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Abstract

Let B be a point robot moving in the plane, whose path is con-
strained to have curvature at most1, and letP be a convex polygon
with n vertices. We study the collision-free, optimal path-planning
problem forB moving between twoconfigurationsinsideP (a con-
figuration specifies both a location and a direction of travel). We
present anO(n2 log n) time algorithm for determining whether a
collision-free path exists forB between two given configurations. If
such a path exists, the algorithm returns a shortest one. We provide
a detailed classification of curvature-constrained shortest paths in-
side a convex polygon and prove several properties of them, which
are interesting in their own right. Some of the properties are quite
general and shed some light on curvature-constrained shortest paths
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1 Introduction

The path-planningproblem, a central problem in robotics,
involves planning a collision-free path for a robot moving
amid obstacles, and has been widely studied (see, e.g., the
book by Latombe [17] and the survey papers by Schwartz
and Sharir [25] and Halperin, Kavraki and Latombe [12]). In
the simplest form, given a moving robotB, a setO of ob-
stacles, and a pair of configurationsI andF of B, we wish
to find a continuous, collision-free path forB from I to F .
This formulation, however, does not take into account the dy-
namic constraints (for instance, bounds on velocity, acceler-
ation or curvature), the so-callednonholonomic constraints,
imposed on a robot by its physical limitations. Although
there has been considerable recent work in the robotics liter-
ature on nonholonomic motion-planning problems, (see [3,
4, 14, 16, 18, 20, 26, 31, 32] and references therein) rela-
tively little theoretical work has been done in this important
area.

The placement of a robot withk degrees of freedom is
determined by a tuple ofk parameters, each describing one
degree of freedom; the set of all placements is calledcon-
figuration space. In holonomic path planning, the points in
configuration space reachable byB are determined solely by
the the initial placement ofB and possibly some obstacles.
By contrast, in nonholonomic path planning, the placement
of B is not sufficient to determine the placements reachable
by B, e.g., anotherk parameters that are derivatives of the
placement may be needed (see [17] for a more detailed dis-
cussion). This makes the nonholonomic path-planning prob-
lem considerably harder.

In this paper, we study the path-planning problem for
a point robot whose path is constrained to have curvature
at most1. This curvature constraint arises naturally when
the point robot models a real-world robot with a minimum
turning radius; see for example [17]. Recently Reif and
Wang [24] confirmed that the problem of deciding whether
there exists a collision-free curvature-constrained path forB
between two given configurations amid obstacles is NP-hard.
This motivates interest in studying various special cases. In
this paper we propose an efficient algorithm for computing a



curvature-constrained shortest path inside a convex polygon.

We establish several new properties of shortest paths in-
side a convex polygon and use these properties to charac-
terize shortest paths. Using these properties of shortest paths
and some results in computational geometry [2, 8], we present
an efficient algorithm that, given initial and desired final con-
figurationsI andF in the polygon, determines whether a
curvature-constrained path fromI to F exists, and if so,
computes a shortest one.

1.1 Previous results

Dubins [10] was perhaps the first to study curvature-constrained
shortest paths. He proved that, in the absence of obstacles,
a curvature-constrained shortest path from any start config-
uration to any final configuration consists of at most three
segments, each of which is either a straight line or an arc of
a circle of unit radius, assuming that the maximum curvature
of the path is bounded by1. Reeds and Shepp [23] extended
this obstacle-free characterization to robots that are allowed
to make reversals, that is, to back up. Using ideas from con-
trol theory, Boissonnat, Cérézo and Leblond [4] gave an al-
ternative proof for both cases, and recently Sussmann [29]
was able to extend the characterization to the3-dimensional
case. In the presence of obstacles, Fortune and Wilfong [11]
gave a2poly(n;m)-time algorithm, wheren is the total num-
ber of vertices in the polygons defining the obstacles andm
is the number of bits of precision with which all points are
specified; their algorithm only decides whether a path ex-
ists, without necessarily finding one. Jacobs and Canny [13],
Wang and Agarwal [30], and Sellen [27, 28] gave approx-
imation algorithms for computing an"-robustpath. (Infor-
mally, a path is"-robust if"-perturbations of certain points
along the path do not violate the feasibility of the path.)
For the restricted case of pairwise disjointmoderate obsta-
cles, i.e., convex obstacles whose boundaries have curvature
bounded by1, Agarwal, Raghavan and Tamaki [1] gave effi-
cient approximation algorithms. Boissonnat and Lazard [5]
gave anO(n2 logn)-time algorithm for computing the exact
shortest paths for the case when the edges of the pairwise
disjoint moderate obstacles are circular arcs of unit radius or
line segments. Their algorithm works even if the obstacles
intersect each other, and thus inside a convex polygon, but
the running time is thenO(n7). Wilfong [31] studied a re-
stricted problem in which the robot must stay on one ofm
line segments (thought of as “lanes”), except to turn between
lanes. For a scene withn obstacle vertices, his algorithm
preprocesses the scene in timeO(m2(n2 + logm)), follow-
ing which queries are answered in timeO(m2). There has
also been work on computing curvature-constrained paths
whenB is allowed to make reversals [3, 19, 21]. Other,
more general, dynamic constraints have been considered in
[6, 7, 9, 22].

1.2 Our model and results

LetB be a point robot andP a closed convex polygon withn
vertices. For simplicity we assume that the edges ofP are in
general position: no two edges are parallel and no unit-radius
circle is tangent to three edges ofP . A configurationX forB is a pair(LOC(X);  (X)), whereLOC(X) is a point in the
plane representing the location of the robot and (X) is an
angle between0 and2� representing its orientation. When
the meaning is clear, we often writeX instead ofLOC(X).

The image of a differentiable function� : [0; l] ! R2
is called apath. We denote both the function and the path
it defines by�. We regard a path� as oriented from�(0)
to �(l). We assume a path� is parameterized by its arc
length, andk�k denotes its length. We say that� is a path
from a configurationX to another configurationY if �(0) =
LOC(X), �(l) = LOC(Y ), and the oriented angles (with re-
spect to the positivex-axis) of�0(0) and�0(l) are (X) and (Y ), respectively. A path is calledmoderateif its average
curvature is at most1 in every positive-length interval.1 This
implies that the curvature is at most1 whenever it is defined.

Any curve that lies entirely within the closed polygonP
is calledfree. A path isfeasibleif it is moderate and free. A
feasible path� from a configurationX to another configura-
tion Y is optimalif its length is minimum among all feasible
paths fromX to Y (it can be shown that whenever a feasi-
ble path fromX to Y exists, then an optimal such path also
exists [13]).

Main Results. LetP be a convex polygon in the plane withn vertices, and letI andF be two configurations insideP .

(i) We prove that an optimal path fromI toF consists of at
most eight maximal segments, each of which is either a
line segment or a circular arc of unit radius.

(ii) We give anO(n2 logn)-time algorithm to determine
whether a feasible path fromI toF exists. If such a path
exists, then the algorithm returns an optimal path fromI to F . If there are onlyk edges ofP within distance6 from I andF , then the running time of our algorithm
can be improved toO((n+ k2) logn),

Our algorithm is significantly faster than the algorithm
by Boissonnat and Lazard [5], whose running time wasO(n7).
Our paper is organized as follows. In Section 2, we present
basic definitions, notation, and useful known results. In Sec-
tion 3, we give a classification of the optimal path. In Sec-
tions 4 and 5, we describe our algorithms. Section 6 con-
cludes.

2 Geometric Preliminaries

Given a configurationX , the oriented line passing through
LOC(X) with orientation (X) is denotedLX . A configura-
tionX belongsto an oriented path (or curve)� if LOC(X) 2

1Theaverage curvatureof a path� in the interval[s1; s2] is defined byk�0(s1)� �0(s2)k=js1 � s2j.



� andLX is the oriented tangent line to� at LOC(X). Note
that a configurationX belongs to two oriented unit-radius
circles. We will useC+X (resp.C�X ) to denote the two circles
of unit radius, oriented counterclockwise (resp. clockwise)
to which the configurationX belongs.

If X andY are two points on a simple closed curve
,
then
+[X;Y ] (resp. 
�[X;Y ]) denotes the portion of

from X to Y in the counterclockwise (resp. clockwise) di-
rection, includingX andY ; we will use
+(X;Y ); 
�(X;Y )
to denote portions excludingX;Y . Similarly, for a path�
and two configurationsX;Y 2 �, we will use�[X;Y ] to
denote the portion of� fromX to Y .

Segments and Dubins paths. Let � be a feasible path. We
call a nonempty subpath of� aC-segment(resp.S-segment)
if it is a circular arc of unit radius (resp. line segment) and
maximal. Asegmentis either aC-segment or anS-segment.
While referring to aC-segments on a path�, we will call it
aC+-segment (resp.C�-segment) if it is counterclockwise
(resp. clockwise) oriented along�. Suppose� consists of
aC-segment, anS-segment, and aC-segment; then we will
say that� is of typeCSC, orC1SC2 if we want to distin-
guish between the twoC-segments; superscripts+ and�
will be used to specify the orientations ofC-segments of�.
Abusing the notation slightly, we will also useC1; C2 to de-
note theC-segments andS to denote theS-segment of�.
The above notation can be generalized to an arbitrarily long
sequence. Dubins [10] proved the following result.

Lemma 2.1 (Dubins [10]) In an obstacle-free environment,
an optimal path between any two configurations is of typeCCC or CSC, or a substring thereof.

IFI FIF
Figure 1. Different types of Dubins paths.

We will refer to paths of typeCCC or CSC or sub-
strings thereof asDubins paths. In the presence of obsta-
cles, Jacobs and Canny [13] observed that any subpath of an
optimal path that does not touch any obstacle except at the
endpoints is a Dubins path. In particular, they proved the
following.

Lemma 2.2 (Jacobs and Canny [13])Let
 be a closed polyg-
onal environment,I an initial configuration, andF a final
configuration. Then an optimal path fromI to F in 
 con-
sists of a sequence�1 � � ��k of feasible paths, where each�i is a Dubins path from a configurationXi�1 to a configu-
rationXi, such thatX0 = I , Xk = F , and, for0 < i < k,
LOC(Xi) 2 @
.

The above lemma implies that an optimal path in a closed
polygonal environment consists ofC- andS-segments. In
the following, we will consider only those paths that are
formed byS- andC-segments. We will refer to circles and
circular arcs of unit radius simply as circles and circular arcs.
Notationally, we differentiate between aC-segment and its
supporting circle by using calligraphic font for the latter.

Terminal and nonterminal segments. A segment of a fea-
sible path� is calledterminal if it is the first or the last seg-
ment of�; otherwise it is callednonterminal. We apply the
adjectives terminal and nonterminal to subpaths as well. If
the first or last segment in� is aC-segment, we will refer to
it as aCI -segment or aCF -segment, respectively.C+I , C�I ,C+F , andC�F are calledterminal circles(see Figure 2).

The following lemmas state some basic known properties
of optimal paths; see [1, 10, 13].

Lemma 2.3 In an optimal path insideP,

(i) any nonterminal C-segment has length greater than�,
(ii) any nonterminal C-segment is tangent to@P or to a

terminal circle in at least one point, and
(iii) no nonterminal subpath has typeCCC.

Lemma 2.4 Let � be an optimal path of typeC1C2S in-
sideP . Let X be the common endpoint of theC1- andC2-segments, and letY be the last tangent point of theC2-
segment with@P along�. Then the length of theC2-segment
betweenX andY is greater than�, i.e.,k�[X;Y ]k > �.

Anchored segments. A C-segment or circle is calledan-
chored if it is tangent to@P or to terminal circles at two
points. The terminal circles are not considered anchored.
An anchoredC-segment is denoted by��C. By our general-
position assumption onP , there are a finite number of an-
chored circles. AC-segment tangent to@P in at least one
point is denoted by�C.

An anchoredC-segment or circle isPP-anchoredif it is
tangent to@P at two points andPC-anchoredif it is tangent
to @P at one point and tangent to a terminal circle at another
point; see Figure 2.

A circular arc is calledlong if its length is greater than�;
else it is calledshort. A PP-anchoredC-segment is called
stronglyPP-anchoredif it contains the long arc defined by
the tangent points of its supporting circle with@P (see Fig-
ure 3(b)). Similarly, aPC-anchoredC-segment is called
stronglyPC-anchoredif it contains the long arc defined by
two tangent points of its supporting circle with@P and with
a terminal circle (see Figure 4(a)).

Pockets. Let C be a circle intersecting@P at two or more
points, and letX;Y be two consecutive intersection points
of @P with C so that the short arc ofC joiningX andY lies
insideP. If C+[X;Y ] is the short arc and the turning angle2

2The turning angleof a convex polygonal chain is
Pi(� � �i), where�i is the interior angle at vertexi.
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Figure 2. PC-anchored (C1) andPP-anchored (C2) circles.

of @P+(X;Y ) is less than�, then the closed region bounded
by @P+[X;Y ] andC+[X;Y ] is called apocketif (see Fig-
ure 3), and is denoted by�C [X;Y ]. We define similarly the
pocket�C[X;Y ] whenC�[X;Y ] is the shorter arc. We will
mostly be interested in pockets for whichC is tangent to@P
atX .

CP X Y�C [X;Y ]
F

I IF PY XC �C [X;Y ]
(a) (b)

Figure 3. Pockets.

It can be verified that the condition on the turning angle
implies that a pocket does not have enough room to contain a
unit circle. Using this simple observation, we can prove the
following lemma, which will be crucial for characterizing the
optimal paths containing a strongly anchoredC-segment. In
particular, the lemma implies that if a feasible path enters
the interior of a pocket, then it cannot escape the pocket (see
Figure 3).

Lemma 2.5 LetC be a circle tangent to@P atX that defines
a pocket�C [X;Y ]. If a feasible path� from I to F enters
(resp. escapes)�C [X;Y ] at X , then either� contains the
small arc ofC joining X andY , or �[X;F ] � �C [X;Y ]
(resp.�[I;X ] � �C [X;Y ]).
3 Classification of Optimal Paths

The goal of this section is to prove the first of our main re-
sults, namely a detailed characterization of optimal paths in
convex polygons. We show that any optimal path is of typeCICSCCSCCF or a subsequence of this form. However,
not every subsequence of the above sequence can form an
optimal path. The following theorem gives a more refined
description of optimal path types. Recall that a segment has

non-zero length by definition. In the following, we use� to
denote a subpath of zero length.

Theorem 3.1 An optimal path� insideP is a Dubins path
or has one of the types listed below. Except in case (B.i), all
theC-segments labeled��C are strongly anchored.

(A) If � has no nonterminalCC subpath, then� has one
of the following types:

(A.i) �IS ��CS�F where�I 2 fCI ; �g, and�F 2 fCF ; �g
(see Figure 3(b))

(A.ii) �IS�F where�I 2 fCI ��C;CI ; �g, and�F 2 f ��CCF ; CF ; �g
(see Figure 4(a))

(B) If � has a nonterminalCC subpath, then� has one of
the following types:

(B.i) CIC ��CCF or CI ��CCCF
(B.ii) �IS ��CCCF orCIC ��CS�F where�I 2 fCI ; �g, and�F 2 fCF ; �g
(B.iii) �I �C �C�F where�I 2 fCI ��CS;CIS;CI ; Sg, and�F 2 fS ��CCF ; SCF ; CF ; Sg (see Figures 4(b), (c))

I F
P P IF

(b)CIS �C �CSCF(a)CI ��CS ��CCF
IF
C+F
C+I

C�I
C�F�C3

��C1�C2 ��C4
(c)CI ��C1S �C2 �C3S ��C4CF

Figure 4. Examples of shortest paths.

Proposition 3.2 The typeCICS �C �CSCCF , consisting of eight
segments, does occur as an optimal path type.



Proof (Sketch): Figure 4(c) shows an instance ofP and ini-
tial and final configurations in which a feasible path has eight
segments. We can argue that no paths of the other types de-
scribed in Theorem 3.1 are feasible, which implies that the
optimal path is of the given type. 2

The proof of Theorem 3.1 is based on the following lem-
mas.

Lemma 3.3 (Agarwal, Raghavan and Tamaki [1])An optimal
path has at most one nonterminalCC subpath. Moreover,
any nonterminal C-segment that precedes (resp. follows) aC1C2 subpath is oriented the same way asC1 (resp.C2).

Next, we state a lemma, which can be proved using geo-
metric perturbations similar to the ones used in [1, 5].

Lemma 3.4 (i) If an optimal path has a subpath of typeSCS, then theC-segment in that subpath is stronglyPP-
anchored.
(ii) If an optimal path has a subpath of typeC1C2C3S (orSC3C2C1) so that theC-segmentC2 does not touch@P ,
thenC3 is stronglyPP-anchored.

We next characterize the optimal paths that contain a
stronglyPP-anchoredC-segment.

Lemma 3.5 If an optimal path� contains a stronglyPP-
anchoredC-segment��C , then� is of typeCIS ��CSCF ,CIC ��CSCF ,CIS ��CCCF , or a substring thereof (containing��C).

Proof (Sketch): By assumption,� = �I ��C�F . ��C is stronglyPP-anchored; hence its supporting circle,��C, has two or more
intersections with@P. LetX denote the first tangent point
of ��C with @P along�. LetY be the first point fromX on ��C
— moving in the opposite sense of��C ’s orientation — which
intersects@P (see Figure 5). It is easy to prove that such aY exists, and that� ��C[X;Y ] defines a pocket. Lemma 2.5
implies that the path up toX , i.e.�I and perhaps part of��C,
is contained in the pocket. We can also prove that�I con-
sists of at most two segments, so�I is eitherCIC, CIS, or
a substring thereof. Likewise,�F is CCF , SCF , or a sub-
string thereof. The result follows by noting that paths of typeCIC ��CCCF are ruled out by Lemma 2.3(iii). 2

I XYF ��C P
Figure 5. For the proof of Lemma 3.5. An optimal path containing a
stronglyPP-anchoredC-segment must start and end in a pocket.

We state now another lemma which will be useful for the
algorithm. The proof is similar to that of Lemma 3.5.

Lemma 3.6 If an optimal path� contains a stronglyPC-
anchoredC-segment��C whose supporting circle is not free,
then� is of typeCI ��CSCF ,CI ��CCCF ,CIS ��CCF ,CIC ��CCF ,
or a substring thereof (containing��C).

We now prove Theorem 3.1.

Proof of Theorem 3.1: The proof proceeds by considering
how a nonterminalC-segment may appear in�. If there is
no nonterminalC-segment in�, then� is of typeCISCF
or a substring thereof, i.e.,� is a Dubins path.

Assume now that there is a nonterminalC-segment in�.
Then such a segment belongs to a subpath of� of type eitherSCS or CC. Suppose� contains a subpath of typeSCS.
By Lemma 3.4, theC-segment inSCS must be stronglyPP-anchored. Thus, by Lemma 3.5,� is of typeCIS ��CSCF ,
or substrings (containingS ��CS) thereof. In other words,� is
of type (A.i).

If � contains a nonterminalC-segment but not a subpath
of type SCS, we know it must contain a subpath of typeCC. There are two cases to consider, depending on whether
theCC subpath is terminal.

Case 1:� does not contain any nonterminal subpath of
type CC. Thus, one of theC-segments in anyCC sub-
path must be a terminal segment. Either� is of typeCICF ,CICCF (i.e., a Dubins path), or any nonterminalC-segment
is also adjacent to anS-segment.� must then be of typeCICSCCF , or any substring thereof containingS and a ter-
minalCC. By Lemma 2.4, the nonterminalC-segments are
strongly anchored. All these types of paths are covered by
type (A.ii).

Case 2:� contains a nonterminal subpath of typeCC.
By Lemma 3.3, it is theonly nonterminalCC subpath in�.
Thus� has the form�ICC�F . A nonterminalC-segment
in �I must be followed by anS-segment, otherwise there
will be a nonterminalCCC subpath in� (Lemma 2.3(iii)).
Furthermore, since we have noSCS subpath in�, a nonter-
minalC segment must be preceded by a terminalC-segment.
This means�I = CICS or a subsequence of it. The subse-
quence cannot not be empty, for otherwise the middleCC
subpath would be terminal; nor can it be simplyCC, as
noted above. Thus,�I 2 fCICS;CIS;CI ; Sg. Similarly,�F 2 fSCCF ; SCF ; CF ; Sg.

If �I = CICS or �F = SCCF , then the nonterminalC-segment in�I or�F is strongly anchored by Lemma 2.4.
If both �I and�F contain anS-segment, then the non-

terminalCC subpath in� is preceded and followed by anS-segment. Thus, bothC-segments of the nonterminalCC
subpath in� touch@P . Indeed, otherwise� contains a sub-
path of typeSCC or CCS that does not touch@P , which
contradicts Lemma 2.2. Hence, if both�I and�F contain
anS, � is of type (B.iii).

Suppose that neither�I nor�F contains anS-segment.
Then, the path is of typeCICCCF . One of the nontermi-
nal C-segments must touch@P by Lemma 2.2. ThisC-
segment is also tangent to a terminal circle and is therefore



PC-anchored. Thus the path is of type (B.i). Note that if both
nonterminalC-segments touch@P , then the path is of typeCI ��C ��CCF which can be considered as type (B.i) or (B.iii).

The last case to consider is when exactly one of�I or�F contains anS-segment. Say�I = CI and�F 6= CF .
The path has formCIC1C2�F where�F starts with anS-
segment. We know thatC2 must touch@P by Lemma 2.3(ii).
If C1 also touches@P, then the path� is of type (B.iii).
Otherwise, ifC1 does not touch@P, then by Lemma 3.4(ii),C2 must be stronglyPP-anchored. Lemma 3.5 then restricts
the path� to be of type (B.ii). Similarly, if�I 6= CI and�F = CF , the path� is of type (B.ii). 2
4 A Simple Algorithm

Theorem 3.1 can be used to obtain the following simple al-
gorithm for computing an optimal path insideP . We enu-
merate all possible paths of types described in Theorem 3.1
(however paths of type (B.iii) are handled specially). For
each such path, we check whether it is feasible, compute the
length if so, and then we return the shortest feasible path.

In order to determine whether a path is feasible, we rely
on the circle-shooting data structure by Agarwal and Sharir [2]
that preprocessesP in O(n logn) time into a data struc-
ture that makes it possible to determine inO(log2 n) time
whether a given circular arc intersects@P. If the radius
of all query circles is the same, then using fractional cas-
cading [8], the data structure may be modified without af-
fecting the preprocessing time, so that a query is answered
in O(log n) time. This immediately implies the following
lemma.

Lemma 4.1 P can be preprocessed inO(n logn) time into
a data structure that enables us to determine inO(m logn)
time whether a given path consisting ofmC- andS-segments
is feasible.

To bound the running time of this simple algorithm, we
must count the number of candidate paths to check. We
note that once a path type is given, and the supporting cir-
cles forC-segments are known, there areO(1) candidate
paths. These are determined by the choices of the orienta-
tions for theC-segments. Hence we are interested in the
number of possible supporting circles for each path type.
Note that there may be
(n2)PP-anchored circles and
(n)PC-anchored circles.

There areO(1) Dubins path candidates.
For paths of type (A.i) and (B.ii), once thePP-anchored

circle is chosen, there areO(1) choices for other support-
ing circles, and henceO(1) candidate paths. Since there
areO(n2) PP-anchored circles, there areO(n2) candidate
paths for these two path types.

For type (A.ii), the path may have up to twoPC-anchored
segments. Once their supporting circles are chosen, there
areO(1) path candidates. There areO(n) potentialPC-
anchored circles. If both anchored segments are present, we
haveO(n2) paths to check; otherwise, we have onlyO(n).

Paths of type (B.i) are also determined by aPC-anchored
circle; hence there areO(n) of them as well.

Paths of type (B.iii), i.e. of typeCI ��C1S �Ci �CjS ��C2SCF ,
present a special problem. If we know the supporting cir-
cles of the �C �C subpath, the rest of the path is determined
by a pair ofPC-anchored circlesC1; C2, for which there areO(n2) possibilities. Unfortunately, there is an infinite family
of supporting circles for the�C �C subpath. The following re-
sult by Boissonnat and Lazard [5] allows us to consider only
a finite set of�C �C subpaths.

Lemma 4.2 (Boissonnat and Lazard [5])Given two config-
urationsX andY , and two edgesei, ej of P , we can com-
pute3 in O(1) time a finite set of paths fromX to Y of typeC1S �Ci �CjSC2, where�Ci and �Cj are tangent to edgesei andej , respectively. This set contains all optimal paths fromX
to Y of typeC1S �Ci �CjSC2.

Given a pair of edgesei; ej and a pair ofPC-anchored
circlesC1; C2, tangent toCI andCF , respectively, we chooseX to be the configuration determined by the intersection ofCI andC1 andY to be the configuration determined byCF
andC2. Now by the above lemma, we can compute inO(1)
time a constant number of candidate paths for this pair of
edges and anchored circles. Doing this for all possible pairs
of edges(ei; ej), and pairs of(C1; C2), we determineO(n4)
path candidates of type (B.iii) inO(n4) time.

In summary, the simple algorithm examinesO(n4) can-
didate paths, and for each, spendsO(log n) time checking
feasibility, by Lemma 4.1 withm � 8. Therefore, the over-
all running time isO(n4 logn).
5 An Efficient Algorithm

In this section we prove additional properties of optimal paths
that drastically reduce the number of candidates to examine.
We have already shown that we need to consider onlyO(1)
Dubins paths andO(n) candidates for paths of type (B.i).
We will show that it suffices to consider onlyO(1) candidate
paths of type (A.i) and (B.ii),O(n) candidate paths of type
(A.ii), andO(n2) candidate paths of type (B.iii).

Computing paths of type (A.i) and (B.ii). The paths of
types (A.i) and (B.ii) contain a stronglyPP-anchoredC-
segment��C . The circle ��C supporting��C defines one or two
pockets that contain a point of tangency of��C with @P (see
Figures 3(b) and 5). By Lemma 2.5, we know thatI andF
must belong to these pockets. The following lemma states
that there exists at most one circle with these properties.

Lemma 5.1 For a fixed pair of configurationsI; F , there
exists at most onePP-anchored circle��C so that the long arc
defined by the tangent points of��C with @P is free and so thatI andF belong to the pocket(s) defined by��C and its tangent
points with@P. This circle can be computed inO(n) time.

3The computation is performed by solving four algebraic systems of
three equations in three indeterminates.



By the lemma, we can compute, inO(n) time, a set ofO(1) candidate paths of types (A.i) and (B.ii). The candi-
date paths may be checked for feasibility inO(log n) time.
Therefore, an optimal path of type (A.i) or (B.ii) can be com-
puted inO(n) time.

A monotonicity property of CCSC paths. Subpaths of
typeCCSC occur in both (A.ii) and (B.iii) path types. In
this subsection, we ignore the polygonP , and study paths
fromX to Y of typeC1C2SC3, with specified orientations
on theC-segments. Then the circlesC1 andC3 supportingC1 andC3, respectively, are fixed. CircleC2 is determined
byM , its tangent point withC1. For eachM 2 C1, there is
at most one path�(M) of typeC1C2SC3 with the specified
orientations onC-segments. For certain positions ofM , one
of the segments may vanish. These positions ofM are called
singular points. The following lemma is proved by calculus.

Lemma 5.2 AsM moves along the oriented circleC1, k�(M)k
increases monotonically, except at singular points.

At singular points where aC-segment vanishes, the path
length changes by�2�. TheS-segment vanishes whenC2
and C3 have opposite orientation and are tangent.4 Thus,
there may be two singular points where theS-segment van-
ishes. If there are two, they split the circleC1 into two arcs.
Along one of the arcs, circlesC2 andC3 properly intersect,
and so�(M) is not defined there. Thus, the singular points
corresponding to a vanishingS-segment are the endpoints of
the arc ofC1 on which the path is defined. There may be
up to six singular points. See Figure 6 for an illustration of
six singular points in a path of typeC+C�SC+. All the
singular points can be computed inO(1) time.

X YM1M2M3M4M5 C+YC+X
Figure 6. Paths of typeC+C�SC+ from X to Y and the six singular
pointsX,M1,M2, M3,M4 andM5 onC+X .

Computing type (A.ii) paths. As mentioned in Section 4,
we can compute inO(n logn) time the feasible candidates
of type (A.ii) paths with at most onePC-anchored segment.
If the path is of typeCI ��CS ��CCF , a simple analysis gives

4TheS-segment may vanish even ifC2 andC3 have the same orientation
andC2 = C3, but in this caseC2-segment also vanishes.

O(n2) candidates to check; we now use Lemma 5.2 to reduce
the number of candidates and to compute them inO(n logn)
time.

Fix the orientations of the terminalC-segments, and letCI andCF denote the circles supportingCI andCF , respec-
tively. LetKI be the sequence ofPC-anchored circles that
touchCI and that are free, sorted by their tangent points withCI . The setKF is defined analogously, forPC-anchored cir-
cles tangent toCF . Note thatKI andKF can be computed inO(n logn) time, and they haveO(n) elements.

By Lemma 3.6, circles supporting the��C-segments in an
optimal path� of typeCI ��C1S ��C2CF are free. Therefore, the��C2-segment of� lies on a circle ofKF . SupposeC2 2 KF
supports the��C2-segment of�. This fixes the terminal con-
figuration of the subpathCI ��C1S ��C2. The above subsection
on monotonicity implies we have up to up to six singular
points onCI .

Let � � CI be an arc joining two singular points and
let KI(�) � KI be the subsequence of circles that touchCI at a point in�. By Lemma 5.2, only the first circle ofKI(�) is a candidate forC1. Hence, at most six circles inKI
are candidates forC1, and they can be computed inO(log n)
time by performing a binary search. By examining eachC2 2KF in turn, we computeO(n) candidate paths inO(n logn)
time. We can therefore conclude that an optimal path of type
(A.ii) can be computed inO(n logn) time.

Computing type (B.iii) paths. Let � be an optimal path of
the form�I �Ci �Cj�F , i.e. of type (B.iii). Suppose we know
the edgesei; ej that are tangent to�Ci and �Cj , respectively.

If � does not contain any��C-segment in�I or �F , then
we can compute� in O(log n) time using Lemmas 4.2 and
4.1.

Consider now the case in which�I and�F each con-
tains a ��C-segment, i.e.� is of typeCI ��CS �Ci �CjS ��CCF . We
show that, givenei and ej , we can compute, inO(log n)
time, a set ofO(1) candidate circles that contains the��C-
segments of�. Given this set, we can compute the shortest
feasible path of the above type inO(log n) time, by Lem-
mas 4.1 and 4.2. Thus, by considering allO(n2) pairs of
edges ofP , we can compute inO(n2 logn) time a set ofO(n2) candidate paths for this case. However, we will see
later that in some cases we need not consider allO(n2) pairs
of edges ofP .

We first establish some simple properties of an optimal
path� of typeCI ��C1S �Ci �CjS ��C2CF . Assume without loss
of generality that�Ci; �Cj are oriented clockwise and coun-
terclockwise, respectively. By Lemma 3.3, the��C1-segment
is oriented clockwise, and the��C2-segment is oriented coun-
terclockwise, i.e.,� is of typeC+I ��C�1 S �C�i �C+j S ��C+2 C�F . Let��C1, �Ci, �Cj , and��C2 denote the circles supporting theC-segments��C1, �Ci, �Cj , and ��C2, respectively.

Lemma 5.3 If an optimal path is of typeCI ��C1S �Ci �CjS ��C2CF ,
then the circles��C1, �Ci, �Cj , and ��C2 are free.



Proof: Lemma 3.6 directly yields that��C1 and ��C2 are free.
Suppose now for a contradiction that�Cj is not free. As
before, we assume that the orientations are such that� =C+I ��C�1 S �C�i �C+j S ��C+2 C�F . Let T be the tangent point be-
tween �Ci and �Cj . Moving along �C+j , letX be the last tan-
gent point between�Cj and@P . Starting atX and moving
along �C+j , letY be the first proper intersection point between�Cj and@P (see Figure??).

By Lemma 2.4, the length of�Cj betweenT andX is
greater than�, i.e. k �C+j [T;X ]k > �. It follows that �Cj ,X andY define a pocket� �Cj [X;Y ] (see Figure??). By
Lemma 2.5, this pocket contains�[X;F ] and therefore con-
tains ��C2. We know the free circle��C2 cannot be entirely in-
side a pocket. The path�CjS ��C2 enters the pocket atX , and
since��C2 is free, it is possible to escape the pocket by extend-
ing segment��C2. This contradicts Lemma 2.5, establishing
that �Cj is free. A symmetric argument shows that circle�Ci is
free. 2

We now introduce the following simple definition. Given
a circleC and a pointX 2 C, a pointM 2 C is called thefirst
free point afterX alongC+ if and only if the circle tangent
to C atM is free and for anyM 0 2 C+[X;M), the circle
tangent toC atM 0 is not free (in Figure 7,M 0 is the first free
point afterI alongC+I ). Note thatM could beX . The circle
tangent toC at the first free point afterX is called thefirst
free circle afterX alongC+.

We show that, givenI , F , ei andej , we can compute
in O(log n) time a set ofO(1) candidate circles that con-
tain the ��C-segments of any optimal path fromI toF of typeC+I ��C�1 S �C�i �C+j S ��C+2 C�F . We show how to compute can-

didate circles for��C1; computing candidate circles for��C2 is
similar.

We identify two circlesC0 andC00 that are the candidate
circles for ��C1. LetC0 be the first free circle afterI alongC+I .
If there is no free circle afterI alongC+I , thenC0 andC00 are
not defined. Assume, after a possible rotation, that the lineL throughei is horizontal andP is aboveL. If the distance
betweenL and the center ofC+I is greater than2, thenC00 is
not defined. Otherwise, there exist two circles that are aboveL and tangent to bothC+I andL. Let CL be the leftmost of
these two circles, and letML be its tangent point withC+I .
Let C00 be the first free circle afterML alongC+I . Note thatC0 andC00 only depend onI , C+I , and on the lineL throughei.

LC+IM(L)C(L) C�iTI ~~C~~M~C ~M
Figure 7. Definition ofC0 andC00.

Lemma 5.4 Let� be an optimal path of typeC+I ��C�1 S �C�i �C+j S ��C+2 C�F ,
and letL be the line through the edge tangent to�Ci. Then��C1 is supported byC0 or C00.
Proof (Sketch): We prove the lemma only in the case whereC+I andCi properly intersect. LetT 2 � be the configuration
at the tangent point between�Ci and �Cj .

The circleC1 supporting the��C1-segment is tangent toC+I . As before, any choice of a pointM 2 C+I defines at
most one path�(M) of the formC+I C�1 SC�i , which begins
at I and ends atT , and whereC+I andC�1 are tangent atM .
Let M� be the intersection point of theC+I - and ��C�1 seg-
ments of the optimal path�. Then�(M�) is a subpath of� and so it is an optimal path fromI to T . By the mono-
tonicity property (Lemma 5.2), and sinceC1 andCi are free
(Lemma 5.3),M� must be the first free point alongC+I after
a singular point of�(M). SinceC+I andCi properly inter-
sect, there are only two singular pointsI andM1 of �(M),
whereM1 corresponds to the vanishing of��Ci.

If M� is the first free point afterI alongC+I , thenC1 is
supported byC0, the first free circle afterI . If M� is the first
free point afterM1, then we show thatC1 is supported byC00, the first free circle afterML.

By Lemma 2.4, the arc length of�Ci from its tangent point
with L to T must be at least�. See Figure 4(c). In other
words,T must be in the right half of�Ci (asL is horizontal
andP is aboveL). Therefore by definition ofML, the arc
length ofCi in �(ML) is less than�.

It follows that for any pointM 2 C+I [M1;ML], the arc
length ofCi in�(M) is less than�, so by Lemma 2.3,�(M)
cannot be part of the optimal path. Thus,M� does not belong
to C+I [M1;ML]. So if M� is the first free point afterM1,
then it is the first free point afterML. In other words,C1 is
supported byC00. 2
Lemma 5.5 C0 andC00 can be computed inO(log n) time.

Proof: Let � be the circle of radius2 concentric withC+I .
Let I� (resp.M�) be the intersection point between� and
the ray emanating from the center ofC+I and going throughI (resp.ML) (see Figure 8). LetR be theretracted polygon
of P with respect to a unit circle, i.e.,R is the set of pointsp such that the unit circle centered atp lies insideP ; R is
a convex polygonal region with at mostn edges, and it can
be computed in linear time. LetO0 be the first intersection
point between� andR starting atI� and moving along�+.
The center ofC0 isO0. Indeed, by definition ofR, the circle
centered atO0 is free, and any circle (of unit radius) centered
at a point on�+[I�; O0) is not free. Similarly, the center ofC00 is the first intersection point between� andR starting atM� and moving along�+. Using the circle-shooting data
structure by Agarwal and Sharir [2],R can be preprocessed
in O(n logn) time, so thatC0 andC00 can be computed inO(log n) time. 2
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Figure 8. CRAP

By Lemmas 5.4 and 5.5, we can compute, inO(log n)
time, two candidates for the circle supporting segment��C1.
We can similarly compute two candidates for the circle sup-
porting segment��C2. By Lemma 4.2, this gives usO(1)
candidate paths, for which we may check the feasibility inO(log n) time. Hence, given two edgesei and ej of P,
we can compute inO(log n) time, an optimal path of typeCI ��CS �Ci �CjS ��CCF , where �Ci and �Cj are tangent toei andej , respectively.

In the cases where the optimal path is of type (B.iii) with
only one ��C-segment in�I or �F , we get similar results.
For example, if an optimal path is of typeCI ��C1S �Ci �CjSCF ,
then ��C1 and �Ci are free, and��C1 is supported by theC0 or C00
defined above. Thus we get the following lemma.

Lemma 5.6 Let ei; ej be edges ofP . In O(log n) time, we
can compute an optimal path of type�I �Ci �Cj�F where�I 2fCI ��CS;CIS;CI ; Sg,�F 2 fS ��CCF ; SCF ; CF ; Sg and where�Ci and �Cj are tangent toei andej , respectively.

Now we describe how to find a suitable set of pairs of
edgesE such that if an optimal path fromI toF is of type (B.iii)
(i.e.,�I �Ci �Cj�F ), then the pair of edges(ei; ej) tangent to�Ci and �Cj is in the setE .

From [1], we know that if an optimal path fromI toF is
of type�I �C+i �C�j �F such that�Ci and �Cj are nonterminal,
thenC+I intersects�Cj (the circle supporting�Cj), andC�F in-
tersects�Ci (the circle supporting�Ci). Thus, the center of�Cj ,
which is at most distance 1 from the boundary of the poly-
gon, is at most distance 3 fromI . Since centers of�Ci and�Cj are distance 2 apart, they are each distance less than 5
from I . Thus, edgesei andej are distance less than 6 fromI . By symmetry, they are also distance less than 6 fromF .
Therefore, we can considerE to be the set of pairs of edges
of P that are distance less than 6 fromI andF . Letk denote
the number of edges ofP distance less than 6 fromI and

F . ThenjEj = k2, andE can be computed inO(k2) time.
Lemma 5.6 then gives:

Lemma 5.7 An optimal path of type (B.iii) can be computed
in O(k2 logn) time.

Putting everything together, we obtain the following.

Theorem 5.8 Given a convex polygonP , an initial configu-
ration I , and a final configurationF , an optimal path fromI to F insideP can be computed in timeO((n+ k2) logn),
wherek is the number of edges ofP at distance less than 6
from I andF .

Proof: We have shown in the previous subsections that the
Dubins paths and the optimal paths of type (A.i), (A.ii), (B.i),
and (B.ii) can be computed inO(n logn) time, while paths
of type (B.iii) can be computed inO(k2 logn) time. Choos-
ing the shortest among all those paths yields an optimal path.2
6 Conclusion

Our classification of path types in a convex polygon yields
a fast algorithm for computing an optimal path. An inter-
esting question is whether the running time can be improved
to O(n logn) by proving additional properties of paths of
type (B.iii). Our results show that even for a convex poly-
gon, optimal paths between two configurations can be rather
complex. Such complex paths may be difficult to track by
a mobile robot. Furthermore, they may arise as artifacts of
a tightly constricted environment. A direction for future re-
search is to seek a realistic notion of feasibility that rejects
hard-to-follow paths, while admitting fast computation of
optimal paths.
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