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Abstract
In the multiparty communication game (CFL-game) of Chandra, Furst, and Lipton (Proc.

15th ACM STOC, 1983, 94–99) k players collaboratively evaluate a function f(x0, . . . , xk−1) in
which player i knows all inputs except xi. The players have unlimited computational power.
The objective is to minimize communication.

In this paper, we study the Simultaneous Messages (SM) model of multiparty communication
complexity. The SM model is a restricted version of the CFL-game in which the players are not
allowed to communicate with each other. Instead, each of the k players simultaneously sends
a message to a referee, who sees none of the inputs. The referee then announces the function
value.

We prove lower and upper bounds on the SM-complexity of several classes of explicit func-
tions. Our lower bounds extend to randomized SM complexity via an entropy argument. A
lemma establishing a tradeoff between average Hamming distance and range size for transfor-
mations of the Boolean cube might be of independent interest.

Our lower bounds on SM-complexity imply an exponential gap between the SM-model and
the CFL-model for up to (log n)1−ε players, for any ε > 0. This separation is obtained by
comparing the respective complexities of the generalized addressing function, GAFG,k, where G
is a group of order n. We also combine our lower bounds on SM complexity with ideas of H̊astad
and Goldmann (Computational Complexity 1 (1991), 113–129) to derive superpolynomial lower
bounds for certain depth-2 circuits computing a function related to the GAF function.

We prove some counter-intuitive upper bounds on SM-complexity. We show that GAFZt
2,3

has SM-complexity O(n0.92). When the number of players is at least c log n, for some constant
c > 0, our SM protocol for GAFZt

2,k has polylog(n) complexity. We also examine a class
of functions defined by certain depth-2 circuits. This class includes the “Generalized Inner
Product” function and “Majority of Majorities.” When the number of players is at least 2+log n,
we obtain polylog(n) upper bounds for this class of functions.
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Simultaneous Messages 21 Introduction

1.1 The Model

Chandra, Furst, and Lipton [CFL] introduced the following multiparty communication game: Let
f(x0, . . . , xk−1) be a Boolean function, where each xi is a bit-string of fixed length ≤ n bits. k
players collaborate to evaluate f(x0, . . . , xk−1). Each player has full knowledge of the function f .
The i-th player knows each input argument except xi; we will refer to xi as the input missed by
player i. We can imagine input xi written on the forehead of player i. Each player has unlimited
computational power. They share a blackboard, viewed by all players, where in each round of the
game, some player writes a bit. The last bit written on the board must be the function value.

Definition 1.1 A multiparty protocol is a specification of which player writes in each round and
what that player writes. The protocol must specify the following information for each possible
sequence of bits that is written on the board so far:

1. Whether or not the game is over, and in case it is not over, which player writes the next bit:
This information should be completely determined by the information written on the board
so far.

2. What that player writes: this should be a function of the information written on the board
so far and of the input seen by that player.

The cost of a multiparty protocol is the number of bits written on the board for the worst case
input. The multiparty communication complexity of f , denoted C(f), is the minimum cost of a
protocol computing f.

Fairly strong multiparty communication complexity lower bounds of the form n/ck were ob-
tained by Babai, Nisan, and Szegedy [BNS] for some families of explicit functions. However, it
seems that those methods do not extend to logarithmic number of players and beyond.

H̊astad and Goldmann [HG] found a curious application of the [BNS] bounds to lower bounds
for small depth threshold circuits. Subsequent work by Yao [Y] and Beigel and Tarui [BT] reduces
ACC circuits (bounded depth, polynomial size circuits with Boolean and MOD m gates) to small
depth circuits similar to those considered by [HG]. These results imply that a super-polylogarithmic
lower bound for the communication complexity of a function f with super-polylogarithmic number
of players would show that f /∈ ACC.

In fact, this separation would already follow from similar lower bounds in a weaker model which
we call the simultaneous messages (SM) model (see Definition 2.1). This connection was pointed
out to us by Avi Wigderson.

The SM model is a restricted version of the general multiparty communication model in which
the players are not allowed to communicate with each other. Instead, each player can send a single
message to a referee who sees none of the inputs. The referee announces the value of the function
based on the messages sent by the players.

The subject of this paper is the complexity of explicit functions in the SM model.

1.2 Lower Bounds

We prove lower bounds on the SM complexity of the Generalized Addressing Function (GAFG,k),
where G is a group of order n (see Definition 2.3). The input to GAFG,k consists of n+(k−1) log n



Simultaneous Messages 3bits partitioned among the players as follows: player 0 gets a function x0 : G −→ {0, 1} (represented
as an n-bit string) on her forehead whereas players 1 through k−1 get group elements x1, . . . , xk−1,
respectively, on their foreheads. The output of GAFG,k for this input is the value of the function
x0 on the product x1 · . . . · xk−1.

Our first result is an Ω
(
|G|1/(k−1)

k−1

)
lower bound on the SM complexity of GAFG,k for any finite

group G (Theorem 2.8).
The result uses a decomposition theorem for finite groups (Theorem 2.17). A related body of

work, going back to a 1937 conjecture of Rohrbach [Ro1, Ro2], is discussed in a separate section,
partly for the sake of its own interest (Section 7).

In Section 3, we prove a lower bound similar to Theorem 2.8 on the randomized SM complexity
of GAFG,k. Specifically, we show that any randomized SM protocol for GAFG,k with a success

probability ≥ (1 + ε)/2 must have a cost of Ω
(
|G|1/(k−1)ε2

k−1

)
. The proof of this result is based on

an “Entropy Loss Lemma” which may be of independent interest (Lemma 3.7 and Lemma 3.9).
The lemma provides a tradeoff between the average Hamming distance travelled and the number
of destinations reached by a transformation of the Boolean cube.

It is easy to see that the general multiparty communication complexity of GAFG,k is at most
log n + 1. Hence the lower bounds stated above show that the SM model is exponentially weaker
than the general model for up to (log n)1−ε players. In fact, we prove this exponential gap between
the SM model and an intermediate model called the “One-Way Communication Model” [NW] (see
Definition 2.6). This result supports the hope that it might be easier to obtain stronger lower bounds
in the SM model than in the general communication model. On the other hand, as mentioned in
Section 1.1, sufficiently strong lower bounds in the SM model still have some of the same interesting
consequences to circuit complexity as those in the general model.

As mentioned before, H̊astad and Goldmann [HG] relate lower bounds on multiparty commu-
nication complexity to lower bounds on certain depth-2 circuits. In this paper, we use ideas from
[HG] to relate SM complexity to depth-2 circuit complexity. In particular, we show that a circuit
with an arbitrary symmetric gate at the top and AND gates at the bottom computing an explicit
function on n variables derived from GAFZt

2,k must have size exp((log n/ log log n)2). We note that
similar techniques applying the general multiparty communication complexity lower bounds were
used by Razborov and Wigderson [RaW].

1.3 Upper Bounds

A curious development concerning SM complexity is the discovery of unexpected upper bounds. It
appeared natural to expect that, when the number of players is constant, the SM complexity of
GAF should be Ω(n). This, however, is false. In fact, we give a counter-intuitive upper bound of
O(n0.92) on the SM complexity1 of GAFZt

2,3. More generally, we show an upper bound of roughly
nO(log k/k) +log n on the SM complexity of GAFZt

2,k. This gives a polylog(n) upper bound when the
number of players is log n; in fact, if the number of players is greater than log n, an upper bound
of 2 + log n holds (Sections 5.1 and 5.2).

The O(n0.92) upper bound, first published in [BaKL] (a preliminary version of this paper),
together with related results about cyclic groups Zn by Pudlák, Rödl, and Sgall [PR, PRS], has
prompted a refinement of an approach proposed by Nisan and Wigderson [NW] toward superlinear

1This bound has subsequently been improved to O(n0.73) in [AmL].



Simultaneous Messages 4size lower bounds on log-depth circuits. This approach uses 3-party communication complexity
lower bounds and exploits a graph-theoretic reduction due to Valiant [Va], building on earlier
results by Erdős, Graham, and Szemerédi [EGS]. To explain this approach, let us consider a
Boolean function f1 : {0, 1}O(n) × {0, 1}O(n) × {0, 1}log n −→ {0, 1}. From this, let us construct an
n-output function f(x, y) = (z1, . . . , zn) by setting zj := f1(x, y, j). Then, an Ω(n) lower bound on
the total number of bits communicated in a 3-party SM protocol for f1 (with x, y, and j on the
foreheads of players 0, 1, and 2 respectively) would imply a superlinear lower bound on log-depth
circuits computing the function f . In particular, if there were an Ω(n) lower bound on the 3-party
SM communication complexity of GAFZt

2,3, where n = 2t, then the above connection would have
yielded an explicit function requiring superlinear size circuits of log-depth.

However, we have a 3-party SM protocol for GAFZt
2,3 that uses only n0.92 bits of communication.

Analogously, [PR, PRS] prove a o(n) upper bound on the 3-party SM complexity of GAFZn,k. On
the other hand, these and several similar functions are conjectured to require superlinear size
circuits of log-depth. This situation motivated a refined version of the approach from [NW]. This
refined version seeks 3-party SM lower bounds when there are certain constraints on the lengths of
messages from individual players. Indeed, in response to the surprising upper bounds from [BaKL]
and [PR], Kushilevitz and Nisan present such an approach in their book [KuN, Section 11.3]. We
describe this new formulation below.

Let f be an n-bit output function and f1 its single-bit output counterpart as defined above.
Then Valiant’s lemma implies the following: if f has log-depth linear size circuits, then f1 has
an SM protocol in which, for any fixed ε > 0, (i) player 2 sends at most O(n/ log log n) bits,
and (ii) players 0 and 1 send O(nε) bits each. Thus a lower bound showing that any 3-party SM
protocol for an explicit f1 must violate (i) or (ii) would yield an explicit f that cannot be computed
simultaneously in linear size and logarithmic depth.

It is interesting to note that, in contrast to the lower bound, our upper bound depends heavily
on the structure of the elementary abelian 2-group G = Zt

2. In particular, the upper bound does
not apply to the cyclic group G = Zn. For GAFZn,k, Pudlák, Rödl, and Sgall [PRS] prove an upper
bound of O(n log log n/ log n) for k = 3 (three players) and of O(n6/7) for k ≥ c log n. Their upper
bounds have been significantly improved by Ambainis [Am] to O

(
n log1/4 n

2
√

log n

)
for k = 3 and to O(nε)

for an arbitrary ε > 0 for k = O((log n)c(ε)). However, these bounds for Zn are still much weaker
than the corresponding bounds for Zt

2 presented in this paper.
We also give surprising upper bounds on the SM-complexity of a different class of functions

defined by certain depth-2 circuits (Section 6). For this class of functions, we prove polylog(n) upper
bounds on the SM complexity when the number of players is at least log n+2. This class of functions
includes “Generalized Inner Product (GIP)” and “Majority of Majorities.” The special case of GIP
improves a result due to Grolmusz [G] where the same upper bound is given for 2-round protocols.
We note that GIP is a prime example in the study and applications of multiparty communication
complexity [BaNS, G, HG, RaW]. “Majority of Majorities” is an interesting candidate function to
be outside ACC.

The circuits defining the class of functions mentioned above have an arbitrary symmetric gate
of fan-in n at the top and gates of fan-in k (= number of players) at the bottom. Furthermore,
each bottom gate is assumed to compute a symmetric function with very small two-party, one-way
communication complexity (we call such functions compressible, see Definition 6.1). We partition
the input so that each player misses one bit from each bottom gate.

We also give an example of an explicit symmetric function that is not compressible (in the sense



Simultaneous Messages 5of Definition 6.1). The proof of this result uses Weil’s character sum estimates.

1.4 Comparison with [BaKL]

Finally a comment on how the present paper relates to its preliminary version [BaKL]. Most
results of [BaKL] have been superseded both in generality and in the elegance of the proof. This is
especially true for the (deterministic and randomized) lower bounds which have been extended to
all groups. A discussion of circuit complexity applications has been added. The main new additions
are the counter-intuitive upper bounds for the case of more than log n players for a significant class
of functions, including the “Majority of Majorities” function.

1.5 Organization of the Paper

In Section 2, we introduce the model of Simultaneous Messages and prove a lower bound on the
SM complexity of the Generalized Addressing Function (GAF) with respect to an arbitrary finite
group G (see Definition 2.3). Section 3 extends this lower bound to the randomized SM complexity
of GAFG,k. In Section 4 we present some consequences of our lower bounds on SM complexity to
certain depth-2 circuits. Sections 5 and 6 deal with upper bounds on SM complexity. In Section 5
we give nontrivial upper bounds for GAF with respect to elementary abelian 2-groups, whereas in
Section 6, we define a natural class of functions and show very efficient SM protocols for them.
In Section 7 we discuss a group-decomposition problem arising from the GAF lower bounds; this
section may be of interest in its own right. Section 8 concludes the paper with several open
problems.

2 A Simultaneous Messages Lower Bound

Let f(x0, . . . , xk−1) be a Boolean function, where each xi is a bit-string of fixed length≤ n. A referee
and k players collaborate to evaluate f(x0, . . . , xk−1). Each participant (referee and players) has
full knowledge of the function f . For 0 ≤ i ≤ k− 1, the i-th player, pi, knows each input argument
except xi. The referee does not know any of the input. Each player pi simultaneously passes a
message of fixed length to the referee, after which the referee announces the function value. Each
participant is a function of the arguments it “knows.”

Definition 2.1 A Simultaneous Messages (SM) protocol P for f is a set of players along with a
referee that correctly computes f on all inputs. The cost of an SM protocol for f is the length of
the longest message sent to the referee by any individual player2. The SM complexity of f , denoted
C0(f), is the minimum cost of a protocol computing f.

Remark 2.2 This model is implicit in the work of Nisan and Wigderson [NW, Theorem 7], where
they consider the case k = 3. The first papers investigating the SM model in detail are the
conference version of the current paper [BaKL] and a paper by Pudlák, Rödl, and Sgall [PRS]; the
latter uses the name “Oblivious Communication Complexity.”

2This definition of the cost, as the `∞-norm of the vector of message lengths of the players, differs from that of
the STACS’ 95 version [BaKL], where we consider the `1-norm. We continue to use the total communication for C
and C1 (Definitions 1.1 and 2.6).



Simultaneous Messages 62.1 The Generalized Addressing Function GAFG,k

The function that we use to show an exponential gap between the SM and general multiparty
communication models is the generalized addressing function, defined as follows.

Definition 2.3 Let G be a group of order n. Elements of G are represented by binary strings of
length log n. Let x0 : G −→ {0, 1} be a function represented as an n-bit string and let x1, . . . , xk−1 ∈
G. Then the Generalized Addressing Function for the group G and k players, denoted by GAFG,k,
is defined as follows:

GAFG,k(x0, . . . , xk−1) := x0[x1 · . . . · xk−1].

Here · denotes the group operation in G.

The notation C0(GAFG,k) refers to the SM complexity of the GAFG,k function under the natural
partition of the input among the players, i.e. player i misses input xi. Note that the partition of
the input among the players is not balanced since player 0 has |x0| = n bits “on her forehead,”
whereas player i for 1 ≤ i ≤ k − 1 has |xi| = log n bits on her forehead.

Recall that C(f) denotes the k-party communication complexity of the function f (where f is
a function in k variables) (see Section 1.1).

Observation 2.4 C(GAFG,k) ≤ log n + 1.

Proof: Player p0 writes g = x1 · . . . · xk−1; then p1 writes x0[g].

Remark 2.5 This is a special case of the observation that C(f) ≤ 1 + the length of the shortest
input.

Definition 2.6 A special case of the communication model is one-way communication, in which
each player may write on the blackboard only once, and they proceed in the prescribed order
p0, p1, . . . , pk−1. Let C1(f) denote the one-way communication complexity of f .

Clearly n ≥ C0(f) ≥ C1(f)/k ≥ C(f)/k, for any function f of k variables. For GAFG,k, the
proof of Observation 2.4 gives a one-way protocol, so we obtain the following consequence.

Corollary 2.7 C1(GAFG,k) ≤ log n + 1.

The main result of this section is an SM lower bound on the Generalized Addressing Function
of the form Ω(n1/(k−1)/(k− 1)). This bound implies an exponential separation between C0(f) and
C1(f) (and hence also between C0(f) and C(f)) for up to k = (log n)1−ε players. We state the
result.

Theorem 2.8 For any group G of order n and any k ≥ 2, C0(GAFG,k) ≥
cn1/(k−1)

k − 1
, where c =

(1− 1/
√

e)/2 > 0.19.

The proof of this lower bound is given in the next two subsections.

Remark 2.9 For k = 3, Theorem 2.8 gives an Ω(
√

n) lower bound. Nisan and Wigderson [NW]
give an Ω(

√
n) lower bound for a different function, based on hash functions [MNT]. They actually

show this lower bound for one-way complexity, establishing an exponential gap between C1(f) and
C(f) for k = 3.



Simultaneous Messages 7Remark 2.10 Theorem 2.8 states an SM lower bound for all finite groups G. Special cases of
this result were found independently by Pudlák, Rödl, and Sgall (the cyclic group G = Zn) [PRS,
Proposition 2.3] and by the authors of the conference version of the present paper (the elementary
abelian group G = Zt

2) [BaKL]. Those bounds were extended in a preliminary version of this paper
to a large class of groups, including all solvable groups. For arbitrary groups, however, our original
lower bound was worse by a logarithmic factor than the bound stated in Theorem 2.8. We express
our gratitude to an anonymous referee for pointing out that a simple modification of our argument
yields the improved result stated as Theorem 2.8.

All proofs use essentially the same strategy, an information-theoretic argument combined with
a group-decomposition result. Simple cases of the group-decomposition result are discussed as
Examples 1 and 2. The general group-decomposition theorem appears as Theorem 2.17.

2.2 SM Lower Bound for GAFG,k and Group Decompositions

In this subsection, we give an SM lower bound for GAFG,k in terms of a parameter ρ of G and
k related to optimal decompositions of a large fragment of a group. In the next subsection we
shall estimate ρ within a constant factor. From this bound, our SM lower bound for GAFG,k

(Theorem 2.8) will be immediate.

Definition 2.11 For a finite group G and A,B ⊆ G, the product AB is defined as
AB = {a · b : a ∈ A, b ∈ B}.

Note that |AB| ≤ |A| · |B|.

Definition 2.12 Let α be a real number, 0 < α ≤ 1. For a finite group G and a positive integer
u we define

ρα(G, u) = min
H1,...,Hu⊆G

{ρ : |H1 · . . . ·Hu| ≥ α|G| and ∀i, |Ĥi| ≤ ρ},

where Ĥi is defined to be the Cartesian product of all Hj except Hi.

Remark 2.13 Note that |Ĥi| =
∏

j 6=i |Hj |. Also note that Ĥi is not the product
∏

j 6=i Hj in the
sense of Definition 2.11; in fact, Ĥi is not even a subset of G. (It is a subset of G× · · · ×G (u− 1
times).)

The following two examples give upper bounds on ρ for two special groups. In Section 7, we
will see that these upper bounds are optimal to within a constant factor.

Example 1: ρ1(Zt
2, u) ≤ 2n1−1/u, where n = 2t.

Proof: Let V = Zt
2. Decompose V into a direct sum of u subspaces: V = H1 ⊕ · · · ⊕Hu, where

for each i, 1 ≤ i ≤ u, bt/uc ≤ dim Hi ≤ dt/ue. This implies

ρ1(V, u) ≤ max
i
|Ĥi| = max

i

n

|Hi|
=

n

mini |Hi|
≤ n

2bt/uc ≤
2n

2t/u
=

2n

n1/u
= 2n1−1/u. (1)

Example 2: ρ1/2(Zn, u) ≤ 2n1−1/u and ρ1(Zn, u) ≤ 4n1−1/u.
Proof: Let 2t < n ≤ 2t+1. We consider the elements of Zn to be binary strings of length t+1. Let
K be the subset of Zn given by binary strings with their most significant ((t+1)st) bit equal to zero.



Simultaneous Messages 8Identify K with H1⊕· · ·⊕Hu, where Hi is the set of binary numbers with t digits in which all digits
are 0 except for the i-th segment of bt/uc or dt/ue digits, which can be either 0 or 1. Thus each Hi

has size ≥ 2bt/uc. Clearly |K| = 2t ≥ n/2. By (1), we have that maxi |Ĥi| ≤ 2|K|1−1/u ≤ 2n1−1/u.
Hence ρ1/2(Zn, u) ≤ 2n1−1/u.

To cover the entire group Zn, apply the above argument to bit strings of length (t + 1) (but
perform group operations in Zn). Then, we get that maxi |Ĥi| ≤ 2 · 2(t+1)(1−1/u) ≤ 4n1−1/u and
this gives us the bound on ρ1(Zn, u).

As a concrete example, consider Z25, u = 3, and α = 1. It is easy to see that a (complete) cover
is given by Z25 = {0, 16}+ {0, 4, 8, 12}+ {0, 1, 2, 3}. Note that in this cover, some elements (eg. 5)
have more than one factorization (under the group operation addition modulo 25).

Lemma 2.14 For any finite group G and any α (0 < α ≤ 1), C0(GAFG,k) ≥
α|G|

(k − 1) ρα(G, k − 1)
.

Proof of Lemma 2.14: We prove a lower bound on the length of the longest message sent by
p1, . . . , pk−1. We ignore p0 by assuming that the referee knows whatever p0 knows. This assumption
can only make our lower bound stronger.

The proof is by an information-theoretic argument. Pick a factorization K =
∏k−1

i=1 Hi of
some subset K ⊆ G which is optimal in the sense that |K| ≥ α|G|, H1, . . . ,Hk−1 ⊆ G, and
maxi |Ĥi| = ρα(G, k − 1).

We shall restrict player p0’s inputs to functions x0 : G −→ {0, 1} such that x0(g) = 0 for all
g ∈ G \ K. For i = 1, . . . , k − 1, we shall restrict player pi’s inputs to Hi. For a fixed x0 (on
p0’s forehead and hence visible to all pi, 1 ≤ i ≤ k − 1), player pi can send at most |Ĥi| different
messages. Hence the total number of bits received by the referee (for all combinations of these
restricted inputs) is at most ρα(G, k− 1)(k− 1)`, where ` is the length of the longest message sent
by the players pi, 1 ≤ i ≤ (k − 1). But this collection of messages must determine every bit of x0

corresponding to the set K ⊆ G. Hence we must have ρα(G, k−1)(k−1)` ≥ αn, giving the claimed
bound. The foregoing ideas are formalized below.

Let P be any SM protocol for GAFG,k. Let r denote the referee function. Let ` be the cost
of P . For notational convenience, we assume, without loss of generality, that each player sends a
message of length ` (padding their messages if necessary).

We define a function F in terms of the player and referee functions. The input to F will be a
binary string of length (k − 1)ρα(G, k − 1)`, and the output will be a |K|-bit string. We will then
show that F is surjective, which will yield the theorem.

Definition 2.15 For each g ∈ K, we fix elements h1 ∈ H1, . . . hk−1 ∈ Hk−1 such that
g = h1 · . . . · hk−1 and refer to this as “the” decomposition of g.

Now we define a function F : {0, 1}`| bH1| × · · · × {0, 1}`| bHk−1| −→ {0, 1}K as follows. Let
(w1, w2, . . . , wk−1) be an input to F , where wi ∈ {0, 1}`| bHi|. The `-bit substrings of wi are in-
dexed by elements of Ĥi. The output bit y(g) corresponding to g ∈ K is determined as follows. Let
g = h1 · . . . · hk−1 be the decomposition of g. For 1 ≤ i ≤ k − 1, let mi(g) be the `-bit substring
of wi at index ĥi := (h1, . . . , hi−1, hi+1, . . . , hk−1) ∈ Ĥi. Let m0(g) = p0(h1, . . . , hk−1). Now define
y(g) = r(m0(g),m1(g), . . . ,mk−1(g)).

Claim 2.16 F is surjective.



Simultaneous Messages 9Proof: Let x0 ∈ {0, 1}G such that x0(g) = 0 for all g ∈ G \ K. Define the input wx0 =
(w1, . . . , wk−1) to F as follows: For each i, 1 ≤ i ≤ k − 1 and each ĥi ∈ Ĥi, define the `-bit
substring of wi at index ĥi to be pi(x0, ĥi), i. e., the message sent by pi when she sees x0 and ĥi.
We now show that F (wx0) = xK

0 (the restriction of x0 to K), which will prove the claim. Recalling
our notation that y = F (wx0), we want to show that for each g ∈ K, y(g) = x0(g).

Let g ∈ K and let g = h1 · . . . · hk−1, hi ∈ Hi, be the decomposition of g.
From the definition of wx0 , for 1 ≤ i ≤ k − 1, we have mi(g) = (`-bit substring of wi at index

ĥi) = pi(x0, ĥi), and also m0(g) = p0(h1, . . . , hk−1). Now using the definition of F we have,

y(g) = r(m0(g),m1(g), . . . ,mk−1(g))
= r(p0(h1, . . . , hk−1), p1(x0, h2, . . . , hk−1), . . . , pk−1(x0, h1, . . . , hk−2))
= GAFG,k(x0, h1, . . . , hk−1) by the correctness of the protocol
= x0(g) by definition of GAFG,k.

Thus F (wx0) = xK
0 and F is surjective. Claim 2.16.

Claim 2.16 implies that the domain of F is at least as large as the range of F . Thus `(k −
1)ρα(G, k − 1) ≥ `(|Ĥ1|+ . . . + |Ĥk−1|) ≥ |K| ≥ α|G|, and hence ` ≥ n/(k − 1)ρα(G, k − 1).

Lemma 2.14.

2.3 Decomposition of groups

In this subsection we estimate the quantity ρα(G, u) for a specific positive constant α.

Theorem 2.17 Given a finite group G and a positive integer u, there exist subsets H1, . . . ,Hu ⊆ G
such that |Ĥi| < 2|G|1−1/u for i = 1, . . . , u, and |H1 · . . . ·Hu| > (1− 1/

√
e)|G| > 0.39|G|.

Corollary 2.18 Let α = 1− 1/
√

e ≈ 0.39. Then for any finite group G and any positive integer u,

ρα(G, u) < 2|G|1−1/u.

Combining Corollary 2.18 and Lemma 2.14, our lower bound for the SM complexity of GAFG,k

(Theorem 2.8) is immediate.
For the proof of Theorem 2.17, we use the following result. Let G be a group and a1, . . . , ak ∈ G.

The cube based on the sequence a1, . . . , ak is the set C(a1, . . . , ak) := {1, a1} · . . . · {1, ak}. In other
words, C(a1, . . . , ak) consists of the 2k subproducts aε1

1 . . . aεk
k where εi ∈ {0, 1}.

Theorem 2.19 ([BaE]) Let G be a finite group of order n and let ` be a positive integer. Then
there exists a sequence of elements a1, . . . , a` ∈ G such that |C(a1, . . . , a`)| > n(1− exp(−2`/n)).

For completeness we include the proof.

Lemma 2.20 Let A be a subset of a finite group G. Then for some x ∈ G we have

|G \ (A ∪Ax)|
|G|

≤
(
|G \A|
|G|

)2

. (2)



Simultaneous Messages 10Proof. Let |G| = n and |A| = k. Let us select x ∈ G at random from the uniform distribution.
Then for every g ∈ G, the probability that g 6∈ Ax is (n− k)/n. Therefore the expected number of
those g ∈ G \ A which do not belong to Ax is (n − k)2/n. So this is the expected size of the set
G \ (A ∪Ax). Pick an x for which |G \ (A ∪Ax)| is not less than its expected value.

Proof of Theorem 2.19. We choose a1, . . . , a` ∈ G successively as follows. Set A1 = {a1} and
Ai+1 = Ai ∪ Aiai+1. Let a1 ∈ G be arbitrary; given a1, . . . , ai, we choose ai+1 ∈ G so as to
maximize |Ai+1|.

Let pi = |G \Ai|/n.
We have p1 = 1− 1/n and by Lemma 2.20 we have pi+1 ≤ p2

i . Therefore

p` ≤
(

1− 1
n

)2`

< exp
(
−2`/n

)
. (3)

Noting that |C(a1, . . . , a`)| = n(1− p`) completes the proof.

Proof of Theorem 2.17: Let n = |G| and let ` denote the integer satisfying n/2 ≤ 2` ≤ n. Let
a1, . . . , a` ∈ G be the sequence of ` elements in G guaranteed by Theorem 2.19.

Let us split ` into u parts as evenly as possible: ` = k1 + . . . + ku, where ki ∈ {b`/uc, d`/ue}.
Let Hj = C(ak1+...+kj−1+1, . . . , ak1+...+kj

). (So H1 is the cube based on the first k1 members of
the sequence {ai}; H2 is the cube based on the next k2 members of the sequence, etc.) Then,
H1 . . .Hu = C(a1, . . . , a`) and therefore |H1 . . .Hu| > n(1− exp(−2`/n)) ≥ n(1− 1/

√
e).

Moreover, |Ĥi| = 2`−ki < 2`(1−1/u)+1 ≤ 2n1−1/u.

3 Randomized Complexity of Simultaneous Messages

In this section, we give lower bounds on the randomized SM complexity of the function GAFG,k

(Theorem 3.3, Lemma 3.4). Up to a constant factor, the bounds match our lower bounds on
deterministic SM complexity (Theorem 2.8, Lemma 2.14).

In a randomized SM protocol all the players and the referee are allowed to use coin flips.
We consider public coin protocols, i. e., protocols where the random strings used are visible to

all parties, including the referee. This is clearly the strongest possible model in the sense that it
can simulate at no extra cost the models which allow private or partially private (e. g., hidden from
the referee) coins. Therefore, any lower bound in the public coin model will automatically remain
valid in models with private or partially private coins.

Definition 3.1 A randomized SM protocol P for a function f is said to have ε advantage (0 ≤ ε ≤
1) if

for every input x, Pr[P (x) = f(x)]− Pr[P (x) 6= f(x)] ≥ ε, (4)

where the probability is taken over the random choices of the players and the referee.

Definition 3.2 The cost of a randomized SM protocol is the maximum number of bits communi-
cated by any player on any input and for any choice of the random bits. We define the ε-randomized
SM complexity of f , denoted Rε

0(f), as the minimum cost of a randomized SM protocol for f achiev-
ing an advantage ≥ ε.



Simultaneous Messages 11Note that a deterministic protocol has advantage ε = 1, so C0(f) = R1
0(f).

We also note, for future reference, that inequality (4) is equivalent to the following:

Pr[P (x) = f(x)] ≥ 1 + ε

2
. (5)

The main result of this section is a lower bound on the randomized SM-complexity of the
GAFG,k function, extending the deterministic lower bound of Theorem 2.8.

Theorem 3.3 For any finite group G, and k ≥ 2, Rε
0(GAFG,k) = Ω

(
|G|1/(k−1) ε2

k − 1

)
.

This bound will follow from Lemma 3.4 below.
In this and later sections we will express our bounds in terms of the Binary Entropy Function

H defined as follows:

H(x) := −x log2 x− (1− x) log2(1− x) (0 ≤ x ≤ 1). (6)

Note that H(0) = H(1) = 0. The maximum of H is taken at x = 1/2 where H(1/2) = 1.

Lemma 3.4 For any finite group G, 0 ≤ ε ≤ 1, and 0 ≤ α ≤ 1,

Rε
0(GAFG,k) ≥

α|G|
(k − 1)ρα(G, k − 1)

(1−H(1/2− ε/2)).

This Lemma extends the deterministic lower bound of Lemma 2.14. Its proof generalizes the
strategy from the deterministic case. While we completely recover x0 (restricted to the part of
the group covered by the decomposition) from all the messages of the players in the proof of
Lemma 2.14, here we will only be able to recover “most” bits of an “average” x0. Lemma 3.7
provides a means to lower bound the amount of information from which such a reconstruction is
possible and can be thought of a generalization of Claim 2.16.

Our main result for this section (Theorem 3.3) is now immediate by combining Corollary 2.18
and Lemma 3.4 and using the following well known estimate for the binary entropy function:

For |δ| ≤ 1/2, 1− π2

3 ln 2
δ2 ≤ H

(
1
2
− δ

)
≤ 1− 2

ln 2
δ2. (7)

(Theorem 3.3)
Following Yao [Ya1], we prove our lower bound on randomized complexity (Lemma 3.4) via a

lower bound on distributional complexity.

Definition 3.5 Given a Boolean function f , a probability distribution µ on its input space, and
an ε, 0 ≤ ε ≤ 1, a (µ, ε)-SM protocol for f is a deterministic SM protocol P such that

Pr
µ

[P (x) = f(x)]− Pr
µ

[P (x) 6= f(x)] ≥ ε,

where the probability is with respect to the distribution µ on the input space. We define the (µ, ε)-
distributional complexity of f , denoted Cµ,ε

0 (f), as the minimum cost of a (µ, ε)-SM protocol for
f .



Simultaneous Messages 12Next we state Yao’s key observation which reduces the question of lower bounds on randomized
complexity to lower bounds on distributional complexity with respect to any distribution on inputs.

Theorem 3.6 ([Ya1]) For any function f and any 0 ≤ ε ≤ 1, Rε
0(f) = max

µ
Cµ,ε

0 (f).

The following lemma provides a tradeoff between the average Hamming distance travelled and
the number of destinations reached by a transformation of the Boolean cube. The lemma may be
of independent interest, in addition to being central to our proof of Lemma 3.4.

Lemma 3.7 (Distance–range tradeoff) Let φ : {0, 1}m −→ {0, 1}m be a function with range
R. Let 0 ≤ δ ≤ 1/2. Suppose the average Hamming distance between X ∈ {0, 1}m and φ(X) is
≤ δm. Then

|R| ≥ 2(1−H(δ))m. (8)

Remark 3.8 Using a random cover of the Boolean cube by Hamming balls one can show that for
δ < 1/2, the lower bound (8) is optimal within a factor of c1(δ)

√
m.

Lemma 3.7 is an immediate consequence of Lemma 3.9 below. H(X) denotes the entropy of the
random variable X. For the concept of entropy of random variables and related facts, we refer to
the second edition of Alon–Spencer [AlS, Section 14.6].

Lemma 3.9 (Entropy Loss Lemma) Let φ : {0, 1}m −→ {0, 1}m. Let X ∈ {0, 1}m be a random
element of the domain chosen according to a probability distribution µ. Let 0 ≤ δ ≤ 1/2. Suppose
that

E[dist(X, φ(X))] ≤ δm,

where dist(·, ·) refers to Hamming distance and E(·) denotes the expected value. Then

H(X)−H[φ(X)] ≤ H(δ)m.

Note that if µ is the uniform distribution then the conditions in Lemmas 3.7 and 3.9 become
identical and H(X) = m. So the conclusion of Lemma 3.7 follows from the known fact that for any
random variable Y with range R, the entropy of Y is bounded by

H[Y ] ≤ log2(|R|). (9)

This completes the proof of Lemma 3.7.
For the proof of the Entropy Loss Lemma we will use the following elementary facts from

Information Theory [AlS, Section 14.6]:

• For any two random variables U and V ,

H[U, V ] = H[V ] + H[U |V ]. (10)

•
H[U |V ] ≤ H[U ]. (11)



Simultaneous Messages 13• If V is completely determined by U , then

H[U, V ] = H[U ]. (12)

• Let X = (X1, . . . , Xm). Then,

H[X] = H[X1, . . . , Xm] ≤
m∑

i=1

H[Xi]. (13)

• The binary entropy function H defined in (6) is concave :

∑
i

αi = 1, 0 ≤ αi ≤ 1 =⇒
∑

i

αiH(pi) ≤ H

(∑
i

αipi

)
. (14)

Proof of the Entropy Loss Lemma.
Let Y = φ(X). Note that

H[X]−H[Y ] = H[X, Y ]−H[Y ] = H[X|Y ], (15)

where the first equality follows from (12) since Y is completely determined by X, the second follows
from (10). So the conclusion of Lemma 3.9 is equivalent to the inequality

H[X|Y ] ≤ mH(δ). (16)

Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym). For 1 ≤ i ≤ m, let Zi denote the indicator
random variable of the event Xi 6= Yi, i. e.,

Zi :=
{

1 if Xi 6= Yi,
0 otherwise.

Let δi := Pr[Zi = 1] = E[Zi]. Then,
∑

i Zi = dist(X, Y ). It follows that

m∑
i=1

δi =
m∑

i=1

E[Zi] = E[
m∑

i=1

Zi] = E[dist(X, Y )] ≤ δm. (17)

Claim 3.10 For 1 ≤ i ≤ m, we have

H[Xi|Y ] ≤ H(δi). (18)

Assuming the validity of the Claim, the following string of inequalities yields the bound (16).

H[X|Y ] ≤
m∑

i=1

H[Xi|Y ] using (13)

≤
m∑

i=1

H(δi) by the Claim

≤ mH

(
1
m

m∑
i=1

δi

)
by (14)

≤ mH(δ) since for 0 ≤ x ≤ 1/2, H(x) is increasing.



Simultaneous Messages 14Finally, we need to prove Claim 3.10. We use a⊕ b to denote the mod 2 sum of a and b.

H[Xi|Y ] = H[Xi ⊕ Yi|Y ] since for any fixed y, Xi and Xi ⊕ yi have identical entropies
≤ H[Xi ⊕ Yi] = H[Zi] using (11) and the definition of Zi

= H(δi) since Zi is a binary random variable with Pr[Zi = 1] = δi.

(Entropy Loss Lemma)

Next we prove our main result.
Proof of Lemma 3.4: We will prove a lower bound on Cµ,ε

0 (GAFG,k) for some distribution µ and
apply Theorem 3.6.

Let G be a group of order n. Let H1, . . . ,Hk−1 be an optimal collection of subsets of G from
Definition 2.12 and let K = H1 · . . . · Hk−1. Let C = H1 × · · · × Hk−1. Note that K ⊆ G and
C ⊆ G × . . . × G ((k − 1) times). Note further that |K| ≤ |C| and multiplication provides a
natural onto map C → K. Let B ⊆ C be a set of representatives of the preimages under this map;
so |K| = |B| and each element of g ∈ K can be uniquely factored as g = h1 · . . . · hk−1, where
(h1, . . . , hk−1) ∈ B.

The distribution µ we will use is the uniform distribution on {0, 1}K ×B, i.e., player 0 will be
given a uniformly chosen x0 : K −→ {0, 1} and players 1 through k − 1 will be given a uniformly
chosen (k − 1)-tuple from B. (Strictly speaking x0 will be taken from functions G −→ {0, 1} that
are fixed to zero on G \K.)

Given x0 ∈ {0, 1}K , we define wx0 ∈ {0, 1}`| bH1| × · · · × {0, 1}`| bHk−1| as before in the proof of
Lemma 2.14 from the players’ functions pi for 1 ≤ i ≤ k − 1. The `-bit segment (wx0)bhi

of wx0

corresponding to ĥi ∈ Ĥi is defined as (wx0)bhi
= pi(x0, ĥi). We again define a function F :

F : {0, 1}`| bH1| × · · · × {0, 1}`| bHk−1| −→ {0, 1}K .

The function F is defined as in the proof of Lemma 2.14 from the referee’s function r and Player
0’s function p0. Specifically, for g ∈ K, let (h1, . . . , hk−1) ∈ B be the unique factorization of g in
B. For w ∈ domain(F ), we set

(F (w))(g) = r(p0(h1, . . . , hk−1), wbh1
, . . . , wbhk−1

).

For x0 ∈ {0, 1}K , define y0 := F (wx0) ∈ {0, 1}K . We claim that the average Hamming distance
between x0 and y0 (averaging over x0 ∈ {0, 1}K) is at most |K|(1 − ε)/2. Indeed, let us form a
{0, 1}K × B (0, 1)-matrix M as follows: M(x0, (h1, . . . , hk−1)) = 1 if and only if the protocol P
makes an error when player 0 has x0 on her forehead and player i for 1 ≤ i ≤ k − 1 has hi on
her forehead, i.e., x0(h1 · . . . · hk−1) 6= r(p0(h1, . . . , hk−1), p1(x0, ĥ1), . . . , pk−1(x0, ĥk−1))). By the
definition of y0, we have M(x0, (h1, . . . , hk−1)) = 1 if and only if x0(h1 ·. . .·hk−1) 6= y0(h1 ·. . .·hk−1).
Moreover, since the protocol P has ε advantage, by inequality (5) it follows that the fraction of 1’s
in M is at most (1− ε)/2. Hence the average distance between x0 and y0 is at most |K|(1− ε)/2.

Now an application of the distance-range tradeoff lemma (Lemma 3.7) concludes the proof as
follows. Let m = |K| = α|G|. Define φ : {0, 1}m → {0, 1}m by setting φ(x0) = y0 = F (wx0). Let
δ = (1− ε)/2. We have just verified the average-distance condition, so Lemma 3.7 implies that the



Simultaneous Messages 15range R of y0 satisfies log |R| ≥ |K|H(1/2− ε/2). On the other hand, the range of y0 is not larger
than the domain of F :

(k − 1)`ρα(G, k − 1) ≥ log |R| ≥ α|G|(1−H(1/2− ε/2)),

and hence
Cµ,ε

0 (GAFG,k) = ` ≥ α|G|
(k − 1)ρα(G, k − 1)

(1−H(1/2− ε/2)) .

(Lemma 3.4)
This completes the proof of the main results of this section. The rest of the section is devoted

to a discussion of the need to use information theory (entropy) arguments and to clarifying the
connections with the papers [BJKS] and [BaKL].

Remark 3.11 Our central “entropy” tool was Lemma 3.7; its proof was the only place where the
concept of entropy was used. The question arises whether the use of entropy was necessary at all.

The key word in Lemma 3.7 is “average.” If we impose the bound dist(X, φ(X)) ≤ δm on all
X ∈ {0, 1}m then the conclusion will follow from a straightforward Hamming bound on coverings
of the Boolean cube. Indeed, in this case the Hamming balls of radius δm about R would cover the
entire Boolean cube; therefore

2m ≤ |R|
∑

k≤δm

(
m

k

)
≤ |R|2mH(δ), (19)

proving the desired inequality. In the last step we used the bound
∑

k≤δm

(
m
k

)
≤ 2mH(δ), which is

valid for all m and δ (0 ≤ δ ≤ 1/2) (see, e. g., [MacS, p. 310]). (For δ < 1/2 and large m, the bound
can be improved by a factor of ∼ c(δ)/

√
m, cf. equation (23).)

More significantly, even if the condition is on average distance, the use of entropy can be avoided
to obtain a slightly weaker result by a Markov inequality argument combined with the Hamming
bound indicated above.

Indeed, under the conditions of Lemma 3.7 one can prove, without the use of entropies, the
following lower bound on |R| for any constant c > 0:

|R| ≥ c

δ + c
2(1−H(δ+c))m. (20)

Indeed, to see (20), note that by Markov’s inequality on nonnegative random variables, there
exists a subset S ⊆ {0, 1}m such that |S| ≥ 2mc/(δ+c) and for all X ∈ S, dist(X, φ(X)) ≤ (δ+c)m.
Now, apply the Hamming bound argument as in (19) above to get a lower bound on |φ(S)| and
hence on |R|.

Furthermore, an application of this weaker inequality would essentially suffice for a proof of the
main result of this section, the lower bound for Rε

0 (Lemma 3.4).
To deduce a lower bound on Rε

0 from inequality (20), we can choose c = ε/4 and note that (cf.
proof of Lemma 3.4) δ = (1− ε)/2. This implies c/(δ + c) ≥ ε/2 and leads to a bound only slightly
weaker than Lemma 3.4:

Rε
0(GAFG,k) ≥

α|G|(1−H(1/2− ε/4)) + log(ε/2)
(k − 1)ρα(G, k − 1)

.



Simultaneous Messages 16Using this inequality we obtain the lower bound

Rε
0(GAFG,k) = Ω

(
|G|1/(k−1) ε2 + log ε

k − 1

)
,

only slightly weaker than the lower bound on Rε
0 given in Theorem 3.3.

The conclusion is that in essence, entropy arguments are not needed for the main results of this
section. On the other hand, our simple and elegant entropy argument makes the conclusions also
more elegant.

Remark 3.12 A key step in our entropy argument is Claim 3.10. We note that the Claim is in
fact “Fano’s Inequality” [CT] for the special case of Boolean variables.

First we state Fano’s Inequality on the prediction errors for Boolean variables.

Proposition 3.13 (Fano’s Inequality for Boolean Variables) Let X be a Boolean random
variable and Y a random variable over the domain SY . Let g : SY → {0, 1} be a “prediction
function” (given the value of Y ∈ SY , g guesses the value of X). Let δ be the “prediction error:”
δ = Pr[g(Y ) 6= X]. Then H[X |Y ] ≤ H(δ).

Claim 3.10 follows from Proposition 3.13 as follows.
For 1 ≤ i ≤ m, let us define gi : {0, 1}m → {0, 1} by setting gi(Y ) = Yi. Let us use gi to predict

Xi given Y . The prediction error is δi = Pr[Xi 6= Yi]. Fano’s Inequality gives H[Xi|Y ] ≤ H(δi),
which is exactly inequality (18), completing the proof. (Claim 3.10)

Conversely, our proof of Claim 3.10 in effect proves Proposition 3.13. Indeed, our proof of
Claim 3.10 can be found in the last three lines of the proof of the Entropy Loss Lemma above. To
see how to adapt those three lines to prove Proposition 3.13, replace Xi by X, Yi by g(Y ), Zi by
Z := X ⊕ g(Y ), and δi by δ. (Fano’s Inequality)

Remark 3.14 (Comparison with [BJKS] and [BaKL]) Independent of our work, Bar-Yossef
et al. [BJKS] describe an information-theoretic approach to proving lower bounds on the distribu-
tional SM complexity of GAFG,k analogous to our Lemma 3.4.

The [BJKS] result differs from ours in their definition of the ρ parameter (based, apparently,
on an optimistic interpretation of the ρ parameter defined in the original [BaKL] paper).

The [BJKS] definition of ρ assumes a decomposition of the entire group G as a product of
subgroups. These assumptions apparently lead to large values of ρ and thus to poor estimates of
the complexity. [BJKS] make no attempt to estimate the value of their ρ parameter.

The [BaKL] definition of ρ used subsets rather than subgroups of G as factors in the decomposi-
tion of the entire group G. It is shown in [BaKL] that this approach gives a bound for every group
of order n which is only slightly worse than the bound obtained for the “nicest” groups (cyclic and
elementary abelian groups), namely, by a factor of O(

√
log n). A positive outcome of the “Modified

Rohrbach Problem (Section 7)” would eliminate this factor.
In the present paper we eliminate this factor in a different way, by bypassing the obstacle posed

by the Rohrbach problem. In Section 2.3 we have constructed optimal (up to a constant factor)
decompositions of a positive fraction of G into a product of subsets (Theorem 2.17). This approach
yields SM lower bounds for all groups that are within a constant factor of the results for the “nicest”
groups.
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[BJKS] is an information theoretic argument to extend the proof of the deterministic lower bound
to distributional complexity. Specifically, [BJKS] uses “Fano’s Inequality for Boolean Variables”
on prediction errors in terms of conditional entropy (see above, Proposition 3.13).

The information theoretic arguments presented in [BJKS] remain valid in the context of the
more general decompositions considered in our paper which correspond to the ρα parameter defined
in Definition 2.12.

[BJKS] use their entropy argument to prove their analogue of Lemma 3.4. Although our proof
of Lemma 3.4 is also entropy-based, the two proofs look rather different. Our attempt to find the
“common core” of the two proofs yielded only a modest result (see Remark 3.12).

4 Applications to Lower Bounds in Circuit Complexity

In this section, we derive some consequences of the SM lower bounds from Section 2.2 to super-
polynomial lower bounds on certain depth-2 circuits. These circuits are described by the following
definition.

Definition 4.1 A (SYMM,AND)-circuit is defined to be a depth-2 circuit with a symmetric gate
at the top and AND gates at the bottom. (We draw circuits with the output at the top. Hence
inputs to the bottom gates are input variables and their negations).

We note that Beigel and Tarui [BeT] reduce ACC circuits to (SYMM,AND)-circuits of quasipoly-
nomial size with bottom fan-in polylog(n). We present below a lower bound of exp((log n/ log log n)2)
on the size of (SYMM,AND)-circuits (of arbitrary bottom fan-in) computing some very weak func-
tions. In fact, our lower bound applies to a function in ACC that contains GAFZt

2,k as a subfunction.
The following remarkable observation by H̊astad and Goldmann [HG] relates multiparty com-

munication complexity to certain depth-2 circuits.

Lemma 4.2 (H̊astad-Goldmann) Suppose a function f is computed by a depth-2 circuit con-
sisting of an arbitrary symmetric gate of fan-in s at the top and bottom gates computing arbitrary
functions of at most k − 1 variables. Then, for any partition of the input among the players, the
k-party communication complexity of f is O(k log s).

For completeness, we give a proof of Lemma 4.2.

Proof: Since each bottom gate of the circuit has fan-in at most k− 1, there is at least one player
who can evaluate that gate. Partition the bottom gates among the players such that all the gates
assigned to a player can be evaluated by that player. Now, each player broadcasts the number of
her gates that evaluate to 1. This takes O(log s) bits per player since the top gate has fan-in at
most s. Now one of the players can add up all the numbers broadcast to compute the symmetric
function given by the top gate and announce the value of the function.

It is obvious that this proof works in the SM model as well: each player sends to the referee the
number of gates evaluating to 1 among his gates, and the referee adds these numbers to compute
f . The SM-complexity of the protocol is clearly O(log s). Hence, we get

Corollary 4.3 Suppose a function f is computed by a depth-2 circuit consisting of an arbitrary
symmetric gate of fan-in s at the top and bottom gates computing arbitrary functions of at most
k− 1 variables. Then, for any partition of the input among the players, the k-party SM-complexity
of f is O(log s).
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SM-complexity.

The next lemma uses the method of random restrictions [Aj, FSS] to reduce the fan-in of the
bottom gates and at the same time to ensure that the “target function” (with high SM complexity)
is computed by the restricted circuit. We note that a similar technique is used by Razborov and
Wigderson [RaW].

First, we introduce a definition.

Definition 4.4 Let f(x1, . . . , xv) be a Boolean function of v variables. Let S1, . . . , Sv be disjoint
sets of variables, where |Si| = b for all i. Then the Parityb Blow-up of f is the function g on vb
variables defined by

g(y1, . . . , yvb) = f(⊕i∈S1yi, · · · ,⊕i∈Svyi).

Definition 4.5 For a set X of Boolean variables a restriction ρ is defined to be a mapping
ρ : X −→ {0, 1, ∗}. We interpret a variable assigned a ∗ to be “free”, i.e., not fixed to a con-
stant. Given a function f on X, its restriction f|ρ is the induced function on variables assigned a
∗ by ρ obtained by evaluating f when the non-free variables are fixed according to ρ. For a circuit
C, its restriction C|ρ is the circuit (with variables from ρ−1(∗)) obtained by fixing the variables of
C assigned 0 or 1 by ρ and simplifying wherever possible.

Lemma 4.6 Let g be the Parityb Blow-up of f . Let ` be a parameter satisfying ` ≤ log b−log ln v+1,
and let 0 < c < 1 be a constant. Suppose that g is computed by a circuit C consisting of at most
2c·`2 AND gates at the bottom. Then there is a restriction ρ such that

• All AND gates at the bottom level of C|ρ have fan-in at most `.

• C|ρ has v input variables, exactly one from each block Si, and

• C|ρ computes f .

Proof: We define ρ in two stages. First, we obtain a random restriction ρ1 that reduces the fan-in
of each bottom AND gate to at most ` and keeps alive at least two variables from each block Si.
We prove the existence of ρ1 below. Second, we define ρ2 by assigning values to all but one of the
variables from each Si left alive by ρ1 so that we are left with exactly one unnegated variable from
each Si, i.e., ρ2(ρ1(⊕j∈Siyj)) = yi′ for some yi′ ∈ Si. The desired restriction ρ is the composition
of ρ1 and ρ2. Moreover, by the definition of g, the restricted circuit computes f(y1′ , . . . , yv′).

Let p := (2 ln v)/b. Note that p ≤ 2−`. We choose ρ1 by independently assigning to each
variable a ∗ (keep it alive) with probability p and a 0 or 1 each with probability (1 − p)/2. Let γ
be a bottom level AND gate of C and let m be the fan-in of γ.

First consider the case when m ≤ `2. W.l.o.g, m ≥ `. Then,

Pr[γ|ρ1
has fan-in > `] ≤

∑
i>`

(
m

i

)
pi

(
1− p

2

)m−i

≤ (1 + o(1))
(

m

`

)
p`

(
1− p

2

)m−`

since ` � mp

≤ (1 + o(1))(pe`)` since m ≤ l2

≤ 2−`2·(1−o(1)) since p ≤ 2−`.
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Pr[γ|ρ1
has fan-in > `] ≤ Pr[γ|ρ1

6≡ 0] ≤
(

1 + p

2

)m

≤ 2−`2·(1−o(1)) since m > `2 and p ≤ 2−`.

Since C has at most 2c·`2 AND gates at the bottom (where c < 1 is a constant), from the
preceding two cases it follows that

Pr[ some bottom AND gate of C|ρ1
has fan-in > l] = o(1) (21)

Moreover, for a fixed i, 1 ≤ i ≤ v, we have

Pr[ρ1(Si) has < 2 ∗’s] = (1− p)b + bp(1− p)b−1

≤ e−pb(1 + bp/(1− p))
≤ O(log v/v2) since p ≥ 2 ln v/b.

Hence, we also have

Pr[ ρ1 assigns fewer than 2 ∗’s to some block Si ] = o(1). (22)

From Eqs. (21) and (22), we see that with high probability all bottom AND gates of C|ρ1
have

fan-in at most ` and furthermore the inputs of C|ρ1
will have at least two variables from each block

Si. Hence such a restriction ρ1 exists.
By composing ρ1 with an additional restriction ρ2 as described in the beginning of the proof,

we complete the proof of the lemma.

Theorem 4.7 Suppose an n variable function f has k-party SM-complexity at least c0(n, k) for
some partition of the input among the players. Then any (SYMM,AND)-circuit computing the
Parityn Blowup of f must have size at least min{exp(k2), exp(c0(n, k))}.

Proof: Let g denote the Parityn Blowup of f and let C be a minimal size (SYMM,AND) circuit
computing g. If C has size > 2(k−1)2 , we are done.

So, suppose size of C is ≤ 2(k−1)2 . We apply Lemma 4.6 to obtain a restriction ρ such that
bottom gates of C|ρ have fan-in at most k − 1 and C|ρ computes f .

Now applying Corollary 4.3, we see that the size of C|ρ must be exponential in the SM complexity
c0(n, k) of f . Hence C itself must have size at least exp(c0(n, k)).

Using our lower bound on SM complexity from Section 2 we immediately get

Corollary 4.8 Let G be any group of order n and let k = ε log n/ log log n for a sufficiently small
constant ε > 0 . Then any (SYMM,AND)-circuit computing the Parityn Blowup of GAFG,k must
have size exp((log n/ log log n)2).

Proof: From Theorem 2.8, we have that for c0(n, k) := C0(GAFG,k) = Ω(n1/(k−1)/(k−1)). Hence,
if k ≤ ε log n/ log log n for sufficiently small ε > 0, c0(n, k) ≥ k2. Now, we get the claimed bound
from Theorem 4.7.
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2,k

In this section we give a nontrivial protocol for GAFG,k for G = Zt
2. Our protocol yields an upper

bound of about n(log k)/k, where n = 2t (see Theorem 5.5). In particular, for 3 players we obtain a
nontrivial O(n0.92) upper bound (see Theorem 5.3). These upper bounds have been subsequently
improved in [AmL], giving in particular, an upper bound of O(n0.73) for 3 players. These upper
bounds should be compared with our lower bound of Ω(n1/(k−1)/(k − 1)) (Theorem 2.8).

It is curious to remark that, in contrast to the lower bound, our protocol heavily depends on
the specific structure of this group. In particular, it does not apply to the cyclic group G = Zn.
For cyclic groups, Pudlák, Rödl, and Sgall [PRS] give upper bounds of O(n(log log n/ log n)k),
for constant k, and O(n6/7) for k ≥ c log n, for some constant c. These upper bounds have been
significantly improved by Ambainis [Am] to O

(
n log1/4 n

2
√

log n

)
for k = 3 and to O(nε) for an arbitrary ε >

0 for k = O((log n)c(ε)). However, the bounds for Zn are still much weaker than the corresponding
bounds for Zt

2 presented in this paper.
We will think of the n-bit string A held by p0 (previously denoted x0) as a Boolean function on

t := log n variables z1, . . . , zt, i.e., A : {0, 1}t −→ {0, 1}. For 1 ≤ i ≤ k− 1, let xi be the t-bit string
held by player pi. Then we have

GAFZt
2,k(A, x1, . . . , xk−1) = A(x1 + · · ·+ xk−1),

where ‘+’ denotes addition in Zt
2.

5.1 Three Players

We will first describe the protocol for three players. The idea extends naturally to the general case.
For simplicity of notation, let p1 hold x and p2 hold y. At the cost of 2t bits, p0 sends the strings
x and y to the referee. Since this communication will be insignificant, we can henceforth ignore p0

and assume that the referee knows x and y (but not A). Then we want to minimize the number of
bits sent by p1 and p2 that will enable the referee to compute A(x + y).

The protocol will be based on the fact that the Boolean function A can be represented as a
multilinear polynomial of (total) degree at most t. In fact, the following lemma is the crucial
observation in the protocol. We use the notation

Λ(m, b) =
b∑

j=0

(
m

j

)
,

and the fact that for fixed δ, 0 < δ < 1/2,

Λ(m, δm) ∼ c(δ)2mH(δ)/
√

m. (23)

Lemma 5.1 Given the promise that A is a multilinear polynomial of degree d over Z2, x, y ∈ Zt
2,

GAFZt
2,3(A, x, y) has an SM- protocol with cost Λ(t, bd/2c).

Proof: Let A be given by A(z) =
∑

S⊆[t], |S|≤d

aS ZS , where ZS denotes the monomial
∏

i∈S zi. Thus,

A(x + y) =
∑
|S|≤d

aS

∏
i∈S

(xi + yi) =
∑
|S|≤d

aS

∑
T1∪̇T2=S

XT1 YT2 ,
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∏

i∈T1
xi and YT2 :=

∏
i∈T2

yi.
We can rewrite this as follows:

A(x + y) =
∑

|T1|≤bd/2c

 ∑
|T1∪̇T2|≤d

aT1∪̇T2
YT2

 ·XT1 +
∑

|T2|≤bd/2c

 ∑
|T1∪̇T2|≤d

aT1∪̇T2
XT1

 · YT2 ,

where T1 and T2 are disjoint subsets of [t], and, we assume w.l.o.g. that terms aT1∪̇T2
XT1 YT2 with

both |T1| and |T2| less than or equal to bd/2c are placed in the first sum.
We now observe that the first sum in the last equation is a polynomial in x whose coefficients

(which depend only on aT1∪̇T2
YT2) are known to p1. Similarly, the second sum is a polynomial in y

whose coefficients are known to p2. The degree of both polynomials is bounded by bd/2c. Hence,
using at most Λ(t, bd/2c) bits, each player can communicate the coefficients of their corresponding
polynomial to the referee. Since the referee already knows x and y, he can evaluate the two
polynomials and add them up to announce the value of A(x+y). Since p0 used only 2t bits to send
x and y to the referee, the cost of the protocol is simply Λ(t, bd/2c).

Remark 5.2 For small enough d, the protocol is a quadratic improvement over the trivial one
where the entire function A is communicated to the referee.

Suppose now that A is an arbitrary Boolean function. We will use Lemma 5.1 on the low-degree
part of A and the trivial protocol on the high-degree part. Since there are not too many high-degree
terms, we will be able to keep the communication within nc for some c < 1.

Theorem 5.3 C0(GAFZt
2,3) = o(n0.92).

Proof: Let A : Zt
2 −→ {0, 1} and x, y ∈ Zt

2 be the inputs on the foreheads of players 0, 1, and 2
respectively. Write A as a multilinear polynomial over Z2 of degree at most t: A(z) =

∑
S⊆[t] aS ZS .

Define A′ to be the part of A corresponding to degree less than or equal to 2t/3, and let A′′ be the
remaining part of A. That is,

A(z) =
∑

|S|≤2t/3

aS ZS +
∑

|S|>2t/3

aS ZS = A′(z) + A′′(z).

Players p1 and p2 use the protocol of Lemma 5.1 on A′. They just send the high degree terms aS

for |S| > 2t/3 directly to the referee (each sends half of them). The number of bits used by each of
p1 and p2 is at most

Λ(t, t/3) +
1
2

∑
j>2t/3

(
t

j

)
≤ 3

2
Λ(t, t/3) ≤ O(2t H(1/3)/

√
t),

using the estimate (23). Since p0 sends fewer bits than p1 or p2 (p0 sends only 2t bits), the protocol
has cost O(nH(1/3)/

√
log n). As H(1/3) = 0.91829..., the theorem follows.

5.2 k Players

We generalize the idea from the preceding section to k players. An extension of Lemma 5.1 follows:
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and for 1 ≤ i ≤ k − 1, xi ∈ Zt

2, GAFZt
2,k(A, x1, . . . , xk−1) has an SM-protocol with cost at most

Λ(t, bd/(k − 1)c) + t .

Proof: In the 3-player protocol, player p0 passes the two short inputs. In the k-player protocol,
the task of passing the short inputs x1, . . . , xk−1 will be divided among players p1 through pk−1,
and p0 will remain silent. This avoids having one player (p0) communicate too many bits in case k
is large.

Letting A(z) =
∑

S⊆[t], |S|≤d aS ZS , we have,

A(x1 + · · ·+ xk−1) =
∑
|S|≤d

aS

∏
j∈S

(x1,j + · · ·+ xk−1,j)

=
∑
|S|≤d

aS

∑
T1∪̇···∪̇Tk−1=S

X1,T1 · · ·Xk−1,Tk−1
, where Xi,Ti =

∏
j∈Ti

xij .

Let us consider a monomial aS ZS . Since the Ti are disjoint,
∑k−1

i=1 |Ti| = |S| ≤ d, and hence
the smallest Ti is of size at most bd/(k − 1)c. Thus in the expansion,∑

T1∪̇···∪̇Tk−1=S

aS X1,T1 · · ·Xk−1,Tk−1
,

each term can be “owned” by a player pi such that Ti is the smallest set in that term. (In case of
ties, take the smallest such i.) As a result, the value of this monomial on x1 + · · · + xk−1 can be
distributed among the k players by giving them each a polynomial of degree at most b|S|/(k− 1)c.

The proof follows by linearity and proceeds similarly to that of Lemma 5.1. We conclude that
for 1 ≤ i ≤ k − 1, player pi needs to send Λ(t, bd/(k − 1)c) bits for the terms they own and t bits
to send xi+1 (player pk−1 sends x1).

Theorem 5.5 C0(GAFZt
2,k) ≤

k

k − 1
Λ(t, bt/kc) + t.

Proof: Let A : Zt
2 −→ {0, 1} be player 0’s input and let xi ∈ Zt

2 be player i’s input for 1 ≤ i ≤ k−1.
The proof is similar to the proof of Theorem 5.3: separate the low-degree and high-degree parts of
A as follows. Monomials of A of degree higher than t(1− 1/k) are sent directly to the referee. (For
simplicity, we ignore floors and ceilings in this proof.) By dividing these high degree monomials
equally among the k − 1 players, we see that each player sends at most 1

k−1

∑
t(1−1/k)≤i≤t

(
t
i

)
=

Λ(t, t/k)/(k−1) bits. The remaining low-degree part of A has degree at most t(1−1/k). Applying
Lemma 5.4 with d = t(1−1/k), each player sends at most Λ(t, t/k)+t bits to handle the low-degree
part and to transmit xi+1 (player pk−1 transmits x1). Adding up, we get that each player sends at
most k

k−1Λ(t, t/k) + t bits to the referee.

Corollary 5.6 For 3 ≤ k ≤ log n, C0(GAFZt
2,k) ≤ nO((log k)/k) + log n.

Proof: Use estimate (23) and note further that, for k ≥ 3, H(1/k) ≤ log(ek)/k.

Remark 5.7 It follows that if k ≥ c log n for any constant c > 0, then each player sends at most
polylog (n) bits to the referee. Moreover, it is easy to see from the proof of Lemma 5.4 that if
k = log n + 1, each player sends at most 2 + log n bits and if k > log n + 1, each player need only
send at most 1 + log n bits.
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In this section, we give nontrivial upper bounds on the SM-complexity of a class of functions
defined by certain depth-2 circuits and for a partition of the input variables in which each of the
k players misses one input bit from each bottom gate. The n bottom gates are identical with
fan-in k and compute certain symmetric functions called symmetric compressible functions (see
Definition 6.1). The top gate is an arbitrary symmetric gate. We call this class of communication
problems the SymCom(n, k) problems (see Definition 6.7). It includes for example, Majority of
Majorities, Generalized Inner Product, and Parity of Thresholds.

We start by defining the functions that are allowed on the bottom level, i.e. the compressible
functions. Let X = {x1, . . . , xk} be a set of Boolean variables and f(x1, . . . , xk) a Boolean function.
Alice sees a subset A ⊆ X of the variables, and Bob sees the remaining set B = X \ A. Consider
the one-way communication model where Alice sends a message to Bob, and Bob must deduce the
value of f from Alice’s message and the part of the input he sees. For a given partition of the set
of variables A∪̇B = X, we denote by CA→B(f) the minimum number of bits that Alice must send.

Definition 6.1 A class of Boolean functions F is called compressible if for any partition A,B 6= ∅,
A∪̇B = X, and any f ∈ F we have CA→B(f) = O(log |B|).

Remark 6.2 We refer to a function f as a compressible function if it belongs to a compressible
class of functions. The constant implied by the O notation may depend on the class, but not on
the particular function.

We shall be interested only in compressible symmetric functions. Note that in this case, it is
clear that CA→B ≤ log(|A|+1). The point of our definition is that we require CA→B ≤ log |B| even
when |B| is very small compared to |A|. Indeed, we shall use this property for |B| = Θ(log k).

Example 6.3 The following Boolean functions are compressible:

1. Parity(x1, . . . , xk) = x1 ⊕ . . .⊕ xk.

2. Modm,T (x1, . . . , xk) = 1 if and only if
∑k

i=1 xi ∈ T (mod m).

3. Thk
t (x1, . . . , xk) = 1 if and only if

∑k
i=1 xi ≥ t.

Remark 6.4 We will give an example of a function which is not compressible in Section 6.1 below
(see Definition 6.12 and Proposition 6.15).

Proposition 6.5 For every partition A∪̇B = X = {x1, . . . xk} (A,B 6= ∅) we have the following:

1. CA→B(Parity) ≤ 1 .

2. CA→B(Modm,T ) ≤ dlog me .

3. CA→B(Thk
t ) ≤ dlog(|B|+ 2)e .
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Figure 1: The depth-2 circuit defining g ◦ f .

Proof of Proposition 6.5: The statements about the Parity and Modm functions are trivial.
We prove the statement of the Proposition for threshold functions. Let A,B 6= ∅, A∪̇B = X =
{x1, . . . , xk} be some partition of the input variables. Let ` be the number of 1’s in part A. If
` < t− |B|, the value of Thk

t must be 0, and if ` ≥ t the result must be 1, regardless of part B of
the input. For ` = t − i, i = 1, . . . , |B| the value of the function depends on part |B|. Therefore,
for Bob to compute the value of f , it is enough for Alice to send one of |B| + 2 messages to Bob:
one for the case where ` < t − |B|, one for the case where ` ≥ t, and one for each value of ` from
t− |B| to t− 1. This requires only dlog(|B|+ 2)e bits.

Let f : {0, 1}k → {0, 1} and g : {0, 1}n → {0, 1} be Boolean functions. Consider the following
depth 2 circuit. The first level has n f -gates whose inputs are disjoint, so there are nk input bits
to the circuit. The second level consists of a g-gate which takes the outputs of the f -gates as its n
inputs. We denote the function computed by this circuit by g ◦ f (see Figure 6).

Definition 6.6 We define the (g, f)-communication problem as the problem of k players computing
g◦f, where k is the same number as the fan-in of the f -gates, and the input variables are partitioned
among the k players so that the j-th player misses the j-th input bit of each f -gate.

Definition 6.7 We call the (g, f)-communication problem a SymCom(n, k) problem, if the function
g is symmetric and the function f is compressible and symmetric.

Remark 6.8 Observe that the and function is compressible (cf. Proposition 6.5(3)). Hence the
circuits used to define a SymCom(n, k) communication problem above are somewhat similar to
the (SYMM,AND)-circuits defined in Section 4. However, there are some crucial differences. First,
inputs to distinct bottom gates of circuits in this section (Figure 6) are required to be disjoint
whereas no such restriction is imposed in (SYMM,AND)-circuits. Second, the number of players
in this section is equal to the bottom fan-in of the circuits and this is not necessarily true of
(SYMM,AND)-circuits.

In Theorem 6.11, we will show that there are efficient SM protocols for SymCom(n, k) problems
for k > 1 + log n players. First, we need two lemmas.

Lemma 6.9 Let t and n be positive integers such that t > 1 + log n. Let b0, . . . , bt−1 be integers.
Consider the following system of t equations in t + 1 unknowns:

(t− i)yi + (i + 1)yi+1 = bi, i = 0, 1, . . . , t− 1. (24)

Assume further that

yi ≥ 0, i = 0, 1, . . . , t;
t∑

i=0

yi ≤ n. (25)

Then, under constraints (25), the system of equations (24) has at most one integral solution.
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′
t) be two solutions of (24), each consisting of

nonnegative integers whose sum is at most n. For i = 0, 1, . . . , t, let di = yi − y′i. Since y 6= y′, we
know there exists at least one di 6= 0.

From (24), we obtain the following equations:

(t− i)di + (i + 1)di+1 = 0, i = 0, 1, . . . , t− 1. (26)

From the i = 0 equation, we can express d1 in terms of d0: d1 = −td0 = −
(

t
1

)
d0. From this and

the i = 1 equation, we get

d2 =
−(t− 1)

2
d1 =

(t− 1)t
2

d0 =
(

t

2

)
d0.

Continuing in this way, we see that for i = 0 to t, di = (−1)i
(
t
i

)
d0. Since some di is not 0, we know

that d0 6= 0. Furthermore, since the di are integers, we know that |d0| ≥ 1, and thus |di| ≥
(
t
i

)
. We

also note that since yi, y
′
i ≥ 0, we have

yi + y′i ≥ |yi − y′i| = |di|.

Now we use the fact that the sum of the yi and the sum of the y′i are both at most n to derive a
contradiction and complete the proof:

2n ≥
t∑

i=0

(yi + y′i) ≥
t∑

i=0

|di| ≥
t∑

i=0

(
t

i

)
= 2t > 21+log n = 2n.

Lemma 6.10 Let n be a positive integer, and let M be a t × m (0,1)-matrix, with m ≤ n and
t = dlog ne + 2. For i = 0, 1, . . . , t, let yi be the number of columns of M with i ones. For
j = 1, . . . , t, let player j see all of M except row j. Then there exists an SM protocol in which each
player sends O(log2 n) bits to the referee, after which the referee can calculate y0, . . . , yt.

Proof: For j = 1, . . . , t, player j sends (aj(0), aj(1), . . . , aj(t− 1)) to the referee, where aj(i) is the
number of columns player j sees with i ones. Note that each player sees only t− 1 of the rows, and
thus cannot see t ones in any column. For i = 0, 1, . . . , t− 1, the referee computes bi :=

∑t
j=1 aj(i).

We observe that y0, . . . , yt are nonnegative integers whose sum is m ≤ n, and that for the bi

defined above, they satisfy the system of equations (24). Thus, by Lemma 6.9, there is no other
such solution. The referee, being arbitrarily powerful, can thus compute y0, . . . , yt.

How many bits does each player send? Clearly each aj(i) ≤ n, so each aj(i) can be communi-
cated with dlog ne bits. Since each player communicates t = 1 + dlog(n + 1)e such numbers to the
referee, we have the complexity of this SM protocol is O(log2 n) as desired.

We now state the theorem regarding SM protocols for SymCom functions.

Theorem 6.11 If (g, f) is a SymCom(n, k) problem and k > 1+log n then C0(g ◦f) ≤ polylog(n).

Proof: Arrange the nk input bits of g ◦ f in a k × n matrix M such that player i knows all
of M except the i-th row. Each column of M contains the k input bits of a given f -gate. Let
t = dlog ne + 2. The first t players will be the only ones who speak, so we call them the active
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and entries are called passive.

Consider a single column v ∈ {0, 1}k of M . Since f is compressible, there is a one-way 2-party
protocol P for Alice and Bob, where Alice sees the passive entries of v and Bob sees the active
entries of v, such that Alice sends Bob O(log t) = O(log log n) bits. Note that since f is symmetric,
the only thing that Bob needs to know about the input he sees is how many ones there are. Thus,
the value of f(v) is determined by the message Alice sends on v, and the number of ones among
v’s active entries.

For every column v of M , the t active players see all of the passive entries of v and thus know
what message Alice would send under P upon seeing v. Let c > 0 be such that Alice sends at most
c log log n bits, and hence at most r = logc n possible messages. Let m1, . . . ,mr be the possible
messages Alice can send under P .

From M , the active players form r new matrices M1, . . . ,Mr, where Mi consists of the columns
of M for which Alice sends Bob message mi under protocol P . For each j, 1 ≤ j ≤ r, the t players
and the referee execute the protocol of Lemma 6.10 on the submatrix of Mj consisting of the active
rows. Thus the referee can deduce, for each i, 0 ≤ i ≤ t, the number of columns of Mj which have i
ones among their active entries. From this and the fact that under P , Alice would send message mj

for every column of Mj , the referee can deduce the number of columns v of Mj for which f(v) = 1.
By summing over all j, the referee calculates the total number of f -gates that evaluate to 1, which
suffices to evaluate g ◦ f , as g is symmetric.

The cost of this protocol is r ·O(log2 n) = O(logc+2 n).

6.1 A function which is not compressible

It is easy to check that a random symmetric function is incompressible. In this subsection we give
an example of an explicit symmetric function which is not compressible (see Definition 6.1).

Definition 6.12 For an odd prime p, we define the function “quadratic character of the sum of
the bits,” QCSBp : {0, 1}p → {0, 1} by QCSBp(x1, . . . , xp) = 1 iff x1+ . . .+xp is a quadratic residue
mod p, where the xi are single bits. Recall that y 6= 0 is a quadratic residue mod p if y is a square
mod p.

Let p be an odd prime, and let r = b(1
2 − c1) log pc, for any constant c1, 0 < c1 < 1

2 . Let M be
the (r + 1)× (p + 1) ± 1-matrix defined by M(i, j) = 1 iff i + j is a quadratic residue mod p and
−1 otherwise, for 0 ≤ i ≤ r, 0 ≤ j ≤ p.

Lemma 6.13 For any y ∈ {−1, 1}r+1, the number of columns of M identical to y is O(p/2r).

Proof: This is an immediate consequence of André Weil’s character sum estimates (cf. [Sch], see
also [Bo], pp. 311, 319): Let q be an odd prime power, and let U0, U1 be disjoint subsets of Fq. For
x, y in Fq, let χ(x) = 1 if x 6= 0 is a square in Fq, 0 if x = 0, and −1 otherwise. Let

S = {x ∈ Fq | for i = 0, 1, (∀u ∈ Ui)(χ(x− ui) = (−1)i)}.

Let m = |U0 ∪ U1|, and let s = |S|. Then

|s− 2−mq| ≤ m
√

q. (27)



Simultaneous Messages 27Let q := p. Let y = (y0, y1, . . . , yr) ∈ {−1, 1}r+1. Let U0 = {p − i : 0 ≤ i ≤ r, yi = 1}. Let
U1 = {p− i : 0 ≤ i ≤ r, yi = −1}. Clearly column j of M is identical to y exactly if j ∈ S. Setting
m := |U0 ∪ U1| = r + 1 gives us

s ≤ p/2r+1 + (r + 1)
√

p = O(p/2r).

Theorem 6.14 Let p and r be as above, and let b be an integer r < b < (1− c2)p, for any constant
c2. For any 2-party one-way (Alice to Bob) protocol for QCSBp, if Bob sees b of the p input bits,
Alice sees the other a = p− b bits, then Alice must send Bob r −O(1) bits.

Proof: Assume that there is such a one-way protocol P . We set b− r of Bob’s bits to 0, and tell
both players this. This is extra information, so P will still work for this restricted problem.

This new communication problem can be represented by the (r + 1)× (a + 1) ± 1-matrix M ′,
obtained by deleting the last b columns of M . The rows represent the number of ones that Bob sees,
and the columns represent the number of ones Alice sees. From Lemma 6.13, we know that every
y ∈ {−1, 1}r+1 occurs in M and thus in M ′ at most O(p/2r) times. Since there are p − b = Ω(p)
columns in M ′, the number of distinct columns in M ′ is Ω(2r), and so Alice must send Bob r−O(1)
bits.

Corollary 6.15 If p is an odd prime, then QCSBp is not compressible.

Proof: If Bob sees b = (log p)O(1) bits, then Alice must send at least r − O(1) = Ω(log p) = bΩ(1)

bits, which greatly exceeds the requirement for compressible functions.

7 Decompositions of Groups: the Rohrbach conjecture

In this section, we prove results about ρ(G, u) := ρ1(G, u) (i.e., when
∏u

i=1 Hi = G in Defini-
tion 2.12) and indicate related conjectures. We shall see that ρ(G, u) behaves roughly as |G|1−1/u.

First, we observe the following easy lower bound:

Proposition 7.1 For any finite group G, ρ(G, u) ≥ |G|1−1/u.

Proof: Let G = H1 · . . . · Hu be an optimal decomposition. If |Hi| ≥ |G|1/u for each i, then
|Ĥi| ≥ |G|1−1/u. Otherwise, assume |Hi| < |G|1/u for some fixed i. Observe that |Hi| · |Ĥi| ≥ |G|.
Therefore, in this case also |Ĥi| > |G|1−1/u.

For arbitrary finite groups, an upper bound on ρ(G, u) that is not too far from optimal follows
from Theorem 2.19.

Corollary 7.2 (of Theorem 2.19) For any finite group G of order n, ρ(G, u) ≤ 2(4n lnn)1−1/u.

Proof: Partition the two-element sets of Theorem 2.19 into u classes, each containing at least
bm/uc of the m two-element sets. This means that there are at most m− bm/uc two-element sets
in any u− 1 of the classes. Therefore,

ρ(G, u) ≤ max
i
|Ĥi| ≤ 2m−bm/uc ≤ 21+m−m/u = 2 · 2m(u−1)/u ≤ 2(4n lnn)1−1/u.

The parameter ρ(G, u) is closely related to a question posed by Rohrbach [Ro1, Ro2] in 1937.
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of G if G = H1 · . . . ·Hu. If H1 = · · · = Hu = H, we denote Hu = H1 · . . . ·Hu. A subset H of G is
called a u-basis of G if Hu = G.

Rohrbach’s Problem: Is there a constant c = c(u) such that every finite group G has a
u-basis H where |H| ≤ c|G|1/u?

Note that if Rohrbach’s Problem has an affirmative answer, then we will have, for every finite
group G, ρ(G, u) ≤ (c(u))u−1|G|1−1/u. On the other hand, if we have a u-decomposition G = H1·. . .·
Hu with |Hi| ≤ α|G|1/u, then we will have a u-basis H of G with |H| ≤ (αu)|G|1/u by simply taking
H = H1 ∪ · · · ∪ Hu. Moreover, such a decomposition will also give that ρ(G, u) ≤ αu−1|G|1−1/u.
Hence the following question appears to be of more general interest.

Modified Rohrbach Problem: Is there an absolute constant c such that every finite group
G has a u-decomposition G = H1 · . . . ·Hu where |Hi| ≤ c|G|1/u?

Both Rohrbach’s Problem and its modified version have been answered affirmatively for several
special classes of finite groups. Of particular interest in our context is the following result of Kozma
and Lev [KoL] (for our purposes, λi = 1/u in the following theorem).

Theorem 7.4 (KL) Let G be a finite group such that every composition factor of G is either a
cyclic group or an alternating group. Then for every positive integer u and nonnegative real numbers
λi such that λ1 + · · ·+ λu = 1, there is a u-decomposition G = H1 · . . . ·Hu where |H1| ≤ |G|λ1 and
Hi ≤ 2|G|λi for 2 ≤ i ≤ u. In particular, this conclusion holds if G is an alternating group or if G
is solvable.

This result answers the modified Rohrbach Problem affirmatively for some important special
classes of finite groups. As a consequence, we have the following corollary about ρ(G, u):

Corollary 7.5 Let G be a finite group such that every composition factor of G is either a cyclic
group or an alternating group. Then for every positive integer u, ρ(G, u) ≤ 2u−1|G|1−1/u. In
particular, this bound holds if G is an alternating group or if G is solvable.

These results have been extended to groups with linear (PSL(n, q)) and symplectic (Psp(2n, q))
composition factors (in addition to cyclic and alternating composition factors) with a suitable small
constant in place of the coefficient 2 (Pyber [Py]). There is hope that the Modified Rohrbach
Problem will be settled in the affirmative in the foreseeable future. (As mentioned above, this will
also settle Rohrbach’s original problem.)

In Examples 1 and 2, we gave upper bounds of O(|G|1−1/u) on ρ(G, u) of two special cases of
greatest interest to us, namely G = Zt

2 and G = Zn. Thus in these cases we reduce the gap between
the trivial lower bound |G|1−1/u (Proposition 7.1) and the upper bound to an absolute constant.
These bounds are therefore stronger than those implied by an affirmative answer to the Modified
Rohrbach Problem.

We propose the following stronger version of the Modified Rohrbach Problem.
Problem: Is there an absolute constant c such that for any finite group G and any positive integer
u, ρ(G, u) ≤ c|G|1−1/u?

We have given the positive answer for cyclic groups and for elementary abelian 2-groups.
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1. The main open problem in multiparty communication complexity theory remains to find a
nontrivial lower bound for some explicit function for more than log n players. Some candidate
functions are:

(a) Let T k,r
t be defined as follows: T k,r

t (x1, . . . , xk) = 1 iff x1 + . . . + xk ≥ t, where the xi

are r-bit integers. The candidate function is Majority of Thresholds MTn,k,r, defined
by the following depth two circuit: the bottom level has n T k,r

t gates, whose inputs are
disjoint (so MT is a function of knr bits), and the top gate is a Majority gate. There
are k players, and the i-th player misses the i-th integer of each threshold gate. We
recommend n = k = r.

The (Majority, T k,1
t )-communication problem is a SymCom(n, k) problem (see Section 6),

and hence for k ≥ 2+ log n, it has an efficient SM protocol. However, for r ≥ 2, MTn,k,r

does not fit our description of SymCom functions (because players miss more than one
input bit at each “f -gate”). So our protocol does not work, even though for bounded r,
Tk,r

t is a compressible function.
(b) Quadratic Character of the Sum of the coordinates, defined as follows. Let p be an n-bit

prime, and for 1 ≤ i ≤ k, let xi be an n-bit integer missed by player i. QCSp,k(x1, . . . , xk) :=
1 iff x1 + . . . + xk is a quadratic residue mod p. It is shown in [BaNS] that C(QCSp,k) ≥
Ω(n/2k).

(c) Let F be a finite field of order q. Give each player a t× t matrix over F . Let M be the
product (in a given order) of these matrices. Estimate the SM complexity of decision
problems associated with M, such as, “Is trace(M) a quadratic residue in F?” (for odd
q). Here n ≈ qt2 . The case t = 2 is of particular interest.

2. Consider the SM problem GAFG,3. Show that there exists an ε > 0 such that in any SM
protocol for GAFG,3, if player 2 sends at most nε bits, then player 1 must send ω(n/ log log n)
bits. As explained in Section 1.3, such a lower bound would imply that the n-bit output
function f(x0, x1) = (GAFG,3(x0, x1, x2))x2∈G, cannot be computed by circuits of size O(n)
and depth O(log n). Note that our lower bound proof in Section 2 implies3 that for any ε > 0,
if player 2 sends at most nε bits, then player 1 must send Ω(n1−ε) bits. On the other hand,
by the upper bound of [AmL] (improving the protocol in Section 5), it suffices if both players
send O(n0.73) bits.

3. Find nontrivial SM lower or upper bounds for Majority of QCSBs for any partition of the
input bits (see Section 6).

4. Obtain an n1−ε SM upper bound for GAFG,k for the case where G is a cyclic group. The best

upper bound known is due to Ambainis [Am]. He shows that C0(GAFZn,3) = O
(

n log1/4 n

2
√

log n

)
,

and that C0(GAFZn,k) = O(nε) for an arbitrary ε > 0 for k = O((log n)c(ε)).

5. The lower bound on the randomized SM complexity of GAFZt
2,k from Section 3 is useful

only when the advantage ε is n−O(1/k). Improve this to yield meaningful (polylog(n)) lower
3In general, methods of Section 2 can be used to prove that, in any SM protocol for GAFG,k, if player i sends `i

bits, then Πk−1
i=1 `i ≥ n/2O(k log k) must hold.
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an improvement would enable the extension of circuit lower bounds from Section 4 to depth-3
in the spirit of [HG, RaW] exploiting an “approximation lemma” from [HMPST]. Note that
the [BaNS] lower bound in the CFL-model works even for advantages as small as 2−n/ck

.

6. This problem, stated as an open question in an earlier version of this paper [BaKL], was
resolved in [BaHK]. We repeat the problem and state its current status.

Find a function f for which the one-way complexity C1(f) is exponentially larger than C(f),
for k ≥ 4 players.

Such a gap was found for k = 3 [NW], cf. Remark 2.9. For all k ≤ c log n, the gap was
established in [BaHK]. We note that lower bounds for C1 complexity have been applied in
[BaNS] to lower bounds on branching programs and formula size.
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