Curvature-Constrained Shortest Pathsin a Convex Polygon

(Extended Abstract)

Pankaj K. Agarwal
Steve Robbins

Abstract

Let B be a point robot moving in the plane, whose path is con-
strained to have curvature at mastnd letP be a convex polygon
with n vertices. We study the collision-free, optimal path-plagn
problem forB moving between tweonfigurationgnsideP (a con-
figuration specifies both a location and a direction of traviéVe
present arO(n? log n) time algorithm for determining whether a
collision-free path exists faB between two given configurations. If
such a path exists, the algorithm returns a shortest one.roVidp

a detailed classification of curvature-constrained skbgaths in-
side a convex polygon and prove several properties of theénthw
are interesting in their own right. Some of the propertiesauiite
general and shed some light on curvature-constrainedestigaths
amid obstacles.
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1 Introduction

The path-planningproblem, a central problem in robotics,
involves planning a collision-free path for a robot moving
amid obstacles, and has been widely studied (see, e.g., the
book by Latombe [17] and the survey papers by Schwartz
and Sharir [25] and Halperin, Kavraki and Latombe [12]). In
the simplest form, given a moving rob#t, a setO of ob-
stacles, and a pair of configuratiohgind F' of B, we wish

to find a continuous, collision-free path fé from I to F.

This formulation, however, does not take into account the dy-
namic constraints (for instance, bounds on velocity, acceler-
ation or curvature), the so-callednholonomic constraints
imposed on a robot by its physical limitations. Although
there has been considerable recent work in the robotics liter-
ature on nonholonomic motion-planning problems, (see [3,
4, 14, 16, 18, 20, 26, 31, 32] and references therein) rela-
tively little theoretical work has been done in this important
area.

The placement of a robot with degrees of freedom is
determined by a tuple df parameters, each describing one
degree of freedom; the set of all placements is catieq-
figuration space In holonomic path planning, the points in
configuration space reachable Byare determined solely by
the the initial placement aB and possibly some obstacles.
By contrast, in nonholonomic path planning, the placement
of B is not sufficient to determine the placements reachable
by B, e.g., anothek parameters that are derivatives of the
placement may be needed (see [17] for a more detailed dis-
cussion). This makes the nonholonomic path-planning prob-
lem considerably harder.

In this paper, we study the path-planning problem for
a point robot whose path is constrained to have curvature
at mostl. This curvature constraint arises naturally when
the point robot models a real-world robot with a minimum
turning radius; see for example [17]. Recently Reif and
Wang [24] confirmed that the problem of deciding whether
there exists a collision-free curvature-constrained pattBfor
between two given configurations amid obstacles is NP-hard.
This motivates interest in studying various special cases. In
this paper we propose an efficient algorithm for computing a



curvature-constrained shortest path inside a convex polygon1.2 Our model and results

We establish several new properties of shortest paths in-L€t B be a pointrobot an@ a closed convex polygon with
side a convex polygon and use these properties to characVertices. For simplicity we assume that the edgeB afe in
terize shortest paths. Using these properties of shortest path§eneral position: no two edges are parallel and no unit-radius
and some results in computational geometry [2, 8], we presen€ircle is tangent to three edges®f A configurationX for
an efficient algorithm that, given initial and desired final con- B is a pair(Loc(X), ¢ (X)), whereLoc(X) is a pointin the
figurationsI and F in the polygon, determines whether a Plane representing the location of the robot arid() is an

curvature-constrained path frofto £ exists, and if so,  angle betweef and2r representing its orientation. When
computes a shortest one. the meaning is clear, we often wrifé instead ofLoc(X).

The image of a differentiable functidd : [0,1] — R?
is called apath We denote both the function and the path
1.1 Previous results it defines byIl. We regard a pathl as oriented frondI(0)
to II(7). We assume a patll is parameterized by its arc
length, and|1I|| denotes its length. We say thatis a path

Dubins [10] was perhaps the first to study curvature-constraini@m & configurationY’ to another configuratiol if I1(0) =
shortest paths. He proved that, in the absence of obstacles-OC(X), II(1) = Loc(Y'), and the oriented angles (with re-
a curvature-constrained shortest path from any start config-SPECt to the positive-axis) ofIl'(0) andIl’(!) arey(X) and
uration to any final configuration consists of at most three ¥(¥). respectively. A path is callesoderatef its average
segments, each of which is either a straight line or an arc of Curvature is at mostin every positive-length interval This

a circle of unit radius, assuming that the maximum curvature IMmPlies that the curvature is at mdswhenever it is defined.
of the path is bounded bl Reeds and Shepp [23] extended ANy curve that lies entirely within the closed polygén
this obstacle-free characterization to robots that are allowed!S calledfree. A path isfeasibleif it is moderate and free. A
to make reversals, that is, to back up. Using ideas from con-f€asible pattil from a configurationt to another configura-
trol theory, Boissonnat, Cérézo and Leblond [4] gave an al- tion Y is optimalif its length is minimum among all fea5|ble_
ternative proof for both cases, and recently Sussmann [29]Paths fromX to Y (it can be shown that whenever a feasi-
was able to extend the characterization totimensional ~ Ple path fromX to ¥ exists, then an optimal such path also
case. In the presence of obstacles, Fortune and Wilfong [11]€XiStS [13]).

gave a2r°'v(™™)-time algorithm, where: is the total num- M ajin Results. Let P be a convex polygon in the plane with

ber of vertices in the polygons defining the obstaclesrand  j, vertices, and lef andF be two configurations insidg.
is the number of bits of precision with which all points are

specified; their algorithm only decides whether a path ex- (i) We prove thatan optimal path frofito /” consists of at
ists, without necessarily finding one. Jacobs and Canny [13], most eight maximal segments, each of which is either a
Wang and Agarwal [30], and Sellen [27, 28] gave approx- line segment or a circular arc of unit radius.

imation algorithms for computing astrobustpath. (Infor-
mally, a path iss-robust if e-perturbations of certain points
along the path do not violate the feasibility of the path.)
For the restricted case of pairwise disjombderate obsta-
cles i.e., convex obstacles whose boundaries have curvature
bounded byi, Agarwal, Raghavan and Tamaki [1] gave effi-
cient approximation algorithms. Boissonnat and Lazard [5]

gave arO(n? log n)-time algorithm for computing the exact: Our algorithm is significantly faster than the algorithm
shortest paths for the case when the edges of the pairwisayy Boissonnat and Lazard [5], whose running time @4s7).
disjoint moderate obstacles are circular arcs of unit radius or Our paper is organized as follows. In Section 2, we present
line segments. Their algorithm works even if the obstacles pasic definitions, notation, and useful known results. In Sec-
intersect each other, and thus inside a convex polygon, buttion 3, we give a classification of the optimal path. In Sec-

the running time is the®(n”). Wilfong [31] studied are-  tions 4 and 5, we describe our algorithms. Section 6 con-
stricted problem in which the robot must stay on onemof  ¢Jydes.

line segments (thought of as “lanes”), except to turn between
lanes. For a scene with obstacle vertices, his algorithm 2 Geometric Preliminaries

preprocesses the scene in timén?(n? + logm)), follow- , , _ _ : ,
ing which queries are answered in tif&m?). There has Given a configurationX, the oriented line passing through

also been work on computing curvature-constrained paths-OC(X) with orientation)(X) is denoted. x . A configura-
when B is allowed to make reversals [3, 19, 21]. Other, tionX belongso an oriented path (or curvé)if LOC(X) &

more general, dynamic constraints have been considered in 1Theaverage curvaturef a pathll in the interval[s, s2] is defined by
[6,7,9, 22] I (s1) — I (s2)[|/[s1 — s2].

(i) We give anO(n?logn)-time algorithm to determine
whether a feasible path frofito F' exists. If such a path
exists, then the algorithm returns an optimal path from
Ito F. If there are onlyk edges ofP within distance
6 from I and F', then the running time of our algorithm
can be improved t®((n + k?) logn),




IT and Ly is the oriented tangent line id atLoc(X). Note
that a configurationX belongs to two oriented unit-radius
circles. We will use’}; (resp.Cy) to denote the two circles
of unit radius, oriented counterclockwise (resp. clockwise)
to which the configuratiotX’ belongs.

If X andY are two points on a simple closed curyg
theny*[X,Y] (resp. v~ [X, Y]) denotes the portion of
from X to Y in the counterclockwise (resp. clockwise) di-
rection, includingX andY’; we will usey™ (X,Y),7(X,Y)
to denote portions excluding, Y. Similarly, for a pathll
and two configuration&’,Y" € II, we will useII[X,Y] to
denote the portion dfl from X toY".

Segments and Dubins paths. Let IT be a feasible path. We
call a nonempty subpath of aC-segmenfresp.S-segmerjt

if it is a circular arc of unit radius (resp. line segment) and
maximal. Asegments either aC-segment or ai¥-segment.
While referring to aC'-segments on a patfh, we will call it
aCt-segment (respC’~-segment) if it is counterclockwise
(resp. clockwise) oriented alorid. Supposdl consists of
a C-segment, ai$-segment, and &-segment; then we will
say thatll is of typeC'SC, or C1 SC, if we want to distin-
guish between the tw@’-segments; superscripts and —
will be used to specify the orientations 6fsegments ofl.
Abusing the notation slightly, we will also ugg , C to de-
note theC-segments and to denote theS-segment ofl1.

The above lemma implies that an optimal path in a closed
polygonal environment consists 6f- and S-segments. In
the following, we will consider only those paths that are
formed byS- andC-segments. We will refer to circles and
circular arcs of unit radius simply as circles and circular arcs.
Notationally, we differentiate between(&segment and its
supporting circle by using calligraphic font for the latter.

Terminal and nonterminal segments. A segment of a fea-
sible pathll is calledterminalif it is the first or the last seg-
ment ofII; otherwise it is callechonterminal We apply the
adjectives terminal and nonterminal to subpaths as well.
the first or last segment il is aC-segment, we will refer to
it as aC;-segment or &p-segment, respectively;, C;,
C}:, andC,, are callederminal circles(see Figure 2).

The following lemmas state some basic known properties
of optimal paths; see [1, 10, 13].

Lemma 2.3 In an optimal path insidé,

(i) any nonterminal C-segment has length greater than
(i) any nonterminal C-segment is tangentd® or to a
terminal circle in at least one point, and
(iii) no nonterminal subpath has tygeCC.

Lemma 2.4 Let Il be an optimal path of typ€;C>S in-
side P. Let X be the common endpoint of th& - and

The above notation can be generalized to an arbitrarily long (,-segments, and l&f be the last tangent point of th&,-

sequence. Dubins [10] proved the following result.

Lemma 2.1 (Dubins [10]) In an obstacle-free environment,
an optimal path between any two configurations is of type
CCC or CSC, or a substring thereof.

F
Figure 1. Different types of Dubins paths.

We will refer to paths of typel’CC or CSC or sub-
strings thereof a®ubins paths In the presence of obsta-

segment witldP alongll. Then the length of th€,-segment
betweenX andY is greater thanr, i.e., ||II[ X, Y]|| > =.

Anchored segments. A C-segment or circle is calledn-
choredif it is tangent to9P or to terminal circles at two
points. The terminal circles are not considered anchored.
An anchored”-segment is denoted ky. By our general-
position assumption o, there are a finite number of an-
chored circles. AC-segment tangent t97 in at least one
point is denoted by

An anchored”-segment or circle i®P-anchoredf it is
tangent ta)P at two points andPC-anchoredf it is tangent
to 9P at one point and tangent to a terminal circle at another
point; see Figure 2.

A circular arc is calledongif its length is greater than;
else it is calledshort A PP-anchored”’-segment is called
strongly’PP-anchoredf it contains the long arc defined by

cles, Jacobs and Canny [13] observed that any subpath of anthe tangent points of its supporting circle wiP (see Fig-
optimal path that does not touch any obstacle except at theure 3(b)). Similarly, aPC-anchoredC-segment is called

endpoints is a Dubins path. In particular, they proved the
following.

Lemma 2.2 (Jacobs and Canny [13])et(2 be a closed polyg-
onal environment/ an initial configuration, andf’ a final
configuration. Then an optimal path fromto F' in 2 con-
sists of a sequendg, - - - II;, of feasible paths, where each
I1; is a Dubins path from a configuratiali; ; to a configu-
ration X;, such thatX, = I, X;, = F, and, for0 < i < k,
Loc(X;) € 09.

stronglyPC-anchoredf it contains the long arc defined by
two tangent points of its supporting circle wiétP and with
a terminal circle (see Figure 4(a)).

Pockets. Let C be a circle intersectingP at two or more
points, and letX, Y be two consecutive intersection points
of 0P with C so that the short arc @f joining X andY” lies
insideP. If C*[X, Y] is the short arc and the turning angle

2Theturning angleof a convex polygonal chain i

s, (7 — 0;), where
0; is the interior angle at vertei



non-zero length by definition. In the following, we ust®
denote a subpath of zero length.

Theorem 3.1 An optimal pathlI insideP is a Dubins path
or has one of the types listed below. Except in case (B.i), all
the C-segments labeled are strongly anchored.

(A) If II has no nonterminal’C' subpath, thedl has one
of the following types:
(A.i) II;SCSIy wherell; € {Cr,-}, andIly € {CF,}
(see Figure 3(b)) _ ~
(A.ii) T1;SIlp wherell; € {C;C,Cy,-},andlly € {CCp,Cp,-}
(see Figure 4(a))

Figure 2. PC-anchored(;) andPP-anchored(z) circles.

of 9P (X, Y) is less thanr, then the closed region bounded )
by &P [X, Y] andC*[X, Y] is called apocketif (see Fig- (B) If IT has a nonterminal’C' subpath, thedI has one of

ure 3), and is denoted hy-[X,Y]. We define similarly the the following types:
pocketAc[X, Y] whenC~[X, Y] is the shorter arc. We will (B.)) C;CCCF or CrCCCF
mostly be interested in pockets for whi€hs tangent tayP (B.ii) I;SCCCp or C;CCSIy wherelly € {C, -}, and
atX. HFG{CF:'} B
el (B.iiiy I;CCIllp wherell; € {C;CS,C;S,Cr,S}, and

Iy € {SCCF,SCr,Cr,S} (see Figures 4(b), (c))

! il
Ac[X, Y]y
N 7

~

(CY (b)

Figure 3. Pockets.

It can be verified that the condition on the turning angle
implies that a pocket does not have enough room to contain a
unit circle. Using this simple observation, we can prove the
following lemma, which will be crucial for characterizing the
optimal paths containing a strongly anchotégegment. In
particular, the lemma implies that if a feasible path enters
the interior of a pocket, then it cannot escape the pocket (see
Figure 3).

(@)CcrCSCCr (b) C;SCCSCr

Lemma 2.5 LetC be a circle tangenttdP at X that defines
a pocketA¢[X,Y]. If a feasible patHI from I to F' enters
(resp. escapes)¢[X,Y] at X, then eitherII contains the
small arc ofC joining X andY’, or II[X, F| C A¢[X,Y]
(resp.II[I, X] C Ac[X,Y)).

3 Classification of Optimal Paths "ot
The goal of this section is to prove the first of our main re- (© C1C18C2C35CCr
sults, namely a detailed characterization of optimal paths in
convex polygons. We show that any optimal path is of type
CCSCCSCCF or a subsequence of this form. However,
not every subsequence of the above sequence can form an
optimal path. The following theorem gives a more refined Proposition 3.2 The typeC;CSCCSCCF, consisting of eight

description of optimal path types. Recall that a segment hassegments, does occur as an optimal path type.

Figure 4. Examples of shortest paths.



Proof (Sketch): Figure 4(c) shows an instanceBfand ini-
tial and final configurations in which a feasible path has eight

Lemma 3.6 If an optimal pathll contains a stronglyPC-
anchoredC-segmentC whose supporting circle is not free,

segments. We can argue that no paths of the other types dethenll is oftypeC[(/:’SCp, C;CCCr,C1SCCr,C1CCCF,

scribed in Theorem 3.1 are feasible, which implies that the
optimal path is of the given type. a

The proof of Theorem 3.1 is based on the following lem-
mas.

Lemma 3.3 (Agarwal, Raghavan and Tamaki [1LAn optimal
path has at most one nontermin@C' subpath. Moreover,
any nonterminal C-segment that precedes (resp. follows) a
C1C5 subpath is oriented the same way@s(resp.Cs).

Next, we state a lemma, which can be proved using geo-
metric perturbations similar to the ones used in [1, 5].

Lemma 3.4 (i) If an optimal path has a subpath of type
SC'S, then theC-segment in that subpath is strong®P-
anchored.

(i) If an optimal path has a subpath of tygey C,C5S (or
SC3C>Ch) so that theC-segmeniCs, does not toucldP,
thenC} is stronglyPP-anchored.

We next characterize the optimal paths that contain a
stronglyPP-anchored’-segment.

Lemma 3.5 If an optimal pathIl contains a stronglyPP-
anchoredC-segmeng’, thenll is of typeC; SCSCr, C;CCSCr,
C;SCCCy, or a substring thereof (containing).

Proof (Sketch): By assumptionll = II;CII. C'is strongly
PP-anchored; hence its supporting cirdfe has two or more
intersections witldP. Let X denote the first tangent point
of C with P alongll. LetY be the first point fromX onC

— moving in the opposite sense Ofs orientation — which
intersect®)P (see Figure 5). It is easy to prove that such a
Y exists, and that\ 5[ .X, Y] defines a pocket. Lemma 2.5
implies that the path up t&’, i.e.II; and perhaps part @,

is contained in the pocket. We can also prove ihatcon-
sists of at most two segments, Hg is eitherC;C, CyS, or

a substring thereof. Likewisé&ly is CCr, SCF, or a sub-
string thereof. The result follows by noting that paths of type
CrCCCCr are ruled out by Lemma 2.3(iii). a

F ’
s

X

Figure 5. For the proof of Lemma 3.5. An optimal path containing a
strongly’PP-anchored”-segment must start and end in a pocket.

We state now another lemma which will be useful for the
algorithm. The proof is similar to that of Lemma 3.5.

or a substring thereof (containing).

We now prove Theorem 3.1.

Proof of Theorem 3.1: The proof proceeds by considering
how a nonterminal’-segment may appear Iih. If there is
no nonterminalC’-segment intI, thenIl is of typeC;SCF

or a substring thereof, i.dl is a Dubins path.

Assume now that there is a nontermigasegment iril.
Then such a segment belongs to a subpath oftype either
SCS or CC. Supposdl contains a subpath of typeC'S.

By Lemma 3.4, theC'-segment inSC'S must be strongly
PP-anchored. Thus, by Lemma 315js of typeC; SCSCr,
or substrings (containingC'S) thereof. In other wordd] is
of type (A.i).

If IT contains a nontermindl-segment but not a subpath
of type SC'S, we know it must contain a subpath of type
CC'. There are two cases to consider, depending on whether
the C'C subpath is terminal.

Case 1:II does not contain any nonterminal subpath of
type CC. Thus, one of theZ-segments in ang'C sub-
path must be a terminal segment. Eitlikis of typeC;CFr,
CrCCr (i.e., a Dubins path), or any nontermiralsegment
is also adjacent to af-segment.Il must then be of type
CCSCCp, or any substring thereof containiggand a ter-
minal CC. By Lemma 2.4, the nonterminél-segments are
strongly anchored. All these types of paths are covered by
type (A.ii).

Case 2:1I contains a nonterminal subpath of tyQ&.

By Lemma 3.3, it is th@nly nonterminalC'C' subpath inI.
ThuslII has the forrI;CCIIg. A nonterminalC'-segment
in II; must be followed by arb-segment, otherwise there
will be a nonterminall’C'C' subpath inll (Lemma 2.3(jii)).
Furthermore, since we have 5@’ S subpath inl, a nonter-
minal C segment must be preceded by a term@taegment.
This meandl; = C;CS or a subsequence of it. The subse-
guence cannot not be empty, for otherwise the middie
subpath would be terminal; nor can it be simgl’, as
noted above. Thud]; € {C;CS,CtS,Cr, S}. Similarly,
IIp € {SCCF, SCF, CF, S}

If II; = C;CS or Il = SCCp, then the nonterminal
C-segmentirll; or Il is strongly anchored by Lemma 2.4.

If both II; andIlr contain anS-segment, then the non-
terminal CC subpath inll is preceded and followed by an
S-segment. Thus, botfi-segments of the nontermin@iC
subpath irlI touchdP. Indeed, otherwis# contains a sub-
path of typeSCC or CCS that does not touch?P, which
contradicts Lemma 2.2. Hence, if bdily andIIz contain
ansS, 11 is of type (B.iii).

Suppose that neithéf; norIIx contains ar-segment.
Then, the path is of typ€;CCCp. One of the nontermi-
nal C-segments must touch” by Lemma 2.2. ThiC-
segment is also tangent to a terminal circle and is therefore



PC-anchored. Thus the path is of type (B.i). Note that if both
nonterminalC'-segments touchP, then the path is of type
CrCCCr which can be considered as type (B.i) or (B.iii).
The last case to consider is when exactly onélgfor
IIx contains ans-segment. Sayl; = C; andllp # Cp.
The path has forn@’; C, C>I1r wherellp starts with anS-
segment. We know thé&t, must touctoP? by Lemma 2.3(ii).
If C; also touche$P, then the patll is of type (B.iii).
Otherwise, ifC; does not toucldP, then by Lemma 3.4(ii),
C>» must be stronglyP-anchored. Lemma 3.5 then restricts
the pathIl to be of type (B.ii). Similarly, iflI; # C; and
Iy = Cp, the pathll is of type (B.ii). m|

4 A Simple Algorithm

Theorem 3.1 can be used to obtain the following simple al-

gorithm for computing an optimal path inside We enu-

Paths of type (B.i) are also determined by@-anchored
circle; hence there ai@(n) of them as well.

Paths of type (B.iii), i.e. of typ€,C1SC;C;SC2SC,
present a special problem. If we know the supporting cir-
cles of theCC subpath, the rest of the path is determined
by a pair of PC-anchored circle§;, C», for which there are
O(n?) possibilities. Unfortunately, there is an infinite family
of supporting circles for th€'C' subpath. The following re-
sult by Boissonnat and Lazard [5] allows us to consider only
afinite set ofC'C subpaths.

Lemma 4.2 (Boissonnat and Lazard [5)piven two config-
urations X andY’, and two edges;, e; of P, we can com-
pute® in O(1) time a finite set of paths froo¥ to Y of type

C15C;C;SCy, whereC; andC; are tangent to edges and

e;, respectively. This set contains all optimal paths frdm
toY of typeC; SC;C;SCs.

merate all possible paths of types described in Theorem 3.1

(however paths of type (B.iii) are handled specially). For

Given a pair of edges;, e; and a pair ofPC-anchored

each such path, we check whether it is feasible, compute thecirclesC, , C», tangent taC; andCr, respectively, we choose

length if so, and then we return the shortest feasible path.

X to be the configuration determined by the intersection of

In order to determine whether a path is feasible, we rely C; andC, andY to be the configuration determined by
on the circle-shooting data structure by Agarwal and Sharir [2Jand(C,. Now by the above lemma, we can computeifi )

that preprocesseB in O(nlogn) time into a data struc-
ture that makes it possible to determine(itlog® n) time
whether a given circular arc interse@®. If the radius

time a constant number of candidate paths for this pair of
edges and anchored circles. Doing this for all possible pairs
of edgeg(e;, e;), and pairs ofCy,C»), we determineg)(n?)

of all query circles is the same, then using fractional cas- path candidates of type (B.iii) i@ (n*) time.

cading [8], the data structure may be modified without af-

In summary, the simple algorithm examin@gn*) can-

fecting the preprocessing time, so that a query is answereddidate paths, and for each, sper@dogn) time checking

in O(logn) time. This immediately implies the following
lemma.

Lemma4.1 P can be preprocessed {fi(n logn) time into
a data structure that enables us to determin®iin log n)
time whether a given path consistingofC- and.S-segments
is feasible.

To bound the running time of this simple algorithm, we

must count the number of candidate paths to check. We\y, will show that it suffices to consider onty(1)

feasibility, by Lemma 4.1 withn, < 8. Therefore, the over-
all running time isO(n* log n).

5 An Efficient Algorithm

In this section we prove additional properties of optimal paths
that drastically reduce the number of candidates to examine.
We have already shown that we need to consider Ol
Dubins paths and)(n) candidates for paths of type (B.i).
candidate

note that once a path type is given, and the supporting cir- paths of type (A.)) and (B.i)((n) candidate paths of type

cles for C-segments are known, there apgl) candidate

paths. These are determined by the choices of the orienta-

(A.ii), and O(n?) candidate paths of type (B.iii).

tions for theC-segments. Hence we are interested in the Computing paths of type (A.i) and (B.ii). The paths of

number of possible supporting circles for each path type
Note that there may He(n?) PP-anchored circles arfd(n)
‘PC-anchored circles.

There are)(1) Dubins path candidates.

For paths of type (A.i) and (B.ii), once th&P-anchored
circle is chosen, there a@(1) choices for other support-
ing circles, and henc@&(1) candidate paths. Since there
areO(n?) PP-anchored circles, there af¥n?) candidate
paths for these two path types.

For type (A.ii), the path may have up to tWiRf’-anchored

segments. Once their supporting circles are chosen, ther

are O(1) path candidates. There aé¥n) potential PC-

. types (A.i) and (B.ii) contain a strongly-anchoredC-

segmentC. The circleC supportingC' defines one or two
pockets that contain a point of tangency(oWith 9P (see
Figures 3(b) and 5). By Lemma 2.5, we know tlieand F’
must belong to these pockets. The following lemma states
that there exists at most one circle with these properties.

Lemmab5.1 For a fixed pair of configurationg, £, there
exists at most onBP-anchored circle’ so that the long arc
defined by the tangent points@fvith 9P is free and so that
o andF' belong to the pocket(s) defined ®wnd its tangent
points withdP. This circle can be computed ((n) time.

anchored circles. If both anchored segments are present, We 31he computation is performed by solving four algebraic eyst of

haveO(n?) paths to check; otherwise, we have ofijn).

three equations in three indeterminates.



By the lemma, we can compute, {i(n) time, a set of
O(1) candidate paths of types (A.i) and (B.ii). The candi-
date paths may be checked for feasibilityrilog n) time.
Therefore, an optimal path of type (A.i) or (B.ii) can be com-
puted inO(n) time.

A monotonicity property of CCSC paths. Subpaths of
type CCSC occur in both (A.ii) and (B.iii) path types. In
this subsection, we ignore the polygéh and study paths
from X to Y of type C; C>SC5, with specified orientations
on theC-segments. Then the circl€s andCs; supporting
C; andCs, respectively, are fixed. Circlé, is determined
by M, its tangent point witlC,. For eachM € Cy, there is
at most one pathl (M) of typeC, C2SC5 with the specified
orientations orC-segments. For certain positionsidf, one
of the segments may vanish. These positionk/cdre called
singular points The following lemma is proved by calculus.

Lemma5.2 AsM moves along the oriented cirali, ||TL(M)||
increases monotonically, except at singular points.

At singular points where &-segment vanishes, the path
length changes by-27. The S-segment vanishes wheh
and (s have opposite orientation and are tangenthus,
there may be two singular points where thisegment van-
ishes. If there are two, they split the cirdle into two arcs.
Along one of the arcs, circles, andCs properly intersect,
and soll(M) is not defined there. Thus, the singular points
corresponding to a vanishirysegment are the endpoints of
the arc ofC; on which the path is defined. There may be
up to six singular points. See Figure 6 for an illustration of
six singular points in a path of typ€TC—SC™*. All the
singular points can be computeddr(1) time.

Figure 6. Paths of typeCtC—SC* from X to Y and the six singular
points X, My, Ma, Mz, M4 andMs onCy.

Computing type (A.ii) paths. As mentioned in Section 4,
we can compute i) (n logn) time the feasible candidates
of type (A.ii) paths with at most onBC-anchored segment.
If the path is of typeC;CSCCF, a simple analysis gives

4The S-segment may vanish everd$ andCs have the same orientation
andCs = Cs, but in this cas&’s-segment also vanishes.

O(n?) candidates to check; we now use Lemma 5.2 to reduce
the number of candidates and to compute thef(inlog n)
time.

Fix the orientations of the terminél-segments, and let
C; andCp denote the circles supportinigg andC'r, respec-
tively. Let IC; be the sequence @¥C-anchored circles that
touchCr and that are free, sorted by their tangent points with
C;. The setCr is defined analogously, f@?C-anchored cir-
cles tangent t@ . Note that'C; andKr can be computed in
O(nlogn) time, and they hav@(n) elements.

By Lemma 3.6, circles supporting ti{&-segments in an
optimal pathl of typeC; C, SC,C are free. Therefore, the
C,-segment of1 lies on a circle ofCx. Suppos&, € Kr
supports the”»-segment ofl. This fixes the terminal con-
figuration of the subpatty;C,SC». The above subsection
on monotonicity implies we have up to up to six singular
points onC;y.

Let§ C C; be an arc joining two singular points and
let £;(6) € K; be the subsequence of circles that touch
Cr at a point ind. By Lemma 5.2, only the first circle of
K1 () is a candidate fof;. Hence, at most six circles i
are candidates faf, , and they can be computed@nlog n)
time by performing a binary search. By examining eégle
Kr inturn, we computé(n) candidate paths i®(n logn)
time. We can therefore conclude that an optimal path of type
(A.ii) can be computed i®(n log n) time.

Computing type (B.iii) paths. Let IT be an optimal path of
the formIl;C;C;11, i.e. of type (B.iii). Suppose we know
the edges;, e; that are tangent t6; andC}, respectively.

If II does not contain ang/-segment inl; or I1x, then
we can computél in O(logn) time using Lemmas 4.2 and
4.1.

Consider now the case in whidlh; andII; each con-
tains aC-segment, i.ell is of type C;CSC;C; SCCr. We
show that, givere; ande;, we can compute, i (logn)
time, a set ofO(1) candidate circles that contains tide
segments ofl. Given this set, we can compute the shortest
feasible path of the above type i(logn) time, by Lem-
mas 4.1 and 4.2. Thus, by considering @lin?) pairs of
edges ofP, we can compute i) (n?logn) time a set of
O(n?) candidate paths for this case. However, we will see
later that in some cases we need not consid&p @if) pairs
of edges ofP.

We first establish some simple properties of an optimal
pathII of type C;C1SC;C;SC2Cr. Assume without loss
of generality thatC;, C; are oriented clockwise and coun-
terclockwise, respectively. By Lemma 3.3, thig-segment
is oriented clockwise, and th&,-segment is oriented coun-
terclockwise, i.e.IL is of typeC;"C SC; C SC5 Cr. Let
C1,C;,C;, andC, denote the circles supporting thesegments
C1, C;, Cj, andCs, respectively.

Lemma 5.3 If an optimal path is of typ€:C,SC:C;SCyCr,
then the circle€;, C;, C;, andC are free.



Proof: Lemma 3.6 directly yields thaf, and(C, are free.
Suppose now for a contradiction thdt is not free. As
before, we assume that the orientations are suchlihat
C{CTSC7CSCTCy. LetT be the tangent point be-
tweenC; andC;. Moving alongC, let X be the last tan-
gent point betweed’; anddP. Starting atX and moving
alongéj, letY” be the first proper intersection point between
C; andoP (see Figure?).

By Lemma 2.4, the length of’; betweenT and X is
greater thanr, i.e. ||C[T, X]|| > = It follows that(;,
X andY define a pocket\s [X,Y] (see Figure??). By
Lemma 2.5, this pocket contaifi§.X, '] and therefore con-
tainsC»,. We know the free circl€, cannot be entirely in-
side a pocket. The pathi; SC» enters the pocket at, and
sinceC, is free, it is possible to escape the pocket by extend-
ing segmentC,. This contradicts Lemma 2.5, establishing
thatC; is free. A symmetric argument shows that cir€lds
free. |

We now introduce the following simple definition. Given
acircleC and a pointX € C, apointd € C is called thdirst
free point afterX alongC™ if and only if the circle tangent
to C at M is free and for anyM’ € C*[X, M), the circle
tangenttaC at M’ is not free (in Figure 7)/" is the first free
point after/ alongC;"). Note that)/ could beX . The circle
tangent taC at the first free point afteX is called thefirst
free circle afterX alongC™.

We show that, giverd, F, e; ande;, we can compute
in O(logn) time a set ofO(1) candidate circles that con-
tain theC'-segments of any optimal path frohto F of type
C{CySC7CfSCTCy. We show how to compute can-
didate circles foIC;; computing candidate circles fa¥, is
similar.

We identify two circle’ andC"” that are the candidate
circles forC; . LetC’ be the first free circle aftefr alongC; .

If there is no free circle aftef alongC;, thenC’ andC" are

not defined. Assume, after a possible rotation, that the line
L throughe; is horizontal andP is aboveL. If the distance
betweenL and the center of; is greater tha®, thenC” is

not defined. Otherwise, there exist two circles that are above
L and tangent to botth+ andL. Let(Cyr, be the leftmost of
these two circles, and let/;, be its tangent point witid;".
Let C" be the first free circle aftek/,, anngC}“. Note that

C" andC" only depend oI, C;, and on the line. through

e;.

Figure 7. Definition of C’ andC"’.

Lemma5.4 LetIl be an optimal path of typ€; C7 S C;~ C‘;FSC:'QFC;,

and letL be the line through the edge tangentd@ Then
C is supported by’ or C".

Proof (Sketch): We prove the lemma only in the case where
C; andc; properly intersect. Let’ € II be the configuration
at the tangent point betweér andC;.

The circleC; supporting theC';-segment is tangent to
C; . As before, any choice of a poidt € C; defines at
most one patll(1/) of the formC; C; SC;~, which begins
at/ and ends af’, and whereZ} andC;™ are tangent ad/ .
Let M* be the intersection point of th€; - andC; seg-
ments of the optimal patl. ThenII(M*) is a subpath of
IT and so it is an optimal path frothto 7'. By the mono-
tonicity property (Lemma 5.2), and sin€e and(; are free
(Lemma 5.3)M* must be the first free point alory” after
a singular point oflI(AM). SinceC;” andC; properly inter-
sect, there are only two singular poidtand M; of II(M),
wherel; corresponds to the vanishing ©f.

If M* is the first free point aftef alongC;, thenC; is
supported by’, the first free circle aftef. If M * is the first
free point after);, then we show thaf’; is supported by
C", the first free circle aftei/y,.

By Lemma 2.4, the arc length 6f; from its tangent point
with L to 7" must be at least. See Figure 4(c). In other
words,T" must be in the right half of; (as L is horizontal
andP is aboveL). Therefore by definition of\/, the arc
length ofC; in TI(M,,) is less tharnr.

It follows that for any pointM € C; [M;, M), the arc
length ofC; in II(M) is less thamr, so by Lemma 2.3](A/)
cannot be part of the optimal path. Thidg; does not belong
to C}r[Ml, Mz]. Soif M* is the first free point aftef/;,
then it is the first free point aftev/;. In other words( is
supported by a

Lemmab5.5 C' andC" can be computed i@ (logn) time.

Proof: Let I' be the circle of radiug concentric withC;.
Let It (resp. Mr) be the intersection point betweé&nand
the ray emanating from the center@f and going through
I (resp.M L) (see Figure 8). LeR be theretracted polygon
of P with respect to a unit circle, i.eR is the set of points

p such that the unit circle centeredpaties insideP; R is

a convex polygonal region with at mostedges, and it can
be computed in linear time. L&' be the first intersection
point betweed” andR starting at/; and moving alond'*.
The center of’ is O'. Indeed, by definition oR, the circle
centered a)’ is free, and any circle (of unit radius) centered
at a point onl'*[Ir, 0') is not free. Similarly, the center of
C'"" is the first intersection point betwe&nand R starting at
Mr and moving alond"*. Using the circle-shooting data
structure by Agarwal and Sharir [2R can be preprocessed
in O(nlogn) time, so thatC’ andC"” can be computed in
O(logn) time. O



Figure 8. CRAP

By Lemmas 5.4 and 5.5, we can compute(ifiogn)
time, two candidates for the circle supporting segm@ént
We can similarly compute two candidates for the circle sup-
porting segment’,. By Lemma 4.2, this gives u®(1)
candidate paths, for which we may check the feasibility in
O(logn) time. Hence, given two edges ande; of P,
we can compute i@ (logn) time, an optimal path of type
C,CSC;C;SCCy , whereC; andC; are tangent te; and
e;, respectively.

In the cases where the optimal path is of type (B.iii) with
only oneC-segment inll; or II, we get similar results.
For example, if an optimal path is of tyjgg§ C, SC;C; SCl,
thenC, andC; are free, and; is supported by thé’ or C"
defined above. Thus we get the following lemma.

Lemmab.6 Lete;, e; be edges oP. In O(log n) time, we
can compute an optimal path of tyAe C;C;; 11 wherell; €
{C[C_'S, C[S, C[, S}, HF S {SCCF, SCF, CF, S} and where
C; andC; are tangent tee; ande;, respectively.

Now we describe how to find a suitable set of pairs of
edges such that if an optimal path frothto F' is of type (B.iii)
(i.e., I, C;C;11x), then the pair of edge®;, e;) tangent to
C; andC} is in the set.

From [1], we know that if an optimal path frointo £ is
of typeHIC’jC'j‘HF such thatC; andC; are nonterminal,
thenC; intersect<; (the circle supporting’;), andCj, in-
tersectg’; (the circle supporting’;). Thus, the center af;,
which is at most distance 1 from the boundary of the poly-
gon, is at most distance 3 from Since centers of; and

C; are distance 2 apart, they are each distance less than 5[

from I. Thus, edges; ande; are distance less than 6 from
I. By symmetry, they are also distance less than 6 fflom
Therefore, we can considérto be the set of pairs of edges
of P that are distance less than 6 frdmandF'. Letk denote
the number of edges d? distance less than 6 frothand

F. Then|€| = k?, and€ can be computed i0(k?) time.
Lemma 5.6 then gives:

Lemma 5.7 An optimal path of type (B.iii) can be computed
in O(k? logn) time.

Putting everything together, we obtain the following.

Theorem 5.8 Given a convex polygoR, an initial configu-
ration I, and a final configuratior, an optimal path from
I to F insideP can be computed in tim@((n + k) logn),
wherefk is the number of edges &f at distance less than 6
fromI andF.

Proof: We have shown in the previous subsections that the
Dubins paths and the optimal paths of type (A.i), (A.ii), (B.i),
and (B.ii) can be computed i@ (n logn) time, while paths

of type (B.iii) can be computed i@ (k* logn) time. Choos-

ing the shortest among all those paths yields an optimal path.
|

6 Conclusion

Our classification of path types in a convex polygon yields
a fast algorithm for computing an optimal path. An inter-
esting question is whether the running time can be improved
to O(nlogn) by proving additional properties of paths of
type (B.iii)). Our results show that even for a convex poly-
gon, optimal paths between two configurations can be rather
complex. Such complex paths may be difficult to track by
a mobile robot. Furthermore, they may arise as artifacts of
a tightly constricted environment. A direction for future re-
search is to seek a realistic notion of feasibility that rejects
hard-to-follow paths, while admitting fast computation of
optimal paths.
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