still be unambiguously defined.

Lemma 5. The set of paths defined above has the following properties:

• There are O(nz) paths.

• Each edge in T belongs to O(z2 logz n) paths.

• Any path in T can be decomposed into the disjoint union of O(logz n) paths.

Proof: The first property follows immediately from Lemma 4, since each set of the partition contributes
O(z2) paths, there areO(n/z) sets at the bottom level of the partition, and the number of sets decreases at
least geometrically at each level. Similarly, the second property follows, since an edge can belong toO(z2)
paths per level and there areO(logzn) levels.

Finally, to prove the third property, letp be an arbitrary path inT. We describe a procedure for decom-
posingp into few pathsπi ∈ Π. More generally, suppose we have a pathp contained in a setSat some level
of a multi-level decomposition (note that the whole tree is the set at the highest level of the partition). Then
Scan be decomposed into at mostz sets at the next level of the partition;p has endpoints in at most two of
these sets, and may pass completely through some other sets.Therefore,p can be decomposed into the union
of two smaller paths in the sets containing its endpoints, together with a single pathπi connecting those two
sets. By repeating this decomposition recursively at each level of the tree, we obtain a decomposition into
at most two paths per level, orO(logzn) paths overall.✷

We now describe how to use this path decomposition in our inverse optimization problem. For each path
πi ∈ Π, let Ai denote the set of edges inT belonging toπi , and letBi denote the set of edges inG− T such
thatπi is part of the decomposition of the tree path between each edge’s endpoints. The total size of all the
setsAi andBi is O((m+ nz2) logzn), and all sets can be constructed in time linear in their totalsize.

A pair (e, f ) is a swap if and only if there is somee for whiche∈ Ai andf ∈ Bi. With this decomposition,
the inverse parametric minimum spanning tree problem becomes equivalent to asking for a parameterp such
that, for eachi, the weight of every member ofAi is less than the weight of every member ofBi .
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Figure 3. Exampleǫ-net, forǫ = 1/2: every vertical line segment that crosses≥ n/2 lines in the overall arrangement
also crosses at least one of the two heavy lines.

For a single value ofi, one could solve such a problem by a(d+1)-dimensional linear program in which
we augment the parameters by an additional variable that is constrained to be greater than eache ∈ Ai and
less than eachf ∈ Bi, however adding a separate variable for eachi would make the dimension nonconstant.

Instead, we use a standard derandomization technique from computational geometry,ǫ-nets. If we graph
the weight of each edge in a(d+1)-dimensional space, where the parameter values are independent variables
and the weight is the dependent variable, the result is a hyperplane. For any setSof these hyperplanes, and
anyǫ > 0, define anǫ-net for vertical line segments to be a subsetS′ such that, if any vertical line segment
intersects at leastǫ|S| hyperplanes inS, the same segment must intersect at least one hyperplane inS′

(Figure 3). More generally, if the members ofSare given costs, anǫ-net must contain at least one member
of any subset that is formed by intersecting the hyperplaneswith a vertical segment and that has total cost at
leastǫ times the total cost ofS. If 1/ǫ = O(1), anǫ-net of sizeO(1) can be found in time linear in|S| [14].

Our algorithm can then be described as follows. We will useǫ = 1/3d.

1. Use a recursive partition to find the setsAi andBi.

2. Assign unit cost to each edge in the graph.

3. Repeat until terminated:

(a) Constructǫ-netsA′

i andB′

i for eachAi andBi.

(b) Let S be the set of swaps involving onlyǫ-net members. Find the optimal parameter settingp
for constraints fromS.

(c) Find the maximum weightai of an edge in eachAi and the minimum weightbi of an edge in each
Bi , where weights are measured according top. If ai < bi for eachi, terminate the algorithm.

(d) Find the maximum weighta′i of an edge in eachA′

i and the minimum weightb′i of an edge in
eachB′

i. Double the cost of each edge inAi with w(e) > a′i , and each edge inBi with w(e) < b′i .

The set of edges inAi for which the costs are doubled is defined by the intersectionof Ai with a vertical
line segment: the segment with parameter coordinatesp and with weight coordinate beweena′i and∞. It

8



does not contain any member ofA′

i, so it must have total cost at mostǫ times the cost ofAi . Therefore each
iteration increases the total cost of all the setsAi (and similarlyBi) by a factor of at most 1+ ǫ = 1+ 1/3d.

If there is any constraint violated by the solutionp, then at least one violated constraint must be a
member of thed-swap base defining the optimal overall solution. Note however that, in any iteration of the
loop, a′i < b′i because of how we computedp, so any violated constraint coming from a swap(e, f ) must
havew(e) > a′i or w(f ) < b′i . Therefore at least one of the 2d edges involved in the optimal base must have
its cost doubled, and the cost of the optimal base increases by a factor of at least 1+ 1/2d.

Since the base’s cost increases at a rate faster than the total cost, it can only continue to do so for
O(d logn) iterations before it overtakes the total cost, an impossibility. So at some point within those
O(d logn) iterations the algorithm must terminate the loop.

Theorem 2. We can solve the inverse parametric minimum spanning tree problem, for any constant number
of parameters, in worst case time O(mlogn logm/n n).

Proof: We use the algorithm described above, settingz = max(2,
√

m/n). Therefore, the total size of the
setsAi andBi (and the total time to find these sets and to perform each iteration) is O(mlogm/n n). Sinced
is constant, there areO(logn) iterations, and the total time isO(mlogn logm/n n). ✷

3 Other Optimal Subgraph Problems

We now describe a method for solving inverse parametric optimization on a more general class ofoptimal
subgraph problems, in which we are given a graph with parametric edge weights and must find the minimum
weight suitable subgraph, where suitability is defined according to the particular problem. The minimum
spanning tree problem considered earlier has this form, with the suitable subgraphs simply being trees.
The shortest path and minimum weight matching problems alsohave this form. In order to solve these
problems, we resort to the ellipsoid method from linear programming. This has the disadvantage of being
not strongly polynomial nor very practical, but its advantages are in its extreme generality – not only can
we handle any optimal subgraph problem for which the optimization version is polynomial, but (unlike our
MST algorithms) we are not limited to a fixed number of parameters.

A good introduction to the ellipsoid method and its applications in combinatorial optimization can be
found in the book by Grötschel, Lovász, and Schrijver [9].

Lemma 6 (Grötschel, Lovász, and Schrijver [9], p. 158). For any polyhedron P defined by a strong separa-
tion oracle, and any rational linear objective function f , one can find the point in P maximizing f in time
polynomial in the dimension of P and in the maximum encoding length of the linear inequalities defining P.

Thestrong separation oraclerequired by this result is a routine that takes as input ad-dimensional point
and either determines that the point is inP or returns a closed halfspace containingP and not containing the
test point. One slight technical difficulty with this approach is that it requires the polyhedron to be closed
(else one could not separate it from a point on one of its boundary facets) while our problems are defined by
strict inequalities forming open halfspaces. To solve thisproblem, we introduce an additional parameterδ
measuring the separation of the desired optimal subgraph from other subgraphs, and attempt to maximizeδ.

Theorem 3. Let (G,X) be an inverse parametric optimization problem in which G is agraph with para-
metric edge weights, X is the given solution for an optimal subgraph problem, and there exists a polynomial
time algorithm that either determines that X is the unique optimal subgraph or finds a different optimal
subgraph Y. Then we can solve the inverse parametric optimization problem for(G,X) in time polynomial
in the number of parameters, in the size of the graph, and in the maximum encoding length of the linear
functions defining the edge weights of G.
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Proof: We define a polyhedronP by linear inequalitiesw(X) ≤ w(Y)− δ wherew denotes the weight of a
subgraph for the given pointp, Y can be any suitable subgraph, andδ is an additional parameter. To avoid
problems with unboundedness, we can also introduce additional normalizing inequalities−1 ≤ p ≤ 1.
Clearly, there exists a point(p, δ) with δ > 0 in P if and only if p gives a feasible solution to the inverse
parametric optimization problem.

Although there can be exponentially many inequalities, we can easily define an oracle that either termi-
nates the entire algorithm successfully or acts as a strong separation oracle: to test a point(p, δ), simply
compute the optimal subgraphY for the weights defined byp. If X = Y, we have solved the problem. If
w(X) ≤ w(Y)− δ, the point is feasible. Otherwise, return the halfspacew(X) ≤ w(Y)− δ.

Therefore, we can apply the ellipsoid method to find the pointmaximizingδ onP. If the method returns
a point withδ > 0 or terminates early withX = Y, we must have solved the problem, otherwise the problem
must be infeasible.✷

Corollary 1. We can solve the inverse parametric minimum spanning tree, shortest path, or matching prob-
lems in time polynomial in the size of the given graph and in the encoding length of its parametric weight
functions.

As a variant of this result, by using an algorithm for finding thesecondbest subgraph, we can complete
the ellipsoid method without early termination and find a parameter value for whichX is optimally separated
from other subgraphs. Efficient second-best algorithms areknown for minimum spanning trees [4, 12, 13],
shortest paths [10], and matching [18]; in general the second-best subgraph is the best subgraph within all
graphs formed by deleting one edge ofX from G.

4 Game Tree Search

As described in the introduction, we would like to be able to tune the weights of a game program’s evaluation
function so that a shallow search (to some fixed depthD) makes the correct move for each position in a given
test suite. However, because of the possibility of making the right move for the wrong reasons, this problem
seems to be highly nonlinear. So, in order to apply our inverse parametric optimization technique to this
problem, we need some further assumptions.

Define anunavoidable setof positions for a given player and depthD to be a set of positions, each of
which occursD half-moves from the present situation, such that, no matterwhat the opponent does, the given
player can force the game to reach some position in the set. More generally, we can define an unavoidable
set for any subset of positions to be a set such that, if the game ends within that subset, the player on move
can force it to be in the unavoidable set. For any given position, one can prove that one particular move is
best by exhibiting an unavoidable setAi for the positions reachable from that move (from the perspective
of the player to move) and an unavoidable setBi (from the perspective of the other player) for the positions
reachable from the other moves, such that the minimum evaluation of any position inAi is greater than the
maximum evaluation of any position inBi. Minimax or alpha-beta search can be interpreted as finding both
of these sets.

For a given position in a test suite, we will assume that the position can be solved correctly by searching
sufficiently deeply: that is, there exists a depthD′ > D such that, if we search (with some untuned or
previously-tuned evaluation function) to depthD′, we will find the correct move, and not only that but we
will find a correct depth-D strategy: unavoidable setsAi andBi at depthD such that any good evaluation
function should evaluate all positions inAi greater than all positions inBi . We will therefore say that an
evaluation functionevaluates the position correctlyif it evaluates all positions inAi greater than all positions
in Bi. If it does (and it implements a correct minimax search routine), it must make the correct move in the
given position.
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Thus, the problem of finding an evaluation function that evaluates each test suite position correctly can
be cast into the same form used in the deterministic minimum spanning tree algorithm: a family of setsAi

andBi , and a requirement that the parameter choice correctly sortthe members ofAi from the members of
Bi. However, there are two problems with using theǫ-net based sampling approach of that algorithm. First,
the game evaluation problem seems likely to have many more parameters than the minimum spanning tree
problem, casting into doubt the requirement that the numberof parameters be a fixed constant. And second,
doing a deep search to compute and store the unavoidable setsfor each test suite position could be very
costly.

Instead, we take the same approach used for the other optimalsubgraph problems, of using the ellipsoid
method for linear programming with a separation oracle. In this case, the separation oracle consists of
running a depth-D search on each test position, until one is found at which the wrong move is made. Once
that happens, we can computeAi andBi for that one position, using a deep search, and compare the values
of the evaluation function on those sets. (In fact the unavoidable sets by which the shallow search “proves”
that it has the correct move for its evaluation must intersect Ai andBi in at least one member, so we can
do this comparison by a single shallow search.) If this separation oracle finds ana ∈ Ai andb ∈ Bi that
have evaluations in the wrong order, it returns a constraintthat the evaluation ofa should be greater than the
evaluation ofb. Otherwise, if it fails to find a separating constraint, we may still not evaluate each position
correctly, but we must make the correct move in each position.

Theorem 4. If there exists a setting of weights for an evaluation function that evaluates each position of
a given test suite correctly, then we can find a setting that makes each move correctly. The algorithm for
finding this setting performs a polynomial number of iterations, where each iteration makes at most one
shallow search on each position of the suite, together with asingle deep search on a single suite position.

5 Conclusions

We have discussed several problems of inverse parametric optimization, provided general solutions to a wide
class of optimal subgraph problems based on the ellipsoid method, and faster combinatorial algorithms for
the inverse parametric minimum spanning tree problem.

One difficulty with our approach comes from infeasible inputs: what if there is no linear combination
of parameters that leads to the desired solution? Rogers andLangley [19] observe a similar phenomenon
in their vehicle routing experiments, and suggest searching for additional parameters to use. This search
may be aided by the fact that infeasible linear programs can be witnessed by a small number of mutually
inconsistent constraints: in the path planning problem, wecan findd+ 1 paths, one of which must be better
than the given path for any combination of known parameters.Studying these paths may reveal the nature
of the missing parameters. Alternatively, a search for a linear programming solution with few violated
constraints [15] may provide a parameter setting for which the user’s chosen solution is near-optimal.

A natural direction for future research is in dealing with nonlinearity. Problems in which the solution
weight includes low-degree combinations of element weights (as are used in game programming to represent
interactions between positional features) may be dealt with by including additional parameters for each such
combination. But what about problems in which the element weights are nonlinear combinations of the
parameters? For instance, if the parameters are coordinates of points, any problem involving comparisons
of distances will involve quadratic functions of those coordinates. The question of finding coordinates such
that a given tree is the Euclidean minimum spanning tree of the points is known to be NP-hard [5], but
if the points’ coordinates depend only on a constant number of parameters one can solve the problem in
polynomial time. Can the exponent of this polynomial be madeindependent of the number of parameters?

It may be possible to extend our spanning tree methods to other matroids. E.g., transversal matroids
provide a formulation of bipartite matching in which the weights are on the vertices of one side of the bipar-
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tition, rather than the edges. Can we solve inverse parametric transversal matroid optimization efficiently?
Are there natural applications of this or other matroidal problems?

Another open question concerns the existence of combinatorial algorithms for the inverse parametric
shortest path problem. It is unlikely that a strongly polynomial algorithm exists without restricting the
dimension: one can encode any linear programming feasibility problem as an inverse parametric shortest
path (or other optimal subgraph) problem, by using a parallel pair of edges for each constraint. But is there
a strongly polynomial algorithm for inverse parametric shortest paths when the number of parameters is
small?
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[18] L. Mihályffy. On the problem of the second best assignment. Problems Control Inform. Theory
8(3):257–265, 1979.

[19] S. Rogers and P. Langley. Interactive refinement of route preferences for driving.Proc. Spring Symp.
Interactive and Mixed-Initiative Decision-Theoretic Systems, pp. 109–113. AAAI Press, 1998.

[20] B. Schieber and U. Vishkin. On finding lowest common ancestors: simplification and parallelization.
SIAM J. Comput.17(6):1253–1262, December 1988.

[21] J. Stanback. Chess GA experiments. Message to rec.games.chess.computer, available at
http://forum.swarthmore.edu/∼jay/learn-game/methods/chess-ga.html, February 1996.

[22] R. E. Tarjan. Applications of path compressions on balanced trees.J. ACM26(4):690–715, October
1979.

[23] N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster parametric shortest path and minimum-balance
algorithms.Networks21:205–221, 1991.

13


