
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Finding a path of superlogarithmic length

Björklund, Andreas; Husfeldt, Thore

Published in:
Automata, languages and programming : 29th international colloquium, ICALP 2002, Málaga, Spain, July 8-13,
2002 : proceedings

2002

Link to publication

Citation for published version (APA):
Björklund, A., & Husfeldt, T. (2002). Finding a path of superlogarithmic length. In Automata, languages and
programming : 29th international colloquium, ICALP 2002, Málaga, Spain, July 8-13, 2002 : proceedings (Vol.
LNCS 2380, pp. 985-992). Springer. http://link.springer.de/link/service/series/0558/papers/2380/23800985.pdf

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/a503c905-dbed-490a-8de2-106f0ce8ae3b
http://link.springer.de/link/service/series/0558/papers/2380/23800985.pdf

Finding a Path of Superlogarithmic Length

Andreas Björklund and Thore Husfeldt

Department of Computer Science, Lund University

Abstract. We consider the problem of �nding a long, simple path in an
undirected graph. We present a polynomial-time algorithm that �nds
a path of length Ω

�
(log L/ log log L)2

�
, where L denotes the length of

the longest simple path in the graph. This establishes the performance
ratio O

�|V |(log log |V |/ log |V |)2� for the Longest Path problem, where
V denotes the graph's vertices.

1 Introduction

Given an unweighted, undirected graphG = (V, E) the longest path problem is to
�nd the longest sequence of distinct vertices v1 · · · vk such that vivi+1 ∈ E. This
is a classical NP-hard problem (number ND29 in Garey and Johnson [5]) with
a considerable body of research devoted to it, yet its approximability remains
elusive:

�For most canonical NP-hard problems, either dramatically improved ap-
proximation algorithms have been devised, or strong negative results have
been established, leading to a substantially improved understanding of the
approximability of these problems. However, there is one problem which has
resisted all attempts at devising either positive or negative results � longest
paths and cycles in undirected graphs. Essentially, there is no known algo-
rithm which guarantees approximation ratio better than |V |/polylog|V | and
there are no hardness of approximation results that explain this situation.� [4]

Indeed, the quoted ratio has been obtained only for special classes of graphs
(for example, Hamiltonian graphs), while in the general case the best known
ratio prior to the present paper was of order |V |/ log |V |.

We present a polynomial-time algorithm for the general case that �nds a
path of length Ω

(
(log L/ log log L)2

)
in a graph with longest path length L; the

best previous bound was Ω(log L). This corresponds to a performance ratio of
order

O

(|V |(log log |V |)2

log2 |V |

)
. (1)

For bounded degree graphs we improve the ratio to O
(|V | log log |V |/ log2 |V |).

For three-connected graphs we establish the perormance ratio (1) for the longest
cycle problem.

Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.
Email: thore@cs.lth.se.

Previous work

The �rst approximation algorithms for longest path are due to Monien [7] and
Bodlaender [2], both �nding a path of length Ω(log L/ log log L). Neither of these
algorithms can be used to �nd a log |V | path if it exists, but Papadimitriou
and Yannakakis conjectured that such a polynomial-time algorithm exists [8].
This was con�rmed by Alon, Yuster, and Zwick [1], introducing the important
method of colour-coding. Especially, this algorithm �nds an Ω(log L)-path and
corresponds to a performance ratio of

O

(|V |
log |V |

)
,

which is the best ratio known prior to the present paper.
The problem has received additional study for restricted classes of graphs,

where the � log |V |-barrier� has been broken by Vishwanathan [9]. His algorithm
achieves the same performance ratio (1) as ours, but works only for Hamiltonian
graphs. In sparse Hamiltonian graphs, Feder, Motwani, and Subi [4] �nd even
longer paths.

The hardness results for this problem are mainly due to Karger, Motwani,
and Ramkumar [6]: The longest path problem does not belong to APX and

cannot be approximated within 2log1−ε |V | unless NP ⊆ DTIME
(
2O(log1/ε n)

)
for

any ε > 0.

2 Preliminaries

In the remainder, we consider a connected graph G = (V, E) with n = |V |
vertices and e = |E| edges. We write G[W] for the graph induced by the vertex
set W .

Paths and cycles

The length of a path and a cycle is its number of edges. The length of a cycle C
is denoted l(C). A k-cycle is a cycle of length k, a k+-cycle is a cycle of length
k or larger. A k-path and k+-path is de�ned similarly. For vertices x and y, an
xy-path is a (simple) path from x to y, and if P is a path containing u and v
we write P [u, v] for the subpath from u to v. We let LG(v) denote the length
of the longest path from a vertex v in the graph G, and sometimes abbreviate
LW (v) = LG[W](v). The path length of G is maxv∈V LG(v).

We need the following result, Theorem 5.3(i) of [2]:

Theorem 1 (Bodlaender) Given a graph, two of its vertices s, t, and an integer
k, one can �nd a k+-path from s to t (if it exists) in time O

(
(2k)!22kn + e

)
.

Corollary 1 A k+-cycle through a given vertex can be found in time t(k) =
O

(
((2k)!22kn + e)n

)
, if it exists.

Proof. Let s be the given vertex. For all neighbours t of s apply the Theorem
on the graph with the edge st removed. ut

We also need the following easy lemma.

Lemma 1 If a connected graph contains a path of length r then every vertex is
an endpoint of a path of length at least 1

2r.

Proof. Given vertices u, v ∈ V let d(u, v) denote the length of the shortest path
between u and v.

Let P = p0 · · · pr be a path and let v be a vertex. Find i minimising d(pi, v).
By minimality there is a path Q from v to pi that contains no other vertices
from P . Now either QP [pi, pr] or QP [pi, p0] has length at least 1

2r. ut
The next lemma is central to our construction: Assume that a vertex v orig-

inates a long path P and v lies on a cycle C; then the removal of C decomposes
G into connected components, one of which must contain a large part of P .

Lemma 2 Assume that a connected graph G contains a simple path P of length
LG(v) > 1 originating in vertex v. There exists a connected component G[W] of
G[V − v] such that the following holds.

1. If G[W + v] contains no k+-cycle through v then every neighbour u ∈ W of
v is the endpoint of a path of length

LW (u) ≥ LG(v)− k.

2. If C is a cycle in G[W +v] through v of length l(C) < LG[W+v](v) then there
exists a connected component H of G[W −C] that contains a neighbour u of
C − v in G[W + v]. Moreover, every such neighbour u is the endpoint of a
path in H of length

LH(u) ≥ LG(v)
2l(C)

− 1.

Proof. Let r = LG(v) and P = p0 · · · pr, where p0 = v. Note that P [p1, pr] lies
entirely in one of the components G[W] of G[V − v].

First consider statement 1. Let u ∈ W be a neighbour of v. Since G[W] is
connected, there exists a path Q from u to some vertex of P . Consider such a
path. The �rst vertex pi of P encountered on Q must have i < k since other-
wise the three paths vu, Q[u, pi] and P [p0, pi] form a k+-cycle. Thus the path
Q[u, pi]P [pi, pr] has length at least r − k + 1 > r − k.

We proceed to statement 2. Consider any cycle C in G[W + v] through v.
Case 1. First assume that P ∩C = v, so that one component H of G[W −C]

contains all of P except v. Let N be the set of neighbours of C − v in H . First
note that N is nonempty, since G[W] is connected. Furthermore, the path length
of H is at least r − 1, so Lemma 1 gives LH(u) ≥ (r − 1)/2 for every u ∈ N .

Case 2. Assume instead that |P ∩ C| = s > 1. Enumerate the vertices on P
from 0 to r and let i1, . . . , is denote the indices of vertices in P ∩C, in particular

i1 = 0. Let is+1 = r. An averaging argument shows that there exists j such
that ij+1 − ij ≥ r/s. Consequently there exists a connected component H of
G(W −C) containing a simple path of length r/s−2. At least one of the ijth or
ij+1th vertices of P must belong to C−v, so the set of neighbours N of C−v in
H must be nonempty. As before, Lemma 1 ensures LH(u) ≥ r/2s− 1 for every
u ∈ N , which establishes the bound after noting that s ≤ l(C). ut

3 Result and Algorithm

The construction in this section and its analysis establishes the following theo-
rem, accounting for the performance ratio (1) claimed in the introduction in the
worst case.

Theorem 2 If a graph contains a simple path of length L then we can �nd a
simple path of length

Ω
((log L

log log L

)2
)

in polynomial time.

3.1 Construction of the Cycle Decomposition Tree

Given a vertex v in G, our algorithm constructs a rooted node-weighted tree Tk =
Tk(G, v), the cycle decomposition tree. Every node of Tk is either a singleton or a
cycle node: A singleton node corresponds to a single vertex u ∈ G and is denoted
〈u〉, a cycle node corresponds to a cycle C with a speci�ed vertex u ∈ C and
is denoted 〈C, u〉. Every singleton node has unit weight and every cycle node
〈C, u〉 has weight 1

2 l(C).
The tree is constructed as follows. Initially Tk contains a singleton node 〈v〉,

and a call is made to the following procedure with arguments G and v.

1. For every maximal connected component G[W] of G[V − v], execute step 2.
2. Search for a k+-cycle through v in G[W +v] using Theorem 1. If such a cycle

C is found then execute step 3. Otherwise pick an arbitrary neighbour u ∈
G[W + v] of v, insert the node 〈u〉 and the tree edge 〈v〉〈u〉, and recursively
compute Tk

(
G[W], u

)
.

3. Insert the cycle node 〈C, v〉 and the tree edge 〈v〉〈C, v〉. For every connected
component H of G[W−C] choose an arbitrary neighbour u ∈ H of C−v, and
insert the singleton node 〈u〉 and the tree edge 〈C, v〉〈u〉. Then, recursively
compute Tk(H, u).

Note that each recursive step constructs a tree that is connected to other
trees by a single edge, so Tk is indeed a tree. Also note that the ancestor of every
cycle node must be a singleton node. The root of Tk is 〈v〉.

3.2 Paths in the Cycle Decomposition Tree

The algorithm �nds a path of greatest weight in Tk. This can be done in linear
time by depth �rst search. The path found in Tk represents a path in G, if we
interpret paths through cycle vertices as follows. Consider a path in Tk through
a cycle vertex 〈C, u〉. Both neighbours are singleton nodes, so we consider the
subpath 〈u〉〈C, u〉〈v〉. By construction, v is connected to some vertex w ∈ C
with w 6= u. One of the two paths from u to w in C must have length at least
half the length of C, call it P . We will interpret the path 〈u〉〈C, u〉〈v〉 in Tk as a
path uPv in G. If a path ends in a cycle node 〈C, u〉, we may associate it with a
path of length l(C)− 1, by moving along C from u in any of its two directions.
Thus a path of weight m in Tk from the root to a leaf identi�es a path of length
at least m in G.

We need to show that Tk for some small k has a path of su�cient length:1

Lemma 3 If G contains a path of length r ≥ 28 starting in v then Tk = Tk(G, v)
for

k =
⌈

2 log r

log log r

⌉

contains a weighted path of length at least 1
8k2 − 1

4k − 1.

Proof. We follow the construction of Tk in �3.1.
We need some additional notation. For a node x = 〈w〉 or x = 〈C, w〉 in Tk

we let L(x) denote the length of the longest path from w in the component G[X]
corresponding to the subtree rooted at x. More precisely, for every successor y of
x (including y = x), the set X contains the corresponding vertices w′ (if y = 〈w′〉
is a singleton node) or C′ (if y = 〈w′, C′〉 is a cycle node).

Furthermore, let S(n) denote the singleton node children of a node n and let
C(n) denote its cycle node children. Consider any singleton node 〈v〉.

Lemma 2 asserts that

L(v) ≤ max
{

max
w∈S〈v〉

L(w) + k, max
〈C,v〉∈C〈v〉
w∈S〈C,v〉

(
2L(w) + 2

)
l(C)

}
. (2)

De�ne n(v) = w if 〈w〉 maximises the right hand side of the inequality (2)
and consider a path Q = 〈x0〉 · · · 〈xt〉 from 〈v〉 = 〈x0〉 described by these heavy
nodes. To be precise we have either n(xi) = xi+1 or n(xi) = xi+2, in the latter
case the predecessor of 〈xi+2〉 is a cycle node.

We will argue that the gaps in the sequence

L(x0) ≥ L(x1) ≥ · · · ≥ L(xt).

1 All logarithms are to the base 2 and the constants involved have been chosen aiming
for simplicity of the proof, rather than optimality.

cannot be too large due to the inequality above and the fact that L(xt) must be
small (otherwise we are done), and therefore Q contains a lot of cycle nodes or
even more singleton nodes.

Let s denote the number of cycle nodes on Q. Since every cycle node has
weight at least 1

2k the total weight of Q is at least 1
2sk + (t− s) = s(1

2k− 1)+ t.
Consider a singleton node that is followed by a cycle node. There are s such

nodes, we will call them cycle parents. Assume 〈xj〉 is the �rst cycle parent node.
Thus according to the �rst part of Lemma 2 its predecessors 〈x0〉, . . . , 〈xj〉 satisfy
the relation L(xi+1) ≥ L(xi)− k, so

L(xj) ≥ r − jk ≥ r − 1
8k3 ≥ 7

8r,

since j ≤ t ≤ 1
8k2 (otherwise we are �nished) and r ≥ k3.

From the second part of Lemma 2 we have

L(xj+2) ≥ 7r

16l(C)
− 1 ≥ r

k2
.

where we have used l(C) ≤ 1
4k2 (otherwise we are �nished) and r ≥ 4

3k2.
This analysis may be repeated for the subsequent cycle parents as long as

their remaining length after each cycle node passage is at least k3. Note that Q
must pass through as many as s′ ≥ d 1

4k − 1e cycle nodes before
r

k2s′ < k3,

at which point the remaining path may be shorter than k3. Thus we either have
visited s ≥ s′ cycle nodes, amounting to a weighted path Q of length at least

s(1
2k + 1) ≥ 1

8k2 − 1
4k − 1

(remembering that any two consecutive cycle nodes must have a singleton node
in-between), or there are at most s < s′ cycle nodes on Q. In that case there is a
tail of singleton nodes starting with some L(x) ≥ k3. Since L(xj) ≤ L(xj+1)+ k
for the nodes on the tail, the length of the tail (and thus the weight of Q) is at
least k2. ut

3.3 Summary

Our algorithm divides the input graph into its connected components and per-
forms the following steps for each. It picks a vertex v in the component and con-
structs cycle decomposition trees Tk for all k = 6, . . . , d2 logn/ log log ne. Corol-
lary 1 tells us that this is indeed a polynomial time task. Moreover, Lemma 1
ensures that v originates a path of at least half the length of the longest path
in the component. The algorithm then �nds paths in G identi�ed by the longest
weighted paths in Tk in linear time. Finally, Lemma 3 establishes the desired
approximation ratio.

4 Extensions

4.1 Bounded Degree Graphs

As in [9], the class of graphs with their maximum degree bounded by a constant
admits a relative log log n-improvement over the performance ratio shown in
this paper. All paths of length log n can be enumerated in polynomial time for
these graphs. Consequently, we can replace the algorithm from Theorem 1 by
an algorithm that e�ciently �nds cycles of logarithmic length or larger through
any given vertex if they exist.

Proposition 1 If a constant degree graph contains a simple path of length L then
we can �nd a simple path of length

Ω
(

log2 L

log log L

)

in polynomial time.

This gives the performance ratio O
(|V | log log |V |/ log2 |V |) for the longest

path problem in constant degree graphs.

4.2 Three-Connected Graphs

Bondy and Locke [3] have shown that every 3-connected graph with path length
l must contain a cycle of length at least 2l/5. Moreover, their construction is
easily seen to be algorithmic and e�cient. This implies the following result on
the longest cycle problem:

Proposition 2 If a 3-connected graph contains a simple cycle of length L then
we can �nd a simple cycle of length

Ω
((log L

log log L

)2
)

in polynomial time.

This gives the performance ratio O
(|V |(log log |V |/ log |V |)2) for the longest

cycle problem in 3-connected graphs. Note that for 3-connected cubic graphs,
[4] show a consiberably better bound.

Acknowledgement

We thank Andrzej Lingas for bringing [9] to our attention, and Gerth Stølting
Brodal for commenting on a previous version of this paper.

References

1. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(2):844�856,
1995.

2. H. L. Bodlaender. On linear time minor tests with depth-�rst search. Journal of

Algorithms, 14(1):1�23, 1993.
3. J. A. Bondy and S. C. Locke. Relative length of paths and cycles in 3-connected

graphs. Discrete Mathematics, 33:111�122, 1981.
4. T. Feder, R. Motwani, and C. S. Subi. Finding long paths and cycles in sparse

Hamiltonian graphs. In Proc. 32th STOC, pages 524�529. ACM, 2000.
5. M. Garey and D. Johnson. Computers and intractability: A guide to the theory of

NP-completeness. W. H. Freeman, San Francisco, 1979.
6. D. Karger, R. Motwani, and G.D.S. Ramkumar. On approximating the longest path

in a graph. Algorithmica, 18(1):82�98, 1997.
7. B. Monien. How to �nd long paths e�ciently. Annals of Discrete Mathematics,

25:239�254, 1985.
8. C. H. Papadimitriou and M. Yannakakis. On limited nondeterminism and the

complexity of the V�C dimension. Journal of Computer and Systems Sciences,
53(2):161�170, 1996.

9. S. Vishwanathan. An approximation algorithm for �nding a long path in Hamilto-
nian graphs. In Proc. 11th SODA, pages 680�685, 2000.

