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Abstract. Agreement is at the heart of distributed computing. In its simple form, it requires a
set of processes to decide on a common value out of the values they propose. The time-complexity
of distributed agreement problems is generally measured in terms of the number of communication
rounds needed to achieve a global decision; i.e., for all non-faulty (correct) processes to reach a
decision. This paper studies the time-complexity of local decisions in agreement problems, which
we define as the number of communication rounds needed for at least one correct process to decide.
We explore bounds for early local decision, that depend on the number f of actual failures (that
occur in a given run of an algorithm), out of the maximum number t of failures tolerated (by the
algorithm). We first consider the synchronous message-passing model where we give tight local
decision bounds for three variants of agreement: consensus, uniform consensus and (non-blocking)
atomic commit. We use these results to (1) show that, for consensus, local decision bounds are
not compatible with global decision bounds (roughly speaking, they cannot be reached by the same
algorithm), and (2) draw the first sharp line between the time-complexity of uniform consensus
and atomic commit. Then we consider the eventually synchronous model where we give tight local
decision bounds for synchronous runs of uniform consensus. (In this model, consensus and uniform
consensus are similar, atomic commit is impossible, and one cannot bound the number of rounds
to reach a decision in non-synchronous runs of consensus algorithms.) We prove a counter-intuitive
result that the early local decision bound is the same as the early global decision bound. We also give
a matching early deciding consensus algorithm that is significantly better than previous eventually
synchronous consensus algorithms.
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1. Introduction.
Local vs. Global Agreement Decisions. Determining how long it takes to

reach agreement among a set of processes is an important question in distributed
computing. For instance, the performance of a replicated system is impacted by
the performance of the underlying consensus service used to ensure that the replica
processes agree on the same order to deliver client requests [20]. Similarly, the per-
formance of a distributed transactional system is impacted by the performance of the
underlying atomic commit service used to ensure that the database servers agree on
a transaction outcome [15].

Traditionally, lower bounds on the time complexity of distributed agreement have
been stated in terms of the number of communication rounds (also called communi-
cation steps) needed for all correct processes to decide [21] (i.e., global decision), or
even halt [6], possibly as a function of the number of failures f that actually occur in
a given run of an algorithm, out of the total number of failures t that are tolerated
by the algorithm. (In this paper we only consider crash-stop failures.)

From a practical perspective, what we might sometimes want to measure and
optimize, is the number of rounds needed for at least one correct process to decide,
i.e., for a local decision. Indeed, a replicated service can respond to its clients as soon
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as a single replica decides on a reply (and knows that other replicas will reach the
same decision). Similarly, the client of an atomic commit service might be happy to
know the outcome of a transaction once the outcome has been determined, even if
some database servers have yet to be informed of the outcome.

Motivations. Surprisingly, despite the large body of work on the performance
of agreement, so far, no study on local decision lower bounds has appeared in the
literature. To get an intuition of some of the specific ramifications underlying such a
study, consider the consensus problem [27, 22] in the synchronous model, where a set
of processes, {p1, p2, . . . , pn}, proceed by exchanging messages in a round by round
manner, and t out of the n processes may fail by crashing [23].

In this problem, the processes must decide on a common final value, out of the
values they initially proposed, such that all correct processes eventually decide and
agree on a common decision. The following algorithm (from [16]) conveys the fact
that there can indeed be a difference between local and global decision lower bounds.
(Round numbers start from 1.) At the beginning of round 1, process p1 decides on its
proposal value and then sends its decision value to all processes. At the end of every
round i ≥ 1, process pi+1 decides on the value contained in the last received message,
and if pi+1 has not received any message, pi+1 decides on its proposal value. Process
pi+1 then sends its decision value to all processes in round i+1. (The correct process
with the lowest id, say pj , succeeds in sending its decision value to all processes in
round j. Subsequently, all processes with higher ids decide and propagate the decision
value of pj .) If there are no failures, i.e., f = 0, then p1 decides before sending any
message in round 1, and we say that p1 decides in round 0. In runs of this algorithm
with at most 1 ≤ f ≤ t failures, at least one correct process decides by round f .
Hence, if we denote by lf the tight local decision lower bound for consensus in runs of
the synchronous model with f failures, the very existence of the algorithm means that
lf ≤ f . In fact, a closer look reveals that lf is exactly f . However, if we denote by
gf the tight global decision lower bound, we know from [21] that gf is exactly f + 1.
This observation opens several questions.

1. Can we match both lower bounds with the same algorithm? The synchronous
consensus algorithm we just sketched matches the lower bound lf = f but clearly does
not match the lower bound gf = f + 1. Is there any other algorithm that does so?
Otherwise, we would be highlighting a rather interesting trade-off in the design of
consensus algorithms.

2. What is the impact of the very nature of the agreement?
(i) Consider for instance the uniform variant of consensus [18], where no pro-

cess disagrees with any other process, even one that crashed. Clearly, the algorithm
sketched above needs to be revisited. We can easily exhibit a uniform consensus al-
gorithm in which at least one correct process decides by round f + 1, in runs with at
most f failures; i.e., lf ≤ f + 1. Additionally, we know from [4, 19] that, for most
values of f , gf = f + 2. Is gf = lf + 1?

(ii) Similarly, consider the non-blocking atomic commit problem [29, 18], where
the processes have to decide 0 if some process proposes 0, and have to decide 1 if no
process proposes 0 or crashes. We know that the tight global decision lower bound for
atomic commit is the same as for uniform consensus [3, 10]. But, do the two problems
have the same tight local decision bounds as well?

3. What is the impact of the model? Consider consensus for instance in the
eventually synchronous (ES) model [11]. If we compare (a) the number of rounds ges

f
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needed for all correct processes to decide in synchronous runs with f process crashes,
and (b) the number of rounds les

f needed for at least one correct process to decide in
such runs, is ges

f = les
f + 1?

Contributions.
1. We show in the synchronous model that, except for some specific values of f

(which we make precise in the paper), gf = lf +1 for consensus, uniform consensus and
non-blocking atomic commit. (In fact, to exhibit a matching algorithm for uniform
consensus and non-blocking atomic commit, we give an algorithm for the “stronger”
interactive consistency problem [27].) Furthermore, we highlight an interesting trade-
off in the design of consensus algorithms by showing that no consensus algorithm can
match both global and local decision bounds. More precisely, no consensus algorithm
can match both lf+1 and gf . In addition, we show that, for the failure-free case
(i.e., f = 0) of non-blocking atomic commit, the local decision bound is higher than
that of uniform consensus. Since both problems have identical global decision lower
bounds [3, 10], we draw the first line between their time-complexity.

2. We also consider uniform consensus in the eventually synchronous model. (In
this model, non-blocking atomic commit is not solvable when t ≥ 1, and consensus is
equivalent to uniform consensus [16].) We determine a local decision lower bound of
f + 2 rounds for synchronous runs of the model, with f failures (for f ≤ t− 3). Then
we present an algorithm that, in synchronous runs with f failures, globally (and hence
locally) decides in f + 2 rounds. In addition to matching the local decision bound, to
our knowledge, our algorithm is the first to match the f + 2 rounds global decision
lower bound presented in [4, 19, 9]. In other words, we show that, for synchronous
runs of the eventually synchronous model, tight local decision bounds are the same
as for global decision; i.e., ges

f = les
f = f + 2.

Related Work. The consensus problem was introduced in [27, 22] and (non-
blocking) atomic commit was defined in [15, 29]. The distinction between consensus
and uniform consensus, and the relationship with the atomic commit problem were
discussed in [18, 16]. Initial lower bound results on the time-complexity of agreement
problems were proved in [13], and studied further in [21, 7, 25, 12, 1]. The eventually
synchronous model was introduced in [5, 11].

In the synchronous model, one of the initial early halting agreement algorithms
was presented in [21]. The early halting lower bound for consensus was proved in [6].
The early decision lower bound for uniform consensus, and its difference with the
non-uniform case were studied in [4, 19].

In the eventually synchronous model, the first consensus algorithm was presented
in [11]. The equivalence between consensus and uniform consensus in the eventually
synchronous model was shown in [16]. Tight bounds for synchronous runs of the
eventually synchronous model, in the failure-free case (f = 0) was shown in [19, 28,
26], and for the worst-case (f = t) was shown in [9]. Techniques that use forward
inductions to prove lower bounds on agreement problems were introduced in [24, 1].

Roadmap.
Section 2 recalls the models we consider. Section 3 recalls the definitions of

the agreement problems we study. In Section 4, we introduce the definition of our
local decision metric, and we recall other time-complexity metrics. We also devise a
compact notation for presenting various lower bound results on agreement problems.
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Section 5 recalls the layering technique of [24], also used in [19], which we slightly
extend to prove local decisions results. Sections 6 and 7 present our lower bound
results and matching algorithms in the synchronous model, respectively. The lower
bound result for the eventually synchronous model and the matching algorithm are
presented in sections 8 and 9, respectively. Section 10 concludes the paper.

2. Models. The distributed system we consider consists of a set of n ≥ 3 pro-
cesses, denoted by Π = {p1, p2, . . . , pn}, that communicate by message-passing: every
pair of processes is connected by a bi-directional communication channel that do not
create, duplicate or alter messages. However, messages may be lost or reordered. The
processes may fail by crashing and do not recover from a crash. The computation
proceeds in rounds of message-exchange with round numbers starting from 1 and in-
creasing by 1 in every round. A distributed algorithm A is a collection of deterministic
automata, where the automaton for each process executes the following two phases in
every round: (a) in the send phase, the processes send messages to all processes; (b)
in the receive phase, the processes receive some messages sent in the send phase (of
the current round or of a lower round) and update local states (which might include
a decision event). A run of algorithm A is an infinite sequence of rounds of A. A
partial run is a finite prefix of some run. A (partial) run r extends some partial run
pr if pr is a prefix of r. A process that does not crash in a run is said to be correct
in that run; otherwise the process is faulty. We say that a message m sent in a run is
lost (in that run) if m is never received in that run.

In the distributed system described above, a model is a set of runs selected by
restricting when processes can crash and specifying which messages are received. A
submodel of a model M is a model that is a subset of M . We consider the following
models.

• For every t such that 0 ≤ t ≤ n − 1, we define the t-resilient synchronous
crash-stop model [23], denoted SCS t, as follows. In every given run of SCS t,
the following properties hold: (1) if a process starts some round k then it
either completes that round or crashes; (2) at most t processes crash; and (3)
in round k, if pi completes the send phase of the round, then every process
that completes the receive phase of the round, receives in that phase, the
round k message sent by pi. (If pi crashes in the send phase of round k, then
there are no delivery guarantees − an arbitrary subset of messages sent by pi

in round k may be lost.)
• For every t such that 0 ≤ t ≤ n−1, we define SCS1t as the submodel of SCSt

that contains those runs of SCSt in which at most one process crashes in a
round.

• For every t such that 0 ≤ t ≤ n − 1, we define the t-resilient eventually
synchronous crash-stop model, denoted ES t, as follows. In ES t, the runs may
be “asynchronous” for an arbitrary yet finite number of rounds but eventually
become “synchronous.” A message sent in the “asynchronous period” may
be delayed for a finite number of rounds; i.e., received in a round higher than
the round in which it was sent. More precisely, in every given run of ES t,
the following properties hold: (1) if a process starts some round k then it
either completes that round or crashes; (2) (t-resilience) at most t processes
crash, and every process that completes any round k, receives in that round,
the round k messages from at least n − t processes; (3) (reliable channels)
every message sent by a correct process to a correct process in any round k
is received in round k or in a higher round; (4) (eventual synchrony) there is
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a unknown but finite round number GSR (Global Stabilization Round) such
that, in every round k ≥ GSR, if pi completes the send phase of the round
k, then every process that completes the receive phase of the round, receives
in that phase, the round k message sent by pi. (If pi crashes in the send
phase of round k then, similar to SCS t, there are no delivery guarantees −
an arbitrary subset of messages sent by pi in round k may be lost.) Also, we
say that the run is synchronous from round GSR.

Observe that, for every 0 ≤ f ≤ t ≤ n−1, SCS f is a submodel of SCS t, and ES f

is a submodel of ES t. Furthermore, every run of SCS t is a run of ES t with GSR = 1.
Thus, SCS t is a submodel of ES t.

Hereafter, we make a slight change in terminology: instead of saying that there
is a unique synchronous model, we say that each of the 2n models SCSt and SCS1t

(0 ≤ t ≤ n− 1) is a different synchronous model (i.e., there is no unique synchronous
model). Similarly, we say that each of the n models ESt (0 ≤ t ≤ n− 1) is a different
eventually synchronous model.

3. Agreement Problems. We consider three agreement problems: consensus,
uniform consensus and non-blocking atomic commit.

• In the (non-uniform) consensus problem [22], denoted NC, the processes start
with a proposal value and eventually decide on a final value such that the
following properties are satisfied: (validity) if a process decides v, then some
process has proposed v; (agreement) no two correct processes decide differ-
ently; and (termination) every correct process eventually decides.

• Uniform consensus [18], denoted UC, is a variant of consensus in which the
agreement property is replaced by the following uniform agreement property:
no two processes decide differently.

• In the non-blocking atomic commit problem [15, 29], denoted NBAC, each
process casts a vote of whether to abort or commit a transaction, and even-
tually decides. The termination and the uniform agreement properties are the
same as that for uniform consensus. Validity is defined in two parts: (abort
validity) abort can be decided only if some process proposes to abort or fails,
and (commit validity) commit can be decided only if all processes propose
to commit. For presentation uniformity, we make the following changes in
notation: (1) we say that a process proposes 0 (resp. 1) if the process votes
abort (resp. commit), and (2) we say that a process decides 0 (resp. 1) if the
process decides to abort (resp. to commit).

To prove our lower bounds, we consider variants of consensus and uniform consen-
sus. We define the weak binary agreement problem, denoted WA, where the processes
are allowed to propose either 0 or 1. WA satisfies the agreement and termination
properties of consensus, and the following weak validity property (from [19]): for ev-
ery value v ∈ {0, 1}, there is a failure-free run in which correct processes decide v.
The weak binary uniform agreement problem, denoted UA, is identical to WA except
that it also satisfies uniform agreement (no two processes decide differently).

Clearly, any NC, UC or NBAC algorithm can solve WA without any additional
communication. Thus, our time-complexity lower bounds on WA immediately apply
to the three agreement problems. Similarly, any UC or NBAC algorithm can solve UA
without any additional communication, and hence, our time-complexity lower bounds
on UA immediately apply to UC and NBAC problem.

In the synchronous models, we present the matching algorithms for uniform con-
sensus and non-blocking atomic commit by first devising an interactive consistency
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algorithm, which we then transform to consensus and non-blocking atomic commit
algorithms. In the Interactive Consistency problem [27], denoted IC, each process
proposes an initial value and eventually decide on a vector of values. Termination
and agreement properties are the same as for uniform consensus. Validity is defined
as follows: for every decision vector V , the jth component of V is either the value
proposed by pj or ⊥, and may be ⊥ only if pj fails.

4. Time Complexity Metrics. Let r be any run of an algorithm that solves
one of the agreement problems described in Section 3. We say that a process pi decides
in round k ≥ 1 in r if pi decides in the receive phase of round k, and a process decides
at round 0 if it decides before sending any message in round 1. We say that a process
halts in round k in r if it does not crash by round k, and does not take any step after
round k.

We distinguish four different time complexity metrics for runs of agreement algo-
rithms: global decision, global halting, local decision and local halting. Consider any
run r of an algorithm that solves an agreement problem.

• We say that run r globally decides (resp. globally halts) in round k if all
correct processes decide (resp. halt) in round k, or in a lower round, and
some correct process decides (resp. halts) in round k [13, 6, 4, 19].

• We say that run r locally decides (resp. locally halts) in round k if all correct
processes decide (resp. halt) in round k, or in a higher round, and some
correct process decides (resp. halts) in round k.

We introduce the following notations. If a run r globally decides at round k, we
write (r, gd) = k. Similarly, the round at which run r globally halts, locally decides,
and locally halts, are denoted by (r, gh), (r, ld), (r, lh), respectively. Note that, since
every correct process decides before it halts, (r, ld) ≤ (r, lh), and (r, ld) ≤ (r, gd) ≤
(r, gh). Given a model M1, a submodel M2 of M1, an agreement problem P, and
a time complexity metric T, we denote by the ordered tuple (M1, M2, P, T) the
following tight bound. (M1, M2, P, T) is the round number k such that (1) (lower
bound) every algorithm that solves P in M1 has a run r in M2 such that (r, T ) ≥ k,
and (2) (matching algorithm) there is an algorithm Alg that solves P in M1 such that,
every run r of Alg in M2 has (r, T ) ≤ k.

In other words, for algorithms that solve problem P in model M1, (M1, M2, P,
T) is the tight bound for achieving T in submodel M2. The notation captures the
common time-complexity tight bounds for agreement problems, where submodel M2
denotes the set of runs (e.g. failure-free runs) for which we want to optimize the
algorithms in M1. If we set M2 = M1, the tuple denotes the worst-case bound in M1.

Before delving into our lower bounds, we recall some known results on consensus
(NC) and uniform consensus (UC) using our notation. (For every pair of reals a ≤ b,
[a, b] denotes the set of integers x such that a ≤ x ≤ b; when a > b, [a, b] denotes the
emptyset.)

• ∀t ∈ [0, n − 2], (SCS t, SCS t, NC, gd) = t + 1. Every consensus algorithm
in SCS t has a run (in SCS t) in which some correct process decides in round
t+1 or in a higher round, and there is a consensus algorithm A in SCS t such
that, in every run of A (in SCS t), every correct process decides by round
t + 1 [13, 23].

• ∀t ∈ [2, n−2], ∀f ∈ [0, t−1], (SCS t, SCS f , NC, gh) = f +2. Every consensus
algorithm in SCS t has a run in SCS f in which some correct process halts in
round f + 2 or in a higher round, and there is a consensus algorithm A in
SCS t such that, in every run of A in SCS f , every correct process halts by
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round f + 2 [6].
• ∀t ∈ [2, n− 1], ∀f ∈ [0, t− 2], (SCS t, SCS f , UC, gd) = f + 2. Every uniform

consensus algorithm in SCS t has a run in SCS f in which some correct process
decides in round f +2 or in a higher round, and there is a uniform consensus
algorithm A in SCS t such that, in every run of A in SCS f every correct
process decides by round f + 2 [4, 19].

• ∀t ∈ [1, (n− 1)/2], (ES t, SCS t, NC, gd) = t + 2. Every consensus algorithm
in ES t has a run in SCS t in which some correct process decides in round t+2
or in a higher round, and there is a consensus algorithm A in ES t such that,
in every run of A in SCS t every correct process decides by round t + 2 [9].

Roughly speaking, in this paper we investigate tight bounds when the time-
complexity metric is local decision (ld). In particular, we determine (SCS t, SCS f ,
UC, ld), (SCS t, SCS f , NC, ld), and (ES t, SCS f , UC, ld).

5. Layering. Our lower bound proofs are devised following the layering tech-
nique of [24], also used in [19]. We first introduce some definitions and then recall
the notion of layering from [24, 19]. We then present two lemmas (that are slightly
modified from [19]) from which we derive our lower bound results. (In the following,
we point out when our notions differ from those in [19].)

5.1. Configurations and extensions. Consider a model M and an agreement
algorithm A devised in M. For each run r of algorithm A in model M, we denote by
val(r) the decision value of any correct process in r. (This definition is unambiguous
because, in every agreement problem we consider, no two correct processes decide
differently.) For a run r of A in M we define the configuration C at the end of round
k (also called round k configuration), as an ordered tuple of size n + n2, where the
element i, for 1 ≤ i ≤ n, is the state of process pi at the end of round k in run r, and
the rest of the elements contain the set of delayed messages in the n2 communication
channels at the end of round k in run r. (Since there are no delayed messages in
synchronous models, the channels are empty at the end of every round. Hence, in
a synchronous model, we ignore state of channels in configurations at the end of a
round.) The state of a process that has crashed is denoted by special symbol ⊥. We
say that a process pi is alive in a configuration if pi has not crashed in that configura-
tion. In the initial configuration (which we also call round 0 configuration) of run r,
the state of each process is its proposal value, and the state of every communication
channel is the emptyset ∅.

Given a round k configuration C of algorithm A in model M, we define the fol-
lowing concepts. A run r of algorithm A in model M is an extension of the round k
configuration C if the round k configuration of run r is C. A round k1 configuration
C′ of algorithm A in model M is an extension of the round k configuration C if k ≤ k1

and there is a run r of A in M such that the round k configuration of r is C and
round k1 configuration of r is C′. If M is a synchronous model, we denote by r(C)
the run which is an extension of C such that no process crashes after round k. We
define val(C) as val(r(C)). Observe that a process pi is alive in C if and only if pi is
correct in r(C).

5.2. Layering in synchronous models. In this subsection, we consider any
given weak binary agreement (WA) algorithm A in model SCS1t. (See Section 2 and
Section 3 for a definition of SCS1t and WA, respectively.)

Extensions in SCS1t. A run of algorithm A is completely defined by its initial
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configuration and its failure pattern. (The failure pattern for a run in SCS1t consists,
for each round k, of the process pi that crashes in round k, and the set of processes
that did not receive the round k message from pi.) In model SCS1t, we denote an
extension by one round, of a round k configuration C, as follows: for 1 ≤ i ≤ n
and S ⊆ Π, C.(i, S) denotes the round k + 1 configuration reached by crashing pi

in round k + 1 such that a process pj does not receive a round k + 1 message from
pi if at least one of the following holds: (1) pj = pi, (2) pj is crashed in C, or (3)
pj ∈ S. Configuration C.(0, ∅) denotes the one round extension of C in which no
process crashes. Clearly, C.(i, S) for i > 0 and S ⊆ Π, is a possible extension of C
if at most t− 1 processes have crashed in C and pi is alive in C − we then say that
(i, S) is applicable to C. Configuration C.(0, ∅) is always applicable to C.

Layers. A layer L(C) is the set of configurations defined as {C.(i, S)|i ∈ Π, S ⊆
Π, (i, S) is applicable to C}. (In other words, if C is a round k configuration, then
L(C) is the set of all round k + 1 configuration that extends C in SCS1t.) For a set
of round k configurations SC, L(SC) is a set of round k + 1 configurations defined as
∪C∈SCL(C). Lk(SC) is recursively defined as follows: L0(SC) = SC and for k > 0,
Lk(SC) = L(Lk−1(SC)). (In other words, if SC is a set of round l configurations then
Lk(SC) is the set of all round (l + k) configurations that extend any configuration in
SC.)

Similar Configurations. Consider a set of round k configurations SC. Two
configurations C and D in SC are similar, denoted C ∼ D, if they are identical or
they differ at exactly one process. A pair of configurations C and D in SC is similarly
connected if there are configurations C = C0, . . . , Cm = D in SC such that Ci ∼ Ci+1

for every i such that 0 ≤ i ≤ m − 1. The set SC is similarly connected if every
pair of configurations in SC is similarly connected. (Our definition of similarity does
not include the second requirement in the original definition of [19]: there exists a
process that is alive in both C and D, and has identical states in C and D. When
this property is required in our lower bound proofs, we derive it directly from from
our assumption on t and n.)

We now revisit Lemma 2.3 of [19]. Roughly speaking, this lemma says that, in
SCS1t, if we start with a similarly connected set SC of configurations, we can keep
the set of extensions from SC similarly connected, provided we can crash one process
in every round.

Lemma 5.1. In SCS1t, let SC = L0(SC) be a similarly connected set of con-
figurations such that in every configuration of SC no process has crashed. Then for
all k ∈ [1, t], Lk(SC) is a similarly connected set of configurations in which no more
than k processes have crashed in any configuration.

Proof. The proof is by induction on round number k. The base case k = 0 is
immediate. For the inductive step, assume that Lk−1(SC) is similarly connected and
in every configuration of Lk−1(SC) at most k−1 processes have crashed. Notice that,
in every extension by one round that is applicable to a configuration in Lk−1(SC),
at most one more process can crash. Therefore, in every configuration in Lk(SC)
at most k processes have crashed. We now show that Lk(SC) is similarly connected
through the following three claims.

1. For every configuration C ∈ Lk−1(SC), L(C) is similarity connected. Con-
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sider any configuration in L(C) that is different from C.(0, ∅), say C1 = C.(i, Q),
where Q ⊆ Π, and pi is alive in C. We claim that C1 and C.(0, ∅) are similarity
connected. Since C1 is arbitrarily selected from L(C), our claim implies that every
configuration in L(C) is similarity connected to C.(0, ∅), and hence, L(C) is similarity
connected.

Now we prove our claim. C.(i, ∅) ∼ C.(0, ∅) since the configurations differ only at
pi. If Q = ∅ then we are done. Hence, let Q = {q1, q2, . . . , qm}. For every l in [1,m],
let Ql = {q1, . . . , ql}, and Q0 = ∅. For every l in [0,m − 1], C.(i, Ql) ∼ C.(i, Ql+1)
because the two configurations differ only at ql+1. Thus, C(i, ∅) = C.(i, Q0) and
C1 = C.(i, Qm) are similarly connected.

2. For every pair of configurations C, D ∈ Lk−1(SC), if C ∼ D then L(C)∪L(D)
is similarity connected. If C and D are identical then the claim immediately follows
from claim 1. So consider the case where C and D are distinct. As C ∼ D, there is a
process pi such that C and D are different only at pi. Then, configurations C.(i, Π) and
D.(i, Π) are identical because no process receives message from pi in round k, and pi

has crashed. Hence, C.(i, Π) ∼ D.(i, Π). We know from claim 1 that L(C) and L(D)
are each similarity connected. Thus every configuration in L(C) is similarly connected
to C.(i, Π) and every configuration in L(D) is similarity connected to D.(i, Π). As,
C.(i, Π) ∼ D.(i, Π), so every configuration in L(C) is similarity connected to every
configuration in L(D). Thus, L(C) ∪ L(D) is similarly connected.

3. Lk(SC) is similarity connected. Consider any pair of configurations C ′, D′ ∈
Lk(SC). Thus, there are configurations C, D ∈ Lk−1(SC) such that C ′ ∈ L(C) and
D′ ∈ L(D). As Lk−1(SC) is similarity connected, there is a chain of configurations
C = C0, ..., Cm = D such that, for every l ∈ [0,m − 1], Cl ∼ Cl+1. Thus, from
claim 2, L(Cl) ∪ L(Cl+1) is similarity connected. A simple induction shows that
L(C1) ∪ ... ∪ L(Cm) is similarly connected. Thus C ′ ∈ L(C = C0) is similarity
connected to D′ ∈ L(D = Cm). As C ′ and D′ are arbitrarily selected from Lk(SC),
Lk(SC) is similarity connected.

Remarks. The above lemma is a simple generalization of Lemma 2.3 of [19].
The statement of the lemma is similar, however, the proof is slightly different because
our model SCS1t is slightly different from that of [19] - their model is actually a
submodel of SCS1t. Consider any crashed process pi, and the set of processes J to
which messages from pi were lost in the round in which pi crashed. Then, in the
model of [19], J is only allowed to be a prefix of processes {p1, ..., pk}, whereas in
SCS1t, J is allowed to be any subset of Π.

Informally, the next lemma says that, for any WA algorithm in SCS1t, there are
two round f configurations that are almost identical (differ at only one process) but
have different decision values in failure-free extensions.

Recall that, for any configuration y in a synchronous model, val(y) is the decision
value of correct processes in a run which extends y and has no crashes after y.

Lemma 5.2. Consider any WA algorithm A in SCSt such that t ∈ [1, n−1]. For
every f ∈ [0, t], there are two runs of A in SCS1t such that their round f configu-
rations, y and y′, satisfy the following: (1) at most f processes have crashed in each
configuration, (2) the configurations differ at exactly one process, and (3) val(y) = 0,
whereas val(y′) = 1.

Proof. Consider any WA algorithm A in SCSt. We claim that A solves WA in
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SCS1t as well. A maintains the agreement and termination properties in all runs
of SCS1t because every runs in SCS1t is also a run in SCSt. The weak validity
property is bit different − it is a condition on the set of failure-free runs. However,
observe that the SCSt and SCS1t have the same set of failure-free runs. It follows
that if A satisfies weak validity property in SCSt then A also satisfies the property
in SCS1t. Thus, A solves WA in SCS1t.

Now consider WA algorithm A in SCS1t. Let C′ be any initial configuration
of algorithm A and C be the initial configuration in which all processes propose 0.
Consider the following n− 1 (not necessarily distinct) initial configurations: for every
i in [1, n − 1], in configuration Ci, processes p1 to pi propose the same value as in
C′, and the remaining processes propose 0. Notice that, for every i in [1, n − 2], Ci

and Ci+1 may differ only at pi+1. Furthermore, C1 and C may differ only at p1,
and C′ and Cn−1 may differ only at pn. Thus C and C′ are connected through a
chain of configurations, such that any two adjacent configurations in the chain are
similar. Since C′ was arbitrarily selected, the set of initial configurations of A in
SCS1t is similarly connected. From Lemma 5.1 it follows that, the set of round f
configurations of A in SCS1t is similarly connected.

Consider any failure-free run r0 of algorithm A in which correct processes decide
0. (From the validity property of WA, such a run of A exists.) We denote by z,
the round f configuration of r0. Similarly, consider any failure-free run r1 of A in
which correct processes decide 1. We denote by z′, the round f configuration of r1.
Obviously, val(z) = 0 and val(z′) = 1.

As the set of round f configurations of A in SCS1t is similarly connected, there
are some round f configurations of A in SCS1t, z = y0, y1, . . . , ym = z′, such that
yj ∼ yj+1 for every j in [0, m − 1]. Clearly, there is some yi ∈ {y0, . . . , ym−1} such
that, val(y0) = . . . = val(yi) 6= val(yi+1). (Otherwise, val(z) = val(y0) = val(y1) =
. . . = val(ym) = val(z′); a contradiction.)

As val(yi) = val(y0) and y = y0, val(yi) = 0. Therefore, val(yi+1) = 1. Since
both yi and yi+1 are round f configurations in SCS1t, at most f processes have
crashed in each configuration. As yi ∼ yi+1, the two configurations are either identical
or differ at exactly one process. Since, val(yi) 6= val(yi+1), the configurations cannot
be identical, i.e., they differ at exactly one process.

6. Synchronous Lower Bounds.

6.1. Consensus. In the following we show a local decision lower bound for weak
binary agreement (WA) in synchronous models (SCSt with 1 ≤ t ≤ n− 1). We then
show the impossibility of simultaneously matching both local decision and global
decision lower bounds of WA. Since any consensus (NC) algorithm solves WA, the
results immediately apply to consensus.

We observe that every run of an algorithm in SCS1t is also a run in SCSt. Thus,
Lemma 5.2 holds when SCS1t is replaced by SCSt.

Local decision. The following proposition states that any WA algorithm in
SCSt has a run in SCSf (i.e., a run with at most f crashes) in which every correct
process decides in round f or in a higher round.

Proposition 6.1. ∀t ∈ [1, n− 1], ∀f ∈ [0, t], (SCSt, SCSf , WA, ld) ≥ f .
Proof. Suppose by contradiction that there is an WA algorithm A in SCSt and

an integer f in [0, t] such that, in every run of A with f failures, some correct process
decides by round f−1. Notice that the contradiction is immediate for the case f = 0:
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no process can decide by round −1. So we consider the case f ∈ [1, t]. (Also recall
that, we define deciding at round 0, as deciding before sending any message in round
1.)

It follows from Lemma 5.2 that there are two runs of A in SCSt such that their
round f −1 configurations, y and y′, satisfy the following: (1) at most f −1 processes
have crashed in each configuration, (2) the configurations differ at exactly one process,
say pi, and (3) val(y) = 0 and val(y′) = 1.

As r(y) is a run with at most f − 1 crashes, it follows from our assumption on A
that, in r(y), there is a correct process q1 that has decided val(y) = 0 by round f −1.
As all correct processes in r(y) are alive in y, it follows that, in y, q1 is alive and has
decided val(y) = 0.

We now show that no alive process distinct from pi has decided in y (which implies
pi = q1). Suppose by contradiction that some alive process distinct from pi, say q2,
has decided in y. Since q2 is alive in y, it is correct in r(y), and hence, q2 has decided
val(y) = 0 in y. As y and y′ differ only at pi, and pi is distinct from q2, q2 is alive and
has decided 0 in y′. Thus, in r(y′), q2 is a correct process and decides 0. However,
every correct process in r(y′) decides val(y′) = 1; a contradiction.

Thus, pi is the only alive process that has decided in y. Consider any run r′ that
extends y and in which only process pi crashes after round f −1. At most f processes
crash in r′. At the end of round f − 1 in r′, the only alive process that has decided
is pi, but pi is a faulty process in r′. Thus, r′ is a run with f failures in which no
correct process decides by round f − 1; a contradiction.

Incompatibility. It is easy to design a consensus algorithm that matches either
the early local decision or the early global decision lower bound. We now show that,
maybe surprisingly, no consensus algorithm can match both the early local decision
and the early global decision lower bounds, even for two consecutive values of f . This
is in contrast to uniform consensus where a single algorithm can match both local
decision and global decision lower bounds (as we show in Section 7).

Proposition 6.2. ∀t ∈ [1, n − 2], ∀f ∈ [0, t − 1], there is no WA algorithm
in SCSt that matches the following two conditions: (a) in every run with at most f
crashes, every correct process decides by round f +1, and (b) in every run with at most
f + 1 crashes, some correct process decides by round f + 1. (Remarks: Condition
(a) is for matching the global decision lower bound for f crashes, and condition (b) is
for matching the local decision lower bound for f + 1 crashes. Note that, we do not
consider the case f = t, because when f = t, (a) implies (b), as there is no run in
SCSt with t + 1 crashes.)

Proof. Suppose by contradiction that there is a WA algorithm A in SCSt and an
integer f in [0, t−1] such that (a) by round f +1 of every run with at most f failures,
every correct process decides, and (b) by round f + 1 of every run with at most f + 1
failures, some correct process decides.

It follows from Lemma 5.2 that, at the end of round f there are two configurations
y0 and y1 such that (a) at most f processes have crashed in each configuration, (b)
the configurations differ at exactly one process, say pi, and (c) val(y0) = 0 and
val(y1) = 1.

Consider run r(y0). Obviously, r(y0) is a run with at most f failures, and from
our initial assumption, every correct process decides val(y0) = 0 at the end of round
f + 1. Similarly, we construct run r(y1), which is a failure-free extension of y1, and
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every correct process decides val(y1) = 1 at the end of round f + 1. There are two
cases to consider.

Case 1. Process pi is alive in y0 and y1. Consider the extension of y0 to a run
r′(y0) such that pi crashes in round f +1 before sending any message, and no process
crashes thereafter. (Recall that f ≤ t − 1.) Notice that r′(y0) is a run with at most
f + 1 failures and pi is a faulty process in r′(y0). Thus, from our initial assumption
about A, it follows that there is a correct process pj( 6= pi) in r′(y0) which decides
some value v ∈ {0, 1} at round f + 1. (Notice that, since pj 6= pi, pj cannot decide
before round f + 1: as y0 and y1 differ only at pi, if pj decides by round f , then pj

decides identical values in y0 and y1.) Also, as f ≤ n−3, there is a process pl distinct
from pi and pj such that, pl decides 0 and 1 at the end of round f + 1 in r(y0) and
r(y1), respectively.

Now we construct a run r′′ by extending configuration y1−v: process pi crashes
in the send phase of round f +1 such that, in round f +1, pl receives a message from
pi but pj does not receive any message from pi. No process distinct from pi crashes
in round f + 1 or a higher round. Obviously, pj and pl are correct in r′′. At the end
of round f + 1 in run r′′, pj cannot distinguish r′′ from r′(y0) because the round f
configurations of the two runs differ only at pi, and pj does not receive any round
f +1 message from pi in both runs. Therefore, pj decides v at the end of round f +1
in r′′. However, since pl receives a message from pi in round f +1, at the end of round
f + 1, pl cannot distinguish r′′ from r(y1−v), and therefore, decides 1− v at the end
of round f + 1; a contradiction with the agreement property of WA.

Case 2. Process pi has crashed in either y0 or y1. Without loss of generality, we
can assume that pi has crashed in y0, and hence, pi is alive in y1. (Recall that pi has
different states in the two configurations.) As at most f processes, including pi, have
crashed in y0, and pi has not crashed in y1, it follows that, at most f − 1 processes
have crashes in y1. Since f ≤ n − 3 and at most f − 1 processes have crashed in
y1, there are at least two correct process pj and pl (both distinct from pi) in r(y1).
Consider the run r′ which extends y1 such that process pi crashes in round f + 1 and
the only alive process that does not receive round f + 1 message from pi, is pl, and
no process crashes after round f + 1. Obviously pj and pl are correct in r′. At the
end of round f + 1, pl cannot distinguish r(y0) from r′ because pl does not receive
the round f + 1 message from pi in both runs. Thus, pl decides 0 at the end of round
f + 1 in r′. At the end of round f + 1, pj cannot distinguish r(y1) from r′ because
both runs extend y1 and pj receives round f + 1 message from pi in both runs. Thus,
pj decides 1 at the end of round f + 1 in r′; a contradiction with agreement property
of WA.

6.2. Uniform Consensus. In the following, we show a local decision lower
bound for weak binary uniform agreement (UA) in the synchronous models (SCSt

with 1 ≤ t ≤ n − 1). Since any uniform consensus (UC) and non-blocking atomic
commit (NBAC) algorithm solves UA, the lower bound immediately applies to UC
and NBAC. In Section 6.3, we show that the lower bound holds for IC as well.

The following proposition says that any UA algorithm in SCSt has a run in SCSf

(i.e., a run with at most f crashes) in which every correct process decides in round
f + 1 or in a higher round.

We observe that any UA algorithm also solves WA, and every run of an algorithm
in SCS1t is also a run in SCSt. Thus, Lemma 5.2 holds when WA and SCS1t are
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replaced by UA and SCSt, respectively.

Proposition 6.3. ∀t ∈ [1, n−1], ∀f ∈ [0, t−1], (SCSt, SCSf , UA, ld) ≥ f +1.
Proof. Suppose by contradiction that there is a UA algorithm A in SCSt and an

integer f in [0, t−1] such that, in every run of A with f failures, some correct process
decides by round f .

As every UA algorithm solves WA, it follows from Lemma 5.2 that there are
two runs of A in SCSt such that their round f configurations, y and y′, satisfy
the following: (1) at most f processes have crashed in each configuration, (2) the
configurations differ at exactly one process, say pi, and (3) val(y) = 0 and val(y′) = 1.

From our initial assumption about algorithm A, it follows that there is an alive
process q1 in y that has already decided. (Otherwise, since every correct process in
r(y) is an alive process in y, r(y) is a run with at most f crashes in which no correct
process decides by round f .) Furthermore, q1 has decided val(y) = 0 in r(y) (and
hence, in y) because q1 is a correct process in r(y). Similarly, in y′, there is an alive
process q2 that has decided val(y′) = 1. There are two cases to consider.

(1) q1 6= pi: As y and y′ are identical at all processes different from pi, in y′, q1 is
alive and has decided 0. Thus in r(y′), q1 is a correct process and decides 0. However,
in r(y′) every correct process decides val(y′) = 1; a contradiction.

(2) q1 = pi: We distinguish two subcases:
- q2 = pi: Thus pi = q1 = q2, and hence, pi is alive in y and y′. Consider a run

r1 that extends y and in which pi crashes in round f + 1 before sending any
message. (Recall that f ≤ t − 1.) As pi has decided 0 in y, it follows from
uniform agreement property that every correct process decides 0 in r1. Since
t < n, there is at least one correct process, say pl in r1. Now consider a run
r2 that extends y′ and in which pi crashes in round f + 1 before sending any
message. Notice that no correct process can distinguish r1 from r2: at the
end of round f no alive process that is distinct from pi can distinguish y from
y′, and pi crashes before sending any message in round f + 1. Thus every
correct process decides the same value in r1 and r2, in particular pl decides
0 in r2. However, pi = q2 decides 1 in r2; a contradiction with uniform
agreement.

- q2 6= pi: Then, q2 has the same state in y and y′. Thus in y, q2 is alive and
has decided 1. In any run that extends y, pi = q1 has decided 0 and q2 has
decided 1; a contradiction with uniform agreement.

6.3. Non-Blocking Atomic Commit and Interactive Consistency. Recall
that the local decision lower bound presented in Section 6.2 holds for UC and NBAC.
In the following, we show that for NBAC and IC, the local decision lower bound for
the failure-free case (f = 0) can be shifted to 2. However this result does not hold
for UC: in Section 7.4 we exhibit a UC algorithm that locally decides in 1 round in
failure-free runs.

Proposition 6.4. ∀t ∈ [2, n− 1], (SCSt, SCS0, NBAC, ld) ≥ 2.
Proof. Suppose by contradiction that there is a NBAC algorithm A such that,

in every failure-free run, some process decides in round 1. Let C1 be the initial con-
figuration in which all processes propose 1. Consider the failure-free run R1 starting
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from C1; i.e., R1 = r(C1). Suppose that some process pi decides at the end of round
1. From the abort validity property of NBAC, we know that pi cannot decide 0 (and
hence, pi decides 1) in R1.

Consider another run R2 starting from C1, but some process pj (6= pi) crashes in
round 1 and only pi receives the round 1 message from pj . Also, process pi crashes in
round 2, before sending the round 2 message to any process, and no process crashes
thereafter. At the end of round 1, pi cannot distinguish R1 from R2. Thus, pi decide
1 in R2. From uniform agreement, we know that every process distinct from pi and
pj decides 1. There exist at least one such process, say pl, because t ≤ n− 1.

Let C0 be the initial configuration in which pj proposes 0 and all other processes
propose 1. Consider a run R3 starting from C0 with the same failure pattern as R2;
i.e., pj crashes in round 1 and only pi receives the round 1 message from pj , pi crashes
in round 2 before sending the round 2 message to any process, and no process crashes
thereafter. No process distinct from pi and pj can distinguish R2 from R3: at the
end of round 1, only pi receives the message from pj , but pi crashes before sending
any message in round 2. Therefore, every process distinct from pi and pj , decides 1
(as in R2), in particular pl. But the commit validity property of NBAC requires that
no process decides 1 in R3 because some process pj has proposed 0; a contradiction.

The above proposition highlights a fundamental difference between the time-
complexity of NBAC and UC in synchronous models. However, the proposition ex-
tends to IC. In fact, any IC algorithm can be easily transformed to a NBAC algorithm
(without any additional rounds) as follows. Let V 1 denote an ordered n-tuple in which
every component is 1. Suppose we have an IC algorithm with IC-propose() primitive.
We implement the NBAC-propose() primitive of the NBAC specification in the fol-
lowing way. When a process NBAC-proposes v ∈ {0, 1}, then it IC-proposes v. If a
process IC-decides V 1, then is NBAC-decides 1; if the process IC-decides an n-tuple
different from V 1 then it NBAC-decides 0. Note that the transformation by itself
does not require any additional communication, and hence can be performed even
in an asynchronous model. Thus, this transformation immediately implies that the
bound in Section 6.2 and Proposition 6.4 applies to IC.

In a related work [10], we show for NBAC algorithms, an incompatibility between
globally deciding by round 2 in the failure-free run where all processes propose 1, and
globally deciding by round 1 in every run where some process proposes 0. However,
that paper does not consider local decisions.

7. A Matching Synchronous Algorithm. In [21], an NC algorithm was pro-
posed that matches the global decision and global halting lower bounds. The algo-
rithm can be easily modified to derive another algorithm that matches corresponding
bounds for UC. However, we knew of no UC algorithm that matches the local decision
lower bounds.

In this section, we present an algorithm for IC that simultaneously matches the
local decision, global decision, and global halting lower bounds for most values of f
and t. (We do not match the bounds in some boundary cases when f , t, and n are
close to each other.) From our IC algorithm, we then derive matching algorithms for
UC and NBAC. (Algorithms that match either the local decision or global decision of
NC are straightforward but, as we showed in Proposition 6.2, no single NC algorithm
can match both local and global decision lower bounds.)

7.1. IC algorithm overview. Our IC algorithm (Figure 7.1) is inspired by the
Byzantine Generals algorithm of [21]. The algorithm runs for at most t + 1 rounds.
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at process pi:

1: propose(vi)
2: Ordered n-tuples esti and newesti: element i initialized to vi and all other elements initialized to ⊥
3: Set halti ← newhalti ← ∅
4: Boolean decidedi ← lastRoundi ← false
5: for 1 ≤ r ≤ t + 1 do Multiset Sr

i ← ∅
6: for round r from 1 to t + 1 do
7: halti ← newhalti

8: esti ← newesti

9: Send phase
10: if lastRoundi then
11: send(r, dec, esti) to all
12: else
13: send(r, est, esti) to all

14: Receive phase
15: Sr

i ← {estj | (r, est, estj) was received}
16: if lastRoundi then
17: if not decidedi then
18: decide(esti) {decision}
19: return {halt}
20: if received any (r, Dec, estj) then
21: newesti ← estj

22: lastRoundi ← true
23: else
24: newhalti ← Π\sender(Sr

i ) {processes from which pi did not receive any message}
25: for 1 ≤ j ≤ n do
26: if there is any est′ ∈ Sr

i s.t. est′[j] 6= ⊥ then newesti[j] ← est′[j] else newesti[j] ← ⊥
27: if newhalti = halti then
28: if esti = newesti then
29: decide(esti); decidedi ← true {decision}
30: lastRoundi ← true
31: if r = t + 1 then
32: if not decidedi then
33: decide(newesti) {decision}
34: return {halt}

Fig. 7.1. An early deciding (and halting) interactive consistency algorithm

Process pi maintains two primary variables: (1) an ordered n-tuple esti, component j
of which contains the proposal value of pj , provided pi has received that value (either
directly from pj or relayed by some other process), and ⊥ otherwise, and (2) a set
of processes halti that pi knows to have either crashed or halted. In each round, the
processes exchange estimate (est) messages containing their est values. If the halt
set at a process does not change in round k then (1) if the est does not change in
round k as well, the process decides on its est in round k, otherwise, (2) the process
decides on its est in round k + 1. Before halting, a process sends a special decision
(dec) message to all processes, so that the processes can distinguish a halt from a
crash.

Roughly speaking, if the halt set at a process pi does not change in some round
k, then at the end of round k, no alive process has seen more proposal values than
pi. Thus, pi can decide on its current esti value, provided pi ensures that all other
processes see its current esti. So pi sends its est to all processes in round k + 1 and
then decides. However, if the est of pi does not change in round k, then pi has already
sent that est to all processes in round k; so pi can decide at the end of that round.

7.2. Correctness. In the following, a variable var at a process pi is denoted
vari, and if pi reaches the end of any round r, the value of vari at the end of round
r is denoted varr

i ; var0
i denotes the value of the variable at the end of line 5. (We
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omit the subscript of the variable when we make a statement that applies to multiple
processes.) For 1 ≤ r ≤ t + 1, faultyr denotes the set of processes that have crashed
by round r, and faulty0 equals ∅. For any pair of ordered n-tuples d and d′, we say
that (1) d = d′ if for all j ∈ [1, n], d[j] = d′[j], (2) d ¹ d′ if for all j ∈ [1, n], either
d[j] = ⊥ or d[j] = d′[j], and (3) d � d′ if d ¹ d′ is false.

First, we make the following simple observations that we frequently use: (1)
(Observation O1) for the est value at every process and every j ∈ [1, n], est[j] is
either the proposal value of pj or ⊥, (2) (Observation O2) if, before deciding, pj

receives an est message from some process pl in round k, then newestk−1
l ¹ newestkj .

(It follows that newestk−1
j ¹ newestkj .)

Every process decides on some est value; thus, validity immediately follows from
Observation O1. Termination follows from the simple observations that no process
halts without deciding and no process completes round t + 1 without halting (lines
31 to 34). Thus we only detail the proof of uniform agreement. We start with some
general lemmas about the algorithm.

Lemma 7.1. If for some r ∈ [1, t] no process decides by round r, then the following
holds for every process pi that completes round r. If lastRoundr

i = true, then every
process pj that completes round r, has newestrj ¹ newestri .

Proof. We prove the lemma by induction on round number r, such that r ∈ [1, t].

Base case r = 1. Suppose lastRoundr
i = true and no process decides in round 1.

Then pi has either executed line 22 or line 30 of round 1. Observe that pi executes
line 22 only if some process sends dec message to pi. Since lastRound is initialized to
false and the processes send a dec messages only when lastRound = true, no process
has sent a dec message in round 1. Thus pi has executed line 30. So newhalt1i =
halt1i = ∅, and hence, newest1i contains proposal values of all processes. Thus, every
process pj that completes round 1 has newest1j ¹ newest1i .

Induction Hypothesis r = k: If no process decides by round k then the following
holds for every process pi that completes round k. If lastRoundk

i = true, then every
process pj that completes round k, has newestkj ¹ newestki .

Induction Step r = k + 1 ≤ t. Suppose by contradiction that (1) no process
decides by round r = k + 1, (2) there is a process pi that completes round k + 1
such that lastRoundk+1

i = true and newestk+1
i = d′, and (3) another process pj

completes round k + 1 with newestk+1
j = d such that d � d′. Process pi has either

executed line 22 or line 30. If pi executed line 22, then pi has received (k + 1, dec,
d′) message from some process pl. To send a dec message in round k + 1, pl must
have set lastRoundl to true in round k. Thus, from the induction hypothesis, every
process that completes round k has newestk ¹ d′. Since d � d′, process pj receives
a round k + 1 message from some process with a n-tuple d′′ such that d′′ � d′; a
contradiction because, for all processes that complete round k, we have newestk ¹ d′.
Hence, pi executed line 30, and haltk+1

i = newhaltk+1
i . Since pj completes round

k + 1, pi received the round k + 1 message from pj containing newestkj , and hence,
newestkj ¹ newestk+1

i = d′. As newestk+1
j = d � d′, it follows that pj received (k+1,

∗, d′′) from some process pm such that d′′ � d′, and pi did not receive (k + 1, ∗, d′′)
from pm (otherwise, d′′ ¹ newestk+1

i = d′). Thus pm ∈ newhaltk+1
i . However, as

pm completed round k, pm /∈ newhaltki = haltk+1
i . Thus, haltk+1

i 6= newhaltk+1
i ; a



TIME-COMPLEXITY OF LOCAL DECISION 17

contradiction.

Lemma 7.2. If a process pi does not halt or crash by round r ∈ [0, t], then pi has
haltki 6= newhaltki for all k ∈ [1, r − 1].

Proof. Obvious from the algorithm.

Lemma 7.3. If no correct process halts by some round r − 1 ∈ [0, t − 1], and if
there is a process pi such that, for every round number r′ ∈ [1, r], haltr

′
i 6= newhaltr

′
i ,

then |faultyr| ≥ r.
Proof. (For uniformity of presentation, we slightly abuse the terminology and say

that for all runs, no process halts or crashes by round 0.) Suppose there is a round
r such that no correct process halts by round r − 1 and there exists a process pi

such that, for every round number r′ ∈ [1, r], haltr
′

i 6= newhaltr
′

i . Clearly, haltr
′

i =
newhaltr

′−1
i ⊆ newhaltr

′
i . Thus |newhaltri | ≥ r. Every process in newhaltri has either

halted by round r− 1 or crashed by round r. Since no correct process halts by round
r − 1, newhaltri ⊆ faultyr, and hence, |faultyr| ≥ r.

Lemma 7.4. If no correct process halts by round r+1 ∈ [1, t], then |faultyr| ≥ r.

Proof. The proof is trivial for r + 1 = 1. So we consider the case r + 1 ∈ [2, t].
Suppose that no correct process halts by round r + 1. Consider any correct process
pi. Since pi does not halt by round r + 1 ≤ t, it follows from Lemma 7.2 that for
r′ ∈ [1, r], haltr

′
i 6= newhaltr

′
i . Since no correct process halts by round r − 1 ≤ t− 1,

applying Lemma 7.3, we have |faultyr| ≥ r.

Lemma 7.5. If every process that decides, decides in line 29 of round t + 1 or
line 33 of round t + 1, then |faultyt| = t.

Proof. The proof is trivial when t = 0. Thus we consider the case t ≥ 1. Suppose
that every process that decides, decides in line 29 of round t + 1 or line 33 of round
t+1. Consider any correct process pi. Since pi does not decide in line 18 of round t+1,
lastRoundt

i = false. Thus newhaltti 6= haltti (from lines 27 and 30). Furthermore, as
pi does not halt by round t, from Lemma 7.2 it follows that for every g ∈ [1, t − 1],
newhaltgi 6= haltgi . Thus for every g ∈ [1, t], newhaltgi 6= haltgi . Since no process
decides (and hence, halts) by round t, by applying Lemma 7.3 (with r − 1 = t − 1),
we have |faultyt| ≥ t. As at most t processes can crash in a run, |faultyt| = t.

Lemma 7.6. (Uniform Agreement) No two processes decide differently.
Proof. If no process decides then the lemma trivially holds. Suppose some process

decides. Consider the lowest round number r in which some process decides. Let pi

be a process that decides in round r, say on some n-tuple d. We divide the proof into
two parts: (a) pi does not decide in line 33 of round t + 1, and (b) r = t + 1 and pi

decides in line 33 of round t + 1.

(a) pi does not decide in line 33 of round t + 1: Thus, process pi decides either
in (1) line 18 or (2) line 29 of round r ≤ t + 1. In both cases, we show the following:
no process can decide an n-tuple different from d in round r, and any process that
completes round r without deciding in line 18 and line 29, does so with newestr = d.
This implies uniform agreement because every process that decides in round r has
decision value same as its newestr, and in subsequent rounds, d is the only surviving
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newest and est value. (Note that, even if r = t + 1, and another process pj decides
in line 33 of round r, pj decides on newestrj = d.)

Process pi decides in line 18 of round r: Notice that r > 1 because no process
can decide at line 18 in round 1 (as lastRound0 = false). Since pi decides in line 18,
lastRoundr−1

i = true and pi sends a dec message in round r. We claim that every
dec message sent in round r is (r, dec, d). Suppose that another process pj sends
a (r, dec, d1) message. Then lastRoundr−1

j = true. Since no process decides by
round r − 1, applying Lemma 7.1 twice we have d1 = newestr−1

j ¹ newestr−1
i = d

and d = newestr−1
i ¹ newestr−1

j = d1, i.e, d1 = d. As pi completes the send phase of
round r, every process receives at least one (r, dec, d) message, and either decides d
in line 18, or adopts d as newest in line 21.

Process pi decides in line 29 of round r: Thus esti = newesti is d in line 28 of
round r, and pi sent (r, est, d) in round r. We claim that no process decides a value
different from d in round r. Clearly, pi does not receive any dec message in round
r (otherwise, pi would not have executed line 29). Suppose some process pj decides
d1 in round r. If process pj decides in line 18, then pj sends dec message in round
r, and pi receives that message (as pj completes the send phase of round r, none
of its messages are lost); a contradiction. Suppose that pj decides in line 29. Thus
estj = newestj is d1 in line 28 of round r, and pi sent (r, est, d1) in round r. Since
pi receives round r message from pj and vice versa, d1 ¹ d and d ¹ d1, i.e., d = d1.
If pj decides in line 33, then it decides on the newest value adopted in round t + 1.
We show below that every process that updates its newest in round k, updates it to
d.

We now show that any process that completes round r without deciding in line
18 or line 29, does so with newest = d. Suppose by contradiction that some process
pj completes round r with newest = d2 6= d and without deciding in line 18 and line
29. Process pj updates its variable newest in line 21 or line 26. Suppose pj updates
its newest in line 21. Then pj has received a dec message from some process pm.
Since pi decides at line 29, it does not receive any dec message in round r. Thus
pm ∈ newhaltri . Since pm completes round r− 1, pm /∈ newhaltr−1

i = haltri . (If r = 1
then obviously pm /∈ haltri = ∅.) Hence, the predicate in line 27 evaluates to false at
pi, and pi cannot decide in line 29; a contradiction. Thus, pj updates its newest in
line 26. Since pi completes round r by deciding d and evaluates the condition in line
28 to true, pi sends a (r, est, d) in round r. Thus pj receives (r, est, d) from pi, and
hence, d ¹ d2. As d2 6= d, it follows that d2 � d. Consequently, there is a process pm

such that pj receives d3 � d from pm, and pi does not receive any message from pm

in round r. Thus, pm ∈ newhaltri . However, pm completes round r − 1 and hence,
pm /∈ newhaltr−1

i = haltri . (If r = 1 then obviously pm /∈ haltri = ∅.) Hence, the pred-
icate in line 27 evaluates to false at pi, and pi cannot decide in line 29; a contradiction.

(b) r = t + 1 and pi decides in line 33 of round r = t + 1: From the definition
of r, every process that decides, decides in round t + 1. We have shown above that,
if any process decides in line 18 or line 29 of round t + 1, then every process that
decides in round t + 1, decides the same value. Therefore, we need to only consider
the case where every process that decides, decides at line 33 of round t + 1. From
Lemma 7.5, we have |faultyt| = t. Hence, every process that enters round t + 1, is
a correct process. Consequently, every process that enters round t + 1, receives the
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same set of messages in round t + 1. Observe that no process sends dec message in
round t + 1 (otherwise, that process decides in line 18 of round t + 1 or line 29 of
round t; a contradiction). Thus every process that enters round t+1, updates newest
to the same value in line 26, and decides on identical values in line 33.

7.3. Time-complexity. We now discuss the time complexity of our IC algo-
rithm. We show through the following lemma that, in runs with at most f ≥ 1
failures, the algorithm achieves local decision in f + 1 rounds and global decision in
f + 2 rounds. However, when f = 0, the local decision takes the same number of
rounds as global decision (2 rounds) − recall that, we showed in Proposition 6.4 that
NBAC (and hence, IC) algorithms require 2 rounds for local decision when f = 0.
(In Section 7.4, we show a UC algorithm that achieves local decision in round 1 when
f = 0.)

We say that a process pi learns index l ∈ [1, n]\{i} in round k if newestk−1
i [l] = ⊥

and newestki [l] 6= ⊥. (In other words, pi learns about the proposal value of pl in round
k.) We say that pi learns index i in round 0. Also, we say that pi learns index l from pj

in round k if newestk−1
i [l] = ⊥ and pi receives a round k message from pj containing

an est such that est[l] 6= ⊥. On the other hand, if pj sends an est such that est[l] 6= ⊥
in round k then we say that pj propagates index l in round k. (Note that there may
be more than one process from which a process learns the same index in a round.)
Clearly, if pi propagates l in round k, then pi learns l in a lower round.

Lemma 7.7. In every run with at most f faulty processes, the following properties
hold:

(a) if f ∈ [1, t], then there is a correct process that decides by round f + 1.
(b) if f ∈ [0, t− 2], then any process that halts, halts by round f + 2.
(c) Any process that halts, halts by round t + 1.
Proof. (a) For f = t, the proof is trivial because every correct process decides

by round t + 1. Consider a run in which at most f ∈ [1, t − 1] processes crash, and
suppose, by contradiction that no correct process decides by round f + 1. Thus, no
process halts by round f + 1 ≤ t. It follows from Lemma 7.4 that |faultyf | ≥ f .
Since at most f processes crash in the run, |faultyf | = f and every process that
enters round f + 1 is correct. Furthermore, since no correct process halts by round
f , Lemma 7.4 implies that |faultyf−1| ≥ f − 1. Since |faultyf | = f , at most one
process crashes in round f .

Let S be the set of processes that enter round f + 1. Since every process in S is
correct, all of them complete round f + 1. We establish a contradiction by showing
that some process in S decides in line 29 of round f + 1. We demonstrate this fact
indirectly by showing the following four claims for processes in S in round f + 1:
(1) every process has lastRound = false in line 16, (2) no process receives a dec
message in round f + 1, (3) every process evaluates the predicate in line 27 to true,
and (4) some process evaluates the predicate in line 28 to true.

Claim 1. Suppose by contradiction that, at some process in S, lastRound = true
in line 16 of round f + 1. Then that process halts in round f + 1. This leads to a
contradiction because we know that every process in S is correct, and (from our initial
assumption) correct processes do not decide (and hence, do not halt) by round f + 1.

Claim 2. Suppose by contradiction that some process pi ∈ S receives a dec mes-
sage from some process pj in round f +1. Since every process that enters round f +1
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is correct, pj is a correct process, and hence, pj decides in line 18 of round f + 1 or
line 29 of round f ; a contradiction. Thus no process in S receives a dec message in
round f + 1.

Claim 3. Suppose by contradiction that some process pi ∈ S evaluates the pred-
icate at line 27 to false; i.e., haltf+1

i 6= newhaltf+1
i . Since pi does not halt by round

f + 1 ≤ t, from Lemma 7.2 we have, haltki 6= newhaltki for every k in [1, f ]. Thus
haltki 6= newhaltki for every k in [1, f +1]. As no correct process halts by round f +1,
from Lemma 7.3 (with r − 1 = f ≤ t − 1) it follows that |faultyf+1| ≥ f + 1; a
contradiction.

Claim 4. Suppose by contradiction that every process in S evaluates the predicate
in line 28 to false. It follows that, in round f + 1, every process in S learns an index.
(Recall that every process that enters round f + 1 is correct and is in set S.)

Consider any process pi ∈ S which learns index l1 in round f + 1 from some
process px. Suppose px learns index l2 in round f +1 from process py. Since pi learns
from px and px learns from py, pi 6= px and px 6= py. (Note that pi and py may not
be distinct.) Since px propagates l1 and learns l2, l1 6= l2.

Since px is a correct process, px learns l1 in round f (otherwise, if px learned l1
in a round lower than f , px would have propagated l1 to pi by round f). Similarly,
py learns l2 in round f . Consider the process p′x from which px learns l1 in round f .
Process p′x must have crashed in round f , otherwise, on receiving the round f message
from p′x, pi would have learned l1 in round f . Similarly, the process p′y from which py

learns l2 in round f must have crashed in round f , otherwise, px would have learned
l2 from p′y in round f . We claim that p′x and p′y are distinct processes. Otherwise,
if p′x = p′y, then p′x propagates both l1 and l2 in round f , and when px receives a
message from p′x in round f , px learns both l1 and l2 in round f ; a contradiction.
(Recall that we assumed px learned l2 in round f + 1.)

Thus two processes, p′x and p′y, crashes in round f . However, recall that we have
already shown (in the first paragraph of this proof) that at most one process crashes
in round f ; a contradiction.

(b) Consider a run in which at most f ∈ [0, t − 2] processes crash, and suppose
by contradiction that a process pi completes round f + 2 without halting. Observe
that, if any process pj halts at round k ≤ f + 1 then pj sends a dec message in
round k. Since pj completes round k, pi receives the dec message, sets lastRound to
true in round k, and halts in round k + 1 ≤ f + 2. Thus no process halts by f + 1.
As pi does not halt by round f + 2 ≤ t, from Lemma 7.2, for every g ∈ [1, f + 1],
we have newhaltgi 6= haltgi . Applying Lemma 7.3 (with r − 1 = f ≤ t − 1) we have
|faultyf+1| ≥ f + 1; a contradiction.

(c) Obvious from the algorithm.

7.4. Deriving NBAC and UC algorithms. In Section 6.3, we showed how to
transform any IC algorithm to an NBAC algorithm, without any additional commu-
nication. An equally straightforward transformation generates a UC algorithm from
an IC algorithm: on UC-propose(v), a process invokes IC-propose(v), and if a process
IC-decides an n-tuple d, then it UC-decides d[l] where l is the lowest index such that
d[l] 6= ⊥.

The IC algorithm of Figure 7.1 does not locally decide in round 1 in a failure-
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free run (f = 0). Therefore, to match the local decision lower bound for UC when
f = 0, we modify the UC algorithm obtained from our IC algorithm, by adding the
following: p1 UC-decides on its proposal value v1 in the receive phase of round 1. This
modification does not violate UC agreement because, if p1 completes the send phase
of round 1, then every process that completes round 1 has newest[1] = v1 at the end
of round 1. At the beginning of round 2, processes set est to newest. Subsequently,
at all processes, newest[1] and est[1] are always v1. Thus, in our transformation of
IC algorithm to UC algorithm, no process can UC-decide a value different from v1.

7.5. Synchronous results summary. Combining our lower bound results with
the time-complexity of the IC algorithm, the derived NBAC and UC algorithms, and
the simple NC algorithm sketched in the introduction, we get the following tight
bounds:

1. ∀t ∈ [1, n− 1], ∀f ∈ [0, t], (SCS t, SCS f , NC, ld) = f . Local decision bound
for consensus.

2. ∀t ∈ [1, n− 1], ∀f ∈ [0, t− 1], (SCS t, SCS f , UC, ld) = f + 1. Local decision
bound for uniform consensus.

3. (a) ∀t ∈ [1, n − 1], ∀f ∈ [1, t − 1], ∀P ∈ {NBAC, IC}, (SCS t, SCS f , P, ld)
= f + 1. (b) ∀t ∈ [1, n − 1], ∀P ∈ {NBAC, IC}, (SCS t, SCS0, P, ld) = 2. Local
decision bounds for non-blocking atomic commit and interactive consistency.

8. Eventually Synchronous Lower Bound. In this section we investigate
lower bounds for UC in eventually synchronous models ESt. We do not consider
lower bounds for NBAC and IC in ESt because they are impossible to solve in ESt if
t ≥ 1. Furthermore, any algorithm that solves consensus also solves uniform consensus
in ESt [16]. Thus, in ESt, we only investigate lower bounds for uniform consensus.

We know from [14] that every UC algorithm in ESt has a run that requires an
arbitrary number of rounds for any correct process to decide (because a run may
remain “asynchronous” for an arbitrary number of rounds). Thus, we focus on syn-
chronous runs of ESt, i.e., runs in which GSR = 1. (In other words, a run of ESt is
synchronous if it is also a run of SCSt.)

As all runs of SCSt are synchronous runs of ESt, the local and global decision
lower bounds for UC in SCSt, also holds for synchronous runs of ESt; i.e., roughly
speaking, local decision lower bound is f +1 and global decision lower bound is f +2.
However, we knew of no algorithm that showed that the bounds are tight, except
when f = 0 and f = t (the best and the worst case): the global decision tight bound
is 2 rounds in runs with f = 0 crashes [19, 28, 26], and t + 2 rounds in runs with at
most f = t crashes [9].

In the following proposition, we show that, for most values of f , the local decision
lower bound is f +2 rounds, which is the same as the lower bound for global decision.
(We give a matching algorithm in Section 9.) The proposition states that, every UC
algorithm in ESt has a run in SCSf (i.e., a synchronous run with at most f crashes)
in which every correct process decides in round f + 2 or a higher round.

Proposition 8.1. ∀t s.t. 1 ≤ t < n/2, ∀f ∈ [0, t − 3], (ESt, SCSf , UC, ld)
≥ f + 2.

Remarks. We exclude the following two cases. (1) t = 0: in this case, processes
can decide after exchanging proposal values in the very first round in synchronous
runs (e.g., decide always on the proposal value of p1). (2) t ≥ n/2: in this case, we
know that there is no UC algorithm in ES t.
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Proof. Suppose by contradiction that there is a UC algorithm A in ESt and an
integer f in [0, t − 3] such that, in every synchronous run of A with f crashes some
correct process decides by round f + 1. Since SCSt is a submodel of ESt, A solves
UC in SCSt as well. We also observe that any UC algorithm also solves WA. Thus
A solves WA in SCSt. Thus from Lemma 5.2 we know that there are two runs of A
in SCSt such that their round f configurations, y and y′, satisfy the following: (1) at
most f processes have crashed in each configuration, (2) the configurations differ at
exactly one process, say pi, and (3) val(y) = 0 and val(y′) = 1. (Recall that, given a
configuration C, r(C) and val(C) are defined only if C is a configuration of a run in
a synchronous model.)

We note that in y or y′, any alive process pj , that is distinct from pi, has not yet
decided. Otherwise, as y and y′ differ only at pi, process pj would decide the same
value v in y and y′, and hence, pj is a correct process that decides v in both r(y) and
r(y′); a contradiction.

Let z and z′ denote the configurations at the end of round f +1 of r(y) and r(y′),
respectively. Runs r(y) and r(y′) are runs of A in SCSt, and hence, synchronous runs
of A in ESt. As at most f processes crash in each run, r(y) and r(y′), it follows from
our assumption about algorithm A that, some correct process decides by round f + 1
in each run. Thus, there is at least one alive process in z, say q1, that has decided 0.
Similarly, there is at least one alive process in z′, say q3, that has decided 1. There
are three cases to consider. (We now consider runs of A in ESt.)

Case 1. pi /∈ {q1, q3}. Thus we have (1) a round f + 1 configuration z and a
process q1 such that at most f processes have crashed in z, and q1 is alive and has
decided 0 in z, (2) a round f + 1 configuration z′ and a process q3 such that at most
f processes have crashed in z′, and q3 is alive and has decided 1 in z′, and (3) process
pi is distinct from both q1 and q3. (Processes q1 and q3 might not be distinct.) There
are two subcases to consider.

Case 1a. Process pi is alive in y and y′. Consider the following two synchronous
runs of A:

R1 is a run such that (1) the round f configuration is y, (2) pi crashes in the
send phase of round f +1 such that only q1 and q3 receive the message from pi, (3) q1

and q3 crash in round f + 2 before sending any message, and (4) no process distinct
from pi, q1, and q3 crashes after round f . Notice that q1 cannot distinguish the round
f + 1 configuration of R1 from z, and therefore, decides 0 at the end of round f + 1
in R1. By uniform agreement, every correct process decides 0. Since t ≤ n− 1, there
is at least one correct process in R1, say pl.

R2 is a run such that (1) the round f configuration is y′, (2) pi crashes in the send
phase of round f + 1 such that only q1 and q3 receive the message from pi, (3) q1 and
q3 crash in round f + 2 before sending any message, and (4) no process distinct from
pi, q1, and q3 crashes after round f . Notice that q3 cannot distinguish the round f +1
configuration of R2 from z′, and therefore, decides 1 at the end of round f + 1 in R2.
However, pl cannot distinguish R1 from R2: at the end of round f + 1, the two runs
are different only at pi, q1, and q3, and none of the three processes sends messages
after round f + 1 in both runs. Thus (as in R1) pl decides 0 in R2; a contradiction
with uniform agreement.

Case 1b. Process pi has crashed in either y or y′. (Process pi has not crashed in
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both y and y′ because pi has different states in y and y′.) Without loss of generality,
we can assume that pi has crashed in y, and hence, pi is alive in y′. Consider the
following two synchronous runs of A:

R12 is a run such that (1) the round f configuration is y (and hence, pi has
crashed before round f +1), (2) no process crashes in round f +1, (3) q1 and q3 crash
in round f + 2 before sending any message, and (4) no process distinct from pi, q1

and q3 crashes after round f . Observe that the round f +1 configuration of R12 is z,
and hence, q1 decides 0 at the end of round f + 1 in R12. Due to uniform agreement,
every correct process decides 0 in R12. Since t ≤ n − 1, there is at least one correct
process in R12, say pl.

R21 is a run such that (1) the round f configuration is y′, (2) pi crashes in the
send phase of round f +1 such that only q1 and q3 receive the message from pi, (3) q1

and q3 crash in round f + 2 before sending any message, and (4) no process distinct
from pi, q1 and q3 crashes after round f . Notice that q3 cannot distinguish the round
f +1 configuration of R21 from z′ because it receives the round f +1 message from pi

in both runs. Thus (as in z′) q3 decides 1 at the end of round f +1 in R21. However,
pl cannot distinguish R12 from R21: at the end of round f + 1, the two runs are
different only at pi, q1 and q3, and none of them sends messages after round f + 1
in both runs. Thus (as in R12), pl decides 0 in R21; a contradiction with uniform
agreement.

Case 2. pi ∈ {q1, q3} and pi is alive in both y and y′.

Remark. To see why we cannot reuse the proof of Case 1, observe that, if pi = q1

then run R1 is not a valid run of A in SCSt: in SCSt, pi cannot decide in the receive
phase of round f + 1 while some of its message from that round are lost. Similarly,
if pi = q3 then run R2 is not a valid run in SCSt. Hence, in this case, we construct
some runs of A in ESt that are not in SCSt (i.e., non-synchronous runs), to derive a
contradiction.

Without loss of generality we can assume that pi = q1. (Note that the proof holds
even if pi = q1 = q3.) Consider the following three runs (R3 is a synchronous run,
whereas R4 and R5 are non-synchronous runs. We would like to point out that, as
required by the properties of ESt, in all non-synchronous runs that we construct, we
ensure that in every round, processes received at least n − t messages of the current
round, and channels are reliable.):

R3 is a run such that (1) the round f configuration is y, (2) pi crashes in round
f + 1 before sending any message, (3) if q3 6= pi then q3 crashes in round f + 2 before
sending any message, and every message sent by q3 in round f +1 is received in round
f + 1, (4) no process distinct from pi and q3 crashes in round f + 1 or in a higher
round, and (5) no message is delayed. Since t < n/2 < n − 1, there is at least one
correct process in R3, say pl. Suppose pl decides v ∈ {0, 1} in some round K1 ≥ f +1.
(To see why pl cannot decide before round f + 1 in R3, notice that the state of pl

at the end of round f is the same in runs r(y), r(y′) and R3, because pl 6= pi. If pl

decides v before round f + 1 in R3, then it also decides v in r(y) and r(y′). However,
val(y) 6= val(y′).)

R4 is a run such that (1) the round f configuration is y, (2) pi and q3 crash in
round f + 2 before sending any message, and only pi and q3 receive the round f + 1
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message from pi (all other round f + 1 messages from pi are lost1), (3) if q3 6= pi,
every process that completes round f + 1 receives round f + 1 message from q3, (4)
no process distinct from pi and q3 crashes in round f + 1 or in a higher round, and
(5) no message is delayed. Notice that pi cannot distinguish the configuration at the
end of round f + 1 in R4 from z, and thus, pi decides 0 at the end of round f + 1
in R4 (because pi = q1 decides 0 in z). However, pl cannot distinguish round K1
configuration of R4 from that of R3 because (a) at the end of round f , the two runs
are different only at pi, (b) all round f + 1 messages sent by pi to processes distinct
from pi and q3 are lost, and (c) pi and q3 do not send messages after round f + 1.
Thus (as in R3) pl decides v in round K1.

R5 extends y′ in the same way as R4 extends y. Namely, R5 is a run such that
(1) the round f configuration is y′, (2) pi and q3 crash in round f + 2 before sending
any message, and only pi and q3 receive the round f + 1 message from pi (all other
round f+1 messages from pi are lost), (3) if q3 6= pi, then every process that completes
round f + 1 receives round f + 1 message from q3, (4) no process distinct from pi

and q3 crashes in round f + 1 or in a higher round, and (5) no message is delayed.
Notice that q3 cannot distinguish the configuration at the end of round f + 1 in R5
from z′ (because in both runs, q3 receives round f + 1 message from pi), and thus, q3

decides 1 at the end of round f + 1 in R5. However, pl cannot distinguish round K1
configuration of R5 from that of R3 because, (a) at the end of round f the two runs
are different only at pi, (b) all round f + 1 messages sent by pi to processes distinct
from pi and q3 are lost, and (c) pi and q3 do not send messages after round f + 1.
Thus (as in R3) pl decides v in round K1.

Clearly, either R4 or R5 violates uniform agreement: pl decides v in both runs,
however, pi decides 0 in R4 and q3 decides 1 in R5.

Case 3. pi ∈ {q1, q3} and pi has crashed in either y or y′. (Process pi has not
crashed in both y and y′ because pi has different states in y and y′.) Notice that the
case pi = q1 = q3 is not possible because, in that case, pi is alive in both z and z′,
and hence in y and y′. We show the contradiction for the case when pi = q1 6= q3.
(The contradiction for pi = q3 6= q1 is symmetric.)

Since, pi = q1, pi is alive in z, and hence, alive in y. Thus pi has crashed in y′.
Consider the following non-synchronous run:

R6 is a run such that (1) the round f configuration is y, (2) in round f + 1, only
pi receives the round f +1 message from itself (all other messages sent by pi in round
f +1 are lost), (3) pi crashes in round f +2 before sending any message, (4) no process
distinct from pi crashes in round f + 1 or in a higher round, and (5) no message is
delayed. At the end of round f +1 in R6, pi cannot distinguish the configuration from
z, and therefore, decides 0 (because pi = q1 decides 0 in z). However, q3 does not
receive the round f + 1 message from pi in R6, and hence, q3 cannot distinguish the
configuration at the end of round f +1 in R6 from z′. (Observe that, in z′, q3 does not
receive the round f + 1 message from pi because pi has crashed in y′.) Consequently,
q3 decides 1 in R6; a contradiction with uniform agreement.

Remark. A closer look at the proof of Proposition 8.1 reveals that the non-
synchronous runs we construct (R4, R5, and R6) require only a small amount of
non-synchrony in the model. The three runs are valid in a weakened synchronous

1From the definition of ESt, messages sent by a faulty process (pi) may be lost in a non-
synchronous run.
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at process pi:

1: propose(vi)
2: esti ← vi

3: for round si from 1 to ∞ do
4: ki ← ((si − 1) mod (t + 2)) + 1 {ki varies from 1 to t + 2}
5: if ki = 1 and statei 6= decide then
6: Halti ← ∅
7: statei ← sync1 {statei is either sync1, sync2, nsync, or decide}
8: Send phase
9: send(si, esti, statei, Halti) to all

10: Receive phase
11: wait until received messages in round si

12: if statei = decide then
13: return
14: if received any (si, est′, decide, ∗) then
15: esti ← est′; decide(esti); statei ← decide; go to the next round {decision}
16: if statei ∈ {sync1, sync2} then
17: Halti ← Halti ∪ {pj | (pi received(si, ∗, nsync, ∗) from pj) or

(pi received(si, ∗, ∗, Haltj) from pj s.t. pi ∈ Haltj) or (pi did not receive any round si message
from pj)}

18: msgSeti ← { m | m is a round si message received from pj /∈ Halti}
19: esti ← Min{est | (∗, est, ∗, ∗) ∈ msgSeti}
20: if (statei = sync2) and (|Halti| ≤ t) and (state = sync2 for every message in msgSeti) then
21: decide(esti); statei ← decide; go to the next round {decision}
22: if |Halti| ≤ ki − 1 then
23: statei ← sync2
24: if ki ≤ |Halti| ≤ t then
25: statei ← sync1
26: if |Halti| > t then
27: statei ← nsync
28: if (state = nsync) and (received any (si, est′, sync2, ∗)) then
29: esti ← est′

Fig. 9.1. A uniform consensus algorithm Aes in ESt

model where the following holds: even if some message from process pi is lost in
round f + 1, then pi might complete round f + 1. (Recall that, in a synchronous
model, if some message from pi is lost in round f + 1, then pi has necessarily crashed
in send phase of round f + 1.) It is easy to see that such runs are also valid in
the synchronous send-omission model [17] as well as in an asynchronous round based
model enriched with a Perfect failure detector [2]. Thus the f +2 local decision lower
bound in synchronous runs also extends to these two models.

9. A Matching Eventually Synchronous Algorithm. In this section, we
present a UC algorithm in ESt that matches the local and global decision lower
bounds in synchronous runs. We assume that t < n/2, as UC is impossible to solve
in ESt if t ≥ n/2 [11]. As we pointed out earlier, [19, 28, 26] give a UC algorithm
in ESt that matches the global decision bound for synchronous runs with f = 0
crashes, and [9] gives a UC algorithm in ESt that matches the global decision bound
for synchronous runs with f = t crashes. We knew of no UC algorithm that matches
the bounds for 1 ≤ f ≤ t− 1.

Figure 9.1 presents a uniform consensus algorithm Aes in ES t that globally decides
(and hence, locally decides) within f + 2 rounds in every synchronous run with at
most f crashes, for 0 ≤ f ≤ t. In other words, our algorithm matches the f + 2
round global (and local) decision lower bound for synchronous runs of UC algorithms
in ESt.



26 DUTTA, GUERRAOUI, AND POCHON

9.1. Overview. Algorithm Aes is a generalization of the UC algorithm of [9]
modified for early decision. Aes assumes the following: (1) the model ES t with
0 ≤ t < n/2 (i.e., a majority of processes are correct), (2) any message sent by a
process pi to itself in any round k, is either received in round k, or pi crashes in round
k, and (3) the set of proposal values in a run is a totally ordered set, e.g., every process
pi can tag its proposal value with its index i and then the values can be ordered based
on this tag. (A matching algorithm that does not rely on each process receiving at
least n− t messages in every round is described in [8].)

The algorithm Aes proceeds in sessions, where each session is composed of t +
2 rounds of message exchange. A run globally decides within f + 2 rounds in a
“synchronous” session, provided at most f processes crash in the run. In each round
of a session, processes exchange their estimate (of the decision value), and roughly
speaking, adopt the minimum estimate value seen in the round as the estimate for the
next round. In this respect, a session of Aes is similar to the IC algorithm presented
in Section 7: if the model was synchronous, then a process pi could simply monitor
the set of processes from which pi did not receive any message (set Halti), and then,
pi could decide on its own estimate when Halti did not change for a round. Basically,
pi could do so because, in a synchronous model, Halti would be equal to the set of
crashed processes, and hence, if Halti did not change for a round, then pi would have
the smallest estimate among all alive processes.

However, in ESt, even if pi does not receive a message from some process pj , pj

might not have crashed, and pj can continue sending messages in subsequent rounds.
Thus, even if Halti does not change for a round, pi might not have the lowest estimate
among all alive processes. Therefore, in Aes, in addition to the estimate values, pro-
cesses also exchange the Halt sets to detect whether the current session is synchronous.
Furthermore, to ensure early decision, pi maintains and exchanges a variable statei

which indicates if pi considers the current session to be synchronous (sync1), or if pi

considers the session to be synchronous with the possibility of a decision in the next
round (sync2), or whether pi considers the session to be asynchronous (nsync).

9.2. Description. The processes invoke propose(∗) with their respective pro-
posal values as a parameter, and the propose procedure progresses in sessions: a ses-
sion consists of t+2 rounds, and session sn contains rounds from ((sn−1)∗(t+2))+1
to sn∗ (t+2). We call the kth round in a session sn (i.e., round ((sn−1)∗ (t+2))+k)
as step k of session sn. Recall that, for every run R in ESt, there is a unknown round
number GSR from which the system is synchronous (eventual synchrony property of
ESt). We say that a session is synchronous if the session starts in round GSR or in
a higher round.

Every process pi maintains the following variables:
ki is the current round number;

statei at pi reflects its view on how much progress is made towards achieving a
decision in the current session - (1) if statei is updated to nsync then pi

considers the current session to be asynchronous, (2) if statei is updated to
sync1 then pi considers the session to be synchronous but pi cannot decide
in the next round, (3) if statei is updated to sync2 then pi considers the
session to be synchronous with the possibility of a decision in the next round,
and (4) pi updates statei to decide upon decision;

esti is the estimate of the possible decision value, and roughly speaking, the min-
imum value seen by pi;

Halti is a set of processes pj such that, in the current round or a lower round
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of this session, at least one of the following occurred: pi received state =
nsync from pj , pi did not receive a message from pj , or pi received a messages
from pj with pi ∈ Haltj ;

msgSeti is a set of messages received by pi from processes that are not in Halti.
The variables are initialized as follows. Round number si starts from 1 and esti

is initialized to the proposal value of pi. Variables statei and Halti are initialized to
sync1 and ∅ respectively, and if pi has not yet decided, are reset to their initial values
at the beginning of each session. In each round, processes exchange est, state, and
Halt variables, update their own variables depending upon the messages received,
and possibly decide. In step k, pi updates its variables as follows.

1. If pi receives a decide message, then pi decides on the decision value received.

2. If statei is sync1 or sync2 then
• pi updates Halti to include all processes already in Halti, and also includes

the set of processes pj such that: (a) pi has received an nsync message from
pj in step k, (b) pi has received a message from pj with pi ∈ Haltj in step k,
or (3) pi has not received any message from pj in step k.

• pi includes in msgSeti every message received in step k whose sender is not
in Halti, and pi computes esti to be the minimum est value among messages
in msgSeti.

• if statei is sync2, Halti is of at most size t, and all messages in msgSeti
contains state = sync2, then pi decides on its estimate.

• Depending on the size h of the set Halti, pi updates statei as follows: if h
is lower than the current step number, then statei is set to sync2, else if h
is at most t then statei is set to sync1, otherwise, statei is set to nsync.

3. If state = nsync and pi receives a message with state = sync2, then pi

adopts the estimate contained in that message.

4. Upon decision in round k, pi sends the decision value to all processes in round
k + 1, and then halts.

9.3. Correctness. The validity property of the algorithm follows from the fol-
lowing three simple observations: (1) the est value of a process is initialized to the
proposal value of the process, (2) est value of a process at the beginning of round
s ≥ 2 is the est value of some process at the beginning of round s − 1, and (3) ev-
ery process decides on the est value of some process. In the rest of the section, we
prove the uniform agreement property of the algorithm. We defer the proof of termi-
nation property to the next subsection, where we prove termination along with the
time-complexity property of the algorithm.

For a given session, we introduce the following notations. For every variable vali
at process pi, we denote by vali[k] (k ≥ 1) the value of the variable vali immediately
after the completion of step k; vali[0] denotes the value of vali immediately before
sending messages in step 1. We assume that there is a symbol undefined that is
distinct from any possible value of the variables in the algorithm. If pi crashes before
completing step k, then vali[k] = undefined ; if pi crashes before sending messages
in step 1, then vali[0] = undefined. For every process pl that completes step k with
statel[k] ∈ {sync1, sync2}, let senderMSl[k] denote the set of processes that have
sent the messages in msgSetl[k]. We first prove the following lemma.
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Lemma 9.1. Consider any session and a process pl that completes step k with
statel[k] ∈ {sync1, sync2}. Then, senderMSl[k] = Π−Haltl[k].

Proof. Process pl completes step k with state = sync1 or state = sync2,
and hence, updates Halt and msgSet at line 17 and line 18 of step k, respectively.
Consider any process pm ∈ Π. There are two cases concerning the message from pm

to pl in step k:
- If pl does not receive the messages from pm in step k, then from the third

condition in line 17, pm ∈ Haltl[k], and from line 18, pm /∈ senderMSl[k].
- If pl receives the step k message from pm, then from line 18, pm ∈ senderMSl[k]

if and only if pm /∈ Haltl[k].

Lemma 9.2. (Uniform agreement) No two processes decide differently.
Proof. If no process ever decides then the lemma is trivially true. Thus, consider

the lowest session sn in which some process decides. In session sn, consider the lowest
step in which some process decides, say step k′ + 1 ≥ 2. (It is easy to see that no
process can decide in step 1 of sn.) If some process decides in line 15, then some other
process has decided in a lower step of sn or in a lower session; a contradiction with
the definition of k′ + 1 and sn. Thus some process decides in line 21 of step k′ + 1.
We claim the following:

Claim 9.3. (Elimination) If there are two processes px and py such that statex[k′] ∈
{sync1,sync2} and statey[k′] = sync2 then estx[k′] ≥ esty[k′].

[Proof of Lemma 9.2 continued.] For now, we assume the above claim, and
prove uniform agreement. We later give a proof of Claim 9.3. Suppose that some
process pw decides d at line 21 of step k′ + 1. From lines 19 and 20 it follows that
there is a message in msgSetw[k′ + 1] that has state = sync2 and est = d, say
from process pv. Consider another process pu that completes step k′ with state =
sync2 and est = d′. Applying Claim 9.3 twice with px = pv and py = pu, and
vice-versa, we get d′ = d. It follows that, every process that completes step k′ with
state = sync2, does so with est = d. Notice that every process that decides at
line 21 in step k′ + 1 (that includes pw), has only messages with state = sync2 in
the msgSet[k′ + 1], and hence, all these messages have est = d. Consequently, every
process that decides in line 21 of step k′ + 1, sets its est to d in line 19, and then
decides on its est = d in line 21. Thus, every process that decides in step k′ + 1,
decides d. (Recall that no process can decide in line 15 of step k′ + 1.) It remains
to be shown that no process decides a different value in a higher step of sn or in a
higher session.

From line 20 we have |Haltw[k′ + 1]| ≤ t, and hence, Lemma 9.1 implies that
msgSetw[k′ + 1] contains at least n − t messages, i.e., messages from a majority of
processes. Furthermore, the last condition in line 20 requires that every message in
msgSetw[k′+1] has state = sync2. Thus, a majority of the processes sent a message
with state = sync2 in step k′ + 1. As the round k′ + 1 message from process pv has
state = sync2 and est = d, by applying Claim 9.3, it follows that for messages in
round k′+1, (1) every message with state = sync2 in round k′+1 has est = d, and
(2) every message with state = sync1 has est ≥ d.

Now consider the est value of any process pi at the end of step k′+1. If statei[k′+
1] = nsync, then pi has received at least one message with state = sync2 and
est = d (because a majority of processes have sent such messages and, in every step,
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pi receives messages from at least n− t processes, a majority), and therefore, updates
its est to d (line 28). On the other hand, if statei[k′ + 1] ∈ {sync1, sync2} then
Halti[k′ + 1] ≤ t (line 22 and line 24). Therefore, msgSeti[k′ + 1] contains at least
n − t messages (Lemma 9.1). Furthermore, msgSeti[k′ + 1] contains no message
with statei[k′ + 1] = nsync (line 17 and line 18). Therefore, from Claim 9.3, every
message in msgSeti[k′+1] has est ≥ d and there is at least one message with state =
sync2 and est = d (because, in step k′ + 1, a majority of processes sent messages
with state = sync2 and est = d). Therefore, in line 19, pi updates est to d.

Thus every process that completes step k′ + 1 updates its est to d, and every
process that decides in step k′ + 1, decides d. Suppose by contradiction that some
process decides a value different from d in a higher step of sn or in a higher session.
Consider the lowest session sn′′ and the lowest step k′′ in sn′′, in which some process
pj decides a value different from d, say d′′. Observe that if pj decides in line 15 of
step k′′, then from line 14 it follows that some process has decided d′′ in a lower step
of sn′′ or in a lower session. Thus pj has decided on its est in line 21. Again observe
that, given a session sn′, the est value of a process at the end of some step k ≥ 2 is
the est value of some process at the end of step k − 1, and the est value of a process
at the end of the step k = 1 is the est value of some process at the end of step t+2 of
the previous session sn′ − 1. Therefore, the est value of any process in a step higher
than k′ + 1 in session sn, or in a higher session, cannot be different from d. Thus pj

cannot decide d′′ in step k′′ of sn′′; a contradiction.

Claim 9.3. Consider the lowest session sn in which some process decides. If
k′+1 ≥ 2 is the lowest step in sn in which some process decides then: if there are two
processes px and py such that statex[k′] ∈ {sync1,sync2} and statey[k′] = sync2
then estx[k′] ≥ esty[k′].

Proof. Suppose by contradiction that there are two processes px and py such that:

Assumption A1: statex[k′] ∈ {sync1,sync2}, statey[k′] = sync2, estx[k′] =
c, esty[k′] = d, and c < d.

In the context of session sn, we show Claims 9.3.1 to 9.3.7 based on the definition
of k′, and the Assumption A1. Claim 9.3.4 contradicts Claim 9.3.7, which completes
the proof of Claim 9.3 by contradiction.

Let us define the following sets for k ∈ [1, k′ + 1]:
• C[k] = {pi|esti[k] ≤ c} (The set of processes that complete step k with

est ≤ c.)
• crashed[k] = the set of processes that crashed before completing step k.
• NSYN [k] = {pi|statei[k] = nsync}.
• Z[k] = C[k] ∪ crashed[k] ∪ NSYN [k].

Additionally, let us define, C[0] to be the set of processes that start step 1 with est
less than or equal to c, crashed[0] to be the set of processes that crash before sending
any message in step 1, NSYN [0] = ∅, and Z[0] = C[0] ∪ crashed[0] ∪ NSYN[0]. We
make the following observation:

Observation A2: |C[0]| ≥ 1, and hence, |Z[0]| ≥ 1. Otherwise, if every process
starts step 1 with a value greater than c, then estx[k′] > c (contradicts assumption
A1).
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Proof Sketch. Before presenting Claims 9.3.1 to 9.3.7, we give a rough sketch
of the overall proof. Recall that Z is the set of processes that either has crashed, has
entered state nsync, or has estimate less that or equal to c, at the end of a step. Z[k]
denotes the set Z at the end of step k. We derive a contradiction on the size of set
Z by showing that (1) for py to complete step k′ with state =sync2 and est = d,
we need |Z[k′ − 1]| ≤ k′ − 1, but (2) for assumption A1 to be satisfied, |Z| should
increase in every step, and hence, |Z[k′ − 1]| > k′ − 1.

We first note that, if a process is in set Z[k] then it remains in that set in all
higher steps. To see why, note that once a process crashes or enters state nsync, it
stays in those states. In addition, if a process has est ≤ c then, unless it crashes or
enters state nsync, the process updates its estimate to the lowest estimate seen in
that step, which cannot be more than c.

Now, from Assumption A1, process py completes step k′ with state sync2. From
the algorithm, this requires that Halty set of py at the end of step k′ is of size at
most k′ − 1. Now consider the message from a process pj in Z[k′ − 1] to py in step
k′. Either py does not receive a message from pj , or receives one with state nsync,
or with est ≤ c. In the first two cases, py puts pj in its Halty set, and the last case is
not possible because it requires py to update its est to a value lower than d. Thus the
set Z[k′− 1] is a subset of Halty at the end of step k′, and hence, |Z[k′− 1]| ≤ k′− 1.

From the definition of Z and Assumption A1, process px is in Z[k′]. We also
show that px is not in Z[k′ − 2]. To see why, assume otherwise. Then px sends step
k′ − 1 messages with est ≤ c, and therefore, processes in Π−Z[k′ − 1] do not receive
any message from px (otherwise, they would update their estimate to a value at most
c, and hence be in set Z[k′ − 1]). Note that the number of processes that are in
Π−Z[k′ − 1] is more than t as we have already shown |Z[k′ − 1]| ≤ k′ − 1 ≤ t < n/2.
Thus, in step k′, more than t processes send messages with px ∈ Halt. From the
algorithm, px puts all such processes in its Haltx set. However, a Haltx set of size
more than t requires px to enter state nsync, a contradiction.

We next show that, at least one process enters the set Z in every step (till step
k′−2). For ease of presentation, in this proof sketch, we ignore crashed processes and
processes with state nsync. Suppose by contradiction, no process enters the set Z in
some step g; i.e., Z[g] = Z[g + 1]. Then, arguing as above, processes in Π− Z[g + 1]
do not receive any message from processes in Z[g] (otherwise, they would update
their estimate to a value at most c, and hence be in set Z[g + 1]). It follows from
the algorithm that, in subsequent steps, every process in Π − Z[g + 1] = Π − Z[g]
ignores estimate values received from any process in Z[g]. Thus no process in Π−Z[g]
adopts an est less than or equal to c. Thus set Z does not change after round g. This
contradicts our earlier observation that px is in Z[k′] but not in Z[k′−2]. (The actual
proof of this claim is bit involved because we need to consider crashed processes and
processes with state nsync.)

As |Z| increases by at least 1 in every step till step k′ − 2, we have, |Z[k′ − 2]| ≥
k′− 1. Using a slightly different argument we can show that |Z| increase by 1 in step
k′ − 1 as well. Thus, |Z[k′ − 1] > k′ − 1, which contradicts our earlier observation.
We now give the detailed proof of the claims.

Claim 9.3.1: (1) ∀k ∈ [0, k′−1], (crashed[k]∪NSYN [k]) ⊆ (crashed[k+1]∪NSYN [k+
1]). (2) ∀k ∈ [1, k′], if pi /∈ (NSYN [k]∪crashed[k]) then pi sends messages with
state ∈ {sync1, sync2} in step k, and in all steps lower than k, of this session.

Proof. (1) Suppose by contradiction that there is a process pi such that pi ∈
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crashed[k]∪NSYN [k] and pi /∈ crashed[k + 1]∪NSYN [k + 1]. Since a crashed pro-
cess does not recover, crashed[k] ⊆ crashed[k + 1], and hence, pi /∈ crashed[k +
1]∪NSYN [k+1] implies that pi /∈ crashed[k]. Thus, pi ∈ crashed[k] ∪ NSYN [k] im-
plies that pi ∈ NSYN [k], i.e., pi completes step k with state = nsync. Notice that
by the definition of k′ (i.e., k′ + 1 is the lowest step in which some process decides),
the conditions of line 12 and line 14 cannot be true in step k + 1 < k′ + 1, for any
process. Thus the state of pi remains nsync at the end of step k + 1, i.e., pi ∈
NSYN [k + 1]; a contradiction.

(2) If pi /∈ (NSYN [k]∪crashed[k]) then, from Claim 9.3.1.1, it follows that pi /∈
(NSYN[k1] ∪ crashed[k1]) for all k1 ≤ k; i.e., pi completes every step lower than or
equal to k with state 6= nsync. Thus pi has not send any message with state =
nsync in step k or in a lower step.

Claim 9.3.2: ∀k ∈ [0, k′ − 1], Z[k] ⊆ Z[k + 1].
Proof. Suppose by contradiction that there is a process pi and some k ∈ [0, k′−1]

such that pi ∈ Z[k] and pi /∈ Z[k + 1]. Since pi /∈ Z[k + 1], then pi /∈ crashed[k + 1]∪
NSYN[k + 1]. Applying Claim 9.3.1.1, we get pi /∈ crashed[k] ∪ NSYN[k]. However,
pi ∈ Z[k] = C[k] ∪ crashed[k] ∪NSYN[k], and hence, pi ∈ C[k].

We first observe that pi sends messages with state 6= nsync in the first k + 1
steps: this follows from pi /∈ crashed[k + 1] ∪ NSYN[k + 1] and Claim 9.3.1.2. As pi

always receives message from itself, and does not send any message with state 6=
nsync in the first k+1 steps, it follows that pi /∈ Halti[k+1] (line 17). Furthermore,
pi /∈ crashed[k +1]∪NSYN[k +1] implies that pi completes step k +1 with state =
sync1 or state = sync2. Applying Lemma 9.1 we have, pi ∈ senderMSi[k + 1].
Thus, the step k + 1 message from pi is in msgSeti[k + 1]. However, as pi ∈ C[k], the
step k+1 message from pi contains esti[k] ≤ c. Thus, when pi evaluates est in line 19
of step k +1, pi considers its own message with esti[k] ≤ c, and hence, adopts a value
less than or equal to c as esti[k + 1]. Thus pi ∈ C[k + 1] ⊆ Z[k + 1]; a contradiction.

Claim 9.3.3: ∀k ∈ [0, k′ − 1], ∀pi /∈ Z[k + 1], Z[k] ⊆ Halti[k + 1].
Proof. Consider a process pj ∈ Z[k] and a process pi /∈ Z[k + 1]. In step k + 1,

msgSeti[k+1] either contains a message from pj or does not contain any message from
pj . In the second case, Lemma 9.1 implies that pj ∈ Halti[k + 1]. Consider the case
where msgSeti[k+1] contains a message m from pj . From line 17 and line 18, it follows
that m contains state 6= nsync, and hence, pj /∈ NSYN[k]. Furthermore, pj has sent
a message in step k+1, and so, pj /∈ crashed[k]. Thus pj /∈ crashed[k]∪NSYN[k], but
we have assumed pj ∈ Z[k]. So, pj ∈ C[k], and hence, message m from pj contains
an est less than or equal to c. Since m ∈ msgSeti[k + 1], in step k + 1, pi evaluates
est to a value less than or equal to c. Thus pi ∈ C[k + 1] ⊆ Z[k + 1]; a contradiction.
Thus msgSeti[k + 1] does not contain any message from pj .

Claim 9.3.4: |Z[k′ − 1]| ≤ k′ − 1.
Proof. From Assumption A1, it follows that py /∈ Z[k′]. Therefore, from Claim

9.3.3, Z[k′ − 1] ⊆ Halty[k′]. On the other hand, statey[k′] = sync2 implies that
|Halty[k′]| ≤ k′ − 1 (line 22 and line 23). Thus, |Z[k′ − 1]| ≤ k′ − 1.

Claim 9.3.5: px ∈ Z[k′] and px /∈ Z[k′ − 2].
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Proof. As estx[k′] = c, we have px ∈ C[k′] ⊆ Z[k′].
For the second part of the claim, suppose by contradiction that px ∈ Z[k′ − 2].

Then, from Claim 9.3.3, for every process pi /∈ Z[k′−1], px ∈ Halti[k′−1]. Therefore,
in step k′, if any process in Π − Z[k′ − 1] sends a message m, then px ∈ m.Halt
(where, m.Halt denotes the Halt field of m). If px receives m in step k′, then
it includes the sender of m in Haltx (because of condition 2 in line 17), and if pi

does not receive m in step k′, then pi includes the sender of m in Haltx (because
of condition 3 in line 17). Thus Π − Z[k′ − 1] ⊆ Haltx[k′]. Using, Claim 9.3.4,
|Haltx[k′]| ≥ |Π − Z[k′ − 1]| ≥ n − (k′ − 1). Since k′ + 1 ≤ t + 2 and t < n/2, we
have |Haltx[k′]| ≥ n − t > t. However, |Haltx[k′]| > t implies that statex[k′] =
nsync (line 26 and line 27); a contradiction.

Claim 9.3.6: (1) ∀k ∈ [0, k′ − 3], Z[k] ⊂ Z[k + 1]. (Z[k] is a proper subset of
Z[k + 1]).
(2) |Z[k′ − 2]| ≥ k′ − 1.

Proof. (1) From Claim 9.3.2, Z[k] ⊆ Z[k + 1] (k ∈ [0, k′ − 1]). Suppose by
contradiction that there is some g ∈ [0, k′ − 3] such that Z[g] = Z[g + 1].

We first show by induction on the step number k that, for all k ∈ [g + 1, k′ − 1],
C[k] − (NSYN[k] ∪ crashed[k]) ⊇ C[k + 1] − (NSYN[k + 1] ∪ crashed[k + 1]). (This
statement corresponds to the brief argument presented in the proof sketch where we
showed that if we ignore crashed processes and processes with nsync state, then the
set Z does not increase after step g.)

Base Case (k = g + 1): C[g + 1]− (NSYN[g + 1] ∪ crashed[g + 1]) ⊇ C[g + 2]−
(NSYN[g + 2] ∪ crashed[g + 2]). Suppose by contradiction that there is a process pi

such that pi ∈ C[g + 2] − (NSYN[g + 2] ∪ crashed[g + 2]) (Assumption A3), and
pi /∈ C[g + 1]− (NSYN[g + 1] ∪ crashed[g + 1]) (Assumption A4).

Assumption A3 implies that pi /∈ NSYN[g + 2] ∪ crashed[g + 2]. Applying Claim
9.3.1.1, we have pi /∈ NSYN[g + 1] ∪ crashed[g + 1], and therefore, from Assumption
A4, it follows that pi /∈ C[g + 1]. Thus pi completes step g + 1 with est > c and
state 6= nsync. Furthermore, Assumption A3 implies that pi completes step g + 2
with est ≤ c and state 6= nsync. So, msgSeti[g+2] contains a message with est ≤ c
from some process pj , i.e., pj ∈ senderMSi[g + 2] (Observation A5). As pj sends a
message with est ≤ c in step g + 2, it follows that pj ∈ C[g + 1] ⊆ Z[g + 1].

As pi /∈ NSYN[g + 1] ∪ crashed[g + 1] and pi /∈ C[g + 1], from the definition of
Z[g+1] we have pi /∈ Z[g+1]. Claim 9.3.3 implies that Z[g] ⊆ Halti[g+1]. Recall that
we assumed Z[g] = Z[g +1] and, from line 17, Halti[g +1] ⊆ Halti[g +2]. Therefore,
Z[g + 1] ⊆ Halti[g + 2]. Thus pj ∈ C[g + 1] ⊆ Z[g + 1] implies that pj ∈ Halti[g + 2].
From Observation A5, pj ∈ senderMSi[g + 2] ∩Halti[g + 2].

As pi /∈ NSYN[g +2]∪ crashed[g +2], it follows that pi completed step g +2 with
state = sync1 or state = sync2. From Lemma 9.1 it follows that senderMSi[g+
2]∩Halti[g +2] = ∅. However, pj ∈ senderMSi[g +2]∩Halti[g +2]; a contradiction.

Induction Hypothesis (k ∈ [g +1, r]): C[k]− (NSYN[k]∪ crashed[k]) ⊇ C[k +1]−
(NSYN[k + 1] ∪ crashed[k + 1]), for some r < k′ − 1.

Induction Step (k = r + 1): C[r + 1] − (NSYN[r + 1] ∪ crashed[r + 1]) ⊇ C[r +
2]− (NSYN[r + 2]∪ crashed[r + 2]). Suppose by contradiction that there is a process
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pi such that pi ∈ C[r + 2]− (NSYN[r + 2] ∪ crashed[r + 2]) (Assumption A6) and
pi /∈ C[r + 1]− (NSYN[r + 1] ∪ crashed[r + 1]) (Assumption A7).

Similar to the base case, applying Assumption A6, A7, and Claim 9.3.1, gives us
pi /∈ NSYN[r+2]∪crashed[r+2], pi /∈ NSYN[r+1]∪crashed[r+1], and pi /∈ C[r+1].
Thus pi /∈ Z[r+1]. Since g +1 < r+1, from Claim 9.3.2, we have Z[g +1] ⊆ Z[r+1],
and therefore, pi /∈ Z[g + 1].

Applying Claim 9.3.3 on pi /∈ Z[g + 1] implies that Z[g] ⊆ Halti[g + 1]. Recall
that we assumed Z[g] = Z[g + 1], and from line 17 and g + 1 < r + 2, Halti[g + 1] ⊆
Halti[r + 2]. Therefore, Z[g + 1] ⊆ Halti[r + 2] (Observation A8).

From the induction hypothesis, we have (C[g + 1]− (NSYN[g + 1] ∪ crashed[g +
1])) ⊇ (C[r + 1] − (NSYN[r + 1] ∪ crashed[r + 1])). From the definition of Z[g + 1],
C[g + 1] − (NSYN[g + 1] ∪ crashed[g + 1]) ⊆ C[g + 1] ⊆ Z[g + 1], and therefore,
C[r + 1]− (NSY N [r + 1]∪ crashed[r + 1]) ⊆ Z[g + 1]. Applying Observation A8, we
have (C[r + 1]− (NSYN[r + 1] ∪ crashed[r + 1])) ⊆ Halti[r + 2] (Observation A9).

As pi /∈ Z[r + 1], pi completes step r + 1 with est > c and state 6= nsync.
Furthermore, Assumption A6 implies that pi completes step r + 2 with est ≤ c and
state 6= nsync. Therefore, msgSeti[r + 2] contains a message with est ≤ c from
some process pj , i.e., pj ∈ senderMSi[r + 2] (Observation A10). As pj sends a
message with est ≤ c in step r + 2, pj ∈ C[r + 1] ⊆ Z[r + 1].

As the step r + 2 message of pj is in msgSeti[r + 2], from line 17 it follows that
the message sent by pj had state 6= nsync. Therefore, pj /∈ NSYN[r + 1], and
clearly, pj /∈ crashed[r+1]. Therefore, pj ∈ C[r+1]− (NSYN[r+1]∪ crashed[r+1]).
From Observation A9 it follows that pj ∈ Halti[r + 2]. From Observation A10,
pj ∈ senderMSi[r + 2] ∩Halti[r + 2].

As pi /∈ NSYN[r+2]∪crashed[r+2] (from Assumption A6), pi completed step r+2
with state = sync1 or state = sync2. Lemma 9.1 implies that senderMSi[r +
2]∩Halti[r +2] = ∅. However, pj ∈ senderMSi[r +2]∩Halti[r +2]; a contradiction.

From the above result (that we proved by induction), we have C[k′−2]−(NSY N [k′−
2] ∪ crashed[k′ − 2]) ⊇ C[k′] − (NSY N [k′] ∪ crashed[k′]). From Assumption A1,
px ∈ C[k′] − (NSY N [k′] ∪ crashed[k′])). From Claim 9.3.5, we have px /∈ Z[k′ −
2] ⊇ (C[k′ − 2] − (NSY N [k′ − 2] ∪ crashed[k′ − 2]). In other words, px is in
C[k′]−(NSY N [k′]∪crashed[k′]) but not in C[k′−2]−(NSY N [k′−2]∪crashed[k′−2]);
a contradiction.

(2) Part (1) of this claim implies that for every k ∈ [0, k′−3], |Z[k+1]|−|Z[k]| ≥ 1.
From Observation A2, |Z[0]| ≥ 1. Therefore, |Z[k′ − 2]| ≥ k′ − 1.

Claim 9.3.7: |Z[k′ − 1]| > k′ − 1.
Proof. Suppose by contradiction that |Z[k′−1]| ≤ k′−1. Since Z[k′−2] ⊆ Z[k′−1]

(Claim 9.3.2) and |Z[k′ − 2]| ≥ k′ − 1 (Claim 9.3.6.2), we have Z[k′ − 2] = Z[k′ − 1]
and |Z[k′ − 2]| = |Z[k′ − 1]| = k′ − 1 (Assumption A11).

From Claim 9.3.5, we know that px /∈ Z[k′−2] = Z[k′−1]. Applying Claim 9.3.3,
we have Z[k′ − 2] ⊆ Haltx[k′ − 1]. As Z[k′ − 2] = Z[k′ − 1] (from Assumption A11),
it follows that Z[k′ − 1] ⊆ Haltx[k′ − 1].

Since px /∈ Z[k′ − 1], px completes step k′ − 1 with est > c and state 6=
nsync. From Assumption A1, we also know that px completes step k′ with est ≤ c
and state 6= nsync. Therefore, msgSetx[k′] contains a message, say from process
pj , with est ≤ c, i.e., pj ∈ senderMSx[k′]. From the definition of C[k′ − 1], pj ∈



34 DUTTA, GUERRAOUI, AND POCHON

C[k′ − 1] ⊆ Z[k′ − 1]. However, we showed earlier that Z[k′ − 1] ⊆ Haltx[k′ − 1], and
from line 17, it follows that Haltx[k′ − 1] ⊆ Haltx[k′]. Thus Z[k′ − 1] ⊆ Haltx[k′]
and pj ∈ Haltx[k′].

From Assumption A1, we know that px completed step k′ with state = sync1 or
state = sync2. Therefore, Lemma 9.1 implies that senderMSx[k′]∩Haltx[k′] = ∅.
However, pj ∈ senderMSx[k′] ∩Haltx[k′]; a contradiction.

9.4. Time-complexity. We now discuss the termination and the time-complexity
of the algorithm. From the definition of ESt, for every run R in ESt, there is an un-
known round number GSR from which the system is synchronous (eventual synchrony
property of ESt). Define synchronous session as a session that starts in round GSR
or in a higher round. Let sn be the lowest synchronous session, and let f be the
number of processes that crash in R.

Lemma 9.4. Consider any process pi that completes step k ∈ [1, t + 2] of session
sn. If no correct process decides before step k, then every process in Halti[k] has
crashed by step k.

Proof. Suppose no correct process decides before step k in session sn. For every
step l ∈ [0, k] in sn, let H[l] be the union of all Haltj [l] such that Haltj [l] 6= undefined.
We claim the following which immediately implies the lemma: Every process in H[l]
(for all l ∈ [0, k]) crashes by step l.

We prove the claim by induction on step number l. For l = 0, the claim is trivially
true, because H[0] = ∅ (base case). Suppose that the claim is true for l ∈ [0, l′−1] (for
some l′ − 1 ≤ k − 1): every process in H[l] crashes by step l (induction hypothesis).
Consider the set H[l′] (induction step). If H[l′]−H[l′−1] = ∅ then the induction step is
trivial. Suppose by contradiction that there is a process pj ∈ H[l′]−H[l′−1] such that
pj has not crashed by step l′. Thus there is a process pa such that pj /∈ Halta[l′ − 1]
and pj ∈ Halta[l′].

As pj has not crashed by step l′, no correct process has decided before round k,
and sn is a synchronous session, so pa must have received the step l′ message m of
pj . Since, pj ∈ Halta[l′], m contains either (a) state = nsync or (b) set Haltj
such that pa ∈ Haltj . Now, we show both cases to be impossible and thus prove the
induction step by contradiction.

From our induction hypothesis, for every step l′′ < l′, every process in Haltj [l′′]
has crashed by step l′′. Since no more than t processes can crash in a run, in rounds
lower than l′, |Haltj | is never higher than t. Thus pj can not update its state to
nsync in rounds lower than l′ (line 26). Thus the round l′ message from pj does not
contain state = nsync.

If the round l′ message from pj contains Haltj such that pa ∈ Haltj then pa ∈
Haltj [l′ − 1] ⊆ H[l′ − 1]. However, from our induction hypothesis, every process in
H[l′−1] has crashed before completing round l′−1, which implies that pa has crashed
before completing round l′ − 1; a contradiction.

Lemma 9.5. (Time-complexity) In every run of the algorithm in SCSf , (for any
f ∈ [0, t]), every process that decides, decides by round f + 2.

Proof. Consider any run R of the algorithm in SCSf . (Note that, for a run in
SCSf , the first session is synchronous.) If some correct process decides by round
f + 1, then every process receives a decide message (and decides) by round f + 2.
Therefore, suppose by contradiction that no correct process decides by round f + 1
in R, and some correct process pi completes round f + 2 without deciding.
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Since at most f processes may crash in R, from Lemma 9.4, in every round,
|Halt| at every alive process is less than or equal to f . As pi does not decide in round
f + 2 and |Halti[f + 2]| ≤ f , one the following is true: (1) statei[f + 1] = nsync,
(2) statei[f +1] = sync1, or (3) some other process pj sent a message in round f +2
with state = sync1. Case 1 requires |Halti| > t in round f + 1 or in a lower round
(line 26); a contradiction. Case 2 and 3 is not possible because |Halt[f + 1]| ≤ f at
pi and pj , and therefore, pi and pj sets state to sync2 in round f + 1.

Lemma 9.6. (Termination) Every correct process eventually decides.
Proof. Suppose by contradiction that some correct process pi does not decide

in a run R. If some correct process decides, then every correct process receives a
decide message and decides. Thus, no correct process decides. Consider the lowest
synchronous session sn. Since no correct process decides in R, from Lemma 9.4, in
every step, |Halt| at every alive process in session sn is less than or equal to t (as t
is the maximum number of processes that may crash in R).

As pi does not decide by step t+2 of session sn, from line 20, one of the following is
true: (1) statei[t+1] = nsync, (2) statei[t+1] = sync1, or (3) some other process
pj sent a message in step t + 2 with state = sync1. Case 1 requires |Halti| > t in
step t + 1 or in a lower step (line 26); a contradiction. Case 2 and 3 is not possible
because |Halt[t + 1]| ≤ t at pi and pj , and therefore, pi and pj sets state to sync2
in round t + 1.

9.5. Eventually synchronous results summary. Combining Proposition 8.1,
the global decision lower bounds in [19, 9], and the time-complexity of algorithm Aes,
we get the following tight bounds in eventually synchronous models:

1. ∀t ∈ [1, (n − 1)/2], ∀f ∈ [0, t − 3], (ES t, SCS f , UC, ld) = f + 2. Local
decision bound for uniform consensus.

2. ∀t ∈ [1, (n− 1)/2], ∀f ∈ [0, t], (ES t, SCS f , UC, gd) = f + 2. Global decision
bound for uniform consensus.

10. Concluding Remarks. The time-complexity of local decisions is a natural
measure in many agreement-based distributed systems. As pointed out in the intro-
duction, in a replication or a transactional system, it may be sufficient for a client
to receive the decision value from any process executing the agreement algorithm.
Besides, studying the local decision metric helps uncover fundamental differences be-
tween problems and between models that were not apparent with other metrics. For
example, in a synchronous model, uniform consensus and non-blocking atomic commit
have the same tight bound in terms of global decision, but have different bounds when
we consider local decision. Similarly, considering a local decision metric allows us to
infer that early deciding uniform consensus algorithms are faster in a synchronous
model than in synchronous runs of an eventually synchronous model.
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