
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 35, No. 2, pp. 305–326

ANALYSIS OF LINK REVERSAL ROUTING ALGORITHMS∗

COSTAS BUSCH† AND SRIKANTA TIRTHAPURA‡

Abstract. Link reversal algorithms provide a simple mechanism for routing in communication
networks whose topology is frequently changing, such as in mobile ad hoc networks. A link reversal
algorithm routes by imposing a direction on each network link such that the resulting graph is a
destination oriented DAG. Whenever a node loses routes to the destination, it reacts by reversing
some (or all) of its incident links. Link reversal algorithms have been studied experimentally and
have been used in practical routing algorithms, including TORA [V. D. Park and M. S. Corson,
A highly adaptive distributed routing algorithm for mobile wireless networks, in Proc. INFOCOM,
IEEE, Los Alamitos, CA, 1997, pp. 1405–1413].

This paper presents the first formal performance analysis of link reversal algorithms. We study
these algorithms in terms of work (number of node reversals) and the time needed until the network
stabilizes to a state in which all the routes are reestablished. We focus on the full reversal algorithm
and the partial reversal algorithm, both due to Gafni and Bertsekas [IEEE Trans. Comm., 29 (1981),
pp. 11–18]; the first algorithm is simpler, while the latter has been found to be more efficient for
typical cases. Our results are as follows:

• The full reversal algorithm requires O(n2) work and time, where n is the number of nodes
that have lost routes to the destination. This bound is tight in the worst case.

• The partial reversal algorithm requires O(n ·a∗ +n2) work and time, where a∗ is a nonneg-
ative integral function of the initial state of the network. Further, for every nonnegative
integer α, there exists a network and an initial state with a∗ = α, and with n nodes that
have lost their paths to the destination, such that the partial reversal algorithm requires
Ω(n · a∗ + n2) work and time.

• There is an inherent lower bound on the worst-case performance of link reversal algorithms.
There exist networks such that for every deterministic link reversal algorithm, there are
initial states that require Ω(n2) work and time to stabilize. Therefore, surprisingly, the full
reversal algorithm is asymptotically optimal in the worst case, while the partial reversal
algorithm is not, since a∗ can be arbitrarily larger than n.

Key words. link reversal routing, wireless networks, ad hoc networks, fault tolerance, self
stabilization

AMS subject classifications. 68W15, 68W40, 68Q17, 68Q25, 68Q85

DOI. 10.1137/S0097539704443598

1. Introduction. A mobile ad hoc network is a temporary interconnection net-
work of mobile wireless nodes without a fixed infrastructure. The attractive feature of
such a network is the ease with which one can construct it: there is no physical setup
needed at all. If mobile nodes come within the wireless range of each other, then they
will be able to communicate. More significant, even if two mobile nodes aren’t within
the wireless range of each other, they might still be able to communicate through a
multihop path. However, the lack of a fixed infrastructure makes routing between
nodes a hard problem. Since nodes are moving, the underlying communication graph
is changing, and the nodes have to adapt quickly to such changes and reestablish their
routes.

∗Received by the editors May 8, 2004; accepted for publication (in revised form) May 12, 2005;
published electronically October 7, 2005. A preliminary version of this paper has appeared in [2].

http://www.siam.org/journals/sicomp/35-2/44359.html
†Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY

12180 (buschc@cs.rpi.edu).
‡Department of Electrical and Computer Engineering, Iowa State University, 2215 Coover Hall,

Ames, IA 50011 (snt@iastate.edu).

305

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

306 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

1.1. Link reversal. Link reversal routing algorithms [12, Chapter 8] are adap-
tive, self-stabilizing, distributed algorithms used for routing in mobile ad hoc networks.
The first link reversal algorithms are due to Gafni and Bertsekas [7]. Link reversal is
the basis of the temporally ordered routing algorithm TORA [10], and has also been
used in the design of leader election algorithms for mobile ad hoc networks [9]. Link
reversal routing is best suited for networks in which the rate of topological changes
is high enough to rule out algorithms based on shortest paths, but not so high as to
make flooding the only alternative.

Consider the graph representing the network, where the vertices are the wireless
nodes, and each node has a link with each other node within its transmission radius.
We assume that this underlying graph is undirected; i.e., the communication links are
all bidirectional. Link reversal algorithms route on this graph by assigning directions
to different links, hence converting it to a directed graph. A directed graph G is said
to be connected if the underlying undirected graph of G (formed upon erasing the
directions on the edges of G) is connected.

Definition 1.1. A connected directed acyclic graph with a single destination
node is said to be destination oriented iff every directed path in the graph leads to the
destination.

For a given destination node, the link reversal algorithms assign directions to the
links of this graph such that the resulting directed graph is a destination oriented
directed acyclic graph (see Figure 1). Routing on a destination oriented network is
easy: when a node receives a packet, it forwards the packet on any outgoing link, and
the packet will eventually reach the destination.1

The task of the link reversal algorithm is to create and maintain the routes to the
destination. When two nodes move out of each other’s range, the link between them
is destroyed, and some nodes might lose their routes to the destination. The routing
algorithm reacts by performing link reversals (i.e., reorienting some of the edges) so
that the resulting directed graph is again destination oriented. In particular, when
a node finds that it has become a sink (has lost all of its outgoing links), then the
node reacts by reversing the directions of some or all of its incoming links. The link
reversals due to one node may cause adjacent nodes to perform reversals, and in this
way, the reversals propagate in the network until the routes to the destination are
reestablished.

Gafni and Bertsekas [7] describe a general family of link reversal algorithms and
present two particular algorithms: the full reversal algorithm and the partial reversal
algorithm (referred to as the GB algorithms in the rest of this paper). In the full
reversal algorithm, when a node becomes a sink, it reverses the directions of all of its
incident links. In the partial reversal algorithm, the sink reverses the directions of only
those incident links that have not been recently reversed by adjacent nodes (a detailed
description appears in the following section). The full reversal algorithm is simpler
to implement, but the partial reversal algorithm may need fewer link reversals in
some cases. Gafni and Bertsekas show that when link failures occur, these algorithms
eventually converge to a destination oriented graph. However, it was not known how
many reversals the nodes performed, or how much time it would take till convergence.

1.2. Performance of link reversal. We present the first formal performance
analysis of link reversal routing algorithms. We give tight upper and lower bounds

1If there are multiple destinations in the network, then there is a separate directed graph for
each destination; here, we will assume for simplicity that there is only one destination.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 307

a,d

(5,4) (1,6)

(0,DEST)

(3,2)(4,1)

(2,5)

(2,3)

(5,4) (3,6)

(0,DEST)

(3,2)(4,1)

(2,5)

(4,3)

(5,4) (3,6)

(0,DEST)

(3,2)(4,1)

(6,5)

(2,3)
a

a

d

b

c

a

b,c

Full Reversal

(4,3)

(5,4) (7,6)

(0,DEST)

(7,2)(4,1)

(6,5)

(8,3)

(5,4) (7,6)

(0,DEST)

(7,2)(8,1)

(6,5)

ce

c,e

not destination oriented

destination oriented

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(1,0,5)

(0,2,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(0,2,5)

(0,2,3)

(0,5,4) (0,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(0,2,5)

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(1,−1,2)(0,4,1)

(1,0,5)

a

a

b

c

b,c

dnot destination oriented

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(1,−1,2)(1,−2,1)

(1,0,5)

d

e

e

destination oriented

Partial Reversal

Fig. 1. Sample executions of the GB full and partial reversal algorithms. Each transition is
labeled with the nodes that reverse.

on the performance of the full and partial reversal algorithms. We also show a lower
bound on the performance of any deterministic link reversal algorithm. Surprisingly,
from the perspective of worst-case performance, the full reversal algorithm is asymp-
totically optimal while the partial reversal algorithm is not.

Our setting for analysis is as follows. Suppose topological changes occur in the
network, driving the system to a state in which some nodes have lost their paths to
the destination. This is called the initial state of the network. If there are no further

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

308 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

topological changes, the network is said to have stabilized when it again becomes
destination oriented. We analyze two metrics:
Work: The number of node reversals until stabilization; a node reversal is the action

of a sink reversing some or all of its adjacent links. This is a measure of the
power and computational resources consumed by the algorithm in reacting to
topological changes.

Time: The number of parallel steps until stabilization, which is a measure of the
speed in reacting to topological changes. We model reversals so that each re-
versal requires one time step, and reversals may occur simultaneously when-
ever possible.

Reversals are implemented using heights. A reversal algorithm assigns a height to
every node in the network. The link between adjacent nodes is directed from the node
of greater height to the node of lesser height. A sink performs a reversal by increasing
its height by a suitable amount. This will reverse the direction of some or all of its
incident links. We consider deterministic link reversal algorithms, in which a sink
increases its height according to some deterministic function of its own height and the
heights of the adjacent nodes. The GB link reversal algorithms are deterministic.

In the analysis, we separate the nodes into bad and good. A node is bad if there is
no route from the node to the destination. Any other node, including the destination,
is good. Note that a bad node is not necessarily a sink. We present results for the
following algorithms.

Full reversal algorithm. For the full reversal algorithm, we show that when started
from an initial state with n bad nodes, the work and time needed to stabilize is O(n2).
This bound is tight. We show that there are networks with initial states which require
Ω(n2) time for stabilization.

Our result for full reversal is actually stronger. For any network, we present a
decomposition of the bad nodes in the initial state into layers, which allows us to
predict exactly the work performed by each node in any distributed execution. A
node in layer j will reverse exactly j times before stabilization. Our lower and upper
bounds follow easily from the exact analysis.

Partial reversal algorithm. For the partial reversal algorithm, we show that when
started from an initial state with n bad nodes, the work and time needed to stabilize
is O(n · a∗ + n2), where a∗ corresponds to the difference between the maximum and
minimum heights of the nodes in the initial state. This bound is tight. We show that
there are networks with initial states which require Ω(n·a∗+n2) time for stabilization.

The a∗ value can grow unbounded as topological changes occur in the network.
Consequently, in the worst case, the full reversal algorithm outperforms the partial
reversal algorithm.

Deterministic algorithms. We show a lower bound on the worst-case work and
time until stabilization for any deterministic reversal algorithm. We show that for
any deterministic reversal algorithm on a given graph, there exists an initial state
such that if a bad node d hops away from its closest good node, then it has to reverse
d times before stabilization. Using this, we further show that there exist networks
and initial states with n bad nodes such that the algorithm needs Ω(n2) work and
time until stabilization. As a consequence, from the worst-case perspective, the full
reversal algorithm is work and time optimal, while the partial reversal algorithm is
not.

Equivalence of executions. We show that for any deterministic reversal algorithm,
all distributed executions of the algorithm starting from the same initial state are

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 309

equivalent: (1) the resulting final state of the network upon stabilization is the same,
and (2) each node performs the same number of reversals until stabilization in all
executions. As a result, the work of the algorithm is independent of the execution
schedule.

1.3. Related work. Link reversal algorithms were introduced by Gafni and
Bertsekas in [7], where they provide a proof that shows that a general class of link
reversal algorithms, including the partial and full reversal algorithms, eventually sta-
bilize when started from any initial state. However, they do not give work and time
bounds.

The TORA [10] builds on a variation of the GB partial reversal algorithm and adds
a mechanism for detecting and dealing with partitions (disconnected components) in
the network. The practical performance of the TORA has been studied in [11]. A
variant of a link reversal routing algorithm is the lightweight mobile routing (LMR)
algorithm [5, 6]. An overview of link reversal routing algorithms can be found in [12,
Chapter 8]. A performance comparison of various ad hoc routing algorithms, including
TORA, is presented in [1]. Further surveys can be found in [13, 14].

Malpani, Welch, and Vaida [9] build a mobility aware leader election algorithm
on top of TORA and present partial correctness proofs (TORA does not have any)
showing the stability of the algorithm. Although all the above work use link reversal,
none of them have any formal performance analysis.

In the context of distributed sensor networks, coordination algorithms which are
based on the paradigm of directed diffusion [8] are closely related to link reversal
algorithms. For example, Intanagonwiwat et al. [8] state that their algorithm is closest
to the TORA algorithm [10] in its attempt to localize the repairs due to node failures.
Hence, our analysis also might lead to a better understanding of the performance of
directed diffusion.

Link reversal algorithms attempt to always maintain routes to destinations in ad
hoc networks. In cases when the network is sparsely populated with nodes, or when
the rate of topology changes is too high, it may be infeasible to maintain such paths
to the destination. In such cases, other strategies are needed for data delivery, such as
those in [3, 4] which do not maintain paths to destination at all, but instead transmit
data through strategies based on gossiping.

Outline of the paper. The rest of the paper is organized as follows. Section 2
contains a description of the GB partial and full reversal algorithms as well as a defi-
nition of deterministic algorithms. In section 3 we show the equivalence of executions
of a given deterministic algorithm. Sections 4 and 5 contain the analyses of the full
and partial reversal algorithms, respectively. In section 6, we show the general lower
bound for deterministic link reversal algorithms, and we conclude with a discussion
and open problems in section 7.

2. Link reversal algorithms. We assume that each node has a unique integer
id and denote the node with id i by vi. The nodes have heights which are guaranteed
to be unique (ties broken by node ids) and are chosen from a totally ordered set. A
link is always directed from the node of greater height to the node of the smaller
height. The destination has the smallest height, and it is a special kind of sink
which never reverses. Since any directed path in such a graph always proceeds in the
direction of decreasing height, the directed graph will always be a directed acyclic graph
(DAG). This is a significant feature, since the algorithms need not make further effort
to maintain acyclicity in routing, and the graph remains acyclic even if topological
changes occur.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

310 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

If the underlying graph is connected, the link reversal algorithms bring the di-
rected graph from its initial state to a state in which it is destination oriented. In
our analysis, we consider only connected graphs. Note that there could possibly be
multiple paths from any node to the destination. We now describe the two GB algo-
rithms, adapting the discussion from [7], and then we define the class of deterministic
algorithms.

Full reversal algorithm. In the full reversal algorithm, when a node becomes a
sink it simply reverses the directions of all its incoming links (see top part of Figure 1,
which is adapted from [7]). The algorithm can be implemented with heights as follows.
The height hi of node vi is the pair (ai, i) (the second field is used to break ties). The
height of the destination (say vd) is (0, d). Heights are ordered lexicographically. If vi
is a sink, then its height upon reversal is updated to be larger than the heights of all
its neighbors. Let N(vi) denote the set of adjacent nodes to vi. Formally, the height
of vi after its reversal is (max{aj | vj ∈ N(vi)} + 1, i).

Partial reversal algorithm. In the partial reversal algorithm, the height of each
node vi is a triple (ai, bi, i). As in full reversal, node vi reverses only when it becomes
a sink. The height of vi after reversal is greater than the height of at least one
neighbor, but may not be greater than the height of every neighbor. The height of
the destination vd is (0, 0, d). Heights are ordered lexicographically. The second field bi
helps the sink avoid reversing links toward adjacent nodes, which have caused the node
to become a sink in the first place. Thus, reversals are not immediately propagated
to parts of the network which have already reversed. Formally, let h̄i = (āi, b̄i, i)
denote the height of vi after its reversal. See the bottom part of Figure 1 (adapted
from [7]) for an example execution of the partial reversal algorithm. The partial
reversal algorithm updates heights as follows:

• āi = min{aj | vj ∈ N(vi)} + 1.
• b̄i = min{bj | vj ∈ N(vi) and āi = aj} − 1 if there exists a neighbor vj with

āi = aj ; otherwise, b̄i = bi.
The basic idea behind these functions is as follows. In a network state I, where

vi is a sink, we can divide the neighbors of vi into two categories: (i) {vj |aj = ai}
and (ii) {vj |aj > ai}. Node vi must have reversed after the last reversal of every
node in category (i) since, otherwise, those nodes would have aj ≥ ai + 1. On the
other hand, nodes of category (ii) must have reversed after the last reversal of node vi
since, otherwise, the heights of those nodes would not be higher than ai. Therefore,
node vi is a sink in state I due only to nodes of category (ii). Thus, when vi reverses
after state I, its new height should be set so that the links point only toward nodes
of category (i). This is achieved by setting āi = ai + 1. In order to make the nodes of
category (ii) to point to vi, we need only take care of nodes with aj = āi, for which
we adjust b̄i to be lower than all the corresponding bj ’s.

2

Deterministic algorithms. A deterministic reversal algorithm is defined by a “height
increase” function g. We assume that the heights are chosen from some totally or-
dered universe and that the heights of different nodes are unique. If node v is a sink
of degree k, whose current height is hv, and adjacent nodes v1, v2, . . . , vk have heights
h1, h2, . . . , hk, respectively, then v’s height after reversal is g(h1, h2, . . . , hk, hv). Func-
tion g is such that the sink reverses at least one of its incoming links. The GB full
and partial reversal algorithms are deterministic.

2The function for the update of āi is expressed in terms of the minimum value of the neighbors,
since topological changes might generate a state in which no neighbor has aj = ai.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 311

3. Equivalence of executions. In this section, we prove some properties about
deterministic link reversal algorithms. The main result of this section is that for any
deterministic reversal algorithm, all executions that start from the same initial state
are essentially equivalent: the resulting final state of the network upon stabilization
is the same. We actually show the stronger result that each node performs the same
number of reversals, with the same heights, until stabilization in all executions. We
first give some basic definitions for states and executions; then we define the depen-
dency graph, which will help to show that all executions are equivalent, and finally,
we give the main result.

3.1. States, executions, and dependency graphs. Here we give basic defi-
nitions for states and executions. At any configuration of the network, the node state
of a node v is defined as the current height of v. The network state is defined as
the collection of the individual states of all the nodes in the network. Note that the
network state uniquely determines the directions of all the links in the network.

A node reversal r is defined as a tuple r = (v, h,H), where v is the sink executing
the reversal, h is v’s height before reversal, and H is the set of the heights of all of v’s
neighbors before the reversal. Given an initial state containing bad nodes, an execution
E is defined as a sequence of reversals E = r1, r2, . . . , rk, where ri = (vi, hi, Hi), and
1 ≤ i ≤ k. A complete execution is defined as an execution that ends in a destination
oriented graph; unless otherwise stated, we will refer to complete executions from here
on.

Clearly, there are many possible executions starting from the same initial state.
We give the following definition for equivalent executions.

Definition 3.1. Starting from the same initial state, two executions are equiva-
lent if they give the same final state.

In order to show that two executions are equivalent, we will use the dependency
graphs of the executions which we define next. Any execution imposes a partial order
on the reversals. The partial order induced by execution E = r1, r2, . . . , rk is defined
as a directed graph whose nodes are the reversals ri, i = 1, . . . , k. There is a directed
edge from ri = (vi, hi, Hi) to rj = (vj , hj , Hj) if

• vj is a neighbor of vi, and
• rj is the first reversal of vj after ri in execution E.

We will refer to this graph as the dependency graph of execution E. Intuitively, if
there is a directed path between reversals ri and rj in the dependency graph, then
the order of these two reversals cannot be interchanged. Moreover, if there is no
directed path from ri to rj , then these two reversals are independent and can be
performed in parallel (in the same time step).

We define the depth of a reversal in the dependency graph as follows. A reversal
that does not have any incoming edges has depth 1 (these are the reversals of the nodes
which are sinks in the initial state). The depth of any other reversal r is one more than
the maximum depth of a reversal which points to r. The depth of the dependency
graph is the maximum depth d of any reversal in the graph. The dependency graph
is important for the following reason.

Fact 1. The dependency graph of an execution uniquely determines
• the final state of the network,
• the number of reversals performed by each node, and
• the stabilization time when all sinks reverse simultaneously, which is the depth

of the dependency graph d.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

312 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

3.2. Proof of equivalence. We show that all executions of a link reversal algo-
rithm give the same dependency graph, which implies that the executions are equiv-
alent. Fact 1 implies that this result is actually stronger than simply showing that
executions are equivalent. We first show two lemmas that will be of use in further
proofs.

Lemma 3.2. For any reversal algorithm starting from any initial state, a good
node never reverses until stabilization. Further, a good node always remains good until
stabilization.

Proof. If v is a good node, then by definition there exists a path v = vk, vk−1, . . . , v1,
v0 = s, where s is the destination, and there is an edge directed from vi to vi−1 for
each i = 1, . . . , k.

For each i = 0, . . . , k, we prove that node vi never reverses, using induction on
i. The base case (i = 0) is obvious since the destination never reverses. Suppose the
hypothesis is true for i = l < k. Then vl never reverses, so that the edge between vl+1

and vl is always directed from vl+1 to vl. Thus, there is always an outgoing edge from
vl+1, which implies that vl+1 never reverses, and completes the proof by induction.

This also implies that the directed path v = vk, vk−1, . . . , v1, v0 = s always exists
in the network, showing that node v remains good.

Lemma 3.3. If a node v is a sink, then v remains a sink until it reverses. Further,
v eventually reverses.

Proof. If a node v is a sink, then clearly none of its neighbors can be sinks at
the same time, and hence they cannot reverse. Thus, the only node that can change
the direction of the incoming links to v is v itself. Reversals by other nodes in the
network do not affect this. Thus, v remains a sink until it reverses.

Further, the reversal of v is enabled continuously until v actually reverses. Since
we assume that the distributed system eventually makes progress (an action that is
continuously enabled will eventually take place), v eventually reverses.

Theorem 3.4 (identical dependency graphs). All executions of a determinis-
tic reversal algorithm starting from the same initial state give identical dependency
graphs.

Proof. Consider two executions of the algorithm starting from the same initial
state, say, execution R = r1, r2, . . . and execution S = s1, s2, Let pR and pS be
the dependency graphs induced by R and S, respectively. We will show that pR and
pS are identical.

We will show by induction that, for every k = 1, 2, . . . , the induced subgraph
of pR consisting of vertices at depths k or less is identical to the similarly induced
subgraph of pS consisting of vertices at depths of k or less.

Base case k = 1. Consider any reversal r = (v, h,H) in pR at depth 1. Since r
does not have any incoming edges in pR, node v must be a sink in the initial state
of the network. From Lemma 3.3, v must also reverse in S. Since h and H are the
heights of v and its neighbors, respectively, in the initial state, and they do not change
until v reverses at least once, the first reversal of v in S is also (v, h,H), and is at
depth 1. Similarly, any other reversal at depth 1 in pS is also a reversal at depth 1 in
pR, and this proves the base case.

Inductive case. Suppose the hypothesis is true for all k < l. We show that it is
also true for k = l. Consider any reversal r = (v, h,H) at depth l in pR. We show that
this reversal is also present in pS with the same set of incoming edges. Let U be the
set of reversals that are pointing into r in pR. Once all reversals in U are executed,
node v becomes a sink in execution R. From the inductive step, all reversals in U are

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 313

also present in pS , and hence in S. We examine two cases.
Case 1. Reversal r is the first reversal of v in R. Then, the execution of all

reversals in U will also cause v to be a sink in S. Thus v also will reverse in S. Its
height before reversal in S is h, since the height has not changed from the initial state.
Consider the heights of v’s neighbors before v’s reversal in S. These are equal to H.
The reason is as follows. The neighbors of v who haven’t reversed so far in S have the
same height as in the initial state. The other neighbors are present in U , and hence
their heights are the same as in H. Thus, there is a reversal (v, h,H) at depth l in pS
whose incoming edges are the same as in pR.

Case 2. Reversal r is not the first reversal of v in R. Let r′ denote the previous
reversal of v in R. Since r′ is at a lower depth in pR than r, by the induction
hypothesis, r′ is also present in pS . After reversal r′, node v will be in the same state
in both R and S. After the reversals in U , v’s neighbors will be in the same state in
S as in R. Thus, the reversal (v, h,H) is also present in S at depth l with the same
incoming edges as in pR.

Thus, we have shown that every node at depth l in pR is present at depth l of
pS , with the same incoming edges. The same argument goes the other way too: every
node in pS is present in pR. This proves the inductive case for k = l, and concludes
the proof.

The following corollary follows from Fact 1 and Theorem 3.4.
Corollary 3.5 (equivalence of executions). All executions of a deterministic

reversal algorithm starting from the same initial state are equivalent. Moreover,
• the number of reversals of each node in every execution is the same, and
• when all sinks reverse simultaneously, the stabilization time of every execution

is d, the depth of the (unique) dependency graph.

4. Full reversal algorithm. In this section, we present the analysis of the full
reversal algorithm. We present a decomposition of the bad nodes in the initial network
state into layers, which allows us to predict exactly the work performed by each node
in any distributed execution until stabilization: a node at layer i will reverse exactly
i times. From the exact analysis, we obtain worst-case bounds for the work and time
needed for stabilization.

4.1. State sequence for full reversal. In order to obtain the exact analysis,
we first show that, starting from any initial state, there exists an execution which
consists of consecutive execution segments such that at each execution segment, each
remaining bad node reverses exactly once. We will then use this result to determine
the exact number of reversals of each bad node in the layer decomposition.

In particular, consider some initial state I1 of the graph which contains bad nodes.
We will show that there is an execution E = E1, E2, E3, . . . , and states I1, I2, I3, . . . ,
such that execution segment Ei, i ≥ 1, brings the network from a state Ii to a state
Ii+1, and in Ei each bad node of Ii reverses exactly one time. In order to show that
E exists, we need to prove the following two lemmas.

Lemma 4.1. Consider a state I in which a node v is bad. Then, node v will
reverse at least one time before it becomes a good node.

Proof. If v is a sink, then clearly node v has to reverse at least one time. Now
consider the case when v is not a sink in state I. Suppose, for contradiction, that
node v becomes good without performing any reversals after state I. Consider an
execution which brings the graph from state I to a state Ig in which node v is good.
A nonreversed node is any node w such that in state I node w is bad, while in state
Ig node w is good, and w does not reverse between I and Ig. Since in state Ig node

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

314 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

v is good, there must exist in Ig a directed path v, v1, . . . , vk−1, vk, k ≥ 1, in which
vk is good in Ig and I.

We will show that nodes v1, . . . , vk−1 are nonreversed. Consider node v1. Assume
for contradiction that node v1 has reversed between states I and Ig. Since in Ig there
is a link directed from node v to node v1, and v1 has reversed between states I and Ig,
it must be that node v has reversed at least one time, a contradiction. Thus, node v1

is nonreversed. Similarly, using induction, we can easily show that nodes v2, . . . , vk−1

are also nonreversed. Since nodes v1, . . . , vk−1 are nonreversed, it has to be that in
state I there is a directed path v, v1, . . . , vk−1, vk. Thus, in state I node v is a good
node. This contradiction completes the proof.

Lemma 4.2. Consider some state I which contains bad nodes. There exists an
execution which brings the network from state I to a state I ′ (not necessarily a final
state) such that every bad node of state I reverses exactly one time.

Proof. Suppose for contradiction that there is no such execution. Then, there
exists an execution Ef which brings the system from state I to a state If such that
the following conditions hold:

1. There is at least one bad node in I which hasn’t reversed in Ef . Let A denote
the set of such bad nodes of I.

2. Any other bad node v of I, with v �∈ A, has reversed exactly one time. Let
B denote the set of such bad nodes of I.

3. The number of nodes in set B is maximal.
First we show that all the nodes that are sinks in state If have to be members

of set B. Suppose that a sink in state If is a member of set A. Then the sink hasn’t
reversed since state I. If the sink reverses then it could be an additional member of
set B. Thus, B is not maximal as required by the third condition. Therefore, the
sink has to be a member of B.

Next we show that at least one node in A is a sink in state If , which proves that
execution Ef does not exist. Assume for contradiction that no node of A is a sink
in If . Then, each node in A has an outgoing edge in If . These outgoing edges from
A cannot point toward nodes in B, since the nodes in B have reversed their edges,
while the nodes in A haven’t. Moreover, these outgoing edges cannot point toward
good nodes of state I, since this would imply that nodes in A are good in state If ,
while Lemma 4.1 implies that each node of set A remains bad in state If . Thus,
these outgoing edges must point toward nodes in set A. Since each node in set A has
an outgoing edge in set A, it must be, from the pigeonhole principle, that there is a
walk in which a node in A is repeated. Thus, there is a cycle in the graph, violating
the fact that the graph is acyclic. Thus, it must be that a node in A is a sink, a
contradiction.

Lemma 4.2 implies that the execution segments Ei and the states Ii exist. The
link-state of a node v is the vector of directions of its incident links. We show that each
execution segment leaves the link-state of bad nodes unchanged for the bad nodes,
which are not adjacent to good nodes.

Lemma 4.3. If in state Ii, i ≥ 1, node v is bad and v is not adjacent to a good
node, then v will remain in the same link-state in Ii+1.

Proof. Let A(v) denote the set of nodes adjacent to v in state Ii. Since all nodes
in A(v) are bad in state Ii, each of them reverses in execution Ei. Moreover, v also
reverses in Ei. These reversals leave the directions of the links between v and A(v)
in state Ii+1 the same as in state Ii.D

ow
nl

oa
de

d
05

/1
8/

16
 to

 1
29

.1
86

.1
76

.4
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ANALYSIS OF LINK REVERSAL ROUTING 315

4.2. Layers for full reversal. Here, we show that given some initial state I
with bad nodes, it is possible to decompose the bad nodes into layers and determine
the exact number of reversals for the nodes of each layer until stabilization: a node
in layer i reverses exactly i times.

In particular, we decompose the bad nodes into layers LI
1, L

I
2, . . . , L

I
m, defined

inductively as follows (see Figure 2). A bad node v is in layer LI
1 if the following

conditions hold:
• There is an incoming link to node v from a good node, or
• there is an outgoing link from node v to a node in layer LI

1.
A node v is in layer LI

k, k > 1, if k is the smallest integer for which one of the
following hold:

• There is an incoming link to node v from a node in layer LI
k−1, or

• there is an outgoing link from node v to a node in layer LI
k.

From the above definition, it easy to see that any node of layer LI
k, where k > 1,

can be connected only with nodes in layers LI
k−1, L

I
k, and LI

k+1. The nodes of layer

LI
1 are the only ones that can be connected with good nodes. The links connecting

two consecutive layers LI
k−1 and LI

k can be directed only from LI
k−1 to LI

k. Note that
the number of layers m is not greater than the number of bad nodes in the network
n.

LI
j

A Layer

Destination

Good Nodes

LI
1 LI

2 LI
3 LI

m

Layers of Bad Nodes

Fig. 2. Decomposition of the bad nodes into layers.

Consider now the states I1, I2, . . . and execution segments E1, E2, . . . , as de-
scribed in section 4.1. For each of these states we can divide the bad nodes into
layers, as described above. In the following sequence of lemmas we will show that
the layers of state I1 become good one by one at the end of each execution segment
Ei, i ≥ 1. We show now that the first layer of state Ii becomes good at the end of
execution Ei.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

316 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

Lemma 4.4. At the end of execution Ei, i ≥ 1, all the bad nodes of layer LIi
1

become good, while all the bad nodes in layers LIi
j , j > 1, remain bad.

Proof. First we show that the bad nodes of layer LIi
1 become good. There are

two kinds of bad nodes in layer LIi
1 at state Ii: type α, nodes which are connected

with an incoming link to a good node; and type β, nodes which are connected with
an outgoing link to another node in layer LIi

1 .
It is easy to see that there is a direct path from any β node to some α node,

consisting of nodes of layer LIi
1 . Since all bad nodes reverse exactly once in execution

Ei, all α nodes become good in state Ii+1. Moreover, from Lemma 4.3, the paths from
β nodes to α remain the same in state Ii+1. Thus, the β nodes also become good in
state Ii+1. Therefore, all the bad nodes of layer LIi

1 become good in state Ii+1.
Now we show that the bad nodes in layers LIi

j , j > 1, remain bad in state Ii+1.

From Lemma 4.3, in state Ii+1, the links connecting layers LIi
1 and LIi

2 are directed
from LIi

1 to LIi
2 . Thus, in state Ii+1, there is no path connecting nodes of layer LIi

2

to good nodes. Similarly, there is no path from the nodes of layer LIi
j , for any j > 2,

to good nodes. Thus all nodes in layers LIi
j , j > 1, remain bad.

We now show that the basic structure of layers of the bad nodes remains the same
from state Ii to state Ii+1, with the only difference being that the first layer of Ii+1

is now the second layer of Ii.

Lemma 4.5. L
Ii+1

j = LIi
j+1, i, j ≥ 1.

Proof. From Lemma 4.4, at the end of execution Ei, all the bad nodes of layer
LIi

1 become good, while all the bad nodes in layers LIi
j , j > 1, remain bad. From

Lemma 4.3 all bad nodes in layers LIi
j , j > 1, remain in the same link-state in Ii+1

as in Ii. Therefore, L
Ii+1

j = LIi
j+1, j ≥ 1.

From Lemmas 4.4 and 4.5, we have that the number of layers is reduced by one
from state Ii to state Ii+1. If we consider the layers of the initial state I1, we have
that all the bad nodes in the layers become good one by one at the end of executions
E1, E2, E3, . . . in the order LI1

1 , LI1
2 , LI1

3 , Since in each execution Ei all the bad
nodes reverse exactly one time, we obtain the following.

Lemma 4.6. Each node in layer LI1
j , j ≥ 1, reverses exactly j times before it

becomes a good node.
From Corollary 3.5, we know that all possible executions when started from the

same initial state require the same number of reversals. Thus, the result of Lemma
4.6, which is specific to the particular execution E, applies to all possible executions.
Therefore, we obtain the following theorem.

Theorem 4.7 (exact number of reversals for full reversal). For any initial state
I, and any execution of the full reversal algorithm, LI

1, L
I
2, . . . is a division of the bad

nodes in I into layers such that each node in layer LI
j , j ≥ 1, reverses exactly j times

before it becomes a good node.

4.3. Worst-case bounds for full reversal. We now give worst-case upper
and lower bounds for the work and time needed for stabilization by the full reversal
algorithm. Both bounds are obtained with the use of Theorem 4.7.

From Theorem 4.7, we have that for any initial state I, each node in layer LI
j

reverses exactly j times until it becomes good. Thus, the total number of reversals of
the nodes of layer j is j · |LI

j |. If there are m layers of bad nodes, the total number

of reversals is
∑m

j=1 j · |LI
j |. If I has n bad nodes, there are at most n layers in the

worst case (each layer contains one bad node). Thus, each node reverses at most n
times. Since there are n bad nodes, the total number of reversals in the worst case

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 317

is O(n2). Moreover, since a node reversal takes one time step and in the worst case
all reversals are executed sequentially, the total number of reversals gives an upper
bound on the stabilization time. Thus, we have the following.

Corollary 4.8 (work and time upper bounds for full reversal). For any graph
with an initial state with n bad nodes, the full reversal algorithm requires at most
O(n2) work and time until stabilization.

destination
LI

1 LI
2 LI

3 LI
4 LI

5 LI
6

Fig. 3. Worst-case work for full reversal: graph G1 with n = 6 bad nodes.

Actually, the upper bound of Corollary 4.8 is tight in both work and time in the
worst case. First we show that the work bound is tight. Consider a graph G1 which is
an initial state with n layers of bad nodes such that each layer has exactly one node
(see Figure 3 with n = 6). From Theorem 4.7, each node in the ith layer will reverse
exactly i times. Thus, the sum of all the reversals performed by all the bad nodes is
n(n + 1)/2, leading to the following corollary.

Corollary 4.9 (work lower bound for full reversal). There is a graph with an
initial state containing n bad nodes such that the full reversal algorithm requires Ω(n2)
work until stabilization.

LI
2 LI

3 LI
4 LI

5LI
1

v1 v2 v3 v4destination

Fig. 4. Worst-case stabilization time for full reversal: graph G2 with n = 8 bad nodes, m1 = 5
layers, and m2 = 4 nodes in layer m1.

We will now show that the time bound of Corollary 4.8 is tight (within constant
factors) in the worst case. Consider a graph G2 (see Figure 4) with an initial state
in which there are n bad nodes, such that it consists of m1 = �n/2� + 1 layers. The
first m1 − 1 layers contain one node each, while the last layer contains m2 = �n/2	
nodes. The last layer m1 is as follows: there are m2 nodes v1, v2, . . . , vm2 . Node vi
has outgoing links to all nodes vj such that j < i. The node of layer m1 − 1 has an
outgoing link to node v1 (see Figure 4).

From Theorem 4.7, we know that each node in layer m1 requires exactly m1

reversals before it becomes good. Since there are m2 nodes in layer m1, m1 · m2 =
Ω(n2), reversals are required before these nodes become good. The key point is that
any two nodes in layer m1 are adjacent, so that all the reversals in that layer have
to be performed sequentially. Thus, the reversals in layer m1 alone take Ω(n2) time,
providing the following corollary.

Corollary 4.10 (time lower bound for full reversal). There is a graph with
an initial state containing n bad nodes such that the full reversal algorithm requires
Ω(n2) time until stabilization.

Note that Corollary 4.10 subsumes Corollary 4.9, since a lower bound on time is
also a lower bound on work.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

318 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

5. Partial reversal algorithm. In this section, we present the analysis of the
partial reversal algorithm. We first give an upper bound for work and stabilization
time. We then present lower bounds for a class of worst-case graphs which is used to
show that the upper bound is tight.

5.1. Upper bounds for partial reversal. Given an arbitrary initial state I,
we give an upper bound on the work and stabilization time needed for the partial
reversal algorithm. In order to obtain the bound, we decompose the bad nodes into
levels and give an upper bound for the number of reversals of the nodes in each level;
this then gives us an upper bound on work and time.

In particular, suppose that initial state I of the network contains n bad nodes.
We say that a bad node v of state I is in level i if the shortest undirected path from
v to a good node has length i. Note that the number of levels is no more than n.

The upper bound depends on the minimum and maximum heights of the nodes
in state I. According to the partial reversal algorithm, each node vi has a height
(ai, bi, i). We will refer to ai as the alpha value of node vi. Let amax and amin denote
the respective maximum and minimum alpha values of any node in the network in
state I. Let a∗ = amax − amin. We first give an upper bound on the alpha value of
any node upon stabilization.

Lemma 5.1. After a node in level i becomes good its alpha value never exceeds
amax + i.

Proof. We prove the claim by induction on the number of levels. For the induction
basis, consider a node v in level 1. If the alpha value of v becomes at least amax + 1,
then v must have become a good node, since its height is more than the height of
at least one adjacent node v′ which is good in state I (from Lemma 3.2 v′ does not
reverse, and thus its alpha value remains at most amax). We need only show that
during its final reversal, the alpha value of v will not exceed amax + 1. According to
the partial reversal algorithm, the alpha value of v is equal to the smallest alpha value
of its neighbors plus one. Moreover, the smallest alpha value of the neighbors cannot
be greater than amax, since in I node v is adjacent to good nodes which don’t reverse
in future states (a consequence of Lemma 3.2). Thus, the alpha value of v will not
exceed amax + 1 when v becomes a good node. Further, from Lemma 3.2, the alpha
value of node v will not change thereafter.

For the induction hypothesis, let’s assume that the alpha value of any node in
level i, where 1 ≤ i < k, does not exceed amax + i, after that node becomes good. For
the induction step, consider layer Lk. Let v be a node in level k. Clearly, node v is
adjacent to some node in level k− 1. From the induction hypothesis, the alpha value
of every node in level k−1 cannot exceed amax +(k−1) in any future state from I. If
the alpha value of v becomes at least amax +k, then v must have become a good node,
since its height is more than that of the adjacent nodes in level k−1 when these nodes
become good. We need only show that during its final reversal, the alpha value of v
will not exceed amax +k. According to the partial reversal algorithm, the alpha value
of v is not more than the smallest alpha value of its neighbors plus one. Moreover,
the smallest alpha value of the neighbors cannot exceed amax + (k − 1), which is the
maximum alpha value of the nodes in level k − 1 when these nodes become good.
Thus, the alpha value of v will not exceed amax + k when v becomes a good node.
Further, from Lemma 3.2, the alpha value of node v will not change thereafter.

At each reversal, the alpha value of a node increases by at least 1. Since the
alpha value of a node can be as low as amin, Lemma 5.1 implies that a node in level i
reverses at most amax − amin + i times. Furthermore, since there are at most n levels,
we obtain the following corollary.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 319

Corollary 5.2. A bad node will reverse at most a∗ + n times before it becomes
a good node.

Considering now all the n bad nodes together, Corollary 5.2 implies that the work
needed until the network stabilizes is at most n · a∗ + n2. Since in the worst case the
reversal of the nodes may be sequential, the upper bound for work is also an upper
bound for the time needed to stabilize. Thus we have the following.

Theorem 5.3 (work and time upper bounds for partial reversal). For any initial
state with n bad nodes, the partial reversal algorithm requires at most O(n · a∗ + n2)
work and time until the network stabilizes.

5.2. Lower bounds for number of reversals. We will show that the upper
bounds on work and time given in Theorem 5.3 are tight. We construct a class of
worst-case graphs with initial states which require as much work and time as the
upper bounds. In order to prove the lower bounds, we first determine how many
reversals each node performs in the network.

In particular, consider a graph with an initial state I containing n bad nodes
which can be decomposed into an even number m of layers L1, L2, . . . , Lm−1, Lm in
the following way. A node is a source if all the links incident to the node are outgoing.
The odd layers L1, L3, . . . , Lm−1 contain only nodes which are nonsources, while the
even layers L2, L4, . . . , Lm contain only nodes which are sources. The nodes in layer
L1 are the only bad nodes adjacent to good nodes. Let G denote the set of good nodes
adjacent to layer L1. Nodes in layer Li may be adjacent only to nodes of the same
layer and layers Li−1 and Li+1.

3 We actually require that each node of Li is adjacent
to at least one node of Li−1 and at least one node of Li+1. In addition, state I is
taken so that all good nodes in the network have alpha value amax, while all the bad
nodes have alpha value amin, where amax > amin. Let a∗ = amax − amin. Instances
of such an initial state are shown in Figures 5 and 6; at the end of this section we
describe how to obtain such configurations with arbitrary large amax in a mobile ad
hoc network.

Given such an initial state I, we will give a lower bound on the number of reversals
performed by each node at each layer until the network stabilizes. In order to obtain
this result, we first show some necessary lemmas. A full reversal is a reversal in
which a node reverses all of its links. Note that after a full reversal, a node becomes
a source. We show that bad nodes which are sources always perform full reversals
whenever they become sinks.

Lemma 5.4. Consider any state I1 of the network in which a bad node v is a
source with alpha value a. In a subsequent state I2, in which node v becomes a sink
for the first time after state I1, the following occur: (1) v performs a full reversal,
and (2) after the reversal of v, the alpha value of v becomes a + 2.

Proof. In state I1, since v is a source, all the adjacent nodes of v have alpha value
at most a. Between states I1 and I2, each adjacent node of v has reversed at least
once. We will show that in state I2, the alpha value of each adjacent node of v is
a + 1.

Let w be any adjacent node of v. First, we show that the alpha value of w in I2
is at least a + 1. If in I2 the alpha value of w is less than a, then v must have an
outgoing link toward w, and thus v cannot possibly be a sink in I2, a contradiction.
Therefore, in I2 the alpha value of w has to be at least a. Next, we show that this
alpha value cannot be equal to a. If the alpha value of w in I2 is a, then it must

3If i = 1, substitute G for Li−1. If i = m, don’t consider Li+1.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

320 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

be that the alpha value of w in I1 was less than a (since w reversed between I1 and
I2 and points toward v). When w was a sink the last time before I2, w must have
been adjacent to another node u with height a− 1. When w reversed, its alpha value
became a, but its incoming link from v didn’t change direction since u had a smaller
alpha value. Thus v cannot possibly be a sink in I2, a contradiction. Therefore, the
alpha value of w in I2 cannot be equal to a, and it has to be at least a + 1.

Next, we show that the alpha value of w cannot be greater than a + 1. When
w reverses, its alpha value is at most the minimum alpha value of its neighbors plus
one. Therefore, since v is a neighbor of w with alpha value a, when w reverses, its
alpha value cannot exceed a + 1.

Therefore, the alpha value of w in state I2 is exactly a + 1. This implies that in
I2 all the neighbors of v have alpha value a+ 1. Thus, when v reverses, it performs a
full reversal and its alpha value becomes a + 2.

Given state I described above, we give a lower bound for the alpha values of the
nodes in each layer when the network stabilizes.

Lemma 5.5. When the network stabilizes from state I, the alpha values of all the
nodes in layers L2i−1 and L2i, 1 ≤ i ≤ m/2, are at least amax + i.

Proof. Let I ′ denote the state of the network when it stabilizes. We prove the
claim by induction on i. For the basis case, where i = 1, we consider layers L1 and
L2. In state I, all the nodes of layer L1 have only incoming links from G. In state I ′,
there must exist a set S, consisting of nodes from L1, such that the nodes in S have
outgoing links pointing toward G.

Let v be a node in S. In state I ′, the alpha value of v is at least amax, since the
nodes in G have alpha value amax. Actually, we will show that the alpha value of v
in I ′ is larger than amax. Assume for contradiction that this value is amax. When
node v reversed and obtained the alpha value amax, it cannot possibly have reversed
its links toward G since, for these links, v adjusted only its second field on its height.
Thus, in state I ′ node v is still bad, a contradiction. Therefore, in state I ′, node v
has alpha value at least amax +1; thus, in state I ′, all nodes in set S have alpha value
at least amax + 1.

Now, consider the rest of the nodes in layers Lj , j ≥ 1. Let w be any such node.
In state I ′, w is good, and thus there exists a directed path from w to a good node in
G. This path has to go through the nodes of S; thus each node in the path must have
alpha value at least amax + 1, which implies that w has alpha value at least amax + 1.
Therefore, in state I ′, all nodes in L1 and L2 (including S) have alpha value at least
amax + 1.

Now, let’s assume that the claim holds for all 1 ≤ i < k. We will show that the
claim is true for i = k. We consider layers L2k−1 and L2k. In state I all the nodes of
layer L2k−1 have only incoming links from L2k−2. In state I ′, there must exist a set
S, consisting of nodes of L2k−1, such that the nodes in S have outgoing links pointing
toward L2k−2. The rest of the proof is similar to the induction basis, where now we
show that the nodes in S in state I ′, have alpha values at least amax+k, which implies
that all nodes in L2k−1 and L2k have alpha value at least amax + k.

We are now ready to show a central theorem for the lower bound analysis, which
is a lower bound on the number of reversals for the nodes of each layer. This result
will help us to obtain lower bounds for work and time needed for stabilization.

Theorem 5.6 (lower bound on reversals for partial reversal). Until the network
stabilizes, each node in layers L2i−1 and L2i, 1 ≤ i ≤ m/2, will reverse at least
�(a∗ + i)/2� times.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 321

Proof. Consider a bad node v of L2i. Node v is a source in state I. Lemma 5.4
implies that whenever v reverses in the future, it reverses all of its incident links, and
therefore it remains a source. Moreover, Lemma 5.4 implies that every time that v
reverses, its alpha value increases by 2. Lemma 5.5 implies that when the network
stabilizes, the alpha value of v is at least amax + i. Since in state I the alpha value
of v is amin, node v reverses at least �(a∗ + i)/2� times after state I. Similarly, any
other node in L2i reverses at least �(a∗ + i)/2� times.

Consider now a bad node w of L2i−1. Node w is adjacent to at least one node u
in layer L2i. In state I, node u is a source, and it remains a source every time that
u reverses (Lemma 5.4). Since u and w are adjacent, the reversals of u and w should
alternate. This implies that node w reverses at least �(a∗ + i)/2� times, since node
u reverses at least �(a∗ + i)/2� times. Similarly, any other node in L2i−1 reverses at
least �(a∗ + i)/2� times.

L1 L2 L3 L4 L5 L6

destination

Fig. 5. Worst-case work for partial reversal: graph G3 with n = 6 bad nodes.

Using Theorem 5.6 we now give worst-case graphs for work and stabilization time,
which show that the upper bounds of Theorem 5.3 are tight. First, we give the lower
bound on work. Consider a graph G3 which is in state I, as described above, in which
there are n bad nodes, where n is even, and there is exactly one bad node in each
layer (see Figure 5). From Theorem 5.6, each node in the ith layer will reverse at
least �(a∗ + �i/2)/2� times before the network stabilizes. Thus, the sum of all the
reversals performed by all the bad nodes is at least

∑n
i=1�(a∗ + �i/2)/2�, which is

Ω(n · a∗ + n2). Thus, we have the following corollary.
Corollary 5.7 (work lower bound for partial reversal). There is a graph with

an initial state containing n bad nodes such that the partial reversal algorithm requires
Ω(n · a∗ + n2) work until stabilization.

L1 L2 L3 L4 L5 L6

v1

v3

v2
destination

Fig. 6. Worst-case stabilization time for partial reversal: graph G4 with n = 8 bad nodes,
m1 = 6 layers, and m2 = 3 nodes in layer m1 − 1.

Now we give the lower bound on time. Consider a graph G4 in a state I as
described above, in which there are n bad nodes, where n/2 is even. The graph
consists of m1 = n/2 + 2 layers. The first m1 − 2 layers contain one node each, while
layer m1 − 1 contains m2 = n/2 − 1 nodes, and layer m1 contains 1 node. The layer
m1 − 1 is as follows: there are m2 nodes v1, v2, . . . , vm2

. Node vi has outgoing links
to all nodes vj such that j < i (see Figure 6). Note that each node in layer vi is
connected to the nodes in the adjacent layers from the specification of state I.

From Theorem 5.6, we know that each node in layer m1 − 1 requires at least
k1 = �(a∗ + �(m1 − 1)/2)/2� reversals before it becomes a good node. Since layer

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

322 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

m1 − 1 contains m2 nodes, at least k1 · m2 = Ω(n · a∗ + n2) reversals are required
before these bad nodes become good nodes. All these reversals have to be performed
sequentially, since the nodes of layer m1 − 1 are adjacent, and any two of these nodes
cannot be sinks simultaneously. Thus, we have the following corollary.

Corollary 5.8 (time lower bound for partial reversal). There is a graph with
an initial state containing n bad nodes such that the partial reversal algorithm requires
Ω(n · a∗ + n2) time until stabilization.

Note that Corollary 5.8 subsumes Corollary 5.7, since a lower bound on time is
also a lower bound on work.

We now describe scenarios in mobile ad hoc networks which could result in the
state I of graph G4 and with arbitrary a∗ value and number of nodes n. We first
describe how to obtain an arbitrary amax value in a small graph. Consider a graph
consisting of the destination node and two nodes w1 and w2. Initially node w1 points
only to w2, which points to the destination; further, the alpha values of the nodes are
all zero. Next, w1 moves and gets also connected to the destination, without changing
its height. Now w2 moves and gets disconnected from the destination, but it still is
connected to w1. However, w2 is now a sink, and thus it performs a reversal, where
its alpha value increases by one, since it has one neighbor (w1). This scenario can
be repeated an arbitrary number of times with the roles of w1 and w2 interchanged.
This results in a state with an arbitrary value of amax.

Next, we describe how to obtain arbitrary a∗ = d in a state I of graph G4. Let
a∗(I) denote a∗ in state I. Consider a graph H in an initial state I ′ in which all the
nodes are good and all have alpha value equal to zero (thus, a∗(I ′) = 0). The nodes,
except the destination, are divided into three components H1, H2, and H3. Graph H1

consists of n nodes and is in a state isomorphic to the bad nodes in graph G4. Graph
H2 is a set of good nodes such that each node of H1 is connected with an outgoing
link to a good node in H2; essentially, the nodes of H1 are good because they are
connected to the nodes of H2. Graph H3 is a network consisting only of nodes w1

and w2 as described in the previous paragraph. From state I ′ we obtain a state I ′′

as follows. We let the nodes in H3 oscillate (as described in the previous paragraph)
until the alpha value of w1 or w2 is equal to d. Suppose that w1 is the node that
gets height d first and we stop the oscillation immediately when w1 gets connected
directly to the destination. Note that the nodes in H1 and H2 haven’t changed their
heights since I ′, and therefore their alpha values remain zero in I ′′ (thus, a∗(I ′′) = d).
Now, from state I ′′ we will obtain a state I as follows. The nodes in H2 and the node
w2 disappear from the network; also, the node in the first layer of H1 gets connected
to w1. The resulting network configuration and state I are the same as in graph G4.
Since the nodes in H1 haven’t changed their original alpha value (zero) and the node
w1 has the largest alpha value d, we obtain a∗(I) = d, as needed.4

6. Deterministic algorithms. In this section, we give worst-case lower bounds
for the work and time needed for stabilization for any deterministic link reversal
algorithm. Given an arbitrary deterministic function g, we will establish the existence
of a family of graphs with initial states containing any number of n > 2 bad nodes
which require at least Ω(n2) work and time until stabilization. The lower bounds
follow from a lower bound on the number of reversals performed by each node, which
we describe next.

4A similar scenario could give a state I with arbitrary a∗, where amin is larger than zero. However,
the state we gave with amin = 0 suffices for our lower bounds.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 323

6.1. Lower bound on number of reversals. Given a graph G, we construct
a state I in which we determine a lower bound on the number of reversals required
by each bad node until stabilization. In particular, we decompose the bad nodes into
levels and show that the node at level i reverses at least i−1 times until stabilization.
We then use this result to obtain lower bounds for work and time.

The construction of state I depends on a level decomposition of the network. Let
s be the destination node. A node v (bad or not) is defined to be in level i if the
(undirected graph) distance between v and s is i. Thus s is in level 0, and a node in
level i is connected only with nodes in levels i − 1, i, and i + 1. Let m denote the
maximum level of any node.

We now construct recursively states Im+1, Im, Im−1, . . . , I2 such that state I = I2.
The basis of the recursion is state Im+1. The construction is as follows.

• In state Im+1 every node is good. Further, the heights of nodes in levels
1, 2, 3, . . . ,m are in increasing order with the levels, i.e., given two vertices
u, v at respective levels lu, lv with lu < lv, u’s height is less than v’s. An
example assignment of heights in state Im+1 is to set a node’s height to be
equal to its level.

• Suppose we have constructed state Ii, where m + 1 ≥ i > 2. We construct
state Ii−1 as follows:

– For every node in levels i− 1, i, . . . ,m, the height of the node in Ii−1 is
the same as its height in Ii.

– Let maxi denote the maximum height of a node in the destination ori-
ented graph that is reached by an execution starting from Ii. (We note
that from Corollary 3.5, maxi does not depend on the actual execution
sequence, but only on the initial state Ii.) For every node v in levels
1, 2, . . . , i − 2, v’s height in Ii−1 is assigned to be v’s height in Ii plus
maxi.

In the above construction, we assumed that the function g converges at a finite amount
of time to a stable state starting from any initial state Ii. This assumption doesn’t
hurt the generality of our analysis, since if g didn’t stabilize it would trivially require
at least Ω(n2) work and time, for n bad nodes, and thus our main result still holds.
So, without loss of generality, we will assume that g stabilizes.

Next, we show that each state Ii, m+1 ≥ i ≥ 2, satisfies the following properties:
P1i : The heights of nodes in levels 1, 2, 3, . . . , i− 1 are in increasing order with the

levels; i.e., given two vertices u, v at respective levels lu, lv with lu < lv, u’s
height is less than v’s. Thus, every node in levels 1, 2, . . . , i − 1 is a good
node.

P2i : The heights of nodes in levels i− 1, i, i + 1, . . . ,m are in decreasing order with
the levels, i.e., given two vertices u, v at respective levels lu, lv with lu < lv,
u’s height is greater than v’s. Thus, every node in levels i, i+1, . . . ,m is bad.
In the case when i = m + 1, no node is bad.

P3i : Starting from initial state Ii, every node in level j, j = i, i+ 1, . . . ,m, reverses
at least j − i + 1 times until stabilization. In the case when i = m + 1, no
node reverses.

For i = m + 1, . . . , 2, we will now argue about the number of reversals starting
from state Ii until stabilization. From Corollary 3.5, we know that all executions of a
deterministic algorithm starting from the same initial state are essentially identical.
In particular, the number of reversals of each node in every execution is the same.

For convenience, we consider a specific execution Ei which starts from initial

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

324 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

state Ii and reverses nodes in the following order: next reverse the bad node which
has the smallest height in the current state. Clearly, such a node is a sink, and hence
a candidate for reversal. The number of reversals of a node in any execution starting
from Ii is equal to the number of reversals of the node in Ei.

Lemma 6.1. State Ii, m + 1 ≥ i ≥ 2, satisfies properties P1i, P2i, and P3i.
Proof. The proof is by induction on i. For the induction basis, state Im+1

clearly satisfies all the properties P1m+1, P2m+1, P3m+1 from the construction of
this state. Suppose now that state Ii, where m + 1 ≥ i > 2, satisfies the respective
three properties. We will show that state Ii−1 satisfies the respective properties too.
It can be easily checked that properties P1i−1 and P2i−1 are satisfied in Ii−1. We
focus on property P3i−1.

An execution is a sequence of reversals. We say that two reversals (v, h,H) and
(v, h′, H ′) of the same node in different network states are equal if the heights of the
node and its neighbors are the same in both states, namely, h = h and H = H ′. If
two reversals are equal, then the heights of the node after the reversals are the same,
since we are using a deterministic height increase function g. An execution E is said
to be a prefix of an execution E′ if the reversal sequence constituting E is elementwise
equal to a prefix of the reversal sequence constituting E′. In Lemma 6.2, we show
that Ei is a prefix of Ei−1.

Consider the state of the system which started in Ii−1, but after executing the
reversals in Ei. In this state, the height of each node in levels 1, 2, . . . , i− 2 is greater
than maxi by construction (it was greater than maxi in Ii−1, and heights can never
decrease). Let v be a node in level lv > i − 2. After the execution segment Ei, v’s
height is the same as the final height in the destination oriented graph reached from
Ii, and by the definition of maxi, this is no more than maxi.

Thus, in the current state, the height of every node in levels i − 1, i, . . . ,m is
less than the height of every node in levels 1, 2, . . . , i − 2. Consider any node u in
level lu ≥ i− 1. In the final destination oriented graph, there is a path of decreasing
height from u to the destination s, and this path contains at least one node from
levels 1, . . . , i − 2. Thus, in the final state, u’s height is greater than the height of
some node in levels 1, . . . , i − 2, while it was less to begin with. This implies that u
must have reversed at least once until stabilization.

In Ei, each node in level j, j = i, i+1, . . . ,m has reversed at least j− i+1 times.
If we add an extra reversal to all nodes in levels i − 1, i, . . . ,m, then in Ei−1, each
node in levels j = i−1, i, . . . ,m reverses at least j− i+2 times, thus proving property
P3i−1.

Lemma 6.2. Execution Ei is a prefix of execution Ei−1.
Proof. Executions Ei and Ei−1 start from states Ii and Ii−1, respectively. Let

Ei = ri1, r
i
2, . . . , r

i
f and Ei−1 = ri−1

1 , ri−1
2 , We prove by induction that rij = ri−1

j

for j = 1, . . . , f .
Base case. The nodes with the lowest height in Ii and Ii−1 are the same node v,

and v lies in layer m. The heights of all nodes in layer m− 1 are the same in Ii and
Ii−1 by construction. Thus, all of v’s neighbors have the same height in Ii and Ii−1,
so that ri1 = ri−1

1 .
Inductive case. Suppose that ri1, r

i
2, . . . , r

i
l is identical to ri−1

1 , ri−1
2 , . . . , ri−1

l for
some l < f . Let Iil and Ii−1

l , respectively, denote the state of the system starting
from Ii after reversals ri1, r

i
2, . . . , r

i
l , and the state of the system starting from Ii−1

after reversals ri−1
1 , ri−1

2 , . . . , ri−1
l .

Let v be the bad node with the lowest height in Iil so that ril+1 reverses v. We

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ANALYSIS OF LINK REVERSAL ROUTING 325

claim that this is also the bad node with the lowest height in Ii−1
l . The reason is as

follows.
Node v must be at a level lv ≥ i, since Ei does not reverse any nodes at a lower

level than i. All nodes in levels i − 1 or greater have the same heights in Iil and
Ii−1
l , due to the induction hypothesis, and these are all less than maxi. All nodes

in levels i − 2 or less in Ii−1
l have heights greater than maxi by construction. Thus,

the bad node with the minimum height in Ii−1
l is also v, and its neighbors also have

the same heights as in Iil , implying that ril+1 is the same as ri−1
l+1 . This completes the

proof.
We are now ready to show the main result of this section.
Theorem 6.3 (lower bound on reversals for deterministic algorithms). Given

any graph G and any height increase function g, there exists an initial state I (an
assignment of heights to the nodes of G) which causes each node in level i > 0 to
reverse at least i− 1 times until stabilization.

Proof. Let m denote the maximum node level. We first construct a sequence of
initial states Im+1, Im, . . . , I2 as described above. Lemma 6.1 implies that starting
from initial state Ii, each node in level j, j ≥ i reverses at least j − i + 1 times until
stabilization (property P3i). We take I = I2.

6.2. Worst-case graphs. Here we give lower bounds on the work and time for
any deterministic algorithm. Theorem 6.3 applies to any graph. Consider the list
graph G1 with n + 2 nodes, shown in Figure 3 and described in section 4.3. We
construct a state I with n bad nodes as described in section 6.1. From Theorem 6.3,
the lower bound for the worst-case number of reversals of any reversal algorithm on
state I is the sum of the reversals of each bad node: 1 + 2 + · · · + n = Ω(n2). Thus
we have the following corollary.

Corollary 6.4 (work lower bound for deterministic algorithms). There is a
graph with an initial state containing n bad nodes such that any deterministic reversal
algorithm requires Ω(n2) work until stabilization.

We can derive a similar lower bound on the time needed for stabilization. We
use the graph G4 with n + 2 nodes, shown in Figure 4. The structure of the graph,
and the parameters m1 and m2, are defined as in section 5.2 with respect to n + 1.
We construct a state I with n bad nodes as described in section 6.1. From Theorem
6.3, we know that each node in level m1 − 1 of G4 requires at least (m1 − 2) reversals
before it becomes a good node. Level m1 − 1 contains m2 nodes. Therefore, at least
(m1 − 2) ·m2 = Ω(n2) reversals are required before these nodes become good nodes.
All these reversals have to be performed sequentially, since the nodes of layer m1 − 1
are adjacent, and no two of these nodes can be sinks simultaneously. Thus, we have
the following corollary.

Corollary 6.5 (time lower bound for deterministic algorithms). There is a
graph with an initial state containing n bad nodes such that any deterministic reversal
algorithm requires Ω(n2) time until stabilization.

7. Conclusions and discussion. We presented a worst-case analysis of link
reversal routing algorithms in terms of work and time. We showed that for n bad
nodes, the GB full reversal algorithm requires O(n2) work and time, while the partial
reversal algorithm requires O(n ·a∗ +n2) work and time. The above bounds are tight
in the worst case. Our analysis for the full reversal is exact. For any network, we
present a decomposition of the bad nodes in the initial state into layers, which allows
us to predict exactly the work performed by each node in any distributed execution.

Furthermore, we show that for any deterministic reversal algorithm on a given

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

326 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

graph, there exists an assignment of heights to all the bad nodes in the graph such
that if a bad node d hops away from its closest good node, then it has to reverse d
times before stabilization. Using this, we show that there exist networks and initial
states with n bad nodes such that the algorithm needs Ω(n2) work and time until
stabilization. As a consequence, from the worst-case perspective, the full reversal al-
gorithm is work and time optimal, while the partial reversal algorithm is not. Since a∗

can grow arbitrarily large, the full reversal algorithm outperforms the partial reversal
algorithm in the worst case.

Since it is known that partial reversal performs better than full reversal in some
cases, it would be interesting to find a variation of the partial reversal algorithm, which
is as good as full reversal in the worst case. Another research problem is to analyze
the average performance of link reversal algorithms. It would be also interesting to
extend our analysis to nondeterministic algorithms, such as randomized algorithms, in
which the new height of a sink is some randomized function of the neighbors’ heights.

Acknowledgments. We thank the reviewers for their valuable comments and
suggestions. We also thank Srikanth Surapaneni for helping in the preparation of an
earlier version of this paper.

REFERENCES

[1] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, A performance compar-
ison of multi-hop wireless ad hoc network routing protocols, in Proceedings of the Fourth
Annual ACM/IEEE International Conference on Mobile Computing and Networking (MO-
BICOM), 1998, ACM, New York, pp. 85–97.

[2] C. Busch, S. Surapaneni, and S. Tirthapura, Analysis of link reversal routing algorithms
for mobile ad hoc networks, in Proceedings of the Fifteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2003, pp. 210–219.

[3] I. Chatzigiannakis, E. Kaltsa, and S. Nikoletseas, On the effect of user mobility and den-
sity on the performance of routing protocols for ad-hoc mobile networks, Wireless Com-
munication and Mobile Computing, 4 (2004), pp. 609–621.

[4] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis, Distributed communication algorithms
for ad-hoc mobile networks, J. Parallel Distrib. Comput., 63 (2003), pp. 58–74.

[5] M. S. Corson and A. Ephremides, A distributed routing algorithm for mobile radio networks,
in Proceedings of the IEEE Military Communications Conference (MILCOM), 1989, pp.
210–213.

[6] M. S. Corson and A. Ephremides, A distributed routing algorithm for mobile wireless net-
works, ACM/Baltzer Wireless Networks J., 1 (1995), pp. 61–82.

[7] E. M. Gafni and D. P. Bertsekas, Distributed algorithms for generating loop-free routes in
networks with frequently changing topology, IEEE Trans. Comm., 29 (1981), pp. 11–18.

[8] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, Directed dif-
fusion for wireless sensor networking, IEEE/ACM Trans. Networking (TON), 11 (2003),
pp. 2–16.

[9] N. Malpani, J. L. Welch, and N. Vaidya, Leader election algorithms for mobile ad hoc
networks, in Proceedings of the Fourth Annual ACM International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communication (DIAL-M), 2000,
pp. 96–103.

[10] V. D. Park and M. S. Corson, A highly adaptive distributed routing algorithm for mobile
wireless networks, in Proceedings of the Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), 1997, pp. 1405–1413.

[11] V. S. Park and M. S. Corson, A performance comparison of the temporally-ordered routing
algorithm and ideal link-state routing, in Proceedings of the Third Annual IEEE Interna-
tional Symposium on Computers and Communications, 1998, pp. 592–598.

[12] C. E. Perkins, Ad Hoc Networking, Addison–Wesley, Reading, MA, 2000.
[13] R. Rajaraman, Topology control and routing in ad hoc networks: A survey, SIGACT News,

33 (2002), pp. 60–73.
[14] S. R. Das, R. Castaneda, Y. Jiangtao, and R. Sengupta, Comparative performance evalua-

tion of routing protocols for mobile, ad hoc networks, in Proceedings of the Seventh Annual
IEEE International Conference on Computer Communications and Networks (IC3N), 1998,
pp. 153–161.

D
ow

nl
oa

de
d

05
/1

8/
16

 to
 1

29
.1

86
.1

76
.4

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

