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Abstract positive integers satisfying > max(g?, (h — 1)2*¢) and
9> (4 +2)(h+ 1) for a constant > 0. We show that the
For an error-correcting code and a distance bound, the discrete logarithm problem ovef¥,. can be efficiently re-
list decoding problems to compute all the codewords duced by a randomized algorithm to the bounded distance
within a given distance to a received message.dthended decoding problem of the Reed-Solomon cggg— h], with
distance decodingroblem is to find one codeword if there radiusq — g. These results show that the decoding problems
is at least one codeword within the given distance, or to out- for the Reed-Solomon code are at least as hard as the dis-
put the empty set if there is not. Obviously the bounded dis-crete logarithm problem over finite fields. The main tools to
tance decoding problem is not as hard as the list decoding obtain these results are an interesting connection between
problem. For a Reed-Solomon code k|, a simple count-  the problem of list-decoding of Reed-Solomon code and the
ing argument shows that for any integér< g < n, there problem of discrete logarithm over finite fields, and a gener-

exists at least one Hamming ball of radius- g, which con- alization of Katz's theorem on representations of elements
tains at Ieast(Z)/qg‘k many codewords. Lék(n, k, q) be in an extension finite field by products of distinct linear fac-
the smallest positive integegrsuch that(;")/q-‘i—’C <1.0ne  tors.

knows that

k<gln,k,q) <vVnk <n. _
1. Introduction
For the distance bound up to— v/nk, itis well known that

both the list and bounded distance decoding can be solved An error-correcting cod€”’ over a finite alphabek is
efficiently. For the distance bound between- v/nk and an injective mapp : ©* — X". When we need to trans-

n — g(n, k, q), we do not know whether the Reed-Solomon mit a message of letters over a noisy channel, we apply
code is list, or bounded distance decodable, nor do we knowthe map on the message first ( i.e. encode the message ) and
whether there are polynomially many codewords in all balls send its image (i.e. the codeword)yofetters over the chan-

of the radius. It is generally believed that the answers to nel. The Hamming distance between two sequence of letters
both questions are no. There are public key cryptosystemsof the same length is the number of positions where two se-
proposed recently, whose security is based on the assumpguences differ. A good error-correcting code should have a
tions. large minimum distance, which is defined to be the min-

In this paper, we prove: (1) List decoding can not be imum Hamming distance between any two codewords in
done for radiusn — g(n, k, ¢) or larger, otherwise the dis-  ¢(X*). A received message, possibly corrupted, but with no
crete logarithm oveF ;..x. -« iS €asy. (2) Let andg be more than(d — 1)/2 errors, corresponds to a unique code-
word, thus may be decoded into the original message de-
« This research is partially supported by NSF Career Award CCR- SPite errors occur during the communication.

0237845. Error-correcting codes are widely used in practice. They
t  Partially supported by NSF and NSFC. are mathematically interesting and intriguing. This sub-




ject has attracted the attention of theoretical computer sci-If g < k, itis possible that there are exponentially many so-
ence community recently. Several major achievements oflutions, but finding one is very easy.
theoretical computer science, notably the Probabilistically  In this paper, we study the following question: How large
Checkable Proofs and de-randomization techniques, relycan we increase the radius before the list decoding prob-
heavily on the techniques in error-correcting codes. We re-lem or the bounded distance decoding problem become in-
fer to the survey [16] for details. feasible? The question has been under intensive investiga-
For the purpose of efficient encoding and decodiidg tions for Reed-Solomon codes and other error-correcting
usually set to be the finite field, of ¢ elements, and the codes. The case of general non-linear codes has been solved
map¢ is set to be linear. Numerous error correcting codes [6]. The case for linear codes is much harder. Some par-
have been proposed, among them, the Reed-Solomon codetial results have been obtained in [8, 7]. However, none of
are particularly important. They are deployed to transmit them applies to Reed-Solomon codes. No negative result is
information from and to spaceships, and to store infor- known about the list decoding of Reed-Solomon codes, ex-

mation in optical media. LetS be a subset of, with cept for a simple bound given by Justesen and Hoholdt [10],
|S| = n. The Reed-Solomon code, k],, is the map from  which states that for any positive integek n, there exists
(ag,a1,- - ,ak-1) € F’(j to at least one Hamming ball of radius— g, which contains
1 . atleast(’)) /q°~* many codewords. This bound matches the
(a0 +a1w + -+ ar12"" )zes € Fy. intuition well, consider an imaginary algorithm as follows:

The choice ofS will not affect our results in this paper. andomly selecy points from then input points, and use
Since any two different polynomials with degree- 1 can polynomial |ntgrpolat|on to get a polynomlal qf degree at
share at most — 1 points, the minimum distance of the MOStg — 17‘2’h'0h passes thegepoints. Then with proba-
Reed-Solomon code is — k + 1. If the radius of a Ham-  Pility 1/¢?"", the resulting polynomial has degrée- 1.
ming ball is less than half of the minimum distance, there 1€ Sample space has siZ§. Thus heuristically, the num-
should be at most one codeword in the Hamming ball. Find- P€ OfnCOdS!V]?rdS in Hamming balls of radius- g is at
ing the codeword is callednambiguous decoding canbe  '€@st(;)/¢~* on the average. In the same paper, Juste-
efficiently solved, see [2] for a simple algorithm. sen and Hoholdt also gave an upper bound for the radius of
If we gradually increase the radius, there may be two or the Hamming balls containing a constant or less number of

more codewords lying in some Hamming balls. Can we effi- codewords. _ _ _
ciently enumerate all the codewords in any Hamming ball of ~ |f we gradually increasg, starting fromk and going
certain radius? This is the so called list decoding problem. towardn, then (7) /¢?~* will fall below 1 at some point.
The notion was first introduced by Elias [5]. There was vir- However,g is still very far away fromyv/nk. Let §(n, k, q)
tually no progress on this problem for radius slightly larger be the smallest positive integer such tl()?)/qg_k is less
than half of the minimum distance, until Sudan published than1. The following lemma shows that there is a gap be-
his influential paper [15]. His result was subsequently im- tweeng(n, k, ¢) andv/nk.

proved, the best algorithm [9] solves the list decoding prob- o .

lem for radius as large as — v/nk. The work sheds new Lemmal 1. For positive integerd < g < n, if g >
light on the limitation of list decoding of Reed-Solomon Vnk, theng?™" > n9=% > (7). This implies that
codes. To the other extreme, if the radius is greater than G(n, k,q) < Vnk.

or equal to the minimum distance, there are exponentially
many codewords in some Hamming balls.

The decoding problem of Reed-Solomon codes can be
reformulated into the problem afurve fittingor polyno-
mial reconstructionin this problem, we are givem points In fact, for a fixed rateX/n) andq = ©(n), §(n, k, q) =
k+© (1547 )- How hardis it to do list decoding for the radius
n — g(n, k, ¢)? We show this question is related to discrete
in F2. The goal is to find polynomials of degrée- 1 that  |ogarithm over finite fields. The discrete logarithm prob-
pass at leasy points. In this paper, we only consider the |em in finite fieldF,., is to compute an integersuch that
case when the given points have distinat-coordinates. If ¢ = 4¢, given a generatoy of a subgroup oF;. andt inthe
we allow multiple occurrences af-coordinates, the prob-  subgroup. The general purpose algorithms to solve the dis-
lem is NP-hard [6], and it is not relevant to the Reed- crete logarithm problem are the number field sieve and the
Solomon decoding problem. i > (n + k)/2, it cor- function field sieve (for a survey see [13]). They have time
responds to the unambiguous decoding of Reed-Solomorcomplexity
codes. Ifg > v/nk, the radius is less than — v/nk, the
problem can be solved by the Guruswami-Sudan algorithm. exp(c(log ¢™)/3(loglog ¢™)?/3)

2. For any constant) < ¢; < 1/2 and fixedk/n, if
g =k+ci(n—k), then(})/n9* < 27" for some
positive constant,.

(x13y1)7 (x27y2)7 e 7(xn>yn)



for some constant, wheng is small, orn is small. following question in the proofs: In a finite field,., for

We prove that if the list decoding of the, k|, Reed-  any a such thatF,» = F,[a], canF, 4+ a generate the
Solomon code is feasible when radiusris— g(n, k, q), multiplicative group(F,»)*? This interesting problem has
then the discrete logarithm ovEfs ...+ iS €asy. In other  a lot of applications in graph theory, and it has been stud-
words, we prove that the list decoding is not feasible for ra- ied by several number theorists. Chung [4] proved that if
diusn — g(n, k, g) or larger, assuming that the discrete log- ¢ > (h—1)?, then(F . )* is generated bf, + . Wan [18]
arithm overF ;c..r.o -+ is hard. Note that it does not rule  showed a negative result thatgff — 1 has a divisor > 1
out the possibility that there are only polynomially many andh > 2(qlog, d+log,(q+1)), then(F,.)* is not gener-

codewords in all Hamming balls of radius— g(n, k, q), ated byF, + o for somea. Katz [11] applied the Lang-Weil
even assuming the intractability of the discrete logarithm method, and showed that for evéry> 2 there exists a con-
overF oo ko). stantB(h) such that for any finite fieléf, with ¢ > B(h),

any elementirfF,»)* can be written as a product of exactly

n = h+ 2 distinct elements frorft, + «. ClearlyB(h) has

to be an exponential function. In this paper, we use Weil's

character sum estimate and a simple sieving to prove that if

oW g > max(g?, (h—1)**<) andg > (2 +2)(h+1) for a con-

timeq“). stante > 0, then any element iF . )* can be written as a
Let us consider a numerical example. Set= 1000, product of exactly distinct elements frorft, + «.. In com-

k = 400, ¢ = 1201. The unambiguous decoding algo- Parison to Katz’s theorem, we use a biggeand manage to

rithm can correct up td(n — k + 1)/2] = 300 errors, ~ decreasa(h) to a polynomial function irh andk.

The Guruswami-Sudan algorithm can correet- v/nk| = Itis generally believed that the list decoding problem and

11000 — /1000 % 400| = 368 errors. Can we list decode up the bounded distance decoding for Reed-Solomon codes are
ton — g(n, k,q) = 1000 — 498 = 502 errors in reasonable computationally hard if the number of errors is greater than

time? The theorem shows that if we can, then the discrete’ — Vnk and less than — k. This problem is even used as a
logarithm overF,9;0s can be solved efficiently, which is ~hard problem to build public key cryptosystems and pseudo-
thought unlikely. random generators [12]. A similar problem, noisy polyno-
When the list decoding problem is hard for certain ra- mial interpolation [3], was proved to be vulnerable to the
dius, or a Hamming ball contains too many codewords for attack of lattice reduction techniques, hence is easier than
us to enumerate all of them, we can ask for an efficient Originally thought. This raises concerns on the hardness of
bounded distance decodirajgorithm, which only needs polynomial reconstruction problem. Our results confirm the
to output one of the codewords in the ball, or output the belief that polynomial reconstruction problem is hard, un-
empty set in case that the ball does not contain any codeder a well-studied hardness assumption in number theory,
word. However, we prove that the bounded distance decod-"€nce provide a firm foundation for many protocols based

ing is hard as well. on the problem.
This paper is organized as follows. In Section 2, we

Theorem 2 Let ¢ be a prime power and be a positive  prove Lemma 1. In Section 3, we sketch the proof of Theo-
integer satisfyingg > max(g? (h — 1)**) andg > rem 1 and Theorem 2. In Section 4, we show an interesting
(¢ +2)(h+1) foraconstant > 0. If the bounded distance  quality between the size of a group generated by linear fac-

decoding problem of radiug — g for the Reed-Solomon  tors, and the list size in Hamming balls of Reed-Solomon
codelq,g — h], can be solved in timg®™"), the discrete  ¢oges.

logarithm problem oveF . can be solved in random time
o)
q .

Theorem 1 If there exists an algorithm solving the list
decoding problem of radius — g(n, k, q) for the Reed-
Solomon codén, k], in time ¢®(Y), then discrete logarithm
over the finite field= ;(..x..)-» can be computed in random

2. Proof of Lemma 1

We state one of the implications of this theorem. Let . ) )
p be a prime. Take = 1/2.The theorem says that find- In this section, we prove Lemma 1 by showing the fol-
ing a polynomial of degree at mo8p?/5 + 19 but passes  owing statement.
2/5 ints i i i
at least10p*/® + 20 many points in a given set of points  Theorem 3 There are no positive integral solutions for the

{(07_3/0)5 (172/1.), T v(p - _17yl7*1)}' IS at least as hard as inequalities
solving the discrete logarithm over fleIFq)Lpz/s+1J .

We rely on the idea of index calculus to prove these two n h
- . o > n", Q)
theorems. Our application of index calculus however is dif- g
ferent from its usual applications, in that we use it to prove g > /n(g—h). 2)

a hardness result (a computational lower bound), rather than
a computational upper bound. We naturally come across the We first obtain a finite range fdr, g andn.



Lemma 2 If (n,g,h) is a positive integral solution, then
h < 88.

Proof: Denoteg/h by o andn/h by 5. Fromg >

n(g — h), we havea > /f(a—1). Hencea < 8 <
a+1+ L.

Recall that for any positive integéry/2mi(i/e)t < il <
V2ri(ife) (1 + ).

n B
() = (°4) < (s

Thus —52—= > /3h, which implies
prt
[ —
= @ ape

Recall some facts:

1. Forz > 0, % takes the minimum valué.6922.. at
x=e"1=0.36787944....

2. Forz > 0,1 <(1+ %)”C <e=2.7182818284...

If « >2,theng —a <1+ —L; < 2. We have

1.456°-1
a(,!
1.45(1 + a + ;5)
“y 1 1
1.45(1 Al ¢ I N I —
( +a+a—1) ( +a+a(a—1)
1.45x4*xex*x2 < 32.

(at+51s)

<

)Oé
<

B—1
LASB°_ There are two cases. # < 3,

then
h<1.45%2%9 < 19.

If 5> 3, then

h
B

B=11
G5
1.45 % 3 x 3 < 88.

IA

1.45(

o —

Corollary 1 « > 88/87 andf — o < 88.

Note that ifae < 89, thens < 178. If a > 89, then —
a < 1+41/88, butn — g = (6 — a)h is an integer, and
h < 87,508 —a < 1.Soifn > 2h, (1) can not hold.

Proof: Now we can finish proving the main theo-
rem of this section, by exhaustively searching for the solu-
tions in the finite range thdt < 88,n < 178 x 88 = 15664
andh < g < n in a computer. O

Similarly we can show that for any constagtthe in-

equalities
(n) > nh—c (3)
g

g > /nlg—h) (4)

have only finite number of positive integral solutions.
Denote_"- by v and—£;- by . To prove the second part
g g

: . —h —h
of the lemma, it suffices to see the) = (:s/ngh;) <c

for some constant, depending only ory ands.

3. The decoding problem and the discrete log-
arithm

Let ¢ be a prime power and 1%, be the finite field with
g elements. Leb be a subset df, of n elements. For a pos-
itive integerg < n, consider

Sg ={AJA C S, |A] = g}

Clearly, the seb, has() elements. For anyl € Sy, let
Pa(x) = [[ (= - a).
a€A
This is a monic polynomial of degrgewhich splits overF,,
as a product of distinct linear factors.
Let h(z) be an irreducible monic polynomial ovEy, of
degreeh < g. Define a map

¥ Sg — Folal/(h(z))

by

Y(A) = Pa(z) (mod h(z)).
Foranyf(z) in F,[z]/(h(z)) with degree at most — 1 , if
»~1(f(z)) is not empty, then there exists at least one monic
polynomialt(x) € F,[z] of degreeg — h and oned € S,
such that

f(@) +t(2)h(z) = Pa(x).

For anya € A, Ps(a) = 0, t(a) = —f(a)/h(a). Hence
there are exactly elements inS which are the roots of
f(z) + t(z)h(z) = 0, and the curvey = ¢(x) passes at
leastyg points in the following set of, points:

{(a,=f(a)/h(a))|a € S}.

According to the pigeonhole principle, there must exist a
polynomial f () such that
G
"

For any polynomialf € F,[z] of degree at mosi — 1,
let T, be the set of monic polynomialz) € F,[x] of de-
greeg — h such thatf(z) + t(x)h(z) = Pa(z) for some

[ (f(@))] = 1Sg1/IFqla]/ (h(2))]



A€ 8,. LetCy(,) be the set of codewords with distance ex-
actlyn — g to the received word— f(a) /h(a) — a9 ") 4es
in Reed-Solomon code, g — h|,. Itis then easy to prove

Lemma 3 There is a one-to-one correspondence between
Tf(xh) andCy(,, by sending any(z) € Ty, to (t(a) —
ad™ )aES-

Suppose that we knoyi(z) andh(z), but notA, are we
still able to findt(x)? This is just a list decoding problem of
Reed-Solomon code, g — h],. Once we have a list afz),
we can find4 by factoringf(x) + t(z)h(x). This provides
a general framework for the following proofs.

3.1. The proof of Theorem 1

Given a Reed-Solomon codte, k], leth = g(n, k., q) —
k. Recall thatj(n, k, ¢) is the smallest positive integer such
that () /q?~" is less tharl, andh is the degree of an ir-
reducible polynomiah(z). We show that there is an effi-
cient algorithm to solve the discrete logarithm o¥gr. =
Fqlz]/(h(x)) if there is efficient list decoding algorithm for
the Reed-Solomon code, k|, with radiusn — §(n, k, q) =
n—k — h. Leta = z (mod h(z)). Suppose that we are
given the basé(a) and we need to find out the discrete
logarithm oft(«) with respect to the base, whérandt are
polynomials ovelF, of degree at most — 1. That there is
an efficient list decoding algorithm implies:

1. There are only polynomially many codewords in any
Hamming ball of radius: — g(n, k, ¢), which in turn
implies thatjyy=1(f)| < ¢ forany f € F,» and a con-
stantc. Hence

(Q(ntlkyq))

C

‘w(sﬁ(n,k,q))‘

Y

O (R D=k /g¢)
0(q"/q°).

2. And they can be found in polynomial time.

We use the index calculus algorithm wifactor bases
(a—a)qes.- If we randomly select an integébetweer) and

q" — 2, then with probability bigger thaih/q¢, =1 (b(a)?)

is not empty. Applying the list decoding algorithm, we get
relations

H(a—a)z

a€A;

H(a—a)

a€A;

for some Ay, Az, -+, Ai € Sy(n,k,q), Wherel is the list
size. From the relations, we get linear equations.

(mod ¢"—1)

Z logy, (a—a)

a€A;

z-Zlogba a)

a€A;

These equations are defined over a ring rather than a
field. We repeat the above procedure. Sihtepicked ran-
domly, andS, is the sample space, the probability that the
new equation is linear independent to the previous ones is
very high at the beginning of the algorithm. We geihde-
pendent equations with probability more than- % after
we pick no more tha®(n log n) manyi’s. Solving the sys-
tem of equations gives usg,(« — a) for all a € F,. See
[14] for a formal analysis.

In the last step, for a randoi we computeh(a)'t(a).

If »~1(b(a)'t(x)) is Not empty, we can solMeg; ¢t imme-
diately. This finishes the proof of Theorem 1.

3.2. The proof of Theorem 2

We first prove the following number theoretic result.

Theorem 4 Letq be a prime power and Iét be a positive
integer. Ifg > max(g?, (h — 1)2*¢) andg > (2 +2)(h +
1) for a constant > 0, then every element i, can be
written as a product of exactly distinct factors from{« +
ala € Fy}, for anya such thatF, (o) = Fn.

Proof: We follow the method used in [18]. Fix ansuch

thatF,(a) = Fgn. For g € Fpu, let Ny () denote the num-
ber of solutions of the equation

g
8= H(a—|— a;), a; € Fy,
=1

where theq;’s are distinct. We need to show that the num-
ber N, () is always positive ify > max(g?, (h — 1)2*)
andg > (2 +2)(h+1).

Let G be the character group of the multiplicative group
F», which is a cyclic group of ordey™ — 1. Now,

g9

P—1, it g =Ti(e+a),
XEE;X(E(O[ +a)/h) = {g, Otherwli;[e.( )
Thus,
Ny (B) = th_ = G (eta)).
=1

uiEFq, a; distinct XEG

Since the second summand is always non-negative, a sim-
ple inclusion-exclusion sieving implies that

(D IED YU SR
(L,,GFq,lgng 1§i1<i2§gai€|:q,a,;1:a7¢2
g
S ox B (e + ).
x€G =1

For non-trivial charactey, one has the well-known Weil es-

timate [18]
2 x

aGF

(a+a)| < (h

-1)q.



Separating the trivial character, we deduce that
g _ (9),9—1
> T 7 WT (2)g -1+ (g))(h —1)9¢9/2,

¢" -1
In order forN, () > 0, it suffices to have the inequality

(= (o> i (§)en -1y,

This inequality is clearly satisfied if both > 2(J) + 1 =
g(g—1)+1andg?/?~'=" > (h —1)9. These two inequal-
ities are satisfied if we take > max(g?, (h — 1)) and
g > (%4 2)(h + 1). The theorem is proved.

Remark. Asymptotically, the conditioy > ¢ is still
quadratic. It would be very interesting to obtain positive re-
sults with only linear conditioy > cg for some positive
constant.

Ny(5)

O

Now we are ready to prove Theorem 2

Proof: Let h(x) be an irreducible polynomial ovéi, of
degred:. Letq > max(g?, (h—1)%*) andg > (4+2)(h+
1). ThenF . = Fy[z]/(h(x)). Denoter (mod h(z)) by a.
We need to solve the discrete logarithmtof) with base
b(cr) in Fyn, whereb andt are polynomials of degree at

mosth — 1. We letS = F,.
(Fg)g = {AJA C Fy, |A] = g}.

First we randomly select an integétsetweerd andg” —
2. Computeb(a)?, and letf(«) be the result wheré(z) is
a polynomial of degree at most— 1. Now run the bounded

come from a subset of,. Informally, after we de-
tect that, we start to computga)b(«)®, and find its
representation as a product of linear factors. The for-
mal analysis of this method appeared in [14]. We only
need to tryO(nlogn) manyi's before we solve the dis-
crete logarithm oft(«) with baseb(a) with probabil-

|

ity 1 — 5.
A easy consequence of the theorem is as follows.

Corollary 2 Letq be a prime power andél be a positive in-
teger satisfying; > (h — 1)%. If the bounded distance de-
coding problem of radiug — 4h — 4 for the Reed-Solomon
code[q, 3k + 4], can be solved in timg®("), the discrete

logarithm problem oveF . can be solved in random time
o(1)

4. Group size and list size

Let ¢ be a prime power, anfl be a subset df, of n ele-
ments, where: is very small compared t@. Let« be an el-
ement inF . such that~;[a] = F .. What is the order of
the subgroup generated by+ S for someS C F, ? This
guestion has an important application in analyzing the per-
formance of the AKS primality testing algorithm [1]. Ex-
perimental data suggests that the order is greaterhan
for some absolute constaatfor |S| > hloggq. If we can
prove it, the space complexity of the AKS algorithm can be
cut by a factor ofog p (p is the input prime whose primal-
ity certificate is sought), which will make (the random vari-
ants of ) the algorithm comparable to the primality proving
algorithm used in practice. However, the best known lower

distance decoding algorithm on the Reed-Solomon codebound is(c|S|/h)" for some absolute constan{17]. We

(g, g — h], with the point se{(a, — f(a)/h(a) — a9~ ")|a €
F,} and the distance bound— g. Then according to The-

orem 4, the answer is not the empty set. Let the answer b

t(x) — x9~". The polynomialt(z) has degreg — h, and
agrees with{(z, — f(z)/h(z))|z € F,} atg distinct points.
The polynomialf (z) + t(z)h(x) has degree at mosgt but
has at leasy distinct zeros, thus it splits as a product of lin-
ear factors. Lef (z) + t(x)h(x) = [[,c 4 (2 + a) for some

A € (Fq),. Write it in another way,

b= H (a+a).
a€cA
We get

i= Z logy (o +a) (mod ¢" —1).
acA

discover an interesting duality between the group size and
the list size in Hamming balls of certain radius.

eTheorem 5 Let k,n be positive integers angl be a prime

power. One of the following statements must be true.

1. For any constant;, there exists a Reed-Solomon code
[n, klqy (n/3 < k < n/2), and a Hamming ball of ra-
diusn — g(n, k, ¢) containing more tham; 1.9™ code-
words.

2. Lets = logq, the group generated hy + S, has car-
dinality at leastg"/“> for some absolute constant,
whereS C F, and|S| = slogg.

To prove the first statement would solve an important
open problem in the Reed-Solomon codes. To prove the sec-
ond statement would give us a primality proving algorithm
much more efficient in term of space complexity than the

We repeat the step several times and obtain a collec-original AKS and its random variants, hence make the AKS

tion of relations. It may not be possible to solve the lin- algorithm not only theoretical interesting, but also practi-
ear system, because the system may not have the fulcal important. However, at this stage we cannot figure out
rank. This is the case, for instance, when all thgs which one is true. What we can prove, however, is that one



of them must be true. Note that it is also possible that both [9] Venkatesan Guruswami and Madhu Sudan. Improved de-

statements are true. coding of Reed-Solomon and algebraic-geometry codes.
Proof: Let s = logq, k = sh/2 — h andn = sh. IEEE Transactions on Information Theory5(6):1757—
So the ratek/n is very close tol/2 ass gets large, and 1767, 1999.

g(n,k,q) = sh/2. Assume the first statement is false, [10] Jorn Justesen and Tom Hoholdt. Bounds on list decoding
this means that there exists a constantsuch that for of MDS codes.|EEE Transactions on Information Theory
any Reed-Solomon code, k], with n/3 < k < n/2, 47(4):1604_1609' 2001, , L
the number of codewords in any Hamming ball of radius [11] Nlch_ola_s M. Katz. Fact_onng polynomlals in finite fields: an
n— g(n, k,q) is less thar;1.97. The number of balls con- application of Lang-Weil to a problem in graph thedvath-
L > D - ematische Annaler286:625-637, 1990.
tammg at least one codgword with that radius and center[12] Aggelos Kiayias and Moti Yung. Cryptographic hardness
point at(—f(a)/h.(a) —a") ,eseF, Wheref € Fy [z] has based on the decoding of Reed-Solomon code®rdceed-
degree less thahis greater than ings of ICALR volume 2380 of_ecture Notes in Computer
h/( 1 9”) _ _h—nlog1.9/log q/ > h/c Science2002. . .
q/(c3l. =q c3=2q", [13] A.M. Odlyzko. Discrete logarithms: The past and the future.
Designs, Codes, and Cryptograpip:129-145, 2000.

which is a low bound of the size of the group gener- [14] Carl Pomerance. Fast, rigorous factorization and discrete

ated bya + 5. O logarithm algorithms. Iiscrete Algorithms and Complex-
ity. Academic Press, 1987.
[15] Madhu Sudan. Decoding of Reed-Solomon codes beyond the
5. Conc|uding remarks error-correction boundJournal of Complexity13(1):180—

193, 1997.

This is a gap betweem— v/nk andn — g(n, k,q). Clos- [16] Madhu Sudan. Coding theory: Tutorial & survey. Pnoc.
ing the gap is a very important open problem. Other interest- ~ 42th IEEE Symp. on Foundations of Comp. Sciemzges
ing open questions include whether the list or bounded dis- 36-53, 2001.
tance decoding problem of Reed-Solomon code for the pa-(17] J- F. Voloch. On some subgroups of
rameters studied in the paper is equivalent to or harder than ~ "¢~ multiplicative - group ~ of finite rings.
the discrete logarithm over finite fields, and whether there http:/www.ma. utexas.edufusers/voloch/preprint.html,

; S : 2003.
exists a polynomial time quantum algorithm to solve these [18] Daging Wan. Generators and irreducible polynomials over
decoding problems.

finite fields. Mathematics of Computatior$6(219):1195—
Acknowledgment$Ve thank Chaohua Jia for helpful dis- 1212, 1997.
cussion on the proof of Theorem 4.
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