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A POLYNOMIAL TIME APPROXIMATION SCHEME FOR THE
MULTIPLE KNAPSACK PROBLEM∗

CHANDRA CHEKURI† AND SANJEEV KHANNA‡

Abstract. The multiple knapsack problem (MKP) is a natural and well-known generalization
of the single knapsack problem and is defined as follows. We are given a set of n items and m bins
(knapsacks) such that each item i has a profit p(i) and a size s(i), and each bin j has a capacity c(j).
The goal is to find a subset of items of maximum profit such that they have a feasible packing in the
bins. MKP is a special case of the generalized assignment problem (GAP) where the profit and the
size of an item can vary based on the specific bin that it is assigned to. GAP is APX-hard and a
2-approximation, for it is implicit in the work of Shmoys and Tardos [Math. Program. A, 62 (1993),
pp. 461–474], and thus far, this was also the best known approximation for MKP. The main result
of this paper is a polynomial time approximation scheme (PTAS) for MKP.

Apart from its inherent theoretical interest as a common generalization of the well-studied knap-
sack and bin packing problems, it appears to be the strongest special case of GAP that is not
APX-hard. We substantiate this by showing that slight generalizations of MKP are APX-hard.
Thus our results help demarcate the boundary at which instances of GAP become APX-hard. An
interesting aspect of our approach is a PTAS-preserving reduction from an arbitrary instance of MKP
to an instance with O(logn) distinct sizes and profits.
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1. Introduction. We study the following natural generalization of the classical
knapsack problem.

Multiple knapsack problem (MKP).
Instance: A pair (B,S) where B is a set of m bins (knapsacks) and S is a set

of n items. Each bin j ∈ B has a capacity c(j), and each item i has a size s(i) and a
profit p(i).

Objective: Find a subset U ⊆ S of maximum profit such that U has a feasible
packing in B.

The decision version of MKP is a generalization of the decision versions of both
the knapsack and bin packing problems and is strongly NP-complete. Moreover, it is
an important special case of the generalized assignment problem where both the size
and the profit of an item are a function of the bin.

Generalized assignment problem (GAP).1

Instance: A pair (B,S) where B is a set of m bins (knapsacks) and S is a set
of n items. Each bin j ∈ B has a capacity c(j), and for each item i and bin j, we are
given a size s(i, j) and a profit p(i, j).
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Objective: Find a subset U ⊆ S that has a feasible packing in B and maximizes
the profit of the packing.

GAP and its restrictions capture several fundamental optimization problems and
have many practical applications in computer science, operations research, and related
disciplines. The special case of MKP with uniform sizes and profits is also important;
the book on knapsack variants by Martello and Toth [26] has a chapter devoted to
MKP. Also referred to as the loading problem in operations research, it models the
problem of loading items into containers of different capacities such that container
capacities are not violated. In many practical settings items could be more complex
geometric objects; however, the one-dimensional case (MKP) is useful in its own right
and has been investigated extensively [14, 11, 12, 23, 24, 25, 4].

Knapsack, bin packing, and related problems have attracted much theoretical
attention for their simplicity and elegance, and their study has been instrumental in
the development of the theory of approximation algorithms. Though knapsack and
bin packing have a fully polynomial-time approximation scheme (FPTAS; asymptotic
for bin packing), GAP, a strong generalization of both, is APX-hard, and only a 2-
approximation exists. In fact, some very special cases of GAP can be shown to be
APX-hard. In particular we can show that for arbitrarily small δ > 0 (which can even
be a function of n) the problem remains APX-hard on the following very restricted
set of instances: bin capacities are identical, and for each item i and machine j,
p(i, j) = 1, and s(i, j) = 1 or s(i, j) = 1 + δ. The complementary case, where item
sizes do not vary across bins but profits do, can also be shown to be APX-hard for a
similar restricted setting. In light of this, it is particularly interesting to understand
the complexity of MKP where profits and sizes of an item are independent of the
bin, but the item sizes and profits as well as bin capacities may take arbitrary values.
Establishing a PTAS shows a very fine separation between cases that are APX-hard
and those that have a PTAS. Until now, the best known approximation ratio for
MKP was a factor of 2 derived from the approximation for GAP.

Results. In this paper we resolve the approximability of MKP by obtaining a
PTAS for it. It can be easily shown via a reduction from the Partition problem that
MKP does not admit an FPTAS even if m = 2 (see Proposition 2.1). A special
case of MKP is when all bin capacities are equal. It is relatively straightforward to
obtain a PTAS for this case using ideas from approximation schemes for knapsack and
bin packing [13, 3, 17]. However, the problem with different bin capacities is more
challenging. Our paper contains two new technical ideas. Our first idea concerns
the set of items to be packed in a knapsack instance. We show how to guess, in
polynomial time, almost all the items that are packed by an optimal solution. More
precisely, we can identify a polynomial number of subsets such that one of the subsets
has a feasible packing and profit at least (1 − ε)opt. This is in contrast to earlier
schemes for variants of knapsack [13, 1, 7], where only the 1/ε most profitable items
are guessed. An easy corollary of our strategy is a PTAS for the identical bin capacity
case, the details of which we point out later. Even with the knowledge of the right
subsets, the problem remains nontrivial since we need to verify for each subset if it
has a feasible packing. Checking for feasibility is of course at least as hard as bin
packing. To get around this difficulty we make crucial use of additional properties
satisfied by the subsets that we guess. In particular, we show that each subset can
be transformed such that the number of distinct size values of the items in the subset
is O(ε−2 log n). An immediate consequence of this is a dynamic programming–based
quasi-polynomial time algorithm to pack all of the items into bins. Our second set
of ideas shows that we can exploit the restriction on the number of distinct sizes
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Fig. 1.1. Complexity of various restrictions of GAP.

to pack, in polynomial time, a subset of the item set that has at least a (1 − ε)
fraction of the profit. Approximation schemes for number problems are usually based
on rounding instances to have a fixed number of distinct values. In contrast, MKP
appears to require a logarithmic number of values. We believe that our techniques to
handle logarithmic number of distinct values will find other applications. Figure 1.1
summarizes the approximability of various restrictions of GAP.

Related work. MKP is closely related to knapsack, bin packing, and GAP. A
very efficient FPTAS exists for the knapsack problem; Lawler’s [19], based on ideas
from [13], achieves a running time of O(n log 1/ε+1/ε4) for a (1+ε) approximation. An
asymptotic FPTAS is known for bin packing [3, 17]. Kellerer [18] has independently
developed a PTAS for the special case of the MKP where all bins have identical
capacity. As mentioned earlier, this case is much simpler than the general case and
falls out as a consequence of our first idea. We defined the generalized assignment
problem as a maximization problem. This is natural when we relate it to the knapsack
problem (see [26]). There is also a minimization version, which we refer to as Min GAP
(also known as the cost assignment problem), where the objective is to assign all the
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items while minimizing the sum of the costs of assigning items to bins. In this version,
item i when assigned to bin j incurs a cost w(i, j) instead of obtaining a profit p(i, j).
Even without costs, deciding the feasibility of assigning all items without violating
the capacity constraints is an NP-complete problem; therefore, capacity constraints
need to be relaxed. An (α, β) bicriteria approximation algorithm for Min GAP is
one that gives a solution with cost at most αC and with bin capacities violated by a
factor of at most β, where C is the cost of an optimal solution that does not violate
any capacity constraints. The work of Lin and Vitter [22] yields a (1 + ε, 2 + 1/ε)
bicriteria approximation for Min GAP. Shmoys and Tardos [28], building on the work
of Lenstra, Shmoys, and Tardos [21], give an improved (1, 2) bicriteria approximation.
Implicit in this approximation is also a 2-approximation for the profit maximization
version which we sketch later. Lenstra, Shmoys, and Tardos [21] also show that it
is NP-hard to obtain a bicriteria approximation of the form (1, β) for any β < 3/2.
The hardness relies on an NP-completeness reduction from the decision version of the
3-dimensional matching problem. Our APX-hardness for the maximization version,
mentioned earlier, is based on a similar reduction but instead relies on APX-hardness
of the optimization version of the 3-dimensional matching problem [16].

MKP is also related to two variants of variable-size bin packing. In the first variant
we are given a set of items and set of bin capacities C. The objective is to find a feasible
packing of items using bins with capacities restricted to be from C so as to minimize
the sum of the capacities of the bins used. A PTAS for this problem was provided
by Murgolo [27]. The second variant is based on a connection to multiprocessor
scheduling on uniformly related machines [20]. The objective is to assign a set of
jobs with given processing times to machines with different speeds so as to minimize
the makespan of the schedule. Hochbaum and Shmoys [10] gave a PTAS for this
problem using a dual -based approach where they convert the scheduling problem into
the following bin packing problem. Given items of different sizes and bins of different
capacities, find a packing of all the items into the bins such that maximum relative
violation of the capacity of any bin is minimized. Bicriteria approximations, where
both capacity and profit can be approximated simultaneously, have been studied for
several problems (Min GAP being an example mentioned above), and it is usually
the case that relaxing both makes the task of approximation somewhat easier. In
particular, relaxing the capacity constraints allows rounding of item sizes into a small
number of distinct size values. In MKP, the constraint on the bin capacities and the
constraint on the number of bins are both inviolable, and this makes the problem
harder.

Organization. Section 2 describes our PTAS for MKP. In section 3, we show
that GAP is APX-hard on very restricted classes of instances. We also indicate here
a 2-approximation for GAP. In section 4, we discuss a natural greedy algorithm for
MKP and show that it gives a (2 + ε)-approximation even when item sizes vary with
bins.

2. A PTAS for the multiple knapsack problem. We first show that MKP
does not admit an FPTAS even for m = 2.

Proposition 2.1. If MKP with two identical bins has an FPTAS, then the
Partition problem can be solved in polynomial time. Hence there is no FPTAS for
MKP even with m = 2 unless P = NP .

Proof. An instance of the Partition problem consists of 2n numbers a1, a2, . . . , a2n,
and the goal is to decide if the numbers can be partitioned into two sets S1 and S2

such that the sum of numbers in each set add up to exactly A = 1
2

∑2n
i=1 ai. We can
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reduce the Partition problem to MKP with two bins as follows. We set the capacity
of the bins to be A. We have 2n items, one for each number in the Partition problem:
the size of item i is ai and the profit of item i is 1. If the Partition problem has a
solution, the profit of an optimum solution to the corresponding MKP problem is 2n;
otherwise it is at most 2n− 1. Thus, an FPTAS for MKP can be used to distinguish
between these two situations in polynomial time.

We start with a remark on guessing. When we guess a quantity in polynomial
time, we mean that we can identify, in polynomial time, a polynomial size set of values
among which the correct value of the desired quantity resides. Coupled with the
guessing procedure is a polynomial time checking procedure which can verify whether
a feasible solution with a given value exists. We can run the checking procedure with
each of the values in the guessed set and will be guaranteed to obtain a solution with
the correct value. We will be using this standard idea several times in this section
and implicitly assume that the above procedure is invoked to complete the algorithm.

We denote by opt the value of an optimal solution to the given instance. Given
a set Y of items, we use p(Y ) to denote

∑
y∈Y p(y). The set of integers 0, 1, . . . , k is

denoted by [k]. We will assume throughout this section that ε < 1; when ε ≥ 1 we can
use the 2-approximation for GAP from section 3. In the rest of the paper we assume,
for simplicity of notation, that 1/ε and lnn are integers. Further, we also assume that
ε > 1/n, for otherwise we can use an exponential time algorithm to solve the problem
exactly. In several places in the paper, to simplify expressions, we use the inequality
ln(1 + ε) ≥ ε− ε2/2 ≥ ε/2.

Our problem is related to both the knapsack problem and the bin packing prob-
lem, and some ideas used in approximation schemes for those problems will be useful
to us. Our approximation scheme conceptually has the following two steps.

1. Guessing Items: Identify a set of items U ⊆ S such that p(U) ≥ (1 − ε)opt

and U has a feasible packing in B.
2. Packing Items: Given a set U of items that has a feasible packing in B, find

a feasible packing for a set U ′ ⊆ U such that p(U ′) ≥ (1 − ε)p(U).

The overall scheme is more involved since there is interaction between the two
steps. The guessed items have some additional properties that are exploited in the
packing step. We observe that both of the above steps require new ideas. For the
regular single knapsack problem, the second step is trivial once we accomplish the first
step. This is, however, not the case for MKP. Before we proceed with the details we
show how our guessing step immediately gives a PTAS for the identical bin capacity
case.

2.1. MKP with identical bin capacities. Suppose we can guess an item set
as in our first step above. We show that the packing step is very simple if the bin
capacities are identical. There are two cases to consider, depending on whether m, the
number of bins, is less than or equal to 1/ε or not. If m ≤ 1/ε, the number of bins can
be treated as a constant, and a PTAS for this case exists even for instances of GAP
(implicit in earlier work [7]). Now suppose m > 1/ε. Bin packing has an asymptotic
PTAS. In particular, there is an algorithm [3] that packs the items into (1+ε)opt+1
bins in polynomial time for any fixed ε > 0. We can thus use this algorithm to pack
all the guessed items using at most (1 + ε)m + 1 bins. We find a feasible solution
by simply picking the m largest profit bins and discarding the rest along with their
items. Here we use the fact that mε ≥ 1 and that the bins are identical. It is easily
seen that we get a (1+O(ε)) approximation. We note that a different PTAS, one that
does not rely on our guessing step, can be obtained for this case by directly adapting
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the ideas used in approximation schemes for bin packing. The trick of using extra
bins does not have a simple analogue when bin capacities are different and we need
more sophisticated ideas for the general case.

2.2. Guessing items. Consider the case when all items have the same profit;
without loss of generality assume it is 1. Thus the objective is to pack as many items
as possible. For this case, it is easily seen that opt is an integer in [n]. Further, given
a guess O for opt, we can pick the smallest (in size) O items to pack. Thus knowing
O allowed us to fix the item set as well. Therefore there are only a polynomial number
of guesses for the set of items to pack. In the following we build on this useful insight.

Let pmax denote the largest value among item profits. For the general case the
first step involves massaging the given instance into a more structured one that has
few distinct profits. This is accomplished as follows.

1. Guess a value O such that max{pmax, (1 − ε)opt} ≤ O ≤ opt and discard
all items y where p(y) < εO/n.

2. Divide all profits by εO/n such that after scaling each profit is at most n/ε.
3. Round down the profits of items to the nearest power of (1 + ε).

It is easily seen that only an O(ε) fraction of the optimal profit is lost by our trans-
formation. Since we do not know opt, we need to establish an upper bound on the
number of values of O that we will try out. We make use of the following easy bounds
on opt: pmax ≤ opt ≤ n · pmax.

Therefore, one of the values in {pmax · (1 + ε)i | 0 ≤ i ≤ 2ε−1 lnn)} is guaranteed
to satisfy the desired properties for O. Summarizing, we obtain the following lemma.

Lemma 2.2. Given an instance I = (B,S) with n items and a value O such
that (1− ε)opt(I) ≤ O ≤ opt(I), we can obtain in polynomial time another instance
I ′ = (B,S ′) such that

• S ′ ⊆ S;
• for every y ∈ S ′, p(y) = (1 + ε)i for some i ∈ [4ε−1 lnn];
• (1 − ε)opt(I) ≤ n

εOopt(I ′) ≤ opt(I).

For the bound in the second item above we upper bound n/ε by n2. The above
lemma allows us to work with instances with O(ε−1 lnn) distinct profits. We now show
how we can use this information to guess the items to pack. Let h ≤ 4ε−1 lnn + 1
be the number of distinct profits in our new instance. We partition S into h sets
S1, . . . , Sh with items in each set having the same profit. Let U be the items chosen
in some optimal solution and let Ui = Si ∩ U . Recall that we have an estimate O of
the optimal value. If p(Ui) ≤ εO/h for some i, we ignore the set Si; no significant
profit is lost. Hence we can assume that εO/h ≤ p(Ui) ≤ O and approximately guess
the value p(Ui) for 1 ≤ i ≤ h. More precisely, for each i we guess a value ki ∈ [h/ε2]
such that ki(ε

2O/h) ≤ p(Ui) ≤ (ki + 1)(ε2O/h).

A naive way of guessing the values k1, . . . , kh requires nΩ(lnn/ε2) time. We first
show how the numbers ki enable us to identify the items to pack and then show how
the values k1, . . . , kh can in fact be guessed in polynomial time. Let ai denote the
profit of an item in Si. Consider an index i such that ai ≤ εO/h. Given the value
ki we order the items in Si in increasing size values and pick the largest number of
items from this ordered set whose cumulative profit does not exceed ki(ε

2O/h). If
ai > εO/h we pick the smallest number of items, again in order of increasing size,
whose cumulative profit exceeds ki(ε

2O/h). The asymmetry is for technical reasons.
The choice of items is thus completely determined by the choice of the ki. For a tuple
of values k1, . . . , kh, let U(k1, . . . , kh) denote the set of items picked as described above.
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Lemma 2.3. There exists a valid tuple (k1, . . . , kh) with each ki ∈ [h/ε2] such
that U(k1, . . . , kh) has a feasible packing in B and p(U(k1, . . . , kh)) ≥ (1 − ε)O.

Proof. Let U be the items in some optimal solution and let Ui = Si∩U . Define ki
to be �p(Ui)h/(ε

2O)�. The tuple so obtained satisfies the required properties.
As remarked earlier, a naive enumeration of all integer h-tuples takes quasi-

polynomial time. The crucial observation is that the ki’s are not independent. They
must satisfy the additional constraint that

∑
i ki ≤ h/ε2 since the total profit from all

the sets S1, . . . , Sh cannot exceed opt. This constraint limits the number of tuples of
relevance. We make use of the following claims.

Claim 2.4. Let f be the number of g-tuples of nonnegative integers such that
the sum of tuple coordinates is equal to d. Then f =

(
d+g−1
g−1

)
. If d + g < αg, then

f = O(eαg).
Proof. The first part of the claim is elementary counting. If d + g < αg, then

f ≤
(

αg
g−1

)
≤ (αg)g−1/(g − 1)!. Using Stirling’s formula we can approximate (g − 1)!

by
√

2π(g − 1)((g − 1)/e)g−1. Thus f = O((eα)g−1) = O(eαg).
Claim 2.5. Let h ∈ [4ε−1 lnn]. Then the number of h-tuples (k1, . . . , kh) such

that ki ∈ [h/ε2] and
∑

i ki ≤ h/ε2 is O(nO(1/ε3)).

Proof. The number of tuples satisfying the claim is easily seen to be
(
h/ε2+h

h

)
. We

now apply the bound from Claim 2.4; we have α = (1 + 1/ε2) and g = 4ε−1 lnn + 1

and hence we get an upper bound of e(4ε−3 lnn+1+ε−2). The claim follows.
Using the restricted number of distinct profit values we can also reduce the number

of distinct sizes in the given instance to O(lnn). This property will be crucial in
packing the items. The basic idea is shifting, an idea that is used in approximation
schemes for bin packing [3]. Let A be a set of g items with identical profit but perhaps
differing sizes. We order items in A in nondecreasing order of sizes and divide them
into t = (1+1/ε) groups A1, . . . , At with A1, . . . , At−1 containing �g/t� items each and
At containing (g mod t) items. We discard the items in At−1, and for each i < t− 1
we increase the size of every item in Ai to the size of the smallest item in Ai+1. Since
A is ordered by size, no item in Ai is larger than the smallest item in Ai+1 for each
1 ≤ i < t. It is easy to see that if A has a feasible packing, then the modified instance
also has a feasible packing. We discard at most an ε fraction of the profit and the
modified sizes have at most 2/ε distinct values. Applying this to each profit class we
obtain an instance with O(ε−2 lnn) distinct size values.

Lemma 2.6. Given an instance I = (B,S) with n items we can obtain in polyno-

mial time v = nO(1/ε3) instances I1, . . . , Iv such that
• for 1 ≤ j ≤ v, Ij = (B,Sj);
• for 1 ≤ j ≤ v, items in Sj have O(ε−1 lnn) distinct profit values;
• for 1 ≤ j ≤ v, items in Sj have O(ε−2 lnn) distinct size values;
• there is an index �, 1 ≤ � ≤ v, such that S� has a feasible packing in B and
p(S�) ≥ (1 −O(ε))opt(I).

Proof. As indicated earlier, we can guess a value O such that (1 − ε)opt ≤
O ≤ opt from O(ε−1 lnn) values. For each guess for O we round profits of items
to geometric powers (see Lemma 2.2) and guess the partition of O among the profit

classes. The number of guesses for the partition is nO(1/ε3). Therefore the distinct
number of instances is nO(1/ε3). Each instance is modified to reduce the number of
distinct sizes. Each step potentially loses a (1−ε) factor, so overall we lose a (1−O(ε))
factor in the profit.

We will assume for the next section that we have guessed the correct set of items
and that they are partitioned into O(ε−2 lnn) sets, with each set containing items
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of the same size. We denote by Ui the items of the ith size value and by ni the
quantity |Ui|.

2.3. Packing items. From Lemma 2.6 we obtain a restricted set of instances in
terms of item profits and sizes. We also need some structure in the bins and we start
by describing the necessary transformations.

2.3.1. Structuring the bins. Assume without loss of generality that the small-
est bin capacity is 1. We order the bins in increasing order of their capacity and
partition them into blocks B0, B1, . . . , B� such that block Bi consists of all bins x with
(1 + ε)i ≤ c(x) < (1 + ε)i+1. Let mi denote the number of bins in block Bi.

Definition 2.7 (small and large blocks). A block Bi of bins is called a small
bin block if mi ≤ 1/ε; it is called large otherwise.

Let Q be the set of indices i such that Bi is small. Define Q′ to be the set of
t = 1/ε+ 	4ε−1 ln 1/ε
 largest indices in the set Q. Note that we are choosing from Q
the blocks with the largest indices and not the blocks with the most number of bins.
Let BQ and BQ′ be the sets of all bins in the blocks specified by the index sets Q
and Q′, respectively. The following lemma makes use of the property of geometrically
increasing bin capacities.

Lemma 2.8. Let U be a set of items that can be packed in the bins BQ. There
exists a set U ′ ⊆ U such that U ′ can be packed into the bins BQ′ , and p(U ′) ≥
(1 − ε) · p(U).

Proof. Fix some packing of U in the bins BQ. Consider the largest 1/ε bins in BQ.
One of these bins has a profit less than εp(U). Without loss of generality, assume its
capacity is 1. We will remove the items packed in this bin and use it to pack items from
smaller bins. Let Bi be the block containing this bin. Let j be the largest index in Q
such that j < i−4ε−1 ln 1/ε. If no such j exists, Q′ = Q and there is nothing to prove.
For any k ≤ j, a bin in block Bk has capacity at most 1/(1 + ε)i−k since the bin from
Bi had capacity 1 and the bin capacities decrease geometrically with index. Thus the
bin capacity in Bk is at most (1 + ε)j−i+1/(1 + ε)j−k+1 ≤ ε2/(1 + ε)j−k+1. The latter

inequality follows from the fact that j−i+1 ≤ −4ε−1 ln 1/ε and (1+ε)−4ε−1 ln 1/ε ≤ ε2.
Since Bk is a small bin block, it has no more than 1/ε bins; therefore the total capacity
of all bins in Bk is at most ε/(1+ε)j−k+1. Hence, the total capacity of bins in small bin
blocks with indices less than or equal to j is

∑
k≤j ε/(1+ ε)j−k+1, which is at most 1.

Therefore, we can pack all the items in blocks Bk with k ∈ BQ, k ≤ j in the bin we
picked. The total number of blocks in Q between i and j is 4ε−1 ln 1/ε. Each of the
1/ε largest bins in BQ could be in their own blocks. Hence the largest t indices from Q
would contain all these blocks. From the above, we conclude that bins of blocks with
indices in Q′ are sufficient to pack a set U ′ ⊆ U such that p(U ′) ≥ (1− ε) ·p(U).

Therefore we can retain the t small bin blocks from Q′ and discard the blocks
with indices in Q \ Q′. Hence from here on we assume that the given instance is
modified to satisfy |Q| ≤ t, and it follows that the total number of bins in small bin
blocks is at most t/ε. When the number of bins is fixed, a PTAS is known (implicit
in earlier work) even for the GAP. The basic idea in this PTAS will be useful to us in
handling small bin blocks. For large bin blocks, the advantage, as we shall see later,
is that we can exceed the number of bins used by an ε fraction. The main task is to
integrate the allocation and packing of items between the different sets of bins. We
do this in three steps that are outlined below.

For the rest of the section we assume that we have a set of items that can be
feasibly packed in the given set of bins. We implicitly refer to some fixed feasible
packing as the optimal solution.
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2.3.2. Packing the most profitable items into small bin blocks. We guess,
for each bin b in BQ, the 1/ε most profitable items that are packed in b in the optimal

solution. The number of guesses needed is nO(ln(1/ε)/ε3).

2.3.3. Packing large items into large bin blocks. The second step is to
select items and pack them in large bin blocks. We say that an item is packed as a
large item if its size is at least ε times the capacity of the bin in which it is packed.
Since the capacities of the blocks are increasing geometrically, an item can be packed
as a large item in at most f = 	2ε−1 ln 1/ε
 different blocks. Our goal is to guess all
the items that are packed as large and also to which blocks they are assigned. We do
this approximately as follows.

Let ni be the number of items of the ith size class Ui, and let �i be the number
packed as large in some optimal solution. Let fi ≤ f be the number of blocks in which
items of Ui can be packed as large. Let �ji , 1 ≤ j ≤ fi, be the number of items packed

in each of those blocks. If �ji ≤ ε
fi
ni, we can discard those items, overall losing at most

an ε fraction of the profit from Ui. Our objective is to guess a number hj
i such that

(1− ε)�ji ≤ hj
i ≤ �ji . The number of guesses required to obtain a single hj

i is bounded

by g = 2ε−1 ln fi/ε, and therefore the total number of guesses for all hj
i is bounded

by gf . Using f as an upper bound for fi and simplifying we claim an upper bound
of 2O(1/ε3). Therefore the total number of guesses required for all the O(ε−2 lnn) size

classes is bounded by nO(1/ε5). Here is where we take advantage of the fact that the
number of distinct sizes is small (logarithmic).

Suppose we have correctly assigned all large items to their respective bin blocks.
We describe now a procedure for finding a feasible packing of these items. Here we
ignore the potential interaction between items that are packed as large and those
packed as small. We can focus on a specific block since the large items are now parti-
tioned between the blocks. Note that even within a single block the large items could
contain Ω(lnn) distinct sizes. The abstract problem that we have is the following.
Given a collection of m bins with capacities in the range [1, 1 + ε), and a set of n
items with sizes in the range (ε, 1 + ε), decide if there is a feasible packing for them.
We do not know if this problem can be solved in polynomial time when the number
of distinct sizes is O(lnn). Here we take a different approach. We obtain a relaxation
by allowing use of extra bins to pack the items. However, we restrict the capacity of
the extra bins to be 1. We give an algorithm that either decides that the instance is
infeasible or gives a packing with at most an additional εm bins of capacity 1.

The first step in the algorithm is to pack the items of size strictly greater than 1.
Let L be these set of items. Consider items of L in nondecreasing order of their
sizes. When considering an item of size s, find the smallest size bin available that can
accommodate it. If no such bin exists we declare that the items cannot be packed.
Otherwise we pack the item into the bin and remove the bin from the available set of
bins.

Lemma 2.9. If the algorithm fails, then there is no feasible packing for L. Further,
if there is a feasible packing for all the items, then there is one that respects the packing
of L produced by the above algorithm.

Proof. In our instance, each bin’s capacity is at most 1 + ε and every item is of
size strictly larger than ε. Therefore each item of L is packed in a bin by itself.

Suppose there are two bins x and y and an item from L of size s such that
c(x) > c(y) ≥ s. Consider any feasible packing of the items into the bins in which s is
packed into x, and y does not contain any item from L. Then it is easy to see that we



722 CHANDRA CHEKURI AND SANJEEV KHANNA

can swap s to y and the items in y into x without affecting feasibility. Similarly, we
can argue that if s1 and s2 are two items from L such that s1 > s2, then s1 occupies
a larger bin than s2. Using these swapping arguments we can see that the properties
described in the lemma are satisfied.

From the above lemma, we can restrict ourselves to packing items with sizes in
(ε, 1] into the bins that remain after packing L. Let m′ be the number of bins that
remain. If a feasible packing exists, the shifting technique for bin packing [3] can be
adapted in a direct fashion to pack the items using εm′ additional bins of size 1 each.
We briefly describe the algorithm. Let n′ be the number of items to be packed. We
observe that each bin can accommodate at most 1/ε + 1 items. Thus m′(1/ε + 1) ≥
n′. If m′ ≤ 1/ε we can check for a feasible packing by brute force enumeration.
Otherwise let t = 2/ε2. The items are arranged in nonincreasing order of their sizes
and grouped into sets H1, H2, . . . , Ht, Ht+1 such that |H1| = |H2| = · · · = |Ht| = n′/t
and H ′

t+1 = n′(mod)t. Items in the first group H1 that contains the largest items are
each assigned to a separate bin of size 1. For 2 ≤ i ≤ t + 1, the sizes of the items in
Hi are uniformly set to be the size of the smallest item in Hi−1. It is clear that the
rounded up items have a packing in the m′ bins if the original items had a packing.
The rounded up items have only t distinct sizes, and dynamic programming can be
applied to test the feasibility of packing these items in the given m′ bins in O(nO(t))
time. Note that the number of extra bins we use is |H1| = n′/t = ε2n′/2 ≤ εm′ since
m′(1/ε + 1) ≥ n′. Thus we obtain the following lemma.

Lemma 2.10. Given m ≥ 1/ε bins of capacities in the range [1, 1 + ε) and items

of sizes in the range (ε, 1 + ε), there is an nO(1/ε2)-time algorithm that either decides
that there is no feasible packing for the items or returns a feasible packing using at
most εm extra bins of capacity 1.

We eliminate the extra bins later by picking the m most profitable among them
and discarding the items packed in the rest. The restriction on the size and number
of extra bins is motivated by the elimination procedure. In order to use extra bins the
quantity εm needs to be at least 1. This is the reason to distinguish between small
and large bin blocks. For a large bin block Bi let Ei be the extra bins used in packing
the large items. We note that |Ei| ≤ εm′ ≤ εmi.

2.3.4. Packing the remaining items. The third and last step of the algorithm
is to pack the remaining items, which we denote by R. At this stage we have a packing
of the 1/ε most profitable items in each of the bins in BQ (bins in small bin blocks)
and a feasible packing of the large items in the rest of the bins. For each bin bj ∈ B
let Yj denote the set of items already packed into bj in the first two steps. The item
set R is packed via a linear programming (LP) approach. In particular, we use the
generalized assignment formulation with the following constraints.

1. Each remaining item must be assigned to some bin.
2. An item y can be assigned to a bin bj in a large bin block Bi only if s(y) ≤

ε · (1 + ε)i. In other words, y should be small for all bins in Bi.
3. An item y can be assigned to a bin bj in a small bin block only if p(y) ≤

ε
1+εp(Yj) and |Yj | ≥ 1/ε.

Constraints 2 and 3 are based on the assumption that we have correctly guessed
in the first two steps of the packing procedure. We make the formulation more precise
now. Note that we only check for feasibility. The variable xij denotes the fraction of
item i that is assigned to bin j. Let V be the set of item-bin pairs (i, j) such that i
cannot be packed into bj due to constraints 2 and 3. The precise LP formulation is
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given below:

∑

j

xij = 1, item i,

∑

i

s(yi) · xij ≤ c(bj), bin j,

xij = 0, (i, j) ∈ V,

xij = 1, i ∈ Yj ,

xij ≥ 0, (i, j) ∈ V.

Lemma 2.11. The LP formulation above has a feasible solution if the guesses
for the item set, the items packed as large, and those packed in small bin blocks are
correct.

Proof. Consider a feasible integral packing of the items in the bins (which by
assumption exists) and let x̄ denote that solution. We will use x̄ to construct a
feasible fractional solution x for the LP above. Note that x̄ need not satisfy the
constraints imposed by V and the Yj ’s in the LP above.

Let blk(j) denote the block that contains the bin bj . We ensure the following
constraint: if x̄ij = 1, then

∑
{l|blk(�)=blk(j)} xi� = 1. In other words, we fractionally

assign each item to the same block that the optimal solution does. We treat the small
and large bin blocks separately.

For a j where blk(j) is small we set xij = x̄ij . If we had correctly guessed the
largest profit items in small bin blocks, this assignment is consistent with V and Yj .

Consider a large bin block Bk. By our assumption, we already have an integral
assignment for the set of large items that x̄ assigns to Bk. Let Sk be the small items
that are assigned by x̄ to Bk. We claim that Sk can be packed fractionally in Bk

irrespective of the assignment of the large items. Clearly, there is enough fractional
capacity. Since the sizes of the items do not change with the bins, any greedy fractional
packing that does not waste capacity gives a feasible packing.

Let xij be a feasible fractional solution to the above formulation. Lenstra,
Shmoys, and Tardos [21] and Shmoys and Tardos [28] show how a basic feasible
solution to the linear program for GAP can be transformed into an integral solution
that violates the capacities only slightly. We apply their transformation to xij and
obtain a 0-1 solution x̄ij with the following properties.

1. If xij = 0, then x̄ij = 0, and if xij = 1, then x̄ij = 1.
2. For each bin bj , either

∑
i x̄ij ≤ c(bj) or there is an item k(j) such that∑

i �=k(j) x̄ij ≤ c(bj) and xik(j) < 1. We call this item k(j) the violating item
for bin bj .

Thus we can find an integral solution where each bin’s capacity is exceeded by at
most one item. Further the items assigned to the bins satisfy the constraints specified
by V ; that is, x̄ij = 0 if (i, j) ∈ V . The integral solution to the LP also defines
an allocation of items to each block. Let Pi be the total profit associated with all
items assigned to bins in block Bi. Then clearly O =

∑
i≥0 Pi. However, we have an

infeasible solution since bin capacities are violated in the rounded solution x̄ij . We
modify this solution to create a feasible solution such that in each block we obtain a
profit of at least (1 − 3ε)Pi.

Large bin blocks. Let Bi be a large bin block, and without loss of generality
assume that bin capacities in Bi are in the range [1, 1 + ε). By constraint 2 on the
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assignment, the size of any violating item in Bi is less than ε and there are at most
mi of them. For all ε < 1/2 we conclude that at most 2εmi extra bins of capacity 1
each are sufficient to pack all the violating items of Bi. Recall from Lemma 2.10
that we may have used εmi extra bins in packing the large items as well. Thus the
total number of extra bins of capacity 1, denoted by E′

i, is at most 3εmi. Thus all
items assigned to bins in Bi have a feasible integral assignment in the set E′

i ∪ Bi.
Now clearly the mi most profitable bins in the collection E′

i ∪ Bi must have a total
associated profit of at least Pi/(1 + 3ε). Moreover, it is easy to verify that all the
items in these mi bins can be packed in the bins of Bi itself.

Small bin blocks. Consider now a small bin block Bi. By constraint 3 on the
assignment, we know that the profit associated with the violating item in any bin bj
of Bi is at most ε

(1+ε)p(Yj). Thus we can simply discard all the violating items assigned

to bins in Bi, and we obtain a feasible solution of profit value at least Pi/(1 + ε).
This gives a feasible integral solution with total profit value at least∑

i≥0 Pi/(1 + 3ε). Putting together the guessing and packing steps we obtain our
main result.

Theorem 2.12. There is a PTAS for the multiple knapsack problem.

3. Generalized assignment problem (GAP). We start by showing that even
highly restricted cases of GAP are APX-hard. Then we sketch a 2-approximation
algorithm for GAP that easily follows from the work of Shmoys and Tardos [28] on
the Min GAP problem.

3.1. APX-hardness of restricted instances. We reduce the maximum 3-
bounded 3-dimensional matching (3DM) problem [8, 16] (defined formally below) in
an approximation-preserving manner to highly restricted instances of GAP.

Definition 3.1 (3-bounded 3DM (3DM-3)). We are given a set T ⊆ X×Y ×Z,
where |X| = |Y | = |Z| = n. A matching in T is a subset M ⊆ T such that no
elements in M agree in any coordinate. The goal is to find a matching in T of largest
cardinality. A 3-bounded instance is one in which the number of occurrences of any
element of X ∪ Y ∪ Z in T is at most 3.

Kann [16] showed that 3DM-3 is APX-hard; that is, there exists an ε0 > 0 such
that it is NP-hard to decide whether an instance has a matching of size n or if every
matching has size at most (1 − ε0)n. In what follows, we denote by m the number of
hyperedges in the set T .

Theorem 3.2. GAP is APX-hard even on instances of the following form for all
positive δ.

• p(i, j) = 1 for all items i and bins j.
• s(i, j) = 1 or s(i, j) = 1 + δ for all items i and bins j.
• c(j) = 3 for all bins j.

Proof. Given an instance I of 3DM-3, we create an instance I ′ = (B,S) of GAP
as follows. In I ′ we have m bins b1, . . . , bm of capacity 3 each, one for each of the
edges e1, . . . , em in T . For each element i of X we have an item xi in I ′ and similarly
yj for j ∈ Y and zk for k ∈ Z. We also have an additional 2(m − n) items in I ′,
u1, . . . , u2(m−n). We set all profits to be 1. It remains to set up the sizes. For each
item uh and bin b� we set s(uh, b�) = (1 + δ). For an item xi and bin b� we set
s(xi, b�) = 1 if i ∈ e� and (1 + δ) otherwise. The sizes of items yj and zk are set
similarly.

We claim that 3 items can fit in a bin b� if and only if they are the elements of the
edge e�. Thus bins with 3 items correspond to a matching in T . It then follows that if
I has a matching of size n, then I ′ has a solution of value 3n+ 2(m− n). Otherwise,
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every solution to I ′ has value at most 3n− ε0 ·n+ 2(m−n). The APX-hardness now
follows from the fact that m = O(n) for bounded instances.

A similar result can be stated if only profits are allowed to vary.
Theorem 3.3. GAP is APX-hard even on instances of the following form:
• each item takes only two distinct profit values,
• each item has an identical size across all bins and there are only two distinct

item sizes, and
• all bin capacities are identical.

Proof. The reduction is once again from 3DM-3. Given an instance I of 3DM-3,
we create an instance I ′ = (B,S) of GAP as follows. In I ′ we have m bins b1, . . . , bm
of capacity 3 each, one for each of the edges e1, . . . , em in T . For each element i of X
we have an item xi in I ′ and similarly yj for j ∈ Y and zk for k ∈ Z. We also have
an additional m− n items u1, . . . , um−n where s(uh, b�) = 3 and p(uh, b�) = 4 for any
additional item uh and a bin b�. Fix a positive constant δ < 1/3. For an item xi and
bin b� we set p(xi, b�) = 1 + δ if i ∈ e� and 1 otherwise. The profits of items yj and
zk are set similarly. The sizes of items xi, yj , and zk are all set to 1 each.

It is now easy to verify that if I has a matching of size n, there exists a solution
to I ′ of value 4(m−n) + 3n(1 + δ). Otherwise, every solution to I ′ has value at most
4(m−n)+3n(1+ δ)−nε0 · δ. As above, the APX-hardness now follows from the fact
that m = O(n).

Notice that Theorem 3.3 is not a symmetric analogue of Theorem 3.2. In par-
ticular, we use items of two different sizes in Theorem 3.3. This is necessary as the
special case of GAP where all item sizes are identical across the bins (but the profits
can vary from bin to bin) is equivalent to minimum cost bipartite matching.

Proposition 3.4. There is a polynomial time algorithm to solve GAP instances
where all items have identical sizes across the bins.

3.2. A 2-approximation for GAP. Shmoys and Tardos [28] give a (1, 2) bi-
criteria approximation for Min GAP. A paraphrased statement of their precise result
is as follows.

Theorem 3.5 (Shmoys and Tardos [28]). Given a feasible instance for the cost
assignment problem, there is a polynomial time algorithm that produces an integral
assignment such that

• cost of solution is no more than opt,
• each item i assigned to a bin j satisfies s(i, j) ≤ c(j), and
• if a bin’s capacity is violated, then there exists a single item that is assigned

to the bin whose removal ensures feasibility.
We now indicate how the above theorem implies a 2-approximation for GAP.

The idea is to simply convert the maximization problem to a minimization problem
by turning profits into costs by setting w(i, j) = L− p(i, j), where L > maxi,j p(i, j)
is a large enough number to make all costs positive. To create a feasible instance we
have an additional bin bm+1 of capacity 0 and for all items i we set s(i,m+1) = 0 and
w(i,m+ 1) = L (in other words p(i,m+ 1) = 0). We then use the algorithm for cost
assignment and obtain a solution with the guarantees provided in Theorem 3.5. It is
easily seen that the profit obtained by the assignment is at least the optimal profit.
Now we show how to obtain a feasible solution of at least half the profit. Let j be any
bin whose capacity is violated by the assignment, and let ij be the item guaranteed in
Theorem 3.5. If p(ij , j) is at least half the profit of bin j, then we retain ij and leave
out the rest of the items in j. In the other case we leave out ij . This results in a feasible
solution of at least half the profit given by the LP solution. We get the following result.
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Proposition 3.6. There is a 2-approximation for GAP.

The algorithm in [28] is based on rounding an LP relaxation. For MKP an optimal
solution to the linear program can be easily constructed in O(n log n) time by first
sorting items by their profit to size ratio and then greedily filling them in the bins.
Rounding takes O(n2 log n) time. It is an easy observation that the integrality gap of
the natural LP relaxation for GAP is 2 even on instances of MKP with identical bin
capacities.

4. A greedy algorithm. We now analyze a natural greedy strategy: pack bins
one at a time by applying the FPTAS for the single knapsack problem on the remaining
items. Greedy(ε) refers to this algorithm with ε parameterizing the error tolerance
used in the knapsack FPTAS.

Claim 4.1. For instances of MKP with bins of identical capacity, the algorithm
Greedy(ε) gives a ( e−1

e −O(ε))-approximation.

Proof. Let X be the set of items packed by some optimal solution. Let Xj denote
the set of items in X that remain after Greedy packs the first (j − 1) bins, and let Yj

be the items packed by Greedy in the jth bin. Since the bin capacities are identical,
by a simple averaging argument it is easy to see that p(Yj) ≥ (1− ε)p(Xj)/m. Simple
algebra gives the result.

Claim 4.2. For MKP, the algorithm Greedy(ε) gives a (2 + ε)-approximation.

Proof. Let Xj denote the set of items that some fixed optimal solution assigns
to the jth bin and which do not appear anywhere in Greedy’s solution. Also, let
Yj denote the items that Greedy packs in the jth bin. Then we claim that p(Yj) ≥
(1− ε)p(Xj) since Xj was available to be packed when Greedy processed bin j. This
follows from the greedy packing. Thus we obtain

∑m
j=1 p(Yj) ≥ (1 − ε)

∑m
j=1 p(Xj).

If
∑m

j=1 p(Xj) ≥ opt/2 we are done. Otherwise by definition of the Xj ’s, Greedy
must have packed the other half of the profit. This implies the claimed (2 + ε)-
approximation.

Claim 4.2 is valid even if the item sizes (but not profits) are a function of the bins,
an important special case of GAP that is already APX-hard. The running time of
Greedy(ε) is O(mn log 1/ε+m/ε4) using the algorithm of Lawler [19] for the knapsack
problem. Claim 4.2 has been independently observed in [2, 15].

We show an instance on which Greedy’s performance is no better than 2. There
are two items with sizes 1 and α < 1 and each has a profit of 1. There are two bins with
capacities 1 and α each. Greedy packs the smaller item in the big bin and obtains
a profit of 1 while opt = 2. This also shows that ordering bins in nonincreasing
capacities does not help improve the performance of Greedy.

5. Conclusions. An interesting aspect of our guessing strategy is that it is
completely independent of the number of bins and their capacities. This might prove
to be useful in other variants of the knapsack problem. One application is in obtaining
a PTAS for the stochastic knapsack problem with Bernoulli variables [9].

The Min GAP problem has a (1, 2) bicriteria approximation, and it is NP-hard
to obtain a (1, 3/2− ε)-approximation. In contrast, GAP has a 2-approximation, but
the known hardness of approximation is (1+ ε0) for a very small but fixed ε0. Closing
this gap is an interesting open problem. An e/(e− 1) + ε � 1.582 + ε approximation
for GAP has been obtained recently using an LP formulation [5]. Also in recent
work, it has been observed that GAP is a special case of constrained submodular
set function maximization, and using the results in [6], a greedy algorithm yields a
(2 + ε)-approximation algorithm.
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Another interesting problem is to obtain a PTAS for MKP with an improved
running time. Though an FPTAS is ruled out even for the case of two identical bins,
a PTAS with a running time of the form f(1/ε)poly(n) might be achievable. Such an
algorithm is not known even for instances in which all bins have the same capacity.
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