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A PRIORI BOUNDS ON THE EUCLIDEAN TRAVELING SALESMAN*
TIMOTHY LAW SNYDER AND J. MICHAEL STEELE

Abstract. It is proved that there are constants cl, c2, and c3 such that for any set S of n points in the unit square
and for any minimum-length tour T of S (1) the sum of squares of the edge lengths of T is bounded by Cl logn.
(2) the number of edges having length or greater in T is at most c2/t2, and (3) the sum of edge lengths of any
subset E of T is bounded by c3lEI 1/2. The second and third bounds are independent of the number of points in S,

as well as their locations. Extensions to dimensions d > 2 are also sketched. The presence of the logarithmic term

in (1) is engaging because such a term is not needed in the case of the minimum spanning tree and several analogous
problems, and. furthermore, we know that there always exists some tour of S (which perhaps does not have minimal

length) for which the sum of squared edges is bounded independently of n.
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1. Introduction. The purpose of this note is to provide a priori bounds on quantities
related to the edge lengths of an optimal traveling salesman (minimum-length) tour through n
points in the unit square. By a priori we mean that the bounds are independent of the locations
of the points.

Studies of a priori bounds were initiated by Verblunsky (1951)and Few (1955). Few
showed that for any set S of n points in the unit square, the length of an optimal traveling
salesman tour of S is at most + 1.75. Few’s result led to a series of improvements.
culminating in Karloff (1989), where it was shown that Few’s constant could be reduced to

less than . Goddyn (1990) improved similar results in higher dimensions. Our results
continue in this tradition by giving a priori inequalities for three other quantities related to the
edge lengths of an optimal traveling salesman tour.

The interest in and subtlety of our inequalities comes from the fact that, in contrast to the
minimum spanning tree (MST) problem, optimal solutions to the traveling salesman problem
(TSP) are not invariant under monotone transformations of the edge weights. Before giving
further details on this connection and other related work, we state our main results. We let

lel Ix y[ denote the Euclidean length of the edge e xy with vertices x and y in/R2 and,
in settings where the order of the edges of an optimal tour is not important, we represent a
traveling salesman tour by the edge set {el, e2 e,, }. In what follows, an "optimal" traveling
salesman tour is a tour that is of minimum length when using Euclidean edge weights.

Our first theorem bounds the sum of squared edge lengths of any optimal traveling sales-
man tour.

THEOREM 1. There exists a constant 0 < Cl < cx such that if T {el, e2 e,, is an
optimal traveling salesman tour of {xl, X2 Xn} C [0, 1]2 and ifn > 2, then

(1.1) le 12 < cl log n.
i=1

Theorem 2 is a bound on the number of edges that are of length or greater.
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THEOREM 2. There exists a constant 0 < (-:2 < O0 such that, if v(n, t) is the number of
ei T such that lei > t, thenfor all > 0 and n > 1,

(1.2) v(n, t) <_ C2/t2.

Theorem 3 gives a bound on the total length of any k-edge subset of an optimal TSP tour.
THEOREM 3. There exists a constant 0 < c3 < oo such thatfor each E {eft, eiz eik

T, we have

(1.3) lei <_ c3/.
icE

It is interesting to compare these results to their minimum spanning tree analogues. Steele
and Snyder (1989) proved MST analogues to (1.2) and (1.3), but these proofs were predicated
on a solution to the MST problem via a greedy algorithm and thus were not applicable to the
TSP. The best TSP analogue to (1.2) was therefore Vvsp(n, t) <_ CTsp/-/t, for some constant

CTs. The bounds (1.2) and (1.3), however, are independent of n, the number of points, as well
as the locations of the points. For this reason, we say that (1.2) and (1.3) are fully a priori
inequalities.

Inequalities like (1.1) are important in simulations and investigations in which square root
computations required for Euclidean lengths are deemed to be too expensive (cf. the discussion
in Steele (1990)). It was observed in Steele (1990) in an application of the space-filling curve
heuristic that one could obtain a result like (1.1) for the MST, but without the logarithmic
factor, Although this result might make the logarithmic term of (1.1) seem disappointing, it
is actually best possible since Bern and Eppstein (1993) recently showed that there exist a
positive constant c and point sets S with ISl such that ZesT lel 2 >- c log ISI.

Part of the interest in these results comes from the fact that there are closely connected
inequalities that exhibit strikingly different behavior from the optimal TSP tour. In particular,
there is a constant c’ and for all n there is a nonminimal length tour T’ of S with SI n
such that, for all n > 2, ZesT’ [el 2 < c’. These tours can be obtained via the space-filling
heuristic as noted in the discussion of the MST. Neumann (1982) showed that such tours can
be obtained by appropriately generalizing the Pythagorean theorem, a construction that, upon
reflection, almost parallels that of some space-filling curves.

The curious issue for the TSP is that although there is some tour T’ that makes ZesT, lel 2
particularly small, the Bern and Eppstein (1993) result tells us that a traveling salesman tour
T minimizing er !el need not do nearly so well. Because of the matroidal properties of the
MST, these issues do not arise in its analysis" analyzing the optimal TSP is more difficult.

In the final section, we will comment further on this as well as problems concerning points
in [0, ]a for dimension d > 2. In 2, we prove a technical result that is applied in 3 to prove
our main results.

2. Edge lemmas. The second lemma of this section explicates a property of edges in
a TSP tour that will be useful in the next section, where we prove our main results. Our
first lemma gives a simple geometric bound concerning diagonals of quadrilaterals. In the
statement ofLemma 1, the term "diagonal" is used to denote a segment connecting nonadjacent
vertices of a quadrilateral, regardless of whether the quadrilateral is convex.

LEMMA 1. Let L1 and L2 be two nonintersecting line segments satisfying r <_ ILil < r.
where > and r > O. Suppose the midpoints of L1 and L2 are separated by distance ..
where ) < min{ 1/2 [L 11, IL21}. Ifthe endpoints ofL and L2 arejoined toform a quadrilateral
with sides L, L2, $1, and $2, then ISil <_ ([ 1)r + 3for 1, 2.
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FIG. 1. The lines L and L2 in the proofofLemma 1.

Proof Without loss of generality, we can assume that L is the longer of the two lines
and that it is oriented along the x axis with its midpoint at the origin. We can also assume that

L2 lies entirely in the upper half plane. Let (x, y) denote the rightmost endpoint of L2 and
let S be the line segment determined by (x, y) and (ILI/2, 0) (see Fig. 1, which illustrates
a convex quadrilateral). By the triangle inequality, the segment from the origin to (x, y) is at

lZ21 /X.mostilL21+X, sox <

We also claim that i IL21 . < x. To prove the claim, consider the disk D of radius

X centered at the midpoint m of L2. Since . < 1/2[L21, the point (x, y) must lie outside the
interior of D. Since L2 lies entirely in the upper half plane, the endpoints of L2 must lie in
the shaded regions in Fig. 2, with (x, y) constrained to lie in the first quadrant. Letting (x,’ 0)
be the point where the x axis intersects the circle with center m passing through (x, y), it is
clear from the figure that x > x’. However, the origin-x’ segment is greater than or equal to

[L2I . since L2I )v is the minimum distance from (x, 0) to D. This proves the claim
and yields

(2.1) zlZ21- X x lZzl + )v.

Since L and L2 do not intersect, 0 < y < 2X. Combining this with (2.1) gives us I&l 5
[x 1/21Zll / y _< (/ )r / 3Z, as claimed. [3

LEMMA 2. Let {el, e2 en denote the edges ofan optimal traveling salesman tour of
{x, x2 xn C 2. For each ei satisfying r <_ leil < r, where r > O, let Di denote the
disk of radius aleii centered at the midpoint of ei, where ot 1/13 and 3/2. Then, for
any three disks Di, Di2, and Di3, the intersection Di ("1 Di2 0 Di3 is empty.

Proof. Suppose at first that Di f) Di2 (’] Di3 k and that the edges ei, ei,., and ei3 share
no common vertex. Without loss of generality, let ij j for j 1, 2, 3. We show that if
D, D2, and D3 have a point in common, then it is possible to construct a shorter tour through
{x l, x2 Xn }. It is well known that edges of an optimal Euclidean traveling salesman tour
cannot intersect. We can therefore assume that e ab, with midpoint m and endpoint
a to the left and b to the right, is oriented along the x axis. Similarly we can assume the
midpoint m2 of e2 a2bz lies above e and the midpoint m3 of e3 a3b3 lies above e2, as
illustrated in Fig. 3.

Since the endpoints of the e, {a, a2, a3, b, b2, b3 }, are distinct and are on the tour, there
is a pair ai, bj with j such that ai and bj are joined by a path that contains none of the
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FIG. 2. The disk D and its relation to x, L2, and ..
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FIG. 3. Three nonintersecting lines ofa TSP tour and their Di. Here, ot clarity.

edges el, e2, and e3. We now claim that we can construct a shorter tour by replacing edges eg
and ej with edges aiajand bibj. This contradiction will establish the lemma.

For specificity, assume that 2 and j 3, as shown in Fig. 4. We form a new path
from a2 to b3 by deleting e2 ande3 and adding the edges a2a3 and b2b3. Since D, D2, and D3
have a point in common, the midpoints of e2 and e3 can be separated by at most the summed
radii of D2 and D3, which is olezl / ale3[. Setting ,k c(le2l + [e31) and recalling that
r <_ leil < fir, we note that ,k __< ot(le21 +/31e21) < le2l; similarly, < le3[. In addition,
we have ) _< 2c03r. These facts allow us to apply Lemma to estimate the net change A in
the path length as

A la2 -a3l + Ib2 b31- le2[- le3l

_< 2 ( r + ) 2r

_<2 (/-l)r+6cr -2r

(1 3 +
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a 3

b2

FIG. 4. Rebuilding the a2 to b3 path when 2 and j 3 in Lemma 2. The curved arc" is a path, the x’ed
edges have been removed, and the dashed edges have been added.

The choices fl 3/2 and ot 1/13 guarantee that A < 0.
For the case of and j 3, one obtains identical bounds on the change in the tour

length when replacing e; and ei with aiai and bibj. Without loss of generality, the 2,
j 3 and 1, j 3 cases are the only cases that need to be considered.

To complete the proof, note that any vertex shared by any of ei, %, and e;: can be replaced
with two vertices that are viewed as being joined by an edge of length 0. The above analysis
can then be applied as before without change to obtain a contradiction.

3. A priori edge-length bounds. We are now in position to prove our main results.
Label the edges of an optimal tour T of {x, x2 x,, C [0, 112 in order as e, e2 e,.
We first construct disks Di of radius a leil and center at the midpoint of ei for each < < n,
where a 1/13. Let i(’) denote the indicator function of Di, i.e., for all x //?2, aPi(x)
if x Di" otherwise gel(X) 0. Let A be the set of all such that r <_ leil < fir, where
/3 3/2. We then claim that

(3.1) 7ti(x) <_ 2(x)o

where (.) is the indicator function of the square [- 1, 2]2.
To prove the claim, note that for/3 3/2 and a 1/13, Lemma 2 tells us that no three

disks of A intersect. Hence, the point x 6 2 can belong to at most two disks associated
with A. Furthermore, since any disk with center in [0, 112 and radius bounded by otflr is
contained in [-c/3r, t + cflr]2 C [--1, 2]2, we need only concern ourselves with the square
x 6 [-1, 2]2. This proves the claim.

If we now integrate (3.1) over x. we obtain a basic bound on a subset of the squared edge
lengths of an optimal TSP tour:

(3.2) Z lei[2 < c,
r<leil<_r

where c 180/-27r-1o The bound is then used as follows.

(3.3)

__lei 12 < + lei 12
i=1 n-/2<_lel<_x/

m

k=l Bt’-ln-l/" <_leil<[3’n-i/:
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where rn is the least integer k such that flkn-l/2 > w/. It suffices to take rn [log3/2()
applying (3.2) to (3.3) yields the bound

(3.4) le 12 < c log n,
i=1

where c is constant as required by Theorem 1. We remark that explicit constants have been
given only to facilitate checking; there is little hope of obtaining the best possible bounds on

c and related values.
Returning to (3.1) and integrating, we see that since [ei > r for all 6 A,

(3.5) IAIzrc2r2 _< 18.

However, IAI [{i" r <_ leil < 3r }[, so for c 18/(zrc2), we have

(3.6) I{ r <_ leil < 3r }1 < cr-2"

We can now bound

(3.7)

v(n, t)= [{i" leil >__ t}

mt--I
<_ _, I{i t <_ leil < ilk+It

k=0

where mt minj{3Jt >__ x/}. We then use (3.6) to obtain

(3.8)

v(n, t) <_ c Z (3kt)-2
k=O

< c -2 Z 3-2k
k=O

C
t-2

-2
which is Theorem 2, with c2 c32/(/32 1).

Theorem 3 now results from (3.8) by first noting that n v(n, x) is the number of edges
in T of length less than x, then writing

Eleil-- E leil + E leil
ei6E eiE eiE

lel<t teil>_t

<- E leil+ leil
eE eiT

(3.9)
le,.l<t le, l>t

<_ tlEI / x d(n v(n, x))

tlEI ] x dv(n, x).<_
,It

Integrating the rightmost term of (3.9) by parts and then applying (3.8), we obtain
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f x dv(n, x) tu(n. t) + f v(n, x) dx

C2 f
x

C2(3.10) < + dx
-t

2c2

Inserting (3.10) into (3.9) and setting ILl -/2 yields Theorem 3, with c3 + 2c2.
4. Concluding remarks. The preceding arguments can be generalized without difficulty

to higher dimensions. The key idea is that in Lemma 2 we showed that if three of the Di
associated with edges of a TSP tour had a point in common, then we could find three edges
el, e2, and e3 that were close together and nearly parallel.

We can obtain a proper analogue in dimensions d > 2 if we consider the possibility that
a large number N(d) of d-spheres Di D(mi, ale/I) c/Ra intersect and exploit the fact that
the surface of any sphere in d can be covered with a finite number M(e) of spherical caps
with polar angle e. In summary, one can prove the following theorem.

THEOREM. There exist positive constants ca and ca such thatfor any traveling salesman
tour T of {Xl, x2 Xn C [0, ]a andfor all n > 2,

E leld < Ca log n,(4.
e6T

and

(4.2) va(t) l{e 6 T’lel > t} < ca/ta.
" such thatfor any E {ei, ei2 ei. c TFurthermore, there exists a positive constant ca

we have

(4.3) leil ck(d-l)/d.
icE
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