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tWe 
onsider an online version of the 
on
i
t-free 
oloring of a set of points on the line, whereea
h newly inserted point must be assigned a 
olor upon insertion, and at all times the 
oloringhas to be 
on
i
t-free, in the sense that in every interval I there is a 
olor that appears exa
tlyon
e in I . We present several deterministi
 and randomized algorithms for a
hieving this goal,and analyze their performan
e, that is, the maximum number of 
olors that they need to use,as a fun
tion of the number n of inserted points. We �rst show that a natural and simple(deterministi
) approa
h may perform rather poorly, requiring 
(pn) 
olors in the worst 
ase.We then derive several eÆ
ient algorithms. The �rst algorithm is randomized and simple toanalyze; it requires an expe
ted number of at most O(log2 n) 
olors, and produ
es a 
oloringwhi
h is valid with high probability. The se
ond algorithm is deterministi
, and is a variantof the initial simple algorithm; it uses a maximum of �(log2 n) 
olors. The third algorithmis a randomized variant of the se
ond algorithm; it requires an expe
ted number of at mostO(log n log logn) 
olors and always produ
es a valid 
oloring. We also analyze the performan
eof the simplest proposed algorithm when the points are inserted in a random order, and presentan in
omplete analysis that indi
ates that, with high probability, it uses only O(log n) 
olors.Finally, we show that in the extension of this problem to two dimensions, where the relevantranges are disks, n 
olors may be required in the worst 
ase.
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1 Introdu
tionLet P be a set of n points in Rd and R a set of subsets of Rd , 
alled ranges (e.g., the set of all disksin the plane). A 
oloring of P is 
alled 
on
i
t-free (CF for short) with respe
t to R if for ea
hr 2 R with P \ r 6= ;, there is at least one 
olor that appears exa
tly on
e in r.We 
onsider the following dynami
 s
enario of 
on
i
t-free 
oloring of points on the line, withrespe
t to interval ranges. We maintain a �nite set P � R. Initially, P is empty, and we repeatedlyinsert points into P , one point at a time. We denote by P (t) the set P after the t-th point hasbeen inserted. Ea
h time we insert a point p, we need to assign a 
olor 
(p) to it, whi
h is apositive integer. On
e the 
olor has been assigned to p, it 
annot be 
hanged in the future. The
oloring should remain 
on
i
t-free at all times. That is, as in the stati
 
ase, for any interval Ithat 
ontains points of P (t), there is a 
olor that appears exa
tly on
e in I.The stati
 version of CF-
oloring has been studied re
ently in several papers [5, 7, 9℄ in 
onsid-erably more general settings, involving point sets in higher dimensions, and ranges that are disks,balls, axis-parallel boxes, or more general ranges that satisfy 
ertain geometri
 
onditions. Thestudy of this problem is motivated by the problem of frequen
y-assignment in 
ellular networks.Spe
i�
ally, 
ellular networks are heterogeneous networks with two di�erent types of nodes: basestations (that a
t as servers) and 
lients. The base stations are inter
onne
ted by an external �xedba
kbone network. Clients are 
onne
ted only to base stations; 
onne
tions between 
lients andbase stations are implemented by radio links. Fixed frequen
ies are assigned to base stations toenable links to 
lients. Clients, on the other hand, 
ontinuously s
an frequen
ies in sear
h of abase station with good re
eption. The fundamental problem of frequen
y-assignment in 
ellularnetworks is to assign frequen
ies to base stations so that every 
lient, lo
ated within the re
eivingrange of at least one station, 
an be served by some base station, in the sense that the 
lient islo
ated within the range of the station and no other station within its re
eption range has the samefrequen
y (Su
h a station would be in \
on
i
t" with the given station due to mutual interferen
e).The goal is to minimize the number of assigned frequen
ies (\
olors") sin
e the frequen
y spe
trumis limited and 
ostly.Suppose we are given a set of n base stations, also referred to as antennea. Assume, for simpli
ity,that the area 
overed by a single antenna is given as a disk in the plane. Namely, the lo
ation ofea
h antenna (base station) and its radius of transmission is �xed and is given (the transmissionradii of the antennea are not ne
essarily equal). Even et al. [5℄ have shown that one 
an �nd anassignment of frequen
ies to the antennea with a total of at most O(log n) frequen
ies su
h thatea
h antenna (a base station) is assigned one of the frequen
ies and the resulting assignment isfree of 
on
i
ts, in the pre
eding sense. Furthermore, it was shown that this bound is worst-
aseoptimal. When the given antennea all have the same radius of transmission (say, unit radius), theproblem is easily seen to be equivalent to that of 
oloring n points in the plane su
h that for anyunit radius disk that 
ontains more than one of the given points, at least one of the 
olors in thatdisk is unique. Har-Peled and Smorodinsky [7℄ and Smorodinsky [9℄ have extended these resultsand introdu
ed new tools for (stati
) CF-
oloring.When the re
eption radii of the antennea are not equal, one fa
es a dual version of the CF
oloring problem, in whi
h the goal is to 
olor n given ranges so that, for ea
h point p that lies intheir union, there is a 
olor that appears exa
tly on
e among the ranges that 
ontain p. This dualversion has been sudied in the previous papers [5, 7, 9℄, but we will not adress it in this paper.To 
apture a dynami
 s
enario where antennea 
an be added to the network, we introdu
e and1



study an online version of the CF 
oloring problem, as des
ribed above. As we show in this paper,the online version of the problem is 
onsiderably harder, even in the one-dimensional 
ase. Webegin by proposing a natural, simple, and obvious 
oloring algorithm (to whi
h we refer as theUniMax greedy algorithm), but show that in the worst 
ase it has poor performan
e. Spe
i�
ally,the UniMax greedy algorithm may require 
(pn) 
olors in the worst 
ase. We still do not haveany nontrivial (i.e., sublinear) upper bound on the performan
e of the algorithm.The UniMax greedy algorithm is indeed greedy in nature, but there are several di�erent greedyapproa
hs, and we brie
y dis
uss another greedy alternative, about whi
h almost nothing is known.We next remedy the situation, by presenting several more eÆ
ient algorithms. We begin with asimple randomized algorithm, whi
h uses, with high probability,12 O(log2 n) 
olors, and the 
oloringthat it produ
es is 
on
i
t-free, with high probability. We then des
ribe a 2-stage deterministi
variant of the UniMax greedy algorithm, and show that the maximum number of 
olors that it usesis �(log2 n). By 
ombining ideas from both algorithms, we obtain a se
ond randomized algorithm,whi
h is a variant of the eÆ
ient deterministi
 solution. It uses O(log n log log n) 
olors with highprobability.The best known general lower bound for this problem is 
(log n), whi
h holds also for the stati

ase (see [5, 8, 9℄), so there still remains a gap between the upper and lower bounds.Next, we return to the UniMax greedy algorithm, whi
h 
an be ineÆ
ient in the worst 
ase, andanalyze its performan
e when the points are inserted in a random order. We redu
e the problemto a 
ertain stationary sto
hasti
 pro
ess, and present partial analysis of its performan
e, as wellas a fairly reasonable set of 
onje
tures, strongly supported by simulations, that indi
ate that theexpe
ted number of 
olors that the simple algorithm uses in this 
ase is only O(logn).Finally, we 
onsider the extension of the online version to point sets in the plane. Unfortunately,we show that, in the simple 
ase where the ranges that are required to be 
on
i
t-free are disks (orarbitrary radii), n 
olors may be needed in the worst 
ase. Nevertheless, (mu
h) better solutionsmight still exist for random distributions of the points, for other ranges, or for relaxed versions ofthe problem, in whi
h ea
h range has a 
olor that appears in it at least on
e and at most k times,for some 
onstant k [9℄. A re
ent follow-up study by Kaplan and Sharir [6℄ gives randomized onlineCF 
oloring algorithms for points in the plane, with respe
t to halfplanes, unit disks, or nearlyequal axis-parallel re
tangles. The algorithms use O(log3 n) 
olors, with high probability.There are many open problems that our study raises: Obtain, if possible, an improved algorithm-independent lower bound for online CF 
oloring for intervals; get a better understanding of theproblem behavior in the plane and in higher dimensions; design and analyze other strategies, andso on (see additional problems posted later throughout the paper). We note that CF 
oloring is
losely related to the problem of vertex ranking in graphs (see, e.g., [4℄). Some of our algorithms,that maintain the property that the maximum 
olor in any interval is unique, a
tually performonline vertex ranking in paths. Extending our analysis to online vertex ranking in other kinds ofgraphs (trees, for example) raises yet another set of interesting open problems.12This means that the probability of failure is at most 1=p(n), where p(n) is polynomial in n, whose degree 
an bemade arbitrarily large by adjusting the 
onstants of proportionality in the performan
e bound.
2



2 The UniMax Greedy Coloring AlgorithmInstead of the usual 
on
i
t-free property, we wish to maintain the following stronger UniqueMaximum Invariant (in whi
h we assume that the 
olors are positive integers):At any given step t and for any interval I, there is only one element of P (t) \ I thatattains the maximum 
olor in that set.This invariant implies that the 
oloring of P (t) is 
on
i
t-free, at any time t. It is indeed astronger 
ondition: Con
i
t-free 
oloring only requires that for ea
h interval there exists a 
olor(not ne
essarily the maximum) that is assigned to a unique point in that interval.We employ the following simple-minded algorithm for inserting a point p into the 
urrent setP (t). In a nutshell, the rule is simply to assign to p the smallest possible 
olor that maintainsthe invariant. This rule is implemented as follows. We say that the newly inserted point p sees apoint x if all the 
olors of the points between p and x (ex
lusive) are smaller than 
(x). In this
ase we also say that p sees the 
olor 
(x). We then give p the smallest 
olor that it does not see.(Note that a 
olor 
an be seen from p either to the left or to the right, but not in both dire
tions;see below.) We refer to this algorithm as the Unique Maximum Greedy algorithm, or the UniMaxgreedy algorithm, in short.Below is an illustration of the 
oloring rule of the UniMax greedy algorithm. The left 
olumngives the 
olors (integers in the range 1; 2; : : : ; 6) assigned to the points in the 
urrent set P andthe lo
ation of the next point to be inserted (indi
ated by a period). The right 
olumn gives the
olors \seen" by the new point. The 
olors seen to the left pre
ede the � and those seen to the rightsu

eed the period. 1� [1�℄1 � 2 [1 � 2℄1 � 32 [1 � 3℄12 � 32 [2 � 3℄121 � 32 [21 � 3℄121 � 432 [21 � 4℄121 � 3432 [21 � 34℄1215 � 3432 [5 � 34℄1215 � 13432 [5 � 134℄12152 � 13432 [52 � 134℄121526 � 13432 [6 � 134℄Corre
tness. The 
orre
tness of the algorithm is established by indu
tion on the insertion order.First, note that no 
olor 
an be seen twi
e from p: This is obvious for two points that lie both tothe left or both to the right of p. If p sees the same 
olor at a point u to its left and at a pointv to its right then the interval uv, before p is inserted, does not have a unique maximum 
olor,so this 
ase is impossible too. Next, if p is assigned 
olor 
, any interval that 
ontains p still hasa unique maximum 
olor: This follows by indu
tion when the maximum 
olor is greater than 
.If the maximum 
olor is 
 then it 
annot be shared by another point u in the interval, be
ausethen p would have seen the nearest su
h point, and thus would not be assigned 
olor 
. It is alsoeasy to see that the algorithm assigns to ea
h newly inserted point the smallest possible 
olor thatmaintains the invariant of a unique maximum 
olor in ea
h interval. This makes the algorithmgreedy with respe
t to the unique maximum 
ondition.3



Spe
ial insertion orders. Denote by C(P (t)) the sequen
e of 
olors assigned to the points ofP (t), in left-to-right order along the line. Let 
max(P (t)) denote the maximum 
olor in C(P (t)).The 
omplete binary tree sequen
e Sk of order k is de�ned re
ursively as S1 = (1) and Sk =Sk�1k(k)kSk�1, for k > 1, where k denotes 
on
atenation. Clearly, jSkj = 2k � 1.For ea
h pair of integers a < b, denote by C0(a; b) the following spe
ial sequen
e. Let kbe the integer satisfying 2k�1 � b < 2k. Then C0(a; b) is the subsequen
e of Sk from the a-thpla
e to the b-th pla
e (in
lusive). For example, C0(5; 12) is the subsequen
e (1; 2; 1; 4; 1; 2; 1; 3) of(1; 2; 1; 3; 1; 2; 1; 4; 1; 2; 1; 3; 1; 2; 1).Lemma 2.1. (a) If ea
h point is inserted into P to the right of all pre
eding points, then C(P (t)) =C0(1; t).(b) If ea
h point is inserted into P to the left of all pre
eding points, then C(P (t)) = C0(2k�t; 2k�1),where k satis�es 2k�1 � t < 2k.(
) If ea
h point is inserted into P either from the left or from the right then C(P (t)) is somesubsequen
e of the form C0(a; b), where b � jP (t)j.Proof: Easy, and omitted. 22.1 Lower bound for the UniMax Greedy algorithmTheorem 2.2. The UniMax greedy algorithm may require 
(pn) 
olors in the worst 
ase for a setof n points.Proof: For ea
h integer k, de�ne the sequen
eCk = (1; 2; 1; 3; 2; 1; : : : ; k � 1; k � 2; : : : ; 1; k; k � 1; : : : ; 1):Note that Ck is the 
on
atenation of k sequen
es D1kD2k � � � kDk, where Dj = (j; j � 1; : : : ; 2; 1).Put nk = k(k + 1)=2. We prove the following property, from whi
h the assertion of the theorem isan immediate 
orollary.(�) There exists an insertion order of nk points for whi
h the 
olor sequen
e produ
ed by theUniMax greedy algorithm is Ck.The proof pro
eeds by indu
tion on k. We note that the 
laim easily holds for k = 1; 2. Supposethat the UniMax greedy algorithm has produ
ed a sequen
e Sk whose 
olor sequen
e is Ck. Weinsert the next point in between Dk�1 and Dk, and observe that it is assigned 
olor k+1. We theninsert a point between Dk�2 and Dk�1, whi
h is assigned 
olor k. Pro
eeding in this manner fromright to left, we insert k points between 
onse
utive subsequen
es Dj�1;Dj . The 
olor sequen
enow be
omes D2kD3kD4k � � � kDkkDk+1:To 
omplete the step, we insert one additional point to the left of the whole sequen
e, whi
h getsthe 
olor 1, thereby produ
ing the 
olor sequen
e Ck+1. This 
ompletes the proof of (�), and thusof the theorem. 2Open problem: Obtain an upper bound for the maximum number of 
olors that the algorithmuses for n inserted points. We 
onje
ture that the bound is 
lose to the 
(pn) lower bound.4



2.2 Related algorithmsThe First-Fit algorithm|another greedy algorithm. The UniMax greedy algorithm isgreedy for maintaining the unique-maximum invariant, namely, that in ea
h interval the maximum
olor appears exa
tly on
e. Perhaps it is more natural to 
onsider a greedy approa
h in whi
h weonly want to enfor
e the standard CF property. That is, we want to assign to ea
h newly insertedpoint the smallest 
olor for whi
h the CF property 
ontinues to hold. There are 
ases wherethis First-Fit greedy algorithm uses fewer 
olors than the UniMax greedy algorithm: Consider aninsertion of �ve points in the order (1 3 2 4 5). The UniMax greedy algorithm produ
es the 
olorsequen
e (1 3 2 1 4), whereas the First-Fit algorithm produ
es the 
oloring (1 3 2 1 2). Thepre
eding lower bound 
onstru
tion does not apply for the First-Fit algorithm, and at the presentwe have no nontrivial bounds on its performan
e.CF 
oloring for unit intervals. Consider the spe
ial 
ase where we want the CF property tohold only for unit intervals. In this 
ase, O(log n) 
olors suÆ
e: Partition the line into the unitintervals Ji = [i; i + 1), for i 2 Z. Color the intervals Ji with even i as white, and those with oddi as bla
k. Note that any unit interval meets only one white and one bla
k interval. We 
olorthe points in ea
h Ji independently, using the same set of \light 
olors" for ea
h white interval,and the same set of \dark 
olors" for ea
h bla
k interval. For ea
h Ji, we 
olor the points that it
ontains using the UniMax greedy algorithm, ex
ept that new points inserted into Ji in betweentwo previously inserted points get a spe
ial 
olor, 
olor 0. It is easily 
he
ked that the resulting
oloring is CF with respe
t to unit intervals. Sin
e we e�e
tively only insert points into any Ji tothe left or to the right of the previously inserted points, Lemma 2.1(
) implies that the algorithmuses only O(log n) (light and dark) 
olors. We remark that this algorithm for unit length intervalssatis�es the unique maximum 
olor property for su
h intervals.We note that, in 
onstrast with the stati
 
ase (whi
h 
an always be solved with O(1) 
olors),
(log n) 
olors may be needed in the worst 
ase. Indeed, 
onsider a left-to-right insertion of npoints into a suÆ
iently small interval. Ea
h 
ontiguous subsequen
e � of the points will be asuÆx of the whole sequen
e at the time the rightmost element of � is inserted. Sin
e su
h a suÆx
an be 
ut o� the 
urrent set by a unit interval, it must have a unique 
olor. Hen
e, at the endof insertion, every subsequen
e must have a unique 
olor, whi
h implies (see [5, 9℄) that 
(log n)
olors are needed.3 A First Randomized EÆ
ient Coloring AlgorithmIn this se
tion we present our �rst eÆ
ient solution, whi
h is randomized, uses, with high proba-bility, O(log2 n) 
olors, and produ
es, again with high probability, a 
oloring that is 
on
i
t-freeafter ea
h insertion.In this algorithm, we do not regard the 
olors as (ordered) integers, and do not insist that thelargest 
olor in an interval be unique.Let us assume that the total number n of points to be inserted is known in advan
e. Thealgorithm uses an in�nite number of 
olor 
lasses, whi
h we denote by A1; A2; : : :, where ea
h 
lass
onsists of a log n 
olors, for some appropriate suÆ
iently large 
onstant a. We denote the j-th
olor of 
lass Ai by �ij . 5



When a new point p is inserted, we �rst 
hoose randomly a 
olor 
lass that will be used to 
olorp, so that 
lass Ai is 
hosen with probability 1=2i. Suppose that we have 
hosen 
olor 
lass Ai forp. If Ai is not yet saturated, that is, not all 
olors of Ai have already been used, we 
hoose anyunused 
olor and 
olor p with it. If Ai is already saturated, we assign to p a 
olor in Ai a

ordingto the following rule: Consider all the points in the 
urrent set whose 
olors belong to Ai, and letCi denote the sequen
e of their 
olors, ordered from left to right. For ea
h 
olor �ij , let dj denotethe smallest number of elements of Ci that separate an element equal to �ij from the pla
e wherep is to be inserted. Then we assign to p a 
olor �ij for whi
h dj is maximal. (Note that there 
ouldbe two su
h 
andidate 
olors, one on ea
h side of p; we then 
hoose an arbitrary one among them.)Theorem 3.1. With high probability, (i) the resulting 
oloring is 
on
i
t-free after ea
h insertion,and (ii) only O(log2 n) 
olors are used.Proof: The se
ond statement follows from the fa
t that the probability of 
hoosing any 
lass Aiwith i � d, at any �xed insertion step, is 2�d. We turn to the proof of the �rst part.Consider an interval I at some insertion step t, and let m be the number of points of P (t) in I.Assume �rst that m � a4 log n. Let i be the index that satis�esa8 � 2i log n � m < a8 � 2i+1 log n:We 
laim that among the points of I whose 
olors belong to Ai there is (with high probability) apoint 
olored with a unique 
olor.The expe
ted number Ni of points in I with 
olors in Ai is � = m=2i, whi
h lies between a8 lognand a4 logn. By standard results on large deviations (see, e.g., Theorem A.1.14 in the appendix of[1℄), it follows that there exists a 
onstant 
 > 0 (
may be taken to be minf1=8;� ln(e1=2(3=2)�3=2)g)su
h that Pr[jNi � �j > �=2℄ � 2e�
� � 2� 1n�a
=8 :Hen
e, with high probability, 1 � �=2 � Ni � 3�=2 � 3a8 log n;provided we 
hoose a to be a suÆ
iently large 
onstant.Consider the time step t0 � t of the last insertion of a point q into I that has been 
olored by a
olor in Ai. If at time t0 the 
lass Ai was not saturated, then q was assigned an unused 
olor of Ai,so its 
olor is unique in I. Suppose then that Ai was saturated prior to time t0. Then q re
eiveda 
olor �ij for whi
h the distan
e to the nearest previously inserted point s with that 
olor is aslarge as possible (in the pre
ise sense de�ned above). Clearly, there are at least a2 log n points with(other) 
olors of Ai between q and s, whi
h means, by what we have just shown, that, with highprobability, no point with 
olor �ij 
an appear in I.To 
omplete the proof, we still need to 
onsider the 
ase m < a4 log n. In this 
ase, let q be thelast point inserted into I (of any 
olor 
lass). If the 
lass of q was not saturated at the insertiontime, the 
olor of q is unique in I. If the 
lass was saturated, arguing as above, there are at leasta2 logn points with (other) 
olors of that 
lass between q and any other point with the 
olor assignedto q, so again the 
olor of q must be unique in I (this time with 
ertainty). As a matter of fa
t,the same argument implies that every point of I is uniquely 
olored in I.6



levelnew point gets level 4 312Figure 1: Illustrating the 2-stage deterministi
 algorithm. An insertion order that realizes thedepi
ted assignment of levels to points is to �rst insert all level-1 points from left to right, theninsert the level-2 points from left to right, and then the level-3 points.Sin
e there are n insertions and at ea
h insertion there are at most n2=2 intervals to 
onsider,the total failure probability is at most n3 � 1n�a
=8. This 
an be made smaller than n�d for any d by
hoosing a = a(d) suÆ
iently large. 2We 
an modify the algorithm so that it does not need to know n in advan
e, and so that itstill uses O(log2 n) 
olors, with high probability, when n points are inserted. This is simply doneby 
oloring new points with a 
ompletely new set of 
olors, whenever n rea
hes the values 22i , fori � 0.4 An EÆ
ient Deterministi
 AlgorithmIn this se
tion we modify the UniMax greedy algorithm into a deterministi
 2-stage 
oloring s
heme,and show that it uses only O(log2 n) 
olors. Here too the 
olors are not integers. We refer to thisalgorithm as the leveled UniMax greedy algorithm.Let x be the point whi
h we 
urrently insert. We assign a 
olor to x in two steps. First weassign x to a level , denoted by `(x). On
e x is assigned to level `(x) we give it an a
tual 
oloramong the set of 
olors dedi
ated to `(x). We maintain the invariant that ea
h 
olor is used by atmost one level.Modifying the de�nition from the UniMax greedy algorithm, we say that point x sees pointy (or that point y is visible to x) i� for every point z between x and y, `(z) < `(y). When x isinserted we set `(x) to be the smallest level ` su
h that either to the left of x or to the right of x(or in both dire
tions) there is no point y visible to x at level `.To give x a 
olor, we now 
onsider only the points of level `(x) that x 
an see. That is, wedis
ard every point y su
h that `(y) 6= `(x), and every point y su
h that `(y) = `(x) and there isa point z between x and y su
h that `(z) > `(y). We apply the UniMax greedy algorithm so asto 
olor x with respe
t to the sequen
e Px of the remaining points, using the 
olors of level `(x)only. That is, those 
olors are ordered, and we give x the smallest 
olor so that the 
oloring of Pxmaintains the unique maximum 
olor 
ondition. This 
ompletes the des
ription of the algorithm.See Figure 1 for an illustration.We begin the analysis of the algorithm by making a few observations on its performan
e:(a) Suppose that a point x is inserted and is assigned to level i > 1. Sin
e x was not assigned toany level j < i, it must see a point `j at level j that lies to its left, and another su
h point rj thatlies to its right. Let Ej(x) denote the interval [`j; rj ℄. Note that, by de�nition, these intervals arenested, that is, Ej(x) � Ek(x) for j < k < i. See Figure 1.7



(b) We de�ne a run at level i to be a maximal sequen
e of points x1 < x2 < � � � < xk at level i,su
h that all points between x1 and xk that are distin
t from x2; x3; : : : ; xk�1 are assigned to levelssmaller than i. Whenever a new point x is assigned to level i and is inserted into a run of thatlevel, it is always inserted either to the left or to the right of all points in the run. Moreover, thea
tual 
olor that x gets is determined solely from the 
olors of the points already in the run. SeeFigure 1.(
) The runs keep evolving as new points are inserted. A run may either grow when a new pointof the same level is inserted at its left or right ends (note that other points at smaller levels mayseparate the new point from the former end of the run), or split into two runs when a point of ahigher level is inserted somewhere between its ends.(d) As in observation (a), the points at level i de�ne intervals, 
alled i-intervals. Any su
h intervalE is a 
ontiguous subsequen
e [x; y℄ of P , so that x and y are both at level i, and all the pointsbetween x and y have smaller levels. E is formed when the se
ond of its endpoints, say x, isinserted. We say that x 
loses the interval E, and refer to it as a 
losing point. Note that, by
onstru
tion, x 
annot 
lose another interval.(e) Continuing observation (a), when x is inserted, it destroys the intervals Ej(x), for j < i, thatit is inserted into, and only these intervals. That is, ea
h of these intervals now 
ontains a pointwith a level greater than that of its endpoints, so it is no longer a valid interval. We 
harge x tothe set of the 
losing endpoints of all these intervals. Clearly, none of these points will ever be
harged again by another insertion (sin
e it is the 
losing endpoint of only one interval, whi
h isnow destroyed). We maintain a forest F , whose nodes are all the points of P . The leaves of F areall the points at level 1. When a new point x is inserted, we make it a new root of F , and theparent of all the 
losing points that it 
harges. Sin
e these points have smaller levels than x, andsin
e none of these points be
omes a 
hild of another parent, it follows that F is indeed a forest.Note that the non-
losing points 
an only be roots of trees of F . Note also that a node at leveli has exa
tly i� 1 
hildren, exa
tly one at ea
h level j < i. Hen
e, ea
h tree of F is a binomial tree(see [3℄); if its root has level i then it has 2i nodes.This implies that if m is the maximal level assigned after n points have been inserted, then wemust have 2m � n, or m � logn. That is, the algorithm uses at most log n levels.We next prove that our algorithm uses only O(log n) 
olors at ea
h level. We re
all the wayruns evolve: They grow by adding points at their right or left ends, and they split into a pre�x andsuÆx subruns, when a point with a larger level is inserted in their middle.Lemma 4.1. At any time during the insertion pro
ess, the 
olors assigned to the points in a runform a sequen
e of the form C0(a; b) (as de�ned in Se
tion 2). Moreover, when the j-th smallest
olor of level i is given to a point x, the run to whi
h x is appended has at least 2j�2 + 1 elements(in
luding x).Proof: The proof pro
eeds by indu
tion through the sequen
e of insertion steps, and is based onthe following observation. Let � be a 
ontiguous subsequen
e of the 
omplete binary tree sequen
eSk�1, and let x be a point added, say, to the left of �. If we assign to x 
olor 
(x), using theUniMax greedy algorithm, then (
(x))k� is a 
ontiguous subsequen
e of either Sk�1 or Sk. Thelatter happens only if � 
ontains Sk�2k(k � 1) as a pre�x. Symmetri
 properties hold when x isinserted to the right of �. We omit the straightforward proof of this observation. 2As a 
onsequen
e, we obtain the following result.8



Theorem 4.2. (a) The algorithm uses at most (2 + log n) logn 
olors.(b) At any time, the 
oloring is 
on
i
t-free.(
) In the worst 
ase the algorithm may be for
ed to use 
(log2 n) 
olors after n points are inserted.Proof: (a) We have already argued that the number of levels is at most logn. Within a level i,the k-th smallest 
olor is assigned when a run 
ontains at least 2k�2 points. Hen
e 2k�2 � n, ork � 2 + log n, and (a) follows.To show (b), 
onsider an arbitrary interval I. Let ` be the highest level of a point in I. Let� = (y1; y2; : : : ; yj) be the sequen
e of the points in I of level `. Sin
e ` is the highest level in I,� is a 
ontiguous subsequen
e of some run, and, by Lemma 4.1, the sequen
e of the 
olors of itspoints is also of the form C0(a0; b0). Hen
e, there is a point yi 2 � whi
h is uniquely 
olored amongy1; y2; : : : ; yj by a 
olor of level `.To show (
), we 
onstru
t a sequen
e P so as to for
e its 
oloring to pro
eed level by level. We�rst insert 2k�1 points from left to right, thereby making them all be assigned to level 1, and to be
olored with k di�erent 
olors of that level. Let P1 denote the set of these points. We next inserta se
ond bat
h of 2k�2 points from left to right. The �rst point is inserted between the �rst andse
ond points of P1, the se
ond point between the third and fourth points of P1, and so on, wherethe j-th new point is inserted between the (2j�1)-th and (2j)-th points of P1. By 
onstru
tion, allpoints in the se
ond bat
h are assigned to level 2, and they are 
olored with k � 1 di�erent 
olorsof that level. Let P2 denote the set of all points inserted so far. P2 is the 
on
atenation of 2k�2triples, where the levels in ea
h triple are (1; 2; 1). We now insert a third bat
h of 2k�3 points fromleft to right. The �rst point is inserted between the �rst and se
ond triples of P2, the se
ond pointbetween the third and fourth triples of P2, and so on, where the j-th new point is inserted betweenthe (2j� 1)-th and (2j)-th triples of P2. By 
onstru
tion, all points in the third bat
h are assignedto level 3, and they are 
olored with k � 2 di�erent 
olors of that level.The 
onstru
tion is 
ontinued in this manner. Just before inserting the i-th bat
h of 2k�i points,we have a set Pi�1 of 2k�1+ � � �+2k�i+1 points, whi
h is the 
on
atenation of 2k�i+1 tuples, wherethe sequen
es of levels in ea
h of these tuples are all identi
al, and are equal to the \
ompletebinary tree sequen
e" C0(1; 2i�1 � 1), as de�ned in Se
tion 2 (whose elements now en
ode levelsrather than 
olors) The points of the i-th bat
h are inserted from left to right, where the j-th pointis inserted between the (2j � 1)-th and (2j)-th tuples of Pi�1. By 
onstru
tion, all points in thei-th bat
h are assigned to level i, and they are 
olored with k � i+ 1 di�erent 
olors of that level.Pro
eeding in this manner, we end the 
onstru
tion by inserting the (k�1)-th bat
h, whi
h 
onsistsof a single point that is assigned to level k. Altogether we have inserted n = 2k � 1 points, andfor
ed the algorithm to use k + (k � 1) + � � � + 1 = k(k + 1)=2 = 
(log2 n) di�erent 
olors. 2Remark: One 
an modify the algorithm so that the set of 
olors that it uses 
an be identi�ed with(a subset of a pre�x of) the integers, and so that it maintains the property of the UniMax greedyalgorithm: At any time t and for any interval I, there is a unique point in I with maximum 
olor.The modi�ed algorithm also uses O(log2 n) 
olors.Spe
i�
ally, we pro
eed as follows. Suppose �rst that n is known in advan
e. Order the pairs(k; i) 2 f1; : : : ; log ng � f1; : : : ; 2 + log ng lexi
ographi
ally, i.e., (k; i) < (k0; i0) if k < k0 or (k = k0and i < i0). Let f(k; i) be the rank of the pair (k; i) in this lexi
ographi
 order. Then the set ofnumbers f(k(p); i(p)), where p 2 P is assigned level k(p) and the i(p)-th 
olor within that level, is(a subset of) a pre�x of the integers, and the unique maximum 
olor property is satis�ed.If n is not known in advan
e, we apply the same strategy as the one dis
ussed at the end of9



the pre
eding se
tion. That is, when the number of inserted points rea
hes one of the values 22i ,for i � 0, we start 
oloring new points with a 
ompletely new set of 
olors, whi
h are mappedlexi
ographi
ally onto integer values that are larger than the largest integer 
olor used so far.5 A Better Randomized EÆ
ient AlgorithmWe next modify the leveled UniMax greedy deterministi
 algorithm into the following randomizedalgorithm, to whi
h we refer as the randomized leveled UniMax greedy algorithm. When a newpoint x is inserted, its level is assigned as follows. Let I(x) denote the set of all levels i su
h that xlies in an i-interval Ei(x) of the 
urrent sequen
e (see observation (
) in the pre
eding se
tion fordetails), and let M(x) denote the 
omplementary set (within the integers N). That is,M(x) = fi 2 N j x does not lie in an i-interval at the time of insertiong:Enumerate M(x) as m1 < m2 < � � � . In the randomized version, we assign x to level m1 withprobability 1=2, to level m2 with probability 1=4, and in general to level mj with probability 1=2j ,for j � 1. (In 
ontrast, the deterministi
 algorithm assigns x to level m1.) On
e the level of x hasbeen assigned, the 
olor that it gets within that level is determined exa
tly as in the deterministi
algorithm.The expe
ted number of levels. To analyze the performan
e of the randomized algorithm,we �rst estimate the number of levels that the algorithm uses. We run the following a

ountings
heme. When x is inserted and assigned to level i, it gets weight w(x) = 1:5i. The sour
es fromwhi
h this weight is allo
ated are: (i) the entire weight of some points in P (t) (whi
h pass theirweight to x), and (ii) three new units that are added to the pool for ea
h inserted point. We startwith an initial pool of 0. The points that 
ontribute their weights to x are the 
losing endpointsof the j-intervals that 
ontain x, for all j < i in I(x). This a

ounting pro
ess is managed by abanker, who makes sure that ea
h newly inserted point gets the weight it is entitled to, using theresour
es (i) and (ii). In doing so, she may either run into de�
it, or have surplus. We will showthat the expe
ted net gain of the banker is 0.Note that if a 
losing endpoint y 
ontributes its weight to a newly inserted point x, then theinterval that has y as its 
losing endpoint is destroyed when x is inserted. Consequently, y willnever have to 
ontribute any weight (whi
h it does not possess any more) to points inserted afterx. The expe
ted weight of x is E[w(x)℄ =Xj�1 12j 1:5mj :The expe
ted weight that the banker 
an 
olle
t from the 
losing endpoints isd(x) =Xj�1 12j 0� Xk2I(x); k<mj 1:5k1A :We 
an rewrite this as follows. Set Ij(x) := fmj�1+1; : : : ;mj � 1g, for j � 1 (with m0 = 0). Thend(x) =Xj�1 12j�1 0� Xk2Ij(x) 1:5k1A :10



Indeed, a 
losing endpoint y at level k 2 Ij(x) that parti
ipates in this insertion step will be asked to
ontribute its weight when x is assigned to level m`, for any ` � j, whi
h happens with probability12j + 12j+1 + � � � = 12j�1 . Therefore,d(x) =Xj�1 12j�1 �1:5mj � 1:5mj�1+11:5� 1 � =Xj�1 42j �1:5mj � 1:5mj�1+1� :By rearranging its terms, the last sum is equal to�3 +Xj�1� 42j � 4 � 1:52j+1 � 1:5mj = �3 +Xj�1 12j 1:5mj = E[w(x)℄ � 3:Sin
e 3 new units are added to the pool, the expe
ted net gain of the banker when x is inserted is0. Using linearity of expe
tation, the overall expe
ted net gain of the banker is 0.The pro
ess starts with 0 and a

umulates 3n units. If the highest level assigned to a point is` then the �nal weight of ea
h point at level ` is 1:5`. If we regard ` as a random variable, then wehave E[1:5`℄ � 3n:Using a variant of Markov's inequality, we have, for any integer t,3n � E[1:5`℄ =Xk�1 1:5k �Pr[` = k℄ � 1:5t �Pr[` � t℄:Hen
e, the probability that the �nal bound is at least t is at most 3n=1:5t. This implies that, withhigh probability, the number of levels used by the algorithm is O(log n).The expe
ted number of 
olors per level. We next show that, with high probability, themaximum length of a run of any level, at any time during the insertion pro
ess, is O(log n). ByLemma 4.1, the maximum number of 
olors used at any level is only O(log log n). Hen
e, with highprobability, the algorithm uses only O(log n log log n) 
olors. The intuition behind the analysis isthat runs 
annot be
ome too long: When a newly inserted point x 
an join a run, it does so onlywith (
onditional) probability 1=2, and thus runs that are substantially longer than �(logn) arevery unlikely to be formed.Fix a level m. Let P+ denote the subset of P 
onsisting of points that have been assigned tolevels � m. P+ is a random variable that depends on some of the 
oin 
ips made by the algorithm.Let us simplify the insertion pro
ess, and 
ondition it on the event that P+ is equal to some �xedsubset E. We insert the points of P in order. Let p be the point 
urrently being inserted. If p isin P nE, we ignore it. Otherwise, we 
olor it either 0 (assign it to level m) or 1 (assign it to somelevel > m), as follows. Consider only the 0=1 
olors of the subset E(t) of the 
urrent set of pointsin E. If p is inserted between two 0's, we 
olor it 1. Otherwise, we 
ip a 
oin and 
olor it either bya 0 or by a 1, ea
h with probability 1=2. Note that for any p 2 E, the probability that p is 
olored0, 
onditioned on P+ = E, is always at most 1=2.We need to estimate the probability that we get a sequen
e of j 
onse
utive 0's at some pointduring the pro
ess. Let X(i; j) be an indi
ator random variable, for 1 � j � i � jEj. The variableX(i; j) is 1 i� the i-th insertion of a point of E ends (i.e., is the rightmost point of) a sequen
e of atleast j 
onse
utive 0's right after we insert and 
olor it. Similarly, de�ne Y (i; j) to be an indi
ator11



random variable, for 1 � j � i � n, whi
h is equal to 1 i� the i-th insertion of a point of E starts(is the leftmost point of) a sequen
e of at least j 
onse
utive 0's.In what follows, all probabilities are 
onditioned on the event P+ = E. The 
ru
ial propertythat we need is provided by the following 
laim:Claim: Pr(X(i; j) = 1) � 1=2j and Pr(Y (i; j) = 1) � 1=2j .The proof of the 
laim pro
eeds by indu
tion on j. The 
ase j = 1 is easy: The probabilities inquestion are of the event that the i-th inserted point is 
olored 0, and, as noted, the probability ofthis event is at most 1=2. Consider then the general 
ase j > 1.Consider the i-th inserted point z. Let k < i be the 
hronologi
al index in E of the pointinserted last among (i) the point y 2 E immediately to the left of z (within E) at the time whenz is inserted, and (ii) the point x 2 E to the left of z su
h that between x and z there are j � 2other points of E when z is inserted. (If both x and y are unde�ned, then X(i; j) = 0 for j > 1, sothis 
ase only de
reases Pr(X(i; j) = 1).) See Figure 2.j � 2 y zxFigure 2: The points x; y; z in the proof of the 
laim.First suppose that k is the index of y. If X(i; j) = 1 then when y is inserted it must (be partof and) end a run of at least j � 1 
onse
utive 0's right after we insert and 
olor it. Indeed, if thiswere not the 
ase, the run of 0's that z �nds to its left when it is inserted has to grow to its 
urrentsize after y is inserted, and it 
an do so only from its left side, whi
h implies that the point x mustbe inserted after y, 
ontrary to assumption. Hen
e we must also have X(k; j � 1) = 1 and thusPr(X(i; j) = 1) � Pr(X(k; j � 1) = 1 and z is 
olored 0) =Pr(X(k; j � 1) = 1) �Pr(z is 
olored 0 j X(k; j � 1) = 1) � 1=2j :The last inequality follows from the indu
tion hypothesis and from the fa
t that Pr(z is 
olored 0 jX(k; j�1) = 1) � 1=2: Similar to what we have argued above, we either 
olor z by 1 with 
ertainty,or 
olor it with 0 with probability 1=2. (This is true also when 
onditioning on P+ = E, as longas z is in E.)Suppose next that k is the index of x. Then, arguing in a fully symmetri
 manner, we havePr(X(i; j) = 1) = Pr(Y (k; j � 1) = 1) �Pr(z is 
olored 0 j Y (k; j � 1) = 1) � 1=2j :The bound for Pr(Y (i; j) = 1) is obtained in a fully symmetri
 manner. This 
ompletes the proofof the 
laim. 2We sum the inequalities in the 
laim over all i, with j = 
 log n, for some suÆ
iently large
onstant 
, and 
on
lude that the probability that any point of E starts or ends a run of at least
 log n 
onse
utive 0's when it is inserted, 
onditioned on P+ = E, is at most 2jEj=n
 � 2=n
�1.Sin
e this holds for any set E, Bayes' formula implies that, with probability at least 1 � 2=n
�1,the maximum size of a run of points at level m, at any time during the insertion pro
ess, is 
 log n.Repeating this for all levels m, and using the fa
t that the maximum level is O(log n), with highprobability, we 
on
lude that, with high probability, no run of any level ever be
omes longer than
 log n. 12



In summary, we have:Theorem 5.1. The randomized leveled UniMax greedy algorithm uses, with high probability, onlyO(log n log log n) 
olors.Open problem: This is the 
losest we have managed to get to the known lower bound 
(log n),and the gap is still wider for deterministi
 algorithms. An obvious open problem is to 
lose thesegaps. (The lower bound in Theorem 4.2(
) is only for the spe
i�
 algorithm, and not for the problemat large.)6 Random Insertion OrderIn this se
tion we 
onsider the spe
ial 
ase where the points are inserted in a random order, andwhere we 
olor them by the UniMax greedy algorithm of Se
tion 2. We have simulated the exe
utionof the UniMax greedy algorithm under su
h an insertion order. The results of the simulationstrongly suggest the following 
onje
ture:Conje
ture 6.1. For ea
h integer k � 1, the expe
ted frequen
y of the 
olor k in C(P (t)), asgenerated by the UniMax greedy algorithm, 
onverges to 13 �23�k�1, as t!1.Assuming Conje
ture 6.1, the following is an easy 
onsequen
e.Corollary 6.2. If ea
h point is inserted into P at a random pla
e, the expe
ted value of 
max(P (t)),under the UniMax greedy algorithm, is O(log t). This also holds with high probability, if the 
onstantof proportionality is 
hosen suÆ
iently large.Proof. Let P (n) be a set of n points inserted in a random order. Let Xk be a random variable
ounting the number of points in P (n) that were 
olored with k by the UniMax greedy algorithm.Let Ik be the indi
ator variable for the 
olor k to appear at all.We are interested in the number of 
olors used, that is Y :=Pk Ik.Assume that E(Xk) = 13(23)k�1n. Then, using Markov's Inequality, E(Ik) = Pr(Ik = 1) =Pr(Xk � 1) � E(Xk). Hen
e,E(Y ) = E(X1�k Ik) = E( X1�k<1+log3=2 n Ik) +E( Xk�1+log3=2 n Ik)� 1 + log3=2 n+ Xk�1+log3=2 n 13 �23�k n� 1 + log3=2 n+Xi�0 13 �23�i= log3=2 n+ 2 :Next, we also havePr(more than 
 log3=2 n 
olors are used) = Pr(Id
 log3=2 ne = 1) � 13 �23�d
 log3=2 ne�1 n � 12 � 1n
�1 :13



At this stage, we do not have a 
omplete proof of Conje
ture 6.1. We do have some partialresults that we now present. In parti
ular, they show that Conje
ture 6.1 holds for k = 1; 2; 3.Completing the proof is one of the major open problems raised in this paper.Lemma 6.3. The expe
ted number of points assigned the 
olor 1, after a random insertion of tpoints, is t+13 , for t � 2.Proof: Denote by Xi the random variable whose value is the number of 1's after the insertion ofthe �rst i points. Then Xi+1 = Xi+Yi, where Yi is an indi
ator variable, equal to 1 if the (i+1)-stpoint pi+1 is 
olored by 1, and to 0 otherwise. Note that pi+1 is 
olored by 1 if and only if it isinserted at a pla
e that is not adja
ent to any point 
olored 1. Ea
h of the 
urrent Xi 1-
oloredpoints has two adja
ent insertion pla
es, and all these pla
es are distin
t, be
ause P (i) does not
ontain two adja
ent points 
olored 1. Hen
e, out of the i+1 available insertion pla
es, i+1� 2Xiwill 
ause pi+1 to be 
olored 1. Taking expe
tations, we obtainE(Xi+1) = E(Xi)+E(Yi) = E(Xi)+E(E(Yi j Xi)) = E(Xi)+E( i+ 1� 2Xii+ 1 ) = E(Xi)+ i+ 1� 2E(Xi)i+ 1 ;or E(Xi+1) = i�1i+1E(Xi) + 1, for i � 2. The solution of this re
urren
e, with the initial valueE(X2) = 1, is easily seen to be E(Xt) = t+13 , for t � 2. 2Analysis for k � 2. We next present a framework for estimating the expe
ted number of pointsthat are assigned the 
olor k, for k � 2. We apply this framework to get a 
omplete solution fork = 2; 3. We �x k, and de�ne a k-state to be any valid 
ontiguous sequen
e of 
olors in f1; : : : ; kgthat may show up in C(P (t)), delimited on both sides by �, whi
h designates a 
olor greater than k.The validity of a state means that it satis�es the unique-maximum 
olor invariant: Any 
ontiguousnonempty subsequen
e of s has a unique largest element. We refer to the portion of a state thatex
ludes the �'s as its 
ore.Denote by Sk the set of all k-states. For example, the set S2 
onsists of the following states:s1 = h��i; s2 = h�1�i; s3 = h�2�i; s4 = h�12�i; s5 = h�21�i; s6 = h�121�i: (1)For example, the following sequen
e C(P (t)) = (1 2 1 3 2 4 2 1 3 5 1 2 3) is de
omposed into thefollowing sequen
e of 2-states:�h�121�i; h�2�i; h�21�i; h��i; h�12�i; h��i�We denote by S+k the subset of Sk 
onsisting of those k-states that 
ontain the 
olor k (ne
essarilyat a unique lo
ation), and by S�k the subset of those states that do not 
ontain k. We refer tostates in S+k (resp., S�k ) as major k-states (resp., minor k-states). The size jsj of a k-state s isthe length of its 
ore plus 1; it designates the number of pla
es in s at whi
h a new point 
an beinserted. For example, for 2-states we have S�2 = fs1; s2g, S+2 = fs3; s4; s5; s6g. Also, we havejs1j = 1, js2j = js3j = 2, js4j = js5j = 3, and js6j = 4.Let s 2 S+k . It has the form (�ukv�), where u and v 
an be regarded as the 
ores of tworespe
tive (k � 1)-states sL and sR. We refer to sL and sR as the left wing and the right wing ofs, respe
tively. We have jsj = jsLj+ jsRj. Care should be exer
ised in the treatment of sL and sR.Spe
i�
ally, we will 
onsider the a
tual sequen
e of 
olors C(P (t)) as a 
on
atenation of states,14



whi
h depends on the 
hoi
e of k. We denote by C(k)(t) the (unique) partition of C(P (t)) into the
on
atenation of k-states, and refer to it as the k-s
enario. Then, for a major state s 2 S+k , its leftand right wings are not 
ounted as separate states in the k-s
enario, but they are 
ounted as statesin the (k � 1)-s
enario.We need one more notion. When we insert a new point into a k-state s, there are two possibleout
omes: (i) The point gets a 
olor smaller than or equal to k, in whi
h 
ase s is transformed toanother, single state in Sk. (ii) The point gets a 
olor greater than k, in whi
h 
ase s is split intotwo new k-states. Note that, for 
ase (ii) to o

ur, s must be a major state (if s were minor, we
ould have assigned the 
olor k to the new point). Moreover, in this 
ase one of the two new states,s0, must be a major state, and the other, s00 must be minor. We refer to this 
ase by saying that sspawns s00 and is transformed into s0. (Note that not every insertion into a major state ne
essarily
auses a spawning.)It is easy to show that the size jSkj of Sk satis�es jSk+1j = jSkj + jSkj2, so jSkj is doublyexponential in k. We have jS1j = 2, jS2j = 6, jS3j = 42, and jS4j = 1806.Let k be �xed. For states s; r 2 Sk, we denote by asr the expe
ted 
hange in the number ofstates r that are generated by an insertion of a new point, 
onditioned on having 
hosen an insertionpla
e at a state s (within C(k)). For example, for k = 2, we have (see (1) for the notation)as4s1 = as4s2 = as4s3 = as4s6 = 13 ; and as4s4 = �23(in two of the three possible insertion pla
es, s4 is destroyed by the insertion, and in the thirdinsertion it survives, so the net expe
ted in
rease in the number of s4-states is 0 � 13+(�1) � 23 = �23).Put wsr = jsjasr, and let W denote the resulting matrix (wsr).We �rst provide some intuitive and informal derivation of the equations that we will rigorouslyderive shortly. Let M (t)s denote the random variable equal to the number of k-states s in C(P (t)).De�ne the frequen
y of state s at time t to be X(t)s =M (t)s =(t+1). Note that jsjX(t)s is the frequen
yof the insertion pla
es that belong to o

urren
es of s in C(P (t)). In parti
ular,Ps2Sk jsjX(t)s = 1,for ea
h t. We also have(t+ 2)E(X(t+1)r ) = (t+ 1)E(X(t)r ) + Xs2Sk jsjasrE(X(t)s ): (2)Indeed, jsjX(t)s is the probability that the next insertion pla
e belongs to an o

urren
e of state sin C(P (t)), and asr is the 
orresponding 
onditional expe
ted 
hange in the number of o

urren
esof state r. Sin
e M (t)r = (t+1)X(t)r (resp., M (t+1)r = (t+2)X(t+1)r ) is the number of o

urren
es ofstate r at time t (resp., t+ 1), the equality follows.Letting t!1, applying an informal limit pro
ess to (2), and denoting the limit of E(X(t)s ) asXs, for s 2 Sk, we arrive at the equationsXr = Xs2Sk jsjasrXs = Xs2Sk wsrXs:We now pro
eed to justify this pro
ess rigorously.Existen
e of limiting frequen
ies. The random insertion order de�nes in a natural way amulti-type bran
hing pro
ess (see [2℄). We brie
y review the ingredients of the theory of bran
hing15



pro
esses that we need to apply. A (dis
rete) bran
hing pro
ess of this kind manipulates obje
ts(referred to as \parti
les") that 
an have a �nite number m of types. Ea
h type i is asso
iated withweights (�i;J), where J is a multi-set of types. The weight �i;J should be thought of as the relativefrequen
y at whi
h a parti
le of type i gives birth to the multi-set J (for ea
h type j that appears� times in J , the parti
le generates � new parti
les of type j). Ea
h parti
le giving birth diesimmediately after doing so. Set �i =PJ �i;J . The pro
ess may then be formally de�ned as follows.Let S(t) be the population at time t. Choose x 2 S(t) with probability �i(x)=Py2S(t) �i(y), wherei(u) is the type of parti
le u. Then x gives birth to the multiset J with probability �i(x);J=�i(x) andthen dies.In our 
ase, the di�erent parti
le types 
orrespond to di�erent state types in Sk. A state s oflength ` has total weight `. If some insertions into s produ
e the single state s0 (without spawning),then �s;fs0g = j, where j is the number of pla
es at whi
h this o

urs. If some j insertions produ
etwo states s0; s00 (by spawning) then �s;fs0;s00g = j. The entries of our transition matrix W are thende�ned as wsr = Pr2J �s;J , for r 6= s, and wss = �Pr2J �s;J� � jsj. See pp. 200{202 in [2℄ for asimilar 
onstru
tion of a transition matrix for general multi-type pro
esses (where the matrix is
alled the in�nitesimal generator of a 
orresponding semigroup of mean matri
es).A standard tri
k in the theory of bran
hing pro
esses is to embed dis
rete bran
hing pro
essesof the kind des
ribed above into 
ontinuous-time bran
hing pro
esses, in whi
h parti
les give birthin 
ontinuous time. More spe
i�
ally, S(t) evolves in 
ontinuous time. For any �xed time t, weasso
iate, with ea
h x 2 S(t) and ea
h multi-set J , an exponenetial random variable with ratewi(x);J . We then take the one with the smallest a
tual value|suppose this is the variable wi(x0);J 0 ,and it has the value h. Now the population at time t+ h is obtained from the population at timet by killing x0 and repla
ing it by J 0. We now obtain a new population S(t+ h), a new 
olle
tionof exponential random variables, and the pro
ess 
ontinues.If we extra
t from the 
ontinuous bran
hing pro
ess only those times at whi
h new parti
les areborn, we obtain exa
tly the same dis
rete pro
ess that we started with (see [2℄ for details). In theterminology of the theory of bran
hing pro
esses, the dis
rete and 
ontinuous pro
esses are the same,up to a time 
hange. The reason for this round-about reasoning is that the theory of 
ontinuous-time bran
hing pro
ess is better developed, and provides ma
hinery for proving the existen
e oflimit frequen
ies and for analyzing their properties. In parti
ular, the limiting frequen
ies for thenew 
ontinuous pro
ess (whose existen
e is established next) are identi
al to those of the originaldis
rete pro
ess.It is easy to see that the (
ontinuous) bran
hing pro
ess just de�ned is super
riti
al, and satis�esthe Z logZ moment 
ondition (see, e.g., [2℄ for ba
kground and details). It therefore follows (see,e.g., Theorem 2, p. 206, in [2℄) that the limiting frequen
ies exist almost surely. We let Xs denotethe expe
ted limit relative frequen
y of state s in C(P (t)), when t ! 1, where the non-limitfrequen
ies are as de�ned above.In addition, Theorem 2, p. 206, in [2℄, just 
ited, asserts that the limiting distribution X =(Xs)s2Sk is given by the eigenve
tor of W T 
orresponding to the largest eigenvalue. In our 
ase,this does indeed 
oin
ide with our informal derivation, and means that X satis�es the linear system(W TX)r = Xs2SkwsrXs = Xr; r 2 Sk: (3)For example, for k = 2, the transition weights asr between the six states listed in (1) are given16



in the following matrix A, where Aij = asisj . (The fourth row of A has already been dis
ussed.)A = 0BBBBBB� �1 1 0 0 0 00 �1 0 12 12 00 0 �1 12 12 013 13 13 �23 0 1313 13 13 0 �23 1312 12 0 14 14 �12
1CCCCCCA ;and W = 0BBBBBB� �1 1 0 0 0 00 �2 0 1 1 00 0 �2 1 1 01 1 1 �2 0 11 1 1 0 �2 12 2 0 1 1 �2
1CCCCCCA :The system of equations for the limit distribution is W TX = X. To normalize X, we extend it bythe equation Xi jsijXi = X1 + 2X2 + 2X3 + 3X4 + 3X5 + 4X6 = 1;whi
h expresses the fa
t that the sum of lengths of the 2-states that 
ompose C(P (t)) is equal tojC(P (t))j (see above for a similar equation for the non-limit frequen
ies X(t)s ). The solution of theextended system is X = �19 ; 19 ; 245 ; 115 ; 115 ; 245� :In parti
ular, the expe
ted limit frequen
y of 
olor 1 is X2 +X4 +X5 + 2X6 = 13 (in a

ordan
ewith Lemma 6.3), and the expe
ted limit frequen
y of 
olor 2 is X3+X4+X5+X6 = 29 . We havethus veri�ed Conje
ture 6.1 for k = 2:Lemma 6.4. The limit frequen
y of 
olor 2 is 2=9.Analysis of 3-states. The same ma
hinery 
an be applied to the 42 states in S3. The solutionof (3) for k = 3 is presented in Table 1.By adding up the frequen
ies of all major 3-states (those that 
ontain the 
olor 3), we verifyConje
ture 6.1 for k = 3:Lemma 6.5. The limit frequen
y of 
olor 3 is 4=27.Open problem: Find 
losed-form expressions for the state frequen
ies for k = 3 (using the datain Table 1), and for k > 3. This may lead to a simple indu
tive proof of Conje
ture 6.1.Further analysis of k-states. The system (3) be
omes 
onsiderably harder to solve expli
itlyfor larger values of k, so we look for simpler relationships. PutNk = Xs2S+k Xs; Zk = Xs2S�k Xs:Note that Nk is the expe
ted frequen
y of 
olor k. Re
all that Conje
ture 6.1 says that Nk =13 �23�k�1. 17



Lemma 6.6. For ea
h k � 2 we have 2Nk + Zk = Nk�1 + Zk�1.Proof: Let s be a state in S+k , and let sL (resp., sR) denote the state obtained by taking theportion of s to the left (resp., right) of (the unique) k, and appending � at the right (resp., left). Ifwe repeat this splitting pro
ess to ea
h state of S+k in C(P (t)), and add to the output all states inS�k (whi
h we leave inta
t), we obtain the set of all states of Sk�1 that appear in C(P (t)). The sumof the frequen
ies of these states is 
learly Nk�1 + Zk�1. On the other hand, by our 
onstru
tion,this sum is 2Nk + Zk, so the lemma follows. 2The following 
onje
ture is equivalent to Conje
ture 6.1.Conje
ture 6.7. Nk = Zk for ea
h k � 1.We verify the 
onje
ture for k = 1, where N1 = Z1 = 13 , for k = 2, where N2 = Z2 = 29 , and fork = 3, where N3 = Z3 = 427 (see Table 1).Assuming that Conje
ture 6.7 holds, and 
ombining it with Lemma 6.6, we obtain 3Nk = 2Nk�1,for k � 2, and N1 = 13 . Hen
e Nk = 13 �23�k�1 :The 
onverse dire
tion is established in a similar manner: Conje
ture 6.1 and Lemma 6.6 implyZk = Zk�1 +Nk�1 � 2Nk = Zk�1 � 19 �23�k�2 ;for k � 2, and Z1 = 13 . The solution of this re
urren
e is Zk = 13 �23�k�1 = Nk, thus showing thatthe two 
onje
tures are indeed equivalent.7 Lower Bound for Online CF-Coloring in the PlaneWe �nally show that online 
on
i
t-free 
oloring of points in the plane, with respe
t to disks(of arbitrary radii), may require n 
olors in the worst 
ase, and is therefore quite impra
ti
al.(Nevertheless, as mentioned in the introdu
tion, the problem 
an be solved with mu
h fewer 
olorsfor other kinds of ranges; see [6℄.)Theorem 7.1. There exists a sequen
e P of n points in the plane, so that when these points areinserted a

ording to their order in P , any online 
on
i
t-free 
oloring s
heme with respe
t to diskshas to use n di�erent 
olors.Proof: We 
onstru
t a sequen
e P = (p1; p2; : : : ; pn) with the following property(*) For every t = 2; 3; : : : ; n, the edges of the Delaunay triangulation of the set fp1; p2; : : : ; ptgin
lude all the edges fpi; ptg, i = 1; 2; : : : ; t� 1.We prove the following stronger statement by indu
tion on n:For every n, every 
hoi
e of distin
t points q1; q2; : : : ; qn on the unit 
ir
le S1, andevery " > 0 there exists a sequen
e (p1; p2; : : : ; pn) with the property (*) su
h thatkpi � qik � ", and pi lies on the radius oqi, for every i.18



For the indu
tion step, given q1; : : : ; qn and " < 12 , let pn be obtained by moving qn by "towards the 
enter o of S1. We note that the Delaunay graph of fq1; q2; : : : ; qn�1; png 
ontains alledges fqi; png, i = 1; 2; : : : ; n. Indeed, there is a 
ir
le 
i tangent to S1 from the inside at qi andpassing through pn, and the 
losed disk Di bounded by 
i 
ontains qi, pn, and no other qj. LetÆi > 0 denote the minimum distan
e from any qj, j 6= i, to Di.We apply the indu
tion hypothesis with q1; : : : ; qn�1 and with "� = minf"; Æ1; : : : ; Æn�1g, obtain-ing a sequen
e (p1; : : : ; pn�1). We 
an now verify that, by 
onstru
tion, for every i = 1; 2; : : : ; n�1,the disk Di 
ontains pi and pn but no other pj . 2Open problems: Theorem 7.1, and the initial en
ouraging results of Kaplan and Sharir [6℄, as re-viewed in the introdu
tion, raise many interesting open problems, su
h as: (i) Obtain deterministi
algorithms with good performan
e for the 
ases studied in [6℄, viz. where the ranges are halfplanes,
ongruent disks, and nearly equal axis-parallel re
tangles. (ii) Improve further the performan
e ofthe algorithms of [6℄. (iii) Find solutions with good performan
e for other ranges, su
h as unit slabsor arbitrary axis-parallel re
tangles. (iv) Extend the results to d � 3 dimensions.It is likely that the bound in Theorem 7.1 improves signi�
antly if the points are 
hosen fromsome random distribution, extending our 
onje
ured bounds of Se
tion 6.2 to two (and higher?)dimensions.Finally, 
an one obtain better upper bounds for online k-CF-
oloring (k � 2) of points in theplane with respe
t to disks? Namely, online 
olor the points so that, at any given time t and forany disk D, there is at least one 
olor that is assigned to at least one but at most k points ofP (t) \D. For k = 1, this is the CF-
oloring problem, where we have just shown a lower bound ofn, but perhaps this 
an be improved when k � 2. See [9℄ for results 
on
erning k-CF-
oloring inthe stati
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State Frequen
y Numerator As a fra
tion With fa
tored denominator0 0:03704 1764000 1=27 1=331 0:03704 1764000 1=27 1=3312 0:02222 1058400 1=45 1=325121 0:02222 1058400 1=45 1=32512 0:01481 705600 2=135 2=3351121 0:01481 705600 2=135 2=335113 0:00800 381024 1=125 1=5331 0:00800 381024 1=125 1=5312321 0:00388 184800 11=2835 11=3451713 0:00948 451584 32=3375 32=3353131 0:00652 310464 22=3375 22=3353123 0:00366 174440 89=24300 89=223552321 0:00366 174440 89=24300 89=2235521231 0:00737 350840 179=24300 179=2235521321 0:00737 350840 179=24300 179=22355232 0:00167 79576 203=121500 203=22355323 0:00167 79576 203=121500 203=223553132 0:00686 326536 833=121500 833=223553231 0:00686 326536 833=121500 833=223553213121 0:00156 74466 197=126000 197=24325371121312 0:00156 74466 197=126000 197=243253712321 0:00233 111160 397=170100 397=223552711232 0:00233 111160 397=170100 397=22355271232 0:00093 44464 397=425250 397=21355371121321 0:00191 90755 2593=1360800 2593=25355271123121 0:00191 90755 2593=1360800 2593=2535527112312 0:00307 146405 4183=1360800 4183=2535527121321 0:00307 146405 4183=1360800 4183=2535527112131 0:00344 163928 20491=5953500 20491=2235537213121 0:00344 163928 20491=5953500 20491=223553721312 0:00485 231208 28901=5953500 28901=223553722131 0:00485 231208 28901=5953500 28901=223553721213 0:00588 279848 34981=5953500 34981=223553723121 0:00588 279848 34981=5953500 34981=22355372213 0:00835 397528 49691=5953500 49691=22355372312 0:00835 397528 49691=5953500 49691=223553722132 0:00198 94467 31489=15876000 31489=253453722312 0:00198 94467 31489=15876000 31489=2534537221312 0:00240 114326 57163=23814000 57163=243553721213121 0:00099 47206 23603=23814000 23603=2435537212132 0:00104 49397 49397=47628000 49397=2535537223121 0:00104 49397 49397=47628000 49397=25355372Table 1: The frequen
ies of 3-states. The se
ond 
olumn is the numerator of the frequen
y underthe 
ommon denominator 47628000 = 25355372.21


