
ar
X

iv
:c

s/
01

06
03

4v
2

 [
cs

.L
O

]
 1

0
D

ec
 2

00
3

Solving equations in the relational algebra

Joachim Biskup Jan Paredaens Thomas Schwentick

Jan Van den Bussche∗

Abstract

Enumerating all solutions of a relational algebra equation is a nat-
ural and powerful operation which, when added as a query language
primitive to the nested relational algebra, yields a query language for
nested relational databases, equivalent to the well-known powerset al-
gebra. We study sparse equations, which are equations with at most
polynomially many solutions. We look at their complexity, and com-
pare their expressive power with that of similar notions in the powerset
algebra.

1 Introduction

Suppose we are allowed to see only a view on a database B, computed by
a relational algebra expression e. If we still want to find out what B is,
we might try to “invert” e (assuming we know this expression), which will
only work when we also know the finite domain D of B. Specifically, we can
enumerate all databasesX overD, and test for each X whether it satisfies the
equation e(X) = e(B). One of these solutions will be B of course, so if the
set of all solutions is not too big, it might provide us with useful information
to start our detective work.

The above simple scenario from database security led us to wonder what
can be said in general about the solution of equations in the relational algebra.
Generally, if e1 and e2 are two algebra expressions over some database schema
augmented with some relation variables X1, . . . , Xp, we can consider the

∗Contact author. Address: Limburg University (LUC), B-3590 Diepenbeek, Belgium.
Tel: +32-11-268226. Fax: +32-11-268299. Email: jan.vandenbussche@luc.ac.be.

1

http://arxiv.org/abs/cs/0106034v2

equation e1 = e2. A solution of this equation, given a database B with finite
domain D, is a tuple (X1, . . . , Xp) of relations over D such that e1 and e2
evaluate to the same relation on the augmented database (B,X1, . . . , Xp).

Asking whether there exists a solution of a relational algebra equation on
a database is almost exactly the same thing as asking whether an existential
second-order logic sentence is true on that database. Hence, by Fagin’s theo-
rem [Fag74, EF95], the problems that can be formulated as finding a solution
of some relational algebra equation are nothing but the problems in NP.

However, in the present paper, we start from the observation that the
set of all solutions of an equation, being a set of tuples of relations, is a
nested relation. One can therefore consider the enumeration of all solutions
of an equation as a query language primitive, which can be added to the
nested relational algebra. We introduce and study this extension of the
nested relational algebra, which we call the equation algebra. The equation
algebra is extremely powerful: it is equivalent to the well-known powerset
algebra for nested relations. Our particular interest, however, is in what can
be expressed in the equation algebra by using only equations that have a
solution set of polynomial size on each database. We call such equations
sparse.

Our interest in sparse equations does not stem from time efficiency con-
siderations. Indeed, it is not obvious how knowing that an equation is sparse
would help in actually finding even one solution more quickly. It is neither
obvious, however, that it would not help. For example, consider the prob-
lem of checking on a given database whether some fixed sparse relational
algebra equation has a solution. Using an extension of Fagin’s theorem to
nested relational databases, we show that this problem can be NP-hard only
if every problem in NP can already be decided by a polynomial-time non-
deterministic Turing machine that has only polynomially many accepting
computations on each input. The latter is one of the many unresolved ques-
tions in computational complexity theory [All86].

Nevertheless, sparse equations are still interesting from a space efficiency
standpoint. Indeed, for the natural evaluation strategy for equation algebra
expressions to run in polynomial space, it is necessary that all equations
occurring in the expression are sparse. Interest in fragments of powerful
query languages for which the natural evaluation strategy is polynomial-space
is not new to database theory research. For example, Abiteboul and Vianu
[AV91] showed that the parity query is not expressible in the polynomial-
space fragment of various computationally complete query languages.

2

Closer to our topic is the work of Suciu and Paredaens [SP97], who showed
that queries such as transitive closure and parity are not expressible in the
polynomial-space fragment of the powerset algebra for nested relations. This
fragment consists of all powerset algebra expressions where all intermediate
results are of polynomial size, on each database. Note that this fragment does
make sense as there are expressions that always produce a result of logarith-
mic size; applying the, exponential, powerset operator to such expressions
produces a result of polynomial size.

We also mention Grumbach and Vianu [GV95], who also studied a spar-
sity notion in connection with queries over nested relational databases, al-
though they considered sparsity as a property of databases rather than of
query language expressions.

Suciu and Paredaens conjectured in general that the polynomial-space
fragment of the powerset algebra has no more power than the nested rela-
tional algebra without powerset. (This conjecture has been confirmed for
monadic database schemas [VdB].) At first sight, the operator that we add
to the nested relational algebra, to enumerate all solutions of an equation,
does not seem to be that different from the powerset operator. After all,
both operators perform some kind of potentially exponential enumeration.

Yet, as we will point out, the analogue of the Suciu-Paredaens conjecture
does not hold for the sparse fragment of the equation algebra. Specifically,
using sparse equations only, we can express transitive closure; in fact, we
can express any fixpoint query. This complements a result by Abiteboul and
Hillebrand [AH95], who showed that transitive closure becomes expressible
in the powerset algebra in polynomial space, provided we use a more clever
“pipelined” evaluation strategy. Actually, every fixpoint query is already
expressible using equations that are not just sparse, but even unambiguous:
they have a unique solution on each database. Unambiguous equations in
the relational algebra are known as implicit definitions in first-order logic,
and were studied in the context of finite model theory by Kolaitis [Kol90].
Kolaitis already showed that every fixpoint query can be implicitly defined.
We offer a straightforward, direct proof.

Another example of the differences between the sparse fragment of the
equation algebra and that of the powerset algebra is given by the well-known
nesting operator of the nested relational algebra. This operator becomes
redundant once we extend the algebra with the solution operator or with
the powerset operator. However, the original nesting operator never blows
up exponentially. We show that, without using the nesting operator itself,

3

nesting is expressible in the equation algebra using sparse equations only,
but that the same is not possible with a polynomial-space powerset algebra
expression.

However, there are also similarities between the two fragments. Specifi-
cally, we prove an analogue to the Suciu-Paredaens result, to the effect that
the parity query is not expressible in the sparse fragment of the equation
algebra either. This is our main technical contribution; the proof is in the
style of an elegant argument of Liebeck [Lie83], invoking Bochert’s theorem
on the order of primitive permutation groups. Coming back to connection
with implicit definitions in first-order logic, our result generalizes the known
and easy fact that the parity query cannot be defined implicitly [Kol90], in
two directions: from unambiguous to sparse; and from a single equation to an
arbitrarily complex expression involving several, possibly nested, equations.

This paper is organized as follows. Section 2 recalls the nested relational
data model. Section 3 introduces relational algebra equations. Section 4 in-
troduces the equation algebra. Section 5 introduces sparse equations, as well
as the natural evaluation strategy for equation algebra expressions. Section 6
studies the time complexity of sparse equations. Finally, Section 7 presents
the comparison with the polynomial-space powerset algebra.

2 Preliminaries

We quickly recall the nested relational data model and algebra [TF86, AHV95].
Relation types are defined as follows. The symbol 0 is a type; and, if τ1,

. . . , τk are types, then so is (τ1, . . . , τk). For a type τ , and some set D of
atomic values, the relations of type τ on D are inductively defined as follows.
A relation of type 0 on D is just an element of D (this serves merely as the
base case for the induction). A relation of type (τ1, . . . , τk) on D is a set of
k-tuples (x1, . . . , xk) such that xi is a relation of type τi onD, for i = 1, . . . , k.

A database schema is a finite set S of relation names, where each relation
name has an associated type different from 0. A database B over S consists
of a non-empty finite domain D of atomic values, together with, for each
relation name R in S, a relation RB of type τ on D, where τ is the type of
R.

The operators of the nested relational algebra are those of the standard
relational algebra (union ∪ and difference − of relations of the same type;
cartesian product ×; projection π; selection σ for equality, which can now be

4

set equality of nested relations), plus the operators nesting ν and unnesting

µ, defined as follows.
Let R be a relation of type (τ1, . . . , τk), and let i1, . . . , ip ∈ {1, . . . , k}.

Then the nesting νi1,...,ip(R) equals the relation

{(

x1, . . . , xk,
{

(yi1, . . . , yip) | (y1, . . . , yk) ∈ R

and xj = yj for each j ∈ {1, . . . , k} − {i1, . . . , ip}
}

)

∣

∣

∣
(x1, . . . , xk) ∈ R

}

of type (τ1, . . . , τk, (τi1, . . . , τip)).
Let R be as in the previous paragraph, and let i ∈ {1, . . . , k} such that

τi 6= 0; so τi is of the form (ω1, . . . , ωℓ). Then the unnesting µi(R) equals the
relation

{(x1, . . . , xk, y1, . . . , yℓ) | (x1, . . . , xk) ∈ R and (y1, . . . , yℓ) ∈ xi}

of type (τ1, . . . , τk, ω1, . . . , ωℓ).
The expressions of the nested relational algebra over a schema S are now

built up using the above operators from the relation names in S and the
symbol D, which stands for the finite domain of the input database. The
relation to which an expression e evaluates on a database B is denoted by
e(B).

One can extend the nested relational algebra to the powerset algebra by
adding the powerset operator, defined as follows. Let R be a relation of type
(τ1, . . . , τk). Then the powerset Π(R) equals the relation {S | S ⊆ R} of type
((τ1, . . . , τk)).

3 Equations

Let S and X be disjoint database schemas; S is the actual database schema,
while X is thought of as a set of additional relation variables. Let e1 and e2
be two expressions over the expanded schema S ∪ X .

Definition 3.1. Given a database B over S, a solution to the equation e1 =
e2 is a database A over X with the same finite domain as B, such that
e1(B,A) = e2(B,A).

5

Here, (B,A) denotes the expansion of B with A, i.e., the database over
S ∪ X that has the same finite domain as B, that equals B on S, and that
equals A on X .

Example 3.2. For a very simple example, let R ∈ S and let X = {X}, where
X has the same type as R. Then X∪R = R is an equation. Given a database
B over S, a database A over {X} is a solution if and only if XA ⊆ RB.

For another example, let X be a relation variable of type (0, 0). One
can write a relational algebra expression e such that on any database A over
{X} with finite domain D, e(A) is empty if and only if XA is one-to-one, the
projections π1(X

A) and π2(X
A) are disjoint, and their union equals D. An

example of an e that works is

π1σ26=4σ1=3(X ×X) ∪ π2σ2=4σ16=3(X ×X)

∪
(

π1(X)− (π1(X)− π2(X))
)

∪
(

D − (π1(X) ∪ π2(X))
)

∪
(

(π1(X) ∪ π2(X))−D
)

Then the equation e = ∅ has a solution on a database B with finite domain
D if and only if the cardinality of D is even. (Technically, e = ∅ is not an
equation because the symbol ∅ is not an expression, but we can easily take ∅
here to stand for the expression D−D which always evaluates to the empty
relation.)

Remark 3.3. In the above example, we used an equation of the special form
e = ∅. Actually, this form is not so special at all, because any equation
e1 = e2 can be brought in this form as e1 ∆ e2 = ∅, where e1 ∆ e2 stands for
(e1 − e2) ∪ (e2 − e1) (symmetric difference).

Alternatively, one might wonder about the use of disequations, of the
form e 6= ∅. These are nothing but equations in disguise, because they can
also be written as π1(D× e) = D. Conversely, any equation e1 = e2 can also
be written as the disequation D − π1(D × (e1 ∆ e2)) 6= ∅.

4 The equation algebra

We are now ready to extend the nested relational algebra with a solution
operator for equations. We refer to the resulting algebra as the equation

algebra.

To allow for an elegant definition, we do not fix a schema S in advance.
Rather, we assume a sufficiently large supply of relation names of all possible

6

types. Any relation name can now occur in an expression. Like in logic
formulas, some will occur free and others will occur bound. Bound relation
names are bound by the solution of an equation, and serve as the variables
of the equation. Within the equation, however, they are still free. We denote
the set of relation names that occur free in an equation algebra expression e
by free(e).

For the constructs of the nested relational algebra, this is all straightfor-
ward: for a relation name R, we have free(R) := {R}; for expressions e of
the form (e1∪e2), (e1−e2), or (e1×e2), we have free(e) := free(e1)∪ free(e2);
for expressions e of the form σ(e′), π(e′), ν(e′), or µ(e′), we have free(e) :=
free(e′). For the expression D, we have free(D) := ∅.

The definition of the new solution operator is now the following:

Definition 4.1. Let e1 and e2 be expressions, and let X1, . . . , Xp be a se-
quence of distinct relation names. Then

{(X1, . . . , Xp) | e1 = e2}

is also an expression (called a solution expression). We define its free set as
(free(e1) ∪ free(e2))− {X1, . . . , Xp}. We say that the Xi become bound.

Note that this is a recursive definition, in the sense that e1 and e2 can
contain solution operators in turn. To avoid clutter, we disallow equation
algebra expressions in which a free relation name at the same time becomes
bound in some subexpression, as in X × {(X) | X ∪R = R}.

An expression e in the equation algebra can be evaluated on databases B
over any schema that contains free(e). We already know how this evaluation
is defined for the constructs of the nested relational algebra. So we only have
to give

Definition 4.2. For a solution expression, e, of the form {(X1, . . . , Xp) |
e1 = e2}, and a database B, the evaluation e(B) equals the relation

{(XA
1 , . . . , X

A
p) | A is a database over {X1, . . . , Xp}

that is a solution of e1 = e2, given B}.

This relation is of type (τ1, . . . , τp), where τi is the type of Xi for i = 1, . . . , p.

Example 4.3. Recall the simple example equation X ∪ R = R from Exam-
ple 3.2. We can turn this equation in the following equation algebra expres-
sion e: {(X) | X ∪ R = R}, or, more readibly, {(X) | X ⊆ R}. Note that

7

free(e) = {R}. On any database B over {R}, the relation e(B) equals Π(RB)
(recall the powerset operator Π from Section 2). In other words, the equation
algebra expression e is equivalent to the powerset algebra expression Π(R).

The equation algebra allows equations to be used inside equations. For
example, if we want to compute the powerset of the powerset of R, we can
write:

{

(Y) | Y ⊆ {(X) | X ⊆ R}
}

.

As a third example, let R and T be relation names of the same binary type
(τ, τ) for some τ . One can write a relational algebra expression etc such that
on any database C over {R, T}, etc is empty if and only if RC ⊆ TC and TC is
transitively closed. One can also write a nested relational algebra expression
emin that selects, out of a set of binary relations, the minimal ones w.r.t. set
inclusion. Explicit forms for etc and emin have been given by Gyssens and
Van Gucht [GVG]. Then the following equation algebra expression computes
the transitive closure of relation R:

π2,3µ1emin

(

{(T) | etc = ∅}
)

.

Indeed, the subexpression {(T) | etc = ∅} returns the collection of all transi-
tively closed relations on the same domain as R and containing R; applying
emin to that collection results in the singleton consisting of the minimal el-
ement, i.e., the transitive closure of R (by definition of transitive closure);
applying unnesting µ1 produces the actual tuples in the transitive closure,
keeping the nested relation (cf. our definition of the effect of µ in Section 2);
and applying π2,3 finally removes the nested relation.

In the above example we saw that the powerset operator is expressible in
the equation algebra. Conversely, the solution operator is easily expressed in
the powerset algebra. Hence,

Proposition 4.4. The equation algebra is equivalent to the powerset algebra.

Proof. To see that {(X1, . . . , Xp) | e1 = e2} can be expressed in the powerset
algebra, we begin by noting that for any relation type τ one can write a
powerset algebra expression Πτ yielding the collection of all relations of type
τ on D. For example, Π(0,0) is Π(D × D), and Π(0,(0)) is Π(D × Π(D)).
Hence, if the type of Xi is τi for i = 1, . . . , p, then Πτ1 × · · · × Πτp yields
the collection of all potential solutions. Now it suffices to observe that one
can write nested relational algebra expressions that apply e1 or e2 to each

8

database in this collection separately. Explicit forms of such expressions
have been given by Gyssens and Van Gucht [GVG]. After that, the actual
solutions can be selected by an equality selection.

5 Sparse equations

So far, the equation algebra is merely another syntax for the powerset algebra,
or, if you want, higher-order logic. However, when we consider a natural
evaluation strategy for equation algebra expressions, we start to notice some
differences.

By the natural strategy to evaluate a solution expression of the form
{(X1, . . . , Xp) | e1 = e2}, we mean the following. Enumerate all databases A
over {X1, . . . , Xp}, on the finite domain of the given input database, one by

one, reusing the same space. For each A we test whether it is a solution (by
recursively evaluating e1 and e2), and if so, we include it in the result.

For the constructs of the nested relational algebra, the natural evaluation
strategy is clear: if we have to evaluate an expression of the form e1Θe2, with
Θ ∈ {∪,−,×}, we create two intermediate results by recursively evaluating
e1 and e2, and then apply Θ to these two intermediate results. Similarly,
if we have to evaluate an expression of the form θ(e), with θ ∈ {π, σ, ν, µ}
(and parameters added in subscript), we create an intermediate result by
recursively evaluating e, and then apply θ to this intermediate result.

In view of this natural evaluation strategy, we now propose

Definition 5.1. An equation is called sparse if all its relation variables are
of flat type, i.e., of type of the form (0, . . . , 0), and the number of solutions
on any given database is at most polynomial in the size of that database.

Example 5.2. The two equations from Example 3.2 are not sparse. Probably
the simplest example of a non-trivial sparse equation is the following. Let X
be a relation name of type (0). One can write a relational algebra expression
e over {X} such that on any database A over {X}, e(A) is empty if and
only if XA is a singleton. Then the equation e = ∅, where X is taken as
the relation variable to be solved for, is sparse. Indeed, given any database
B with finite domain D, the solutions are precisely all singleton subsets of
D. There clearly are only a linear (and thus at most polynomial) number of
possible solutions.

9

Remark 5.3. A natural alternative definition of sparsity would be the one
where, in Definition 5.1, we would look only at databases over the schema
consisting of the relation names that actually occur free in the equation. One
easily sees, however, that this alternative definition yields the same notion
of sparsity.

Sparse equations are connected to the natural evaluation strategy in the
following way:

Proposition 5.4. The natural strategy to evaluate an equation algebra ex-

pression e runs in polynomial space, if and only if all equations occurring in

e are sparse.

Here, we count not only the space occupied by the intermediate results
stored during evaluation, but also the size of the final result.

Proof. The if-direction is clear. For the only-if direction, we work by induc-
tion on the nesting depth of equations. The base case—expressions that do
not contain any equations at all—is trivial.

For the inductive step, consider a top-level equation {(X1, . . . , Xp) | e1 =
e2} occurring in e. The natural strategy to evaluate this equation runs in
polynomial space, so in particular, for each expansion of each database B over
free(e) with a candidate solution A over {X1, . . . , Xp}, the natural evaluation
of e1 and e2 on (B,A) runs in polynomial space. In this way we consider
every possible database C over free(e)∪{X1, . . . , Xp}, because the restriction
of C to free(e) is a possible B, and C itself then is a possible expansion of
B. Hence, the natural evaluation strategies of e1 and e2 in general run in
polynomial space.

Formally, we must note here that e1 and e2 might not actually mention
certain relation names in free(e) or {X1, . . . , Xp}, and that there is still the
formal possibility that their natural evaluation might not run in polynomial
space on databases over schemas not containing these names. However, using
Remark 5.3, it can be seen that this is impossible.

By induction, we can therefore conclude that all equations occurring
nested inside a top-level equation are sparse.

The top-level equation itself must also be sparse. In proof, if one of the
Xi would be of non-flat type, even one candidate solution can already be of
exponential size. Indeed, even in the simplest case where Xi would be of type
((0)), on a domain with n elements, a possible candidate value for Xi is the
collection of all subsets of that domain, which is of size 2n. So, every Xi is

10

of flat type. Furthermore, since we store the solution set as an intermediate
result, it must be of at most polynomial size on all databases over free(e).
Since the individual solutions are flat databases and thus of polynomial size,
the cardinality of the solution set must therefore be at most polynomial.

6 Time complexity of equation nonemptiness

The time complexity of solving sparse equations is closely linked to an open
question from computational complexity theory. Unlike the previous section,
in this section we are not talking about the natural evaluation strategy, whose
time complexity is clearly at least exponential as soon as there are equations
to be solved.

Instead, we will be looking at the time complexity of the nonemptiness

problem of equations. The nonemptiness problem of an equation over a
schema S with relation variables X is the problem of deciding, given a
database over S, whether the equation has a solution on that database.
In the present section we will only consider equations that do not contain

equations inside.

Let us begin by considering equations that are not necessarily sparse,
but that still have only flat variables. The nonemptiness problem of such
a flat-variable equation is clearly in NP. Now suppose, moreover, that the
database schema S is also flat; then S ∪ X (the expansion of S with the
relation variables of the equation) is an entirely flat schema. Of course,
the equation e1 = e2 is still in general in the nested relational algebra, i.e.,
e1 and e2 can contain ν and µ operators. A result by Paredaens and Van
Gucht [PVG92], however, implies that the nested relational algebra condition
e1 = e2 can also be expressed in the form e 6= ∅, with e a flat relational
algebra expression. The nonemptiness problem of the equation thus amounts
to asking whether {(X1, . . . , Xp) | e 6= ∅} is nonempty on a given database
B over S. Equivalently, we ask whether the existential second-order logic
(∃SO) sentence ∃X1 . . .∃Xp ϕe is true on B, where ϕe is a first-order logic
sentence expressing that e 6= ∅. Moreover, by the equivalence of relational
algebra and first-order logic, any ∃SO property can be obtained in this way.
Now, Fagin’s theorem [Fag74, EF95] states that ∃SO captures exactly the
NP properties of flat relational databases. Hence, the class of nonemptiness

problems of flat-variable equations over flat database schemas is exactly the

class of NP properties of flat relational databases.

11

What if S is not necessarily flat? We next show that we still get exactly
NP. In essence, this is an extension of Fagin’s theorem to nested relational
databases.

Proposition 6.1. Every property of nested relational databases over some

fixed schema S, that is in NP and closed under isomorphism, corresponds to

the nonemptiness problem of some flat-variable equation over S.

Proof. The crux is a representation of nested relational databases by “pseudo-
flat” ones, also used by Gyssens, Suciu, and Van Gucht [GSVG01]. Given
a nested relational database B, we define its extended domain, denoted by
edom(B), as the union of its finite domain of atomic values with the set of
all relations occurring (possibly deeply nested) in B. We regard the relations
in the extended domain as if they were atomic values. Now for any nested
relational database schema S we can construct a flat one S̄, together with
a mapping rep from the set of databases over S̄ onto the set of databases
over S, expressible in the nested relational algebra. The details of this map-
ping need not concern us here. Important is that we can furthermore con-
struct a converse mapping flat from the set of databases over S to the set
of databases over S̄, also expressible in the nested relational algebra, with
the following properties for each database B over S: (1) the finite domain of
flat(B) equals edom(B); and (2) rep(flat(B)) = B. Note that while flat is
expressed in the nested relational algebra, the result flat(B) is not really a
flat database, because of the nested relations in the extended domain. How-
ever, it is “pseudo-flat,” in the sense that we regard these relations as if they
were atomic values. For any relation name R of S̄, we denote the nested
relational algebra expression defining the R-component of the mapping flat

by flatR. Likewise, we denote the expression defining the D-component by
flatD.

Given this representation, the proof is straightforward. Let L be an NP
property of databases over S, closed under isomorphism. Define the property
L̄ of databases over S̄ as follows: F satisfies L̄ if rep(F) satisfies L. Then L̄
is in NP, and is also closed under isomorphism. Hence, Fagin’s theorem gives
us an ∃SO sentence ∃X1 . . .∃Xp ϕ over S̄ expressing L̄. By the equivalence
of relational algebra and first-order logic, there is a flat relational algebra
expression e over S̄ ∪ {X1, . . . , Xp} such that the first-order logic sentence
ϕ is equivalent to e 6= ∅. Now modify e as follows: for every relation name
R of S̄, replace every occurrence of R in e by flatR. Likewise, replace every

12

occurrence of D in e by flatD. Denote the resulting nested relational algebra
expression by e′.

We now have, for any database B over S, that B satisfies L if and only if
∃X1 . . .Xp e

′ 6= ∅ is true on B. The condition e′ 6= ∅ can easily be written
as an equation (cf. Remark 3.3).

We are now ready to turn to sparse equations. Their nonemptiness prob-
lem is not just in NP, but actually in the complexity class FewP [All86],
consisting of all problems that can be decided by a polynomial-time non-
deterministic Turing machine that has at most polynomially many accepting
computations on each input. Clearly, P ⊆ FewP ⊆ NP, but the strictness of
these inclusions remains open.

The obvious question to ask is whether Proposition 6.1 remains true if we
focus on sparse equations, and replace ‘NP’ by ‘FewP.’ The answer is an easy
“yes,” but then we must restrict attention to ordered databases: databases
that include a total order on their finite domain as one of their relations.

Proposition 6.2. Every property of ordered nested relational databases over

some fixed schema S, that is in FewP and closed under isomorphism, corre-

sponds to the nonemptiness problem of some sparse equation over S, when
restricted to ordered databases only.

Proof. The usual proof of Fagin’s theorem immediately yields the case where
S is flat. Indeed, in that proof, to express an NP property decided by some
polynomial-time bounded non-deterministic Turing machine M , one writes
an ∃SO sentence ∃X1∃X2 . . .∃Xp ϕ where X1 stands for an order on the
domain; X2, . . . , Xp encode (using the order in X1) a computation of M ;
and ϕ checks whether the computation is accepting. As we are dealing with
a FewP property, M has only polynomially many accepting computations.
Hence, the equation {(X1, . . . , Xp) | ϕ} would be sparse were it not for X1, as
there are exponentially many possible orders on a finite domain. On ordered
databases, however, there is no need for X1 and we obtain a genuinely sparse
equation.

This is for flat databases; for general nested relational databases we use
the same representation technique as in the proof of Proposition 6.1.

As a corollary we get

Corollary 6.3. There exists a sparse equation whose nonemptiness problem

is NP-complete, if and only if FewP = NP.

13

7 Sparse equations versus sparse powerset ex-

pressions

Naturally, we call an equation algebra expression sparse if all equations oc-
curring in it are sparse. Inspired by Proposition 5.4, we can also define a
sparsity condition on powerset algebra expressions: call a powerset algebra
expression sparse if its natural evaluation strategy (defined in the obvious
way) runs in polynomial space.

Remark 7.1. Using standard techniques one can show that sparsity is unde-
cidable, for equation algebra expressions as well as powerset algebra expres-
sions. An interesting question, raised by an anonymous referee, is whether
one can give useful syntactic restrictions that guarantee sparsity. Ideally
every sparse expression would be equivalent to one satisfying the syntactic
restrictions.

Suciu and Paredaens [SP97] showed that transitive closure of a flat binary
relation is not expressible by a sparse powerset expression. In Example 4.3,
we gave an obvious equation algebra expression for transitive closure, but
that expression was not sparse. We can do better:

Proposition 7.2. Transitive closure of a flat relation is expressible by a

sparse equation algebra expression.

Proof. Given a binary relation R and a natural number n > 1, we define the
relation Rn as R ◦ · · · ◦ R (n times R), where ◦ is the classical composition
operator of binary relations: S ◦T = π1,4σ2=3(S×T). Further, define R6n as
⋃n

i=1R
i, and define R=n as Rn−R6n−1. Note that R6|R| equals the transitive

closure of R, and that for n > |R|, R6n = R6|R|.
Now consider the following 6-ary relation Run:

Run :=

|R|
⋃

i=1

R6i × R6i+1 × R=i+1.

We show next that there is an equation whose only solution, given R,
is Run. This proves the Proposition, because all we then have to do is
unnest the solution set and project on the middle two columns to get the
transitive closure. (The only exception is when Run is empty, in which case
the transitive closure of R is R itself, but this can also easily be tested in the
nested relational algebra.)

14

The desired equation expresses the conjunction of the following conditions
on relation variable X :

1. For any pair (x5, x6) ∈ π5,6(X), we denote the relation

{(x1, x2, x3, x4) | (x1, . . . , x6) ∈ X}

by X̃(x5, x6), and denote further

X̂(x5, x6) := π1,2(X̃(x5, x6)) and

X̌(x5, x6) := π3,4(X̃(x5, x6)).

Then for every (x, y) ∈ π5,6(X), we must have

(a) X̃(x, y) = X̂(x, y)× X̌(x, y);

(b) X̂(x, y) ⊇ R;

(c) X̌(x, y) = X̂(x, y) ∪ X̂(x, y) ◦R; and

(d) (x, y) ∈ X̌(x, y)− X̂(x, y).

(e) Furthermore, every pair (x′, y′) in the latter difference belongs
to π5,6(X), with X̂(x′, y′) = X̂(x, y) (and thus also X̌(x′, y′) =
X̌(x, y)).

2. R=2 ⊆ π5,6(X), and for every (x, y) ∈ R=2, we have X̂(x, y) = R.

3. For every (x, y) ∈ π5,6(X) such that X̌(x, y) ◦ R − X̌(x, y) 6= ∅, there

exists a pair (x′, y′) ∈ π5,6(X) with X̂(x′, y′) = X̌(x, y).

4. For every (x, y) ∈ π5,6(X) such that X̂(x, y) 6= R, there exists a pair

(x′, y′) ∈ π5,6(X) with X̌(x′, y′) = X̂(x, y).

The conjunction of the above conditions expresses that X equals Run.
Indeed, by (2), (1c) and (1a) we know that R61 × R62 × R=2 ⊆ X . By in-
duction and by (3), (1c), (1e) and (1a) we know that R6i×R6i+1×R=i+1 ⊆
X and hence Run ⊆ X . Moreover, for every (x, y) ∈ R=i+1 we have
{(x1, y1, x2, y2) | (x1, y1, x2, y2, x, y) ∈ X} = R6i × R6i+1. On the other
hand, if (x, y) ∈ π5,6(X) then X̂(x, y) = R, in which case (x, y) ∈ R=2 by

(1c) and (1d), or X̂(x, y) 6= R, in which case we know by induction and by
(4) and (1b) that (x, y) ∈ R=i+1 for some i. This proves X = Run.

15

Remark 7.3. The equation constructed in the above proof is not only sparse,
it is unambiguous: it has a unique solution on each input database. Moreover,
the same proof works more generally for any fixpoint query [AHV95] on flat
databases. The only difficulty is that fixpoint queries start from the empty
relation, while in our proof of Proposition 7.2 we start from R, but that is
easily dealt with. As already explained in the Introduction, we thus basically
rediscovered an earlier result by Kolaitis to the effect that every fixpoint query
is implicitly definable in first-order logic [Kol90]. But note the directness of
our proof, straightforwardly specifying the run of the fixpoint computation in
an unambiguous way. The original proof (also presented by Ebbinghaus and
Flum [EF95]) is a bit more roundabout, specifying the “stage comparison”
relation instead.

Another, perhaps a bit frivolous, example of a query that is expressible us-
ing sparse equations but not using sparse powerset expressions is the nesting
operator ν. It is easy to express ν in the powerset algebra using the powerset
operator and the other operators, but not ν itself; so ν is not primitive in
the powerset algebra. As a consequence (Proposition 4.4), ν is not primitive
in the equation algebra either. We next observe that when we restrict to
sparse expressions, nesting remains imprimitive in the equation algebra, but
becomes primitive again in the powerset algebra.

Proposition 7.4. Nesting is not expressible by a sparse powerset expression

without using the ν operator itself.

Proof. Suppose we want to express nesting of a flat binary relation R. The
first application of the powerset operator is to the result of a flat relational
algebra expression e applied to R. Let us focus on the case where R is
the identity relation on a finite domain of n elements. A straightforward
argument by structural induction shows that, on identity relations, every
relational algebra expression is equivalent to a finite disjunction of equality
types. Here, an equality type is a maximally consistent conjunction of equal-
ities xi = xj and non-equalities xi 6= xj over the variables x1, . . . , xk, where
k is the output arity of e. We thus see that either e(R) is empty on all such
R (this is when the disjunction is empty), or e(R) is of size at least n when
n is at least k. In the empty case, the powerset operator is useless, and
we continue to the next application of powerset. Otherwise, the powerset
operator explodes and the overall expression is not sparse.

Proposition 7.5. Nesting is expressible by a sparse equation expression with-

out using the ν operator itself.

16

Proof. Let R be a relation name of type (0, 0), and let X and Y be relation
variables of type (0). We can write a relational algebra expression e such
that on any database C over {R,X, Y }, e(C) is empty if and only if X is a
singleton {x} with x ∈ π1(R), and Y = {y | (x, y) ∈ R}. An example of an
e that works is: (∆ stands for symmetric difference)

π1σ16=2(X ×X) ∪ (X − π1(R)) ∪ (Y ∆ π3σ1=2(X × R))

Hence, the expression
µ1

(

{(X, Y) | e = ∅}
)

is a sparse equation expression equivalent to ν2(R).
The construction for general nesting operations is analogous.

Our final, and main technical, contribution concerns the parity query.
Suciu and Paredaens showed that the parity of the cardinality of a finite set
is not expressible by a sparse powerset expression. We show the analogue for
the equation algebra:

Proposition 7.6. The parity query is not expressible by a sparse equation

expression.

Proof. Suppose, to the contrary, that we have a sparse equation expression
to express the parity of the cardinality of a finite domain D. We may assume
that the input schema is empty, i.e., an input database consists of D and
nothing else. Consider an innermost equation E0 occurring in our expression.
It may be nested inside other equations E1, . . . , Ek, enumerated from the
inside to the outside. By Remark 3.3, for each j ∈ {0, . . . , k}, Ej can be
written in the form {(Xj

1 , . . . , X
j
ij
) | ej 6= ∅}, for some ij , where ej is a

flat relational algebra expression over the flat schema {Xj
1 , . . . , X

j
ij
} possibly

expanded with certain free variables X l
m, where l > j and m ≤ il.

By our assumption there are at most polynomially many solutions to
equation Ek. For each solution Ak of Ek there are at most polynomially
many solutions Ak−1 of ek−1 and so on. A sequence Ā = (Ak, . . . , A0) of
databases is a solution vector for E0, if Ak is a solution for Ek, and each Aj ,
j < k is a solution for Ej , given Ak, . . . , Aj+1.

Now let Ā = (Ak, . . . , A0) be a solution vector for E0, given an input D
of size n. Then for every permutation f of D, f(Ā) = (f(Ak), . . . , f(A0)) is
also a solution vector for E0. The number of different such f(Ā) is precisely
n!/|Aut(Ā)|, where Aut(Ā) is the group of automorphisms of Ā. Since all

17

equations are supposed to be sparse, this number is at most nℓ for some
fixed ℓ, or, equivalently, |Aut(Ā)| > n!/nℓ. Putting k = ℓ + 1, this implies
|Aut(Ā)| > (n− k)! for sufficiently large n.

We thus need to know more about large permutation groups. The fol-
lowing crucial lemma will give us the information we need. The group of
permutations of a finite set D is denoted by Sym(D), and its alternating
subgroup of even permutations by Alt(D). If G is a subgroup of Sym(D), a
fixed set for G is a subset ∆ ⊆ D, such that every g ∈ G maps ∆ to ∆. The
action of G on a fixed set ∆ (as a subgroup of Sym(∆)) is denoted by G∆.

Lemma 7.7. Let k be a fixed natural number. Let G be a subgroup of

Sym(D), |D| = n, n sufficiently large. Then |G| > (n − k)! implies the

existence of a fixed set ∆ with |∆| > n− k, such that G∆ contains Alt(∆).

Proof of Lemma 7.7. For background on finite permutation groups, we refer
to Wielandt’s book [Wie64], but here are a few preliminaries. An orbit of
a permutation group G on a set D is a set of the form {g(x) | g ∈ G}, for
some x ∈ D. We call G transitive if D is one single orbit of G. Further, G is
called primitive if it is transitive and has no nontrivial blocks. Here, a block

of G is a subset ∆ ⊆ D such that for all g ∈ G, the set g(∆) is either equal
to ∆, or disjoint from it. Trivial blocks are ∅, D, and the singletons. If G is
not primitive but transitive, there is always a complete block system which
partions D in equal-sized non-trivial blocks. We recall:

Bochert’s Theorem (1889). Let G be primitive on D, not containing

Alt(D). Let |D| = n. Then |G| 6 n!/⌈n/2⌉!.

For the proof of the Lemma, first assume that G is transitive. There are
two possibilities:

1. G is imprimitive with, say, b blocks of size a (a > 1, b > 1, ab = n).
Then |G| 6 b! (a!)b, which in turn is at most 2(⌊n/2⌋!)2 for n sufficiently
large. Thus, by what is given about |G|,

(n− k)! 6 2(⌊n/2⌋!)2. (1)

However, this is impossible for n sufficiently large.

2. G is primitive. Then, unless G contains Alt(D) (in which case the
Lemma is proved), by Bochert’s theorem,

(n− k)! 6
n!

⌈n/2⌉!
. (2)

18

Again, this is impossible for n sufficiently large.

Now assume G is intransitive. Let ∆ be an orbit of G of maximal size;
let ℓ > 1 be such that the size of ∆ equals n− ℓ. We have |G| 6 (n− ℓ)! ℓ!.
Suppose ℓ > k. Then (n − ℓ)! ℓ! reaches its maximum at ℓ = k + 1. Hence,
(n − k)! 6 |G| 6 (n − k − 1)! (k + 1)! and thus n − k 6 (k + 1)! which is
impossible for large enough n.

So, ℓ 6 k, or in other words, the size of ∆ is at least n − k. We have
|G| 6 ℓ! |G∆| 6 k! |G∆|, so |G∆| > (n−k)!/k!. By definition G∆ is transitive
on ∆. We can now apply the same arguments as in the case “G is transitive”
above, for G∆ instead of G, and get that G∆ must contain Alt(∆). Indeed, in
the right-hand sides of inequalities 1 and 2, n now becomes n− ℓ, which has
for effect that the upper bounds become smaller. Hence, as these inequalities
already were impossible, they now become even more impossible. The extra
factor of 1/k! in the left-hand sides does not have a significant influence.

Invoking this Lemma for G = Aut(Ā), we get a fixed set ∆ of size at
least n − k such that any even permutation of ∆ can be extended to an
automorphism of Ā.

Now let X be one of the relation variables of an equation Ej , of arity,
say, r, and consider any r-tuple t whose components are either the symbol ∗
or are in D−∆. Let r′ be the number of components that are the symbol ∗.
Further, let ξ be an equality type of r′-tuples. Denote by Neighbors ĀX(t, ξ)
the set of r′-tuples over ∆ of equality type ξ such that, if we replace the
∗-components of t by the components of the r′-tuple (from left to right), we
get a tuple in X Ā.

Claim 7.8. Neighbors ĀX(t, ξ) is either empty, or consists of all r′-tuples over
∆ of equality type ξ.

Proof of Claim 7.8. Suppose to the contrary that N := Neighbors ĀX(t, ξ) is
neither empty nor full. Take h1 in N , and take h2 (of arity r′ and of type ξ)
not in N . Take two arbitrary elements from ∆ that neither appear in h1 nor
in h2, and remove them from ∆, resulting in ∆′. Take a third tuple h3 (of
the right arity and type) over ∆′, and disjoint from h1 and h2. If h3 is in N ,
initialize the set I to {h2, h3}; otherwise, put I := {h1, h3}. Now complete
I to a maximal set of pairwise disjoint r′-tuples over ∆′ of equality type ξ.
There are at least (n− k − 2)/r′ tuples in I.

Assume at least half of I is outside N ; denote the set of these by I ′. (The
case where at least half of I is in N is symmetric.) Fix an h ∈ I ∩ N . For

19

each tuple s in I ′, we consider the permutation ̟s that transposes s and
h and leaves everything else fixed. If ̟s happens to be odd, we make it
even by adding the transposition of the two dummy elements we took out
of ∆ (when we defined ∆′). Then each set ̟s(N) contains s, but does not
contain any other tuples from I ′. Thus, we produce in this way at least
f(n) := ((n − k − 2)/2r′ different sets of r′-tuples over ∆. Since they are
even, each ̟s can be extended to an automorphism. Hence, each of the
f(n) sets must be the NeighborsĀX(t

′, ξ) of some t′. However, there are less
than (k+1)r different possibilities for t′, while f(n) is larger than that for n
sufficiently large. So we get to the desired contradiction.

We call (t, ξ) an r-ary pattern. If Neighbors ĀX(t, ξ) is nonempty (and thus
full), we say that the pattern is instantiated in X Ā. Note also that the
extreme cases, where t consists exclusively of stars or where t has no star at
all, are also allowed and make sense.

By the above, we thus see that any solution vector Ā can be generated
by the following non-deterministic procedure:

1. Initialize all relations of Ā to empty.

2. Choose at most k different elements from D, playing the role of the
elements outside ∆.

3. For every relation variable X (of arity r, say), run through all r-ary
patterns, and for each of them, non-deterministically instantiate it in
X Ā, or not.

Since k and the number of relation variables are fixed, the number of possi-
ble patterns is also fixed. Hence, we can write an expression in the nested
relational algebra that, given D, constructs the set of all possible vectors Ā
of the above non-deterministic procedure. This set is a superset of the actual
set of solution vectors for E0. Equation E0 can now be replaced by a nested
relational algebra expression which (1) constructs the set of solution candi-
dates Ā, (2) projects out the relations for X0

1 , . . . , X
0
i0
and (3) selects those

relations which fulfil E0. The latter is an easy task for the nested relational
algebra [GVG].

Hence, we can get rid of E0. Repeating this process, we can get rid of all
equations, so that in the end we are left with a standard nested relational al-
gebra expression for the parity query. But this is well known to be impossible
[AHV95, PVG92].

20

Remark 7.9. Note that we have actually shown that over the empty schema,
where databases consist of a finite domain and nothing else, the sparse equa-
tion algebra is no more powerful than the standard relational algebra. As a
matter of fact, the proof can easily be generalized to apply also to schemas
having only relation names of type (0).

Acknowledgment

We are indebted to László Babai, who pointed us to Liebeck’s paper.

References

[AH95] S. Abiteboul and G. Hillebrand. Space usage in functional query
languages. In G. Gottlob and M.Y. Vardi, editors, Database

Theory—ICDT’95, volume 893 of Lecture Notes in Computer Sci-

ence, pages 439–454. Springer-Verlag, 1995.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[All86] E. Allender. The complexity of sparse sets in P. In A.L. Selman,
editor, Structure in Complexity Theory, volume 223 of Lecture

Notes in Computer Science, pages 1–11. Springer-Verlag, 1986.

[AV91] S. Abiteboul and V. Vianu. Generic computation and its com-
plexity. In Proceedings 23rd ACM Symposium on the Theory of

Computing, pages 209–219, 1991.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer,
1995.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time rec-
ognizable sets. In R.M. Karp, editor, Complexity of Computation,
volume 7 of SIAM-AMS Proceedings, pages 43–73. 1974.

[GSVG01] M. Gyssens, D. Suciu, and D. Van Gucht. Equivalence and nor-
mal forms for the restricted and bounded fixpoint in the nested
algebra. Information and Computation, 164(1):85–117, 2001.

21

[GV95] S. Grumbach and V. Vianu. Tractable query languages for com-
plex object databases. Journal of Computer and System Sciences,
51(2):149–167, 1995.

[GVG] M. Gyssens and D. Van Gucht. The powerset algebra as a natural
tool to handle nested database relations. Journal of Computer and

System Sciences, 45(1):76–103, 1992.

[Kol90] Ph.G. Kolaitis. Implicit definability on finite structures and un-
ambiguous computations. In Proceedings 5th IEEE Symposium

on Logic in Computer Science, pages 160–180, 1990.

[Lie83] M.W. Liebeck. On graphs whose full automorphism group is an
alternating group or a finite classical group. Proc. London Math.

Soc., 47(2):337–362, 1983.

[PVG92] J. Paredaens and D. Van Gucht. Converting nested algebra ex-
pressions into flat algebra expressions. ACM Transactions on

Database Systems, 17(1):65–93, 1992.

[SP97] D. Suciu and J. Paredaens. The complexity of the evaluation of
complex algebra expressions. Journal of Computer and System

Sciences, 55(2):322–343, 1997.

[TF86] S. Thomas and P. Fischer. Nested relational structures. In
P. Kanellakis, editor, The Theory of Databases, pages 269–307.
JAI Press, 1986.

[VdB] J. Van den Bussche. Simulation of the nested relational algebra by
the flat relational algebra, with an application to the complexity
of evaluating powerset algebra expressions. Theoretical Computer

Science, 254(1–2):363–377, 2001.

[Wie64] H. Wielandt. Finite Permutation Groups. Academic Press, 1964.

22

	Introduction
	Preliminaries
	Equations
	The equation algebra
	Sparse equations
	Time complexity of equation nonemptiness
	Sparse equations versus sparse powerset expressions

