WDM SWITCHING NETWORKS, REARRANGEABLE AND NONBLOCKING
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Abstract. We propose a framework to analyze and compare wavelength division multiplexed (WDM) switching
networks qualitatively and quantitatively. The framework not only help analyze and compare the complexity of
WDM switching networks, but also explain interesting properties of different designs. Then, several important
problems arising from this idea are addressed, and complexity bounds are derived. We also give several applications
of the proposed model, including explicit constructions of non-blocking WDM switching fabrics.
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1. Introduction. With the advances of dense wavelength division multiplexing (DWDM)
technology [21, 32, 38], the number of wavelengths in a wavelength division multiplexed
(WDM) network increases to hundreds or more per fiber, and each wavelength operates at
10Gbps (OC-192) or higher [17-19]. While raw bandwidth has increased by more than four
orders of magnitude over the last decade or so, capacity of switches has only been up by a
factor of ten. Switching speed is the bottleneck at the core of the optical network infrastruc-
ture [37]. Consequently, a challenge is to design cost-effective WDM cross-connects (WXC)
that can scale in size beyond a hundred of inputs and outputs, and at the same time, switch
fast (e.g., tens of nanoseconds or less).

The notion of “cost-effectiveness” is difficult to capture. One can analyze and compare
WDM switches both qualitatively and quantitatively.

Qualitatively, we need to know if a design is strictly nonblocking (SNB), rearrangeably
nonblocking (RNB), and/or wide-sense nonblocking (WSNB) under different request models
[20,24,25,31,33,34,39,41,42] and different traffic patterns (unicast [24,25,42], multicast
[22,26,43]). A design can also be blocking as long as its blocking probability is below a
certain threshold [15,31]. There are various other qualitative features such as small cross-
talk [39], small number of limited-range wavelength converters [25,42], or fault-tolerant [4].
Presumably each new design is guided by a particular qualitative feature. For example, one
might come up with an RNB design under one request model, which may or may not be SNB
under another request model. One might also have an intuitively good design, and hence need
to know what qualitative feature the design possesses. This question is challenging in general.
We will see later that the graph models introduced in this paper help, in several ways, answer
these types of questions.

Quantitatively, comparing different designs, or asking how close to be optimal a new
design is, are very important questions. This is a multi-dimensional problem, as there are
many factors effecting the “cost” of a switch. Some factors such as actual cost in dollars are
business matters. Other factors include: the numbers of different types of switching com-
ponents, such as (de)multiplexors (MUX/DEMUX), full and limited wavelength converters
(FWC and LWC), semiconductor optical amplifiers (SOA), optical add-drop multiplexors
(OADM), directional couplers (DC), etc; or signal and switch quality parameters, such as
cross-talk, power consumption and attenuation, integratability and scalability, blocking prob-
abilities, etc.
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It should be apparent that we cannot hope to have a cost model that fits all needs. How-
ever, one can devise cost models which give good approximated measures on how “complex”
a construction is. The notion of complexity should roughly capture as many practical param-
eters as possible.

In this paper, we outline an intriguing approach to model switch complexity which not
only helps analyze WDM switches quantitatively and qualitatively, but also suggests interest-
ing generalizations of classical switching network theory [2,29]. Then, we address several
important problems arising from the framework.

We consider two dominant request models in this paper. The following phenomena are
samples of what our model suggests:

(a) Designing WXCs in the so-called (X, F, X', F")-request model is basically the same

as designing a circuit switch. Hence, many old ideas on circuit switching can be
readily reused. (Section 4.1.)

(b) Two SNB switches in two models are equivalent topologically, even though one
request model is much less restrictive than the other. (Section 5.1.)

(c) There is an inherent tradeoff between a WXC’s “depth” (which is proportional to
signal attenuation, cross-talk) and its “size” (which approximates the WXC’s com-
plexity). (Section 5.2.)

(d) Different designs of WXCs which make used of different optical components can
now be viewed in a unified manner. We can tell if two different-looking designs are
equivalent topologically, for example. (Section 7.)

We will also derive several complexity bounds and give a generic construction which can be
used to construct RNB switches (Section 6).

The framework proposed here gives rise to interesting mathematical and networking
problems, many of which are generalized versions of the well-studied circuit switching prob-
lems. We address several of these problems in the second part of the paper.

The rest of the paper is organized as follows. Section 2 introduces basic settings of
WXCs, request models, and nonblocking concepts. Section 3 motivates the graph models
which will be rigorously defined in Section 4. Section 5 addresses several key complexity
problems arising from the framework. Section 6 explicitly constructs graphs with low com-
plexity. The ideas in this section can be used to construct WXCs of low cost. Section 7
discusses several applications of our framework. Lastly, Section 8 concludes the paper with
a few remarks and discussions on future works.

2. WDM cross-connects, request models, and nonblockingness. A general WDM
cross-connect (WXC) consists of f input fibers each of which can carry aset A = {Aq,..., Ay}
of w wavelengths, and f’ output fibers each of which can carry a set A’ = {\},..., A, } of
w' wavelengths, where fw = f'w’. (See Figure 2.1.) This setting is referred to as the het-
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erogeneous case [34], which is needed to connect subnetworks from different manufacturers.
Henceforth, let n = fw = f’w’, unless specified otherwise.

Let F = {F1,...,Fy}and F' = {F], ..., F},} denote the set of input and output fibers,
respectively. There are two common types of request models [24,41]. In the (A, F, F')-
request model, a connection request is of the form (A, F, F’), where A € A, F € F, and
F’ € F'. The request asks to establish a connection from wavelength X in input fiber F' to
any free wavelength in output fiber F'. In the (A, F, X', F')-request model, the difference is
that the output wavelength X’ in F” is also specified.

In the next sections, we will define the concepts of SNB, WSNB, and RNB for both
request models. We will be somewhat informal in our definitions. However, the idea should
be clear to readers who have been exposed to switching theory [2, 13,23,29].

Consider a WXC with a few connections already established. Under the (A F, F')-
model, a new request (\, F, F"') is said to be valid if and only if A is a free wavelength in
fiber F, and there are at most w’ — 1 existing connections to F’. Under the (X, F, X, F')-
model, a new request (A, F, X', F') is valid if and only if X is free in F and X' is free in
F'.

A request frame under the (X, F, F') model is a set of requests such that no two requests
are from the same wavelength in the same input fiber, and that there are at most w’ requests
to any output fiber. A request frame under the (A, F, X', F')-model is a set of requests such
that no two requests are from the same input wavelength/fiber pair, nor to the same output
wavelength/fiber pair.

The following definitions hold for both request models. A request frame is realizable by
a WXC if all requests in the frame can be routed simultaneously. A WXC is rearrangeably
nonblocking if and only if any request frame is realizable by the WXC. A WXC is strictly
nonblocking if and only if a new valid request can always be routed through the WXC with-
out disturbing existing connections. A WXC is widesense nonblocking if and only if a new
valid request can always be routed through the WXC without disturbing existing connections,
provided that new requests are routed according to some routing algorithm. When the routing
algorithm is known, we say that the WXC is WSNB with respect to the algorithm.

Henceforth, for any positive integer p, let [p] denote the set {1, ..., p} and S, denote the
set of all permutations on [p]. Graph theoretic terminologies and notations we use here are
fairly standard (see [40], for instance).

3. Motivations. Main known results on the constructions of (different types of) non-
blocking WXCs can be found in [20, 22, 24-26, 31, 33, 34, 39, 41, 42]. (Note that we are
not discussing multicast switching in this paper.) The constructions from these references
made use of various different types of optical components, such as arrayed waveguide grat-
ing routers (AWGR) and LWCs in [24], SOAs and LWCs in [42], OADMs and FWCs in [41],
wavelength selective cross-connects (WSC), wavelength interchangers (WI) in [33, 34], di-
rectional couplers (DC) in [39]. It is clear that the task of comparing different designs is not
easy. Different designs make use of different optical switching components which oftentimes
are trade-offs. For instance, the designs in [42] made use of SOAs and LWCs which have
lower wavelength conversion cost than those in [24]. On the other hand, the ones in [24]
preferred AWGRs over SOAs since AWGRs consume virtually no power.

We now propose an approach to uniformly model all designs by graphs, and then discuss
switch complexity from the graphs’ standpoint.

We classify optical switching components into fibers and other switching components.
For any switch design, we apply the following procedure to construct a directed acyclic graph
(DAG) from the design: (a) replace each fiber by a set of vertices A U A’, which represents
all possible wavelengths which can be carried on the fiber; (b) the edges of the DAG are
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defined according to the capacity of switching components in the design. The edges connect
wavelengths (i.e. vertices) on the inputs of each switching component to the wavelengths on
the outputs in accordance with the functionality of the switching component.

We shall be somewhat brief on this construction. However, the reader will undoubtedly
see the basic idea. As an example, Figure 3.1 shows how to turn an AWGR, an FWC, and a
MUX into edges. Figure 3.2 shows a complete construction of the DAG from the design on
the left.
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F1G. 3.1. Turning optical components into parts of a graph. A fiber is replaced by a set of vertices representing
the wavelengths it can carry. Other components define edges connecting input wavelengths to output wavelengths.
For the AWGR, MUX, and FWC, we illustrate with w = 3. Edges are directed from left to right.
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FIG. 3.2. A WDM switch design and its corresponding DAG.

The key point is that a set of compatible routes from input wavelengths to output
wavelengths correspond to a set of vertex disjoint paths from the inputs to the outputs
of the DAG.

There are two main parameters of the DAG, which capture the notion of “switch com-
plexity” discussed earlier. The number of edges of the DAG, called the size of the DAG, is
roughly proportional to the total cost of various components in the design. For example, an
FWC corresponds to 3w edges while an WI [34] corresponds to w? edges; a w x w AWGR
corresponds to w? edges, while a w x w WDM crossbar corresponds to w* edges; etc. As
WIs and WDM crossbars are more expensive than FWCs and AWGRs, this model makes
sense. Other components follow the same trend.

The reader might have noticed that different components contribute different “weights”
to the total cost, hence summing up the number of edges may not give the “right” cost. To
answer this doubt, we make three points. Firstly, as argued earlier one cannot hope to have
a perfect model which fits all needs, and part of the notion of cost is a business matter. Our
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first aim is at a more theoretical level. Secondly, this is the first step toward a good cost
model. One certainly can envision weighted graphs as the next step. Thirdly, we surely can
and should still use more traditional cost functions such as the direct counts of the number of
each components and compare them individually.

The second measure on the DAG is its depth, i.e. the length of a longest path from any
input to any output. as signals passing through different components of a design, they lose
some power. The depth of the DAG hence reflects power loss, or in some cases even the
signal delay. Again, different components impose different power loss factors. Hence, other
information need to be taken into account to estimate power loss. However, it is clear that
network depth is an important measure.

Last but not least, this DAG model provides a nice bridge between classical switching
theory and WDM switching theory. As we shall see in later sections, this model helps us
tremendously in answering qualitative questions about a particular construction. For example,
if an w f-input w f-output DAG must have size Q(f?w?) to be strictly nonblocking, then we
know for certain that a construction of cost o(f2w?) (reflected by the DAG’s size) cannot be
strictly nonblocking (for sufficiently large values of fw.)

4. Rigorous settings. An (n1,ns)-network is a directed acyclic graph (DAG) N' =
(V,E; A, B), where V is the set of vertices, E is the set of edges, A is a set of n; nodes
called inputs, and B, disjoint from A, is a set of ns nodes called outputs. The vertices in
V — A U B are internal vertices. The in-degrees of the inputs and the out-degrees of the
outputs are 0. The size of a network is its number of edges. The depth of a network is the
maximum length of a path from an input to an output. An n-netrwork is an (n, n)-network.

An n-network is meant to represent the DAG from last section under the (X, F, X', F')-
request model. (Recall n = wf = w'f’.) Later on, we shall define [w, f]-networks which
represent the DAG under the (X, F, F’)-request model.

4.1. The (\, F, X', F')-request model. Given an n-network N' = (V, E}; A, B), a pair
D = (a,b) in A x B is called a request (or demand) for N'. A set D of requests is called
a request frame iff no two requests share an input nor an output. A request D = (a,b) is
compatible with a request frame D iff D U {D} is also a request frame. A route R for a
request D = (a, b) is a (directed) path from a to b. We also say R realizes D. A state of N
is a set R of vertex disjoint routes. Each state of A/ realizes a request frame, one route per
request in the frame. A request frame D is realizable iff there is a network state realizing it.

A rearrangeable (RNB) n-connector (or just n-connector for short) is an n-network in
which the request frame D = {(a,7(a)) | a € A} is realizable, for any one-to-one corre-
spondence 7 : A — B.

A strictly nonblocking (SNB) n-connector is an n-network A in which given any network
state R realizing a request set D, and given a new request D compatible with D, there exists
aroute R such that R U {R} is a network state realizing D U {D}.

As requests come and go, a strategy to pick new routes for new requests is called a
routing algorithm. An n-network N is called a widesense nonblocking (WSNB) n-connector
with respect to a routing algorithm A if A can always pick a new route for a new request
compatible with the current network state. We can also replace A by a class of algorithms .A.
In general, an n-network A/ is WSNB iff it is WSNB with respect to some algorithm.

We often consider two classes of functions on each network type: (a) the minimum size
of a network, and (b) the minimum size of a network with a given depth. The main theme
of research on classical switching networks is to investigate the trade-off between size and
depth [23,29].

Let re(n), we(n), and sc(n) denote the minimum size of an RNB, WSNB, and SNB n-
connector, respectively. Let re(n, k), we(n, k), and se(n, k) denote the minimum size of an
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RNB, WSNB, and SNB n-connector with depth k, respectively. Note that rc(n) < we(n) <
sc(n), and re(n, k) < we(n, k) < sc(n, k). These classes of functions are well studied in
the context of circuit switching networks (see, e.g., [23,29] for nice surveys).

Two key conclusions arise from this formulation:

e Studying WDM switches under the (A, F, ', F')-request model is in a sense the
same as studying classical switching networks. A lot of results can be readily re-
used. For example, using our DAG construction, it is easy to see that all of the
constructions (under this request model) in [24,33,34,42] made use of various forms
of the Clos network [5,27], Banyan, Butterfly and Base Line networks [11, 12], or
Cantor network [3], etc. In fact, under this request model, we do not know of any
design which is not topologically isomorphic to some of classical circuit design.

e The situation under the (A, F, F')-model is different, however. The RNB design
in [24], and the designs presented in this paper require several new themes. Particu-
larly, this is because the (A, F, F')-model is not equivalent to the classical switching
case, as we shall see in the next section.

4.2. The (), F, F')-request model. In this request model, each pair (A, F) with A € A,
F' € F can still be thought of as an “input” to our graphs as in the previous request model.
However, on the output side we do have to indicate the number f of fibers and the number of
wavelengths w on each fiber.

Setn = wf. A [w, f]-network is an n-network A" = (V, E}; A, B) in which the set B of
outputs is further partitioned into f subsets By, ..., By of size w each. Each set B; represents
an output fiber in the WDM switch. We implicitly assume the existence of the partition in a
[w, f]-network, in order to simplify notations. (There is a slightly subtle point to be noticed
here. The inputs are not distinguishable in this request model, while we do care which fiber
an output wavelength is from. The parameters w and f in the above sentence and henceforth
should be thought of as w’ and f’ in the original discussion.)

Given a [w, f]-network AV, a pair D = (a,k) € A X [f] is called a (connection) request
for M. The number k is called the output fiber number of D. A set D of requests is called a
request frame iff no two requests share an input, and for any k € [f], we have |[{a | (a, k) €
D}| < w. Arequest D = (a, k) is compatible with a request frame D iff D U {D} is also a
request frame.

A route R for arequest D = (a, k) is a path from a to some vertex b in By. We also say
R realizes D. A state of N is a set R of vertex disjoint routes. Each state of N realizes a
request frame. A request frame D is realizable iff there is a network state realizing it.

We are interested in (WSNB, SNB, RNB) connectors under this request model. A (rear-
rangeable) [w, f]-connector is a [w, f]-network in which the request frame

D ={(a,0(a)) |a € A}
is realizable for any mapping o : A — [f] such that
{a|o(a) =k} = w, Vk € [f].

A strictly nonblocking (SNB) [w, f]-connector is an [w, f]-network A in which given any
network state R realizing a request set D, and given a new request D compatible with D,
there exists a route R such that RU{ R} realizes DU{D}. Asrequests come and go, a strategy
to pick new routes for new requests is called a routing algorithm. An [w, f]-network N is
called a widesense nonblocking (WSNB) [w, f]-connector with respect to a routing algorithm
A if A can always pick a new route for a new request compatible with the current network
state. We can also replace A by a class of algorithms A. In general, an [w, f]-network N is
WSNB iff it is WSNB with respect to some algorithm.
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The different [w, f]-networks are generalized versions of the corresponding n-networks:

PROPOSITION 4.1. A network is an SNB, WSNB, RNB [1, f]-connector if and only if it

is an SNB, WSNB, RNB f-connector, respectively.

Let 7¢(w, f), we(w, f), and S¢(w, f) denote the minimum sizes of an RNB, WSNB,

and SNB [w, f]-connector, respectively. Similarly, for a fixed depth k, we define 7¢(w, f, k),
we(w, f, k), and 3¢(w, f, k). These functions have not been studied before. Some trivial
bounds can be summarized as follows:

PROPOSITION 4.2. Let n = wf, then

(i) Te(w, f) < we(w, f) < se(w, f)

(iii) a RNB, WSNB, SNB n-connector is also a RNB, WSNB, SNB [w, f]-connector, re-
spectively. Consequently, 7¢(-) < re(-), we(-) < we(-), and 5¢(-) < sc(-), where
the dots on the left hand sides can be replaced by (w, f) or (w, f, k), and the dots
on the right hand sides by (n) or (n, k), correspondingly.

5. Complexity bounds.

5.1. Strictly nonblocking [w, f]-connectors. We study SNB [w, f]-connectors in this
section. For f = 1, it is easy to see that s¢(w,1,k) = w + k — 1. We assume f > 2 from
here on.

Intuitively, an optimal SNB [w, f]-connector might have (strictly) smaller size than an
optimal SNB w f-connector, since the (A, F, X', F')-request model is more restrictive than
the (A, F, F')-request model. However, the following theorem shows a somewhat surprising
result that we can do no better than an SNB w f-connector when f > 2. This theorem explains
rigorously why the authors in [24] could not construct SNB designs under the (X, F, F’)-
model with lower cost than the ones under the other model!

THEOREM 5.1. Let n = wf, where n,w, f are positive integers, and f > 2. An n-
network N' = (V, E; A, B) is a strictly nonblocking n-connector iff it is a strictly nonblocking
[w, f]-connector.

Proof. An SNB n-connector is also an SNB [w, f]-connector, no matter how the fiber
partitioning is done. For the converse, let N be an SNB [w, f]-connector. Let B = By U---U
By be the partition of B. (Recall, by definition, that |B;| = w, Vi € [f] and that |A| = wf.)

Consider a state R of this network. We shall show that if a is a free input and b is a free
output, then there exists a route R from a to b such that R U { R} is a network state.

Let X be the set of free inputs and Y the set of free outputs. Note thata € X, b €Y,
and | X| =Y.

Suppose b € By, for some k € [f]. Without loss of generality, we assume that there is
no free output in any B; for j # k. This can be accomplished by creating as many requests
of the form (z, j) as possible, where z € X — {a} and j # k, until there is no more free
outputs at the B; with j # k. Then, let R be the new network state (which satisfies all
new requests and also contains the old network state). An (a, b)-route compatible with R is
certainly compatible with the old network state.

We can now assume Y C By. Create | X| requests of the form (z, k), one for each
z € X. Since N is a [w, f]-connector, there is a route R, for each z in X satisfying the
following: (i) R, starts from z and ends at some vertex in By, and (ii) RU{R, | z € X} is
a network state.

If R, is an (a, b)-route, then we are done. Moreover, if | X| = |Y| = 1, then R, must be
an (a, b)-route. Consequently, we can assume the following:

o |X[=[Y]>2.
e R, goes from a to some vertex y € By, — {b}.
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e There is some € X — {a} such that R, ends at b.
o There is some vertex a’ ¢ X and a route

R = (a',v1,...,vp,b') ER

which goes from a’ to a vertex b’ € Bj, where j # k. (The route R’ € R exists
since we assumed that the vertices in B, j # k, are all busy.)
To this end, let

R' =RU{R,|t€ X} —{Ra,Rs, R'}.

We shall show that there exists an (a, b)-route R for which R’ U{R’, R} is a state. The route
R is then the route we are looking for, because R C R’ U {R'}.

We first claim that there exists an (z,y)-route R, compatible with R’. Consider the
state R' U {R,}. The request (a’, k) is valid (i.e. compatible with the request frame realized
by R' U{R,}), and b is the only free output in By; hence, there is an (a’, b)-route Ry, such
that R’ U{Rq, Ra } is a state. Now, in the state R’ U{Rq} the request (, k) is valid, and y
is the only free output in By. Hence, there is an (z, y)-route R, such that R’ U{Rqap, Rzy}
is a state. Consequently, there is an (z, y)-route R, compatible with R’ as claimed.

Now, consider two cases as follows.

Case 1: among all the (z, y)-routes which are compatible with R’ there is some R, which
is vertex also disjoint from R'. Then, in the state R’ U {R’, R,y } the request (a, k) is valid,
and b is the only free output in By. Hence, there is an (a, b)-path compatible with R’ U {R'}
as desired.

Case 2: every (z, y)-route compatible with R’ intersects R’ at some point. Let R, be such
an (z, y)-route whose last intersection vertex on (v, .. ., vp) has the largest index, say v;, for
some j € [p]. Then, R, is composed of two parts: the part from  to v; and the part from v;
to y.

Let Rqry be an (a’,y)-path consisting of the part (a’,v1,...,v;) of R" and the (vj,y)-
part of R;,. Then, certainly R,s, is compatible with R’. In the state R’ U {Rqay} the
request (a, k) is valid, and b is the only free output in By. Hence, there is an (a, b)-path Rqp
compatible with R’ U {Rqry }.

If R, does not intersect R’, then we are done. Otherwise, R,p must intersect R’ at some
vjr for which j° > j. Similar to the previous paragraph, we can form an (a’, b)-path R,
compatible with R’ consisting of (a’,v1,...,v;) and the part of R, from v to b. Now,
consider the state R’ U {R,/4} in which y is the only free vertex in By. The request (z, k)
is valid, hence there is some (z, y)-path compatible with R’ U {Rq/}. This (z, y)-path must
then intersect R’ (since we are in case 2) at some vertex after v;» (for compatibility with
Rgp), contradicting our choice of R, earlier. [

COROLLARY 5.2. The following hold for f > 2:

(i) se(w, f,1) = w?f2.

(ii) 5e(w, f, k) = Q ((wf)' /&) and 5e(w, f, k) = O((wf)'+/LF).

(iii) s¢(w, f) = O(wflg(wf)).

Proof. Letn = wf, then 5¢(w, f,k) = sc(n, k) by Theorem 5.1. The first equality
is obvious. The fact that sc(n,k) = O(n1+l/L%J) can be seen from the constructions
in [3,5,27]. The lower bound © ((wf)!*+1/(*~1)) was shown in [8]. That sc(n) = ©(nlgn)
can be found in [1,36]. The reader is referred to the surveys [23,29] for more details on what
is known about these functions. O
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5.2. Rearrangeable [w, f]-connectors. In this section, we first devise lower bounds for
the optimal size of RNB [w, f]-connectors and connectors of a fixed depth. The upper bounds
follow from explicit constructions presented in Section 6.

An idea of Pippenger [28] can be used to show the following theorem.

THEOREM 5.3. Every rearrangeable [w, f]-connector must have size at least

Zwflog f+0(f) - O(f lgw).

In particular, 7e(w, ) = Qwf 1g f).

Proof. The proof is completely similar to that of Pippenger’s theorem and thus will not
be repeated here. The only difference is that, the number of valid request frames is no longer
n! as in the case of an n-connector. In our case, the total number of different request frames
for A is the multinomial coefficient

wf ) 2 (wh) Varwf(wi/e)*! 1-/20~ths puwi+1/2
(w,...,w) — (wh)f S eths (2mw)/2(w/e)ws (2mw) e f BCRY

f times

where the inequality follows from Stirling’s approximation [35]. O

The bound Q(wf lg f) implies that for w < f, [w, f]-connectors must have size at least
Q(wflg(wf)), which is asymptotically no better than a w f-connector. This confirms our
intuition that for small values of w, [w, f]-connectors are almost the same as w f-connectors.

Fortunately, in WDM networks it is often the case that w > f, i.e. the number of
wavelengths per fiber (in the hundreds) is often much larger than the number of fiber (in the
tens). The next section shows that we can construct [w, f]-connectors that are asymptotically
less expansive than all known constructions of w f-connectors.

We next give lower bounds for fixed depth [w, f]-connectors.

THEOREM 5.4. The optimal size of a depth-1 [w, f]-connector is wf(wf — w + 1),
namely 7e(w, f,1) =wf(wf —w+1).

Proof. In the next section, we shall construct depth-1 [w, f]-connectors of size w f (wf —
w + 1), which proves the upper bound 7é(w, f,1) < wf(wf —w + 1).

For the lower bound, let ' = (A U B, E; A, B) be a depth-1 [w, f]-connector. Then,
N is a (directed) bipartite graph where |4| = wf, |B] = wf, and B has a partition into
By U--- U By, such that |B;| = w,Vi. The network N is a [w, f]-connector iff for every
partition of A into As,..., Ay with |4;| = w, Vi, there exist f complete matchings from
each A; to each B;.

It follows that each vertex b € B must have a neighbor in every w-subset of A. Conse-
quently, each vertex b € B must be of degree at least |A| — w + 1. Hence, the number of
edges of N is at least |B|(|A| —w+ 1) = wf(wf —w+1).0

For k > 2, we can use an idea by by Pippenger and Yao [30] on n-shifters to find a lower
bound for depth-k [w, f]-connectors. The proof is similar and left as an exercise.

THEOREM 5.5. Let k > 2 be an integer, a depth-k [w, f]-connector must have size
at least kwf'*V/k. Specifically, 7e(w, f,k) = Q(kwf'*/*). Noting that the function
kwf'*1/* is minimized at k = In f, we get the result 7¢(w, f) = Q(wflg f) from the
previous theorem (with a worse constant than 45/7):

COROLLARY 5.6. For k > 2, 7éa(w, f) > ewfIn f, where e is the base of the natural
log.
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6. Explicit Constructions. For any network N, let A(N') and B(N) denote the set
of inputs and outputs of N/, respectively. For any [w, f]-network N, we shall always use
Bi(N),...,Bf(N) to denote the partition of B(N). An important fact to notice is that
all presumably “theoretic” constructions presented in this section can easily be converted to
practical constructions. We shall not elaborate on this point due to space limitation.

6.1. Atomic networks. Let B(z,y) = (A U B; E) denote the complete = x y directed
bipartite graph, i.e. |[A| = z,|B| =y, and E = A X B. The (z, y)-network B(z, y) is called
an (x, y)-crossbar. When = y, we use the shorter notation B(z), and call it the z-crossbar.
For any positive integer m, let M(m) = (A U B; E) denote a perfect matching of size m
from A into B. (Therefore, |A| = |B| = m.) An (n, m)-concentrator is an (n, m)-network
where n > m, such that for any subset .S of m inputs there exists a set of m vertex disjoint
paths connecting .S to the outputs.

6.2. Union-networks and optimal depth-1 connectors. Let A7,..., N} be (wf,w)-
networks, with input sets Ay,..., A¢, and output sets By,..., By, respectively. For each
i=1,...,f —1,let¢; : A; — A;+1 be some one-to-one mapping. A left union or <-union
of M1,...,Ny is a [w, f]-network N constructed by identifying each vertex a € A; with
all vertices ¢1(a), d2 o ¢1(a),...,¢s—1 0 --- o ¢1(a) (to become an input of N), and let
By,..., By be, naturally, the partition of the outputs of A" (see Figure 6.1.) We denote AV as
N = <1(N1,...,Nf).

N =N, Na, ., Ng)

O—=
g N1 | Bi(N) = B(N)
g

Nz | Ba(N) = B(N2)
e Ny . Bj(N)= B(Nj)
4

FIG. 6.1. The left union N of f (wf, w)-networks is a [w, f]-network.

Let MVi,...,Ni be (m,n)-networks. An (mk,n)-network N' = (N7, ..., Nk) con-
structed by identifying outputs of the N; in some one to one manner is called a right union
(or >-union) of the NV;. The picture is virtually symmetrical to the left union picture.

The next theorem summarizes a few important properties of the union constructions. The
proof is simple and thus omitted. Note that part (i) completes the proof of Theorem 5.4.

THEOREM 6.1 (Optimal depth-1 construction). Let w, f be positive integers, then the
following hold

(i) Suppose N1, ...,Ny are (wf,w)-concentrators, then the network (N1, ..., Ny)
is a [w, f]-connector.

(ii) The network C1(w, f) = >(B(wf—w,w), M(w)), is a depth-1 (w f, w)-concentrator

of sizew(wf —w +1).

(iii) Let S1(w, f) be a left union of f copies of C1(w, f). Then, S1(w, f) is a depth-1

[w, f]-connector of size wf(wf — w + 1), which is optimal!

6.3. Constructions of product networks and [w, f]-connectors of depth two. DEFI-
NITION 6.2 (The X x-product). Let N7 be an m-network, and N be a [w, f]-network, define
the ordered product (for lack of better term) N' = N1 x x N3 as follows. We shall “connect”
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wf copies of N, denotedby/\/'l(l), e ,Nl(wf), to m copies J\/'Q(l), e ,Nz(m) of Na. For each
i€ {l,...,wf}and j € {1,...,m}, we identify the jth output Ole(l) with the ith input of
./\/'2(]). The output partition for N is defined by

B = U Buvg).

Naturally, AIN) = U, AWN?). Figure 6.2 illustrates the construction.

0 O - o 1) o
o (1) o o N 1) 0
- h - - 2 -
1 Z O— wf xwf 40
mXxXm - !
o g O-mmmmmmee- o
" o (2) o The dai}'led li'ne
o—] o ;o] N | means “identify
(2) SRS N 2 ~  these 2 vertices”
N - fxwf| -
1 : o= %o
mxm - ’
O O
> Each copy of N2
Y has w vertices in
each B;
, Hence, in the product-
ol %)/ network each Bj; is
et N of size mw
- 1 - SO am) O
: : O N2 —O
mXm ) z z
S Oowf xXwf |5

FIG. 6.2. Product of two networks: N1 is an m-network and N2 is a [w, f]-network.

The following proposition summarizes a few trivial properties of the product network.

PROPOSITION 6.3. Let N7 be an m-network of size s1 and depth d1, and N3 a |w, f]-
network of size sy and depth da. Then, the network N' = N1 x XNy is an [mw, f]-network
of size s = wfs1 + msq, and depth d = dy + d2. Before proving a crucial property of this
construction, we need a simple yet important lemma.

LEMMA 6.4. Let G = (X UY; E) be a bipartite multi-graph where the degree of each
vertex x € X is m and the degree of each vertex y € Y is mw. Then, there is an edge
coloring for G with exactly m colors such that vertices in X are incident to different colors,
and vertices in'Y are incident to exactly w edges of each color.

Proof. Split each vertex y € Y into w copies y(!), ...,y such that each copy has de-
gree m. The resulting graph is an m-regular bipartite graph, which can be m-edge-colored, by
Konig’s line coloring theorem [16]. This induces a coloring of G as desired. OThe following
lemma is the point of the ordered-product construction.

LEMMA 6.5. If N3 is a rearrangeable [w, f]-connector and N1 is a rearrangeable
m-connector, then N' = N1 x xN3 is a rearrangeable [mw, f]-connector.

Proof. Consider a request frame D for V. We use (a(?), k) to denote a request (a, k) € D

ifa € A(./\/'l(i) ). This is to signify the fact that the request was from the ath input of N 1(i) to
By.. By definition of a request frame, |{(a¥, k) | (a®?), k) € D}| = m for a fixed i. We shall
find vertex disjoint routes realizing requests in D.
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Construct a bipartite graph G = (X UY; E) where X = {N", ..., N} is the set
of all copies of N1, and Y = {Bjy, ..., By}. There is (a copy of) an edge of G between Nl(z)
and By, for each request (a(i), k) Clearly G is a bipartite graph satisfying the conditions of
Lemma 6.4.

As each edge of G represents a request D € D, Lemma 6.4 implies that there is an m-
coloring of all the requests such that, for a fixed ¢, requests of the form (a(i), k) get different
colors. Moreover, for a fixed k, requests of the form (a(i), k) can be partitioned into m
classes, where each class consists of exactly w requests of the same color.

Let C = {1,...,m} be the set of colors. Let c(a, k) denote the color of request (a, k) €
D. Without loss of generality, we number the m outputs of N, 1(2) with numbers from 1 to m,
ie. BW®) =C, forallie {l,...,wf}.

Fixan¢ € {1,...,wf}. As the m requests coming out of Nl(z) have different colors,
the correspondence a) « c¢(a¥, k), where (a(), k) € D, is a one-to-one correspondence
between the inputs and the outputs of N 1(1) . Hence, for the m requests (a(®), k), there exist m
vertex disjoint routes R;(a(?, k) connecting input a(®) to the output numbered c(a(?, k) of
N

Fix a j € {1,...,m}. The ith input of N{’ is the jth output of "), which is the
end point of some route R;(a®, k) for which c(a'®, k) = j. Let k(4, ) be the number k
such that the request (a(, k) € D has color ¢c(a¥, k) = j. Then, for the fixed j and any
k € {1,...,f}, Lemma 6.4 ensures that there are exactly w of the k(i,j) with value k,
namely [{¢ : k(i,7) = k}| = w. Thus, D’ = {(3,k(%,7)) | 1 < i < wf} is a valid request
frame for the rearrangeable [w, f]-connector N, 2(] ), Consequently, we can find vertex disjoint
routes Ry (i, k(4, 7)) connecting input i to some output in By;, ;) of /\f2(]).

The concatenation of Ry (a(¥), k) and Ry (4, k) completes a route realizing request (a9, k).
These routes are vertex disjoint as desired. 0

We now illustrate the use of the Lemma 6.5 by a simple construction of depth-2 [w, f]-
connectors.

THEOREM 6.6 (Depth-2 constructions). Let w, f be positive integers, then

(i) forw < f — 1, we can construct depth-2 [w, f]-connectors of size wf(w + f).
(ii) for w > f, we can construct depth-2 [w, f]-connectors of size wf(2/w(f — 1) +
1).

Proof. We ignore the issue of integrality for the sake of a clean presentation.

Write w = ma. By Theorem 6.1, Si(z, f) is an [z, f]-connector of depth 1 and size
zf(zf — « + 1). By Proposition 6.3 and Lemma 6.5, the network B(m) x xS1(z, f) is a
[w, f]-connector of depth-2 and size

s(z) =zfm? + maf(zf —z+1) =wf(w/z + (f — )z +1).

Minimizing s(z) as a function of z, with 1 < z < w, we get the desired results. We pick
z = lincase (i) and z = \/w/(f — 1) in case (i7). O

6.4. Recursive constructions. Toward the constructions of [w, f]-connectors, we need
a few more definitions and properties.

DEFINITION 6.7. Lef wg, w1, ..., wy and f be positive integers and G be any [wy, f]-
network. Let N'(wg, ..., w1; G) denote the recursively constructed network defined as fol-
lows.

N(HG) =G

N(wg, ..., w1; G) = B(wg) X XN (wg—1,...,w1;G).
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LEMMA 6.8. Given positive integers wg, w1, . . ., wy and f. Let w = Hf:o w;, and G be
any [wo, f]-connector of size s(G) and depth d(G). Then, the network N' = N (w, . . . ,w1; G)
is a [w, f]-connector of size

s(N) =wo...wif - (w1 + -+ +wk) +wi...w - 5(G).

and depth d(N') = (k + d(Q)). (We set s(N') = s(G) when k = 0.)
Proof. This follows from Proposition 6.3 and Lemma 6.5 O
PROPOSITION 6.9. For any positive integers w and f, the following hold
(i) Let N be any w f-connector. The [w, f]-network N obtained by partitioning the
outputs of N arbitrarily into f subsets of size w is a [w, f]-connector.

(ii) B(f) is an f-connector and also a [1, f]-connector.

Basically, Proposition 6.9 implies that one can use good wy f-networks to serve as the
network G in Lemma 6.8. A general [w, f]-network can then be constructed by decomposing
w = wp . .. wy, with the right set of divisors wo, . . ., wg. As [w, f]-networks of depth 2 have
been constructed, we shall attempt to construct good networks of general depth and networks
of a fixed depth at least 3.

Pippenger [27] has constructed a rearrangeable n-network, which we shall call P(n), of
size 6n logs n + O(n). He also constructed rearrangeable n-networks of depth 27 + 1,7 > 1,
and size 2(7 + 1)n (%)1/ G+ O(n). An n-connector of depth 2i + 2 can be constructed
by concatenating an n-matching with a depth-(2¢ 4+ 1) n-connector. Hence, we can construct
an n-connector of depth j > 3 and size 2[j/2]n (2) VI O(n). We denote this network
by P;(n). For j = 2, [7] a construction of size O(n®/®) was given in [7] and [14]. Abusing
notation, we shall also use P (n) to denote an n-connector of depth-2 and size O(n®/3).

In the following results, we ignore the issue of integrality for the sake of clarity. We first
address the general depth case.

THEOREM 6.10. We can construct rearrangeable [w, f]-connectors of size

e-wflnw+%wflnf+0(fw).

Proof. Let w = zw; . .. wg. By Lemma 6.8 the network
N:N(Wk,,wl,P(mf))
is a [w, f]-connector of size

s(N) =wf(wy + -+ wg) + 6fzlogs(fz) + O(fx)
> wf k- (2)/* + 6fzlogy(f2) + O(fa).

The right hand side is minimized at # = 1 and k = In w. Equality can be obtained by setting
w; = w'/k,vi. 0
We now consider the fixed depth case. The networks P;(n) are to be used. The following
three theorems apply Lemma 6.8 with G = Py, Py, or P; with j > 3. Depending on the
relative values between f, w and k, one theorem may be better than the others.
THEOREM 6.11. Let w, f, and k > 3 be positive integers.
(i) If w < (f — 1)*=1, then we can construct a [w, f]-connector of depth k and size

(k= 1) fw't 77 + wf? = O(kwf?). 6.1)
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(ii) If w > (f — 1)k~ then we can construct a [w, f]-connector of depth k and size

wf(k = Diw(f = DF + 0 5(f = DF +wfo (kwf)*F). 62
Proof. Write w = zws ... wg_1. Then, Lemma 6.8 implies that
N(wg—1,...,w1;S1(z, f))
is a [w, f]-network of depth k and size

s=wf(lw +- +wg_1)+w... we1-zf(zf —z+1)
> wf(k—1)(w/x) /D +wf(z(f —1)+1). 6.3)

Minimizing the right hand side with respect to  and we get the desired results.

In case (i), equality can be obtained when w; = w'/(*=1) Vi, and z = 1. In case (ii),
equality can be obtained when w; = w'/*=1) Vi, and z = (W) l/k. OWe omit the
proofs of the next two theorems due to the similarity to the above proof.

THEOREM 6.12. Let w, f, and k > 3 be positive integers. Then, there are positive real
constants cy, co and cs such that

(i) ifw< clfg(k_z), then we can construct a [w, f]-connector of depth k and size

— -w ﬁ—I—CQw 5/3 — 0 (kwf®/?). 6.4)
(k—2)f-w'" f f (
(ii) If w > clf%(k_2), then we can construct a [w, f]-connector of depth k and size
(k—2)- (wf) =57 4 cqu't 7572 fi=5 = O (k(w f)1+7k—13/2) . (65)
The following result can be improved by finer analysis. We give a somewhat “cleaner”
version.

THEOREM 6.13. Let w, f, and k > 4 be positive integers.
(i) Ifw < f, then we can construct a [w, f]-connector of depth k and size

o) (kw”i(kil) Jadca ) . (6.6)
(ii) Ifw > f, then we can construct a [w, f]-connector of depth k and size

0 (k(w f)1+ﬁ) . 6.7)

7. Applications of our framework. In this section, we outline several practical ap-
plications coming from our theoretical formulation presented earlier. We will present only
representative results. The reader should be able to see the main line of thoughts, neverthe-
less.

The applications fall into two main categories: (a) explicit constructions of WXCs, and
(b) complexity comparisons of known constructions.
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(a) A realization of B(3,2) (b) A realization of C1(2,2)

FIG. 7.1. Sample realizations of atomic networks.

7.1. Explicit constructions of WXCs. The ideas for explicit constructions come from
the physical realizations of atomic networks (Section 6.1), the union of networks (Section
6.2), the x x-product of networks, and the recursive construction (Section 6.4).

There are several ways to physically realize an (z,y)-crossbar B(z,y). Figure 7.1(a)
shows one possibility and it is self-explanatory. The one thing to notice is that each fiber
is aimed to carry one wavelength only. Another possibility to realize B(z,y) is to use a
combination of of an AWGR of dimension max{z,y} and the same number of LWC’s, as
was done in [24]. The advantage of using AWGR over SOA is that AWGR consume virtually
Nno power.

Our second atomic component is a depth-1 (w f, w)-concentrator C; (w, f), which can
be constructed by taking the left-union of a B(wf — w, w) and a perfect matching M(w) as
illustrated in Figure 7.1(b).

Given the aforementioned two atomic networks, we readily have a construction of a
one-stage rearrangeably non-blocking WXC as shown in Figure 7.2. There is one column
of tunable input — fixed output LWC’s at the end to ensure no wavelength conflict. This
one column of LWC'’s is needed in all realizations of the theoretical constructions shown in
Section 6.

This construction has cost a little higher than that of Theorem 6.1 because of the LWCs,
which are of total cost w?f. Asymptotically, however, w?f < wf(wf — w + 1), hence
we did not create too much of a gap between the theoretical construction and the physical
realization. Another interesting point to notice is that the WXC RNB-1 construction of [24]
is a special case of this idea. The only difference is that they use AWGR’s and LWC'’s to
realize the crossbars.

The same idea idea can be used to realize the generic product network of Lemma 6.5.
The proof of the lemma gives also an efficient routing algorithm. (Efficient algorithms for
bipartite graph edge-coloring can be found in [6,9, 10].) Thus, we readily have constructions
of a depth-2 RNB WXC as in Theorem 6.6, and several different recursive constructions as
reported in Theorems 6.10, 6.11, 6.12, and 6.13. Depending on the relationship between w
and f, we pick the best one to use.

7.2. Complexity comparisons of known constructions. Table 7.1 summarizes the costs
of various recent constructions (including some of the ones in this paper). The costs are as-
sessed in terms of architecture depths and sizes. From the table, we see the following:

e For the (\, F, X, F’')-request model (SNB-1, RNB-1), the various constructions
have costs asymptotically the same as those of their circuit switching counterparts.
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FIG. 7.2. A realization of the one-stage construction 81(2,3). The LWC’s are wavelength converters with
tunable inputs and a fixed output.

This was expected, since our formulation in Section 4.1 has indicated that the WXC
under this request model and the corresponding circuit switches are equivalent topo-
logically.
(This is not to say that there is nothing to study in this request model. Our cost model
does not capture precisely more practical criteria such as cross-talks, attenuation,
and wavelength conversion costs.)

e For the (), F, F')-request model (SNB-1, RNB-1), there is much room for improve-
ment.
In the SNB case, our construction of Corollary 5.2 is already better then the existing
construction CBC. However, since SNB in this request model is the same as the
other, we cannot expect much more improvement.
In the RNB case, our constructions of Theorems 6.10, 6.11, 6.12, and 6.13 are better
than all known constructions. However, there are still gaps between the construc-
tions and theoretical lower bounds of Theorems 5.3 and 5.5. We expect both the
lower bounds and the constructions can be improved until they are asymptotically
equal.

8. Conclusions and Future Works. There are several benefits of the proposed graph
models: they help analyze the switches qualitatively and quantitatively, they can be used to
compare switch complexity, they give rise to interesting mathematical problems relating to
many areas such as classical switching theory, graph theory, algebraic graph theory. Some
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Cost comparisons of different constructions under the two request models. SNB/RNB-1 refers to the (A, F, F')-
request model. SNB/RNB-2 refers to the other request model.

| Type | depth | size cond

[41]/CBC SNB-1 2lg f O(wf(w+lg f)lg f) -
E+1
Corollary 5.2(ii) | SNB-1 k O((wf)+/1%57]) -
Corollary 5.2(iii) SNB-1 lg(wf) O(wflg(wf)) -
[41/WI-Cantor | RNB-1 21g f O(wf(w +1gZ f)) ;
[41]/WI-Benes RNB-1 2lg f O(wf(w+1g f)) -
[24]/WXC-RNB-1 | RNB-1 2 2(wf)*/? f<w
Theorem 6.6(i) RNB-1 2 wf(w+ f) f>w
Theorem 6.6(ii) RNB-1 2 2(wf)3/2 f<w
Theorem 6.10 RNB-1 lg(wf) ewflnw + zwfln f + O(wf) -
Theorem 6.11 RNB-1 | k>3 (k— 1) fw't 7T +wf? w< (f — 1)k
Theorem 6.11 RNB-1 | k>3 © (k(ws)'**) w> (f — 1)k1
Theorem 6.12 RNB-1 | k>3 | (k-2f w2 +ouf™® | w<af3®?
Theorem 6.12 RNB-1 | k>3 0 (k(wf)1+7k—13/2 w> e f3ED
14+ 12— 142

Theorem 6.13 RNB-1 k>4 o <kw G (k+1>) w< f
Theorem 6.13 RNB-1 | k>4 0 (k(wf)1+7z<k’il>) w< f
(33,34] SNB-2 3 20> (2f + w) -
[24]/WXC-SNB-2 | SNB-2 3 4/2(wf)?? f<w
[42]/2S/PIN SNB-2 3 4(wf)3/? f<w
[421/3S/P/N SNB-2 4 4v/2(wf)3? -
[24]WXC-RNB-2 | RNB-2 3 2(wf)*/? f<w
[421/2S/P/R RNB-2 3 2(wf)3/? f<w
[421/3S/P/R RNB-2 4 2v2(wf)*? -
[42]/B/P/R RNB-2 | O(lg(wf)) O(wflgwf) f<w

of these points were not discussed in the paper. It would be interesting, for instance, to
investigate the use of expanders for constructing [w, f]-connectors.

We have addressed several important problems arising from this framework, including
studying optimal networks and their constructions, the trade-off between network depth and
size, and the equivalence of networks under different request models. Some practical appli-
cations have also been pointed out.

Many problems remain open. In particular, we have not touched upon the wide-sense
nonblocking case much. The multicast switch complexity was not considered. The asymp-
totic bounds of various complexity functions are still not optimal.
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