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Abstract

Ogiwara and Watanabe have recently shown that the hypothesis
P # NP implies that no (polynomially) sparse language is <f,,-hard
for NP. Their technique does not appear to allow significant relaxation
of either the query bound or the sparseness criterion. It is shown here
that a stronger hypothesis — namely, that NP does not have measure 0
in exponential time — implies the stronger conclusion that, for every
real a < 1, every <F._,,-hard language for NP is (exponentially)
dense.

The proof of this fact also yields two absolute results (not in-
volving unproven hypotheses) concerning the structure of exponential
time: First, almost every language decidable in exponential time has
a stochasticity property, ensuring that it is statistically unpredictable
by feasible deterministic algorithms, even with linear nonuniform ad-
vice. Second, for @ < 1, only a measure 0 subset of the languages
decidable in exponential time are <F,_,,-reducible to languages that
are not exponentially dense.
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1 Introduction

How dense must a language A C {0,1}* be in order to be hard for a complex-
ity class C? The ongoing investigation of this question, especially important
when C = NP, has yielded several significant results over the past 15 years.

Any formalization of this question must specify the class C and give precise
meanings to “hard” and “how dense.” The results of this paper concern the
classes E = DTIME(2line2r), E; = DTIME(2relmomial) and all subclasses C of
these classes, though we are particularly interested in the case C = NP.

We say that A is <F-hard for a class C of languages if C C P;(A), where
P.(A) = {B C {0,1}"|B <P A}. Here the polynomial time-bounded re-
ducibility <Pmay be <P(many-one reducibility), <F(Turing reducibility),
<P..(bounded truth-table reducibility), or <F_, (truth-table reducibility with
q(n) queries on inputs of length n, where ¢ : N — Z7).

Two criteria for “how dense” a language A is have been widely used. A
language A is (polynomially) sparse, and we write A € SPARSE, if thereis a
polynomial p such that |A¢,| < p(n) foralln € N, where A¢, = AN{0, 1}<".
A language 4 is (ezponentially) dense, and we write A € DENSE, if there is
a real number € > 0 such that |A<,| > 2™ for all sufficiently largen € N. It
is clear that no sparse language is dense.

For any of the above choices of the reducibility <F, all known <F-hard
languages for NP are dense. Efforts to explain this observation (and similar
observations for other classes and reducibilities) have yielded many results.
We mention four that are particularly relevant to the work presented here:

1. Meyer [16] proved that every <F-hard language for E (or any larger
class) is dense. That is,

E € P.(DENSE®),

where DENSES is the complement of DENSE and we write P(S) =
a2 P4).

2. Watanabe [18, 19] extended Meyer’s result by proving that every <P.-
hard language for E is dense. That is,

E € Pp.(DENSE®).
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-In fact, Watanabe’s argument also works for Sg(logn)_"-reducibi]ity,
ie.,

E g Po(]ogn)_u(DENSEc).

3. Mahaney [14], proving a conjecture of Berman and Hartmanis [1],
showed that, unless P = NP, no sparse language is <F-hard for NP.
That is,

P # NP = NP € P,(SPARSE).

4. Ogiwara and Watanabe [17] extended Mahaney’s result by proving
that, unless P = NP, no sparse language is <}, -hard for NP. That
is ,

P # NP = NP ¢ Py, (SPARSE).

The main result of this paper, Theorem 4.2, extends results 1 and 2
above by showing that, for every real @ < 1, only a measure 0 subset of
the languages in E are <F,_,,-reducible to non-dense languages. “Measure 0
subset” here refers to the resource-bounded measure theory of Lutz [10, 11].
In the notation of this theory, our main result says that, for every real a < 1,

£(Pne—:(DENSE®)[E) = 0. (1.1)

This means that Ppa_(DENSE®)NE is a negligibly small subset of E [10, 11].
This result, which requires a completely different technique from Watanabe’s
result 2 above, extends result 2, both by imposing the measure 0 condition
and by extending the truth table reducibility from O(logn) queries to n®
queries (a < 1). We also prove that this holds for E,, i.e., for every real
a<l,

,u(P,.a_.t.t.(DENSEC)IEg) = 0. (1.2)

Note that there is an enormous gap between polynomial and 2" growth
rates. (Consider, for example the G;-hierarchy of [8].) Thus, a conclusion
that every <P-hard language for C is dense is much stronger than a conclusion
that no sparse language is <F-hard for C.

Much of our interest in (1.1) and (1.2) concerns the class NP and results
3 and 4 above. It is well known that P C NP C E,. In fact, E; is the smallest
deterministic time complexity class known to contain NP. It is easy to see
[10] that p(P|E) = u(P|E;) = 0, i.e., P has measure 0 in E and E,.



Ogiwara and Watanabe’s proof of result 4 above does not appear to allow
significant relaxation of either the query bound or the sparseness criterion.
However, Lutz has proposed investigation of the (apparently) stronger hy-
potheses u(NP[E) # 0 and p(NP|E;) # 0. (These expressions mean that
NP does not have measure 0 in E and that NP does not have measure 0 in
E,, respectively. By the resource-bounded generalization of the Kolmogorov
zero-one law [11], “u(NP|E;) # 0” is equivalent to “x(NP|E;) = 1 or NP
is not measurable in E,”, and similarly for E.) It follows immediately from
(1.1) and (1.2) above that, for all @ < 1,

#(NP|E) # 0 = NP € P,._,.(DENSE") (1.3)

and

#(NP[E;) # 0 = NP Z P,a_,(DENSE®) (1.4)

That is, unless NP is negligibly small in exponential time, every <%, _, -
hard language for NP is dense. Comparing (1.3) and (1.4) with Mahaney and
Ogiwara and Watanabe’s results 3 and 4 above, we have obtained a stronger
conclusion from stronger hypotheses. Note that this stronger conclusion is
consistent with our observations to date.

It should be noted that (1.3) and (1.4) follow immediately from (1.1) and
(1.2) without using any property of NP. Thus (1.3) and (1.4) hold with NP
replaced by PH, PP, PSPACE, or any other class whatsoever.

When proving results of the form

wpXIC) =0,

where C is a complexity class, it often simplifies matters to have available
some general purpose randomness properties of languages in C. The term
“general purpose randomness property” here is heuristic, meaning a set Z of
languages with the following two properties.

(i) Almost every language in C has the property (of membership in) Z.
(This condition, written g(Z|C) = 1, means that p(Z°¢|C) = 0.)

(ii) It is often the case that, when one wants to prove a result of the form
p(X|C) = 0, it is easier to prove that X N Z = 0.

For example, in ESPACE=DSPACE(2i"e*"), it is known [10, 4] that al-
most every language has very high space-bounded Kolmogorov complexity.

4



b

PR R TR R WO AT T

A variety of sets X have been shown to have measure 0 in ESPACE, sim-
ply by proving that every element of X has low space-bounded Kolmogorov
complexity [10, 4, 13, 9]. Thus high space-bounded Kolmogorov complexity
is a “general purpose randomness property” of languages in ESPACE.

In §3 below, after reviewing some fundamentals of measure in complexity
classes, we prove a Weak Stochasticity Theorem, stating that almost every
language in E, and almost every language in E,, is statistically unpredictable
by feasible deterministic algorithms, even with linear nonuniform advice.
Specifically, for every ¢ € N and every real number vy > 0, almost every lan-
guage in E has the following property: For all languages C, D € DTIME(2™)
and for all advice functions b : N — {0,1}" satisfying |h(n)| < cn, suppose
that we try to use B = D/h = {z|(z,h(|z|)) € D} to predict A on the set
C. If |C=a| > 27" for all sufficiently large n, then our prediction scheme will
be asymptotically no better than random coin-tossing, i.e.,

(AAB)NC.n| 1

L3 1C_n] 2

Following the terminology of Kolmogorov (7], we call such a property a
stochasticity property of the language A. To be precise, the above result
says that almost every language A € E is weakly (2", cn,27")-stochastic.
The adverb “weakly” here defers to a stronger stochasticity property to be
proven in [12], but weak stochasticity is a powerful and convenient tool. For
example, in §4 below we prove (1.1) by a combinatorial construction showing
that no language in Pna_,(DENSE®) is weakly (2°%,3n,2%)-stochastic. We
then appeal directly to the Weak Stochasticity Theorem of §3. It appears
likely that the Weak Stochasticity Theorem will be useful for a variety of
such applications in the future.

2 Preliminaries

In this paper, [¢/] denotes the Boolean value of the condition ¥, i.e.,

1 ifvy
[[1/1]]{ 0 if not 9

All languages here are sets of binary strings, i.e., sets A C {0,1}*. We




identify each language A with its characteristic sequence x4 € {0,1}*° de-
fined by
X4 = [s0 € A][s1 € A][s2 € A]...,

where s = A, sy = 0, s, = 1, 33 = 00,... is the standard enumeration
of {0,1}*. Relying on this identification, the set {0,1}*, consisting of all
infinite binary sequences, will be regarded as the set of all languages.

Ifwe {0,1}* and z € {0,1}" U {0,1}, we say that w is a prefiz of z,
and write w C z, if ¢ = wy for some y € {0,1}* U {0,1}*. The cylinder
generated by a string w € {0,1}" is

Cw={z€{0,1}* | wC z}.

Note that C, is a set of languages. Note also that C, = {0,1}*, where A
denotes the empty string.

As noted in §1, we work with the exponential time complexity classes
E = DTIME(2li"2") and E, = DTIME(2rolyromial) Tt is well-known that
PSE ; E,, that P C NP C E; and that NP # E.

We let D = {m2™" | m € Z,n € N} be the set of dyadic rationals. We
also fix a one-to-one pairing function (,) from {0,1}" x {0,1}" onto {0,1}*
such that the pairing function and its associated projections, (z,y) — = and
(z,y) — y are computable in polynomial time.

Several functions in this paper are of the form d : N¥x {0,1}* — Y, where
Y is D or [0,00), the set of nonnegative real numbers. Formally, in order
to have uniform criteria for their computational complexities, we regard all
such functions as having domain {0,1}", and codomain {0,1}* if Y = D.
For example, a function d : N? x {0,1}* — D is formally interpreted as a
function d : {0,1}* — {0,1}". Under this interpretation, d(4, j,w) = r means
that d((07, (07, w))) = u, where u is a suitable binary encoding of the dyadic
rational r.

For a function d : N x X — Y and £ € N, we define the function
dr : X = Y by di(z) = d(k,z) = d((0%,z)). We then regard d as a “uniform
enumeration” of the functions dp,d;,ds,.... For a functiond: N" x X — Y
(n > 2), we write diy = (di )i, etc.

For a function § : {0,1}* — {0,1}" and n € N, we write §™ for the n-fold
composition of § with itself.

Our proof of the Weak Stochasticity Theorem uses the following form of
the Chernoff bound.



Lemma 2.1.[2, 3]. IF X},..., Xy are independent 0-1-valued random vari-
ables with the uniform distribution, S = X; + .... + Xy, and € > 0, then

Prlis - T2 O] <2
In particular, taking € = j—_l_"'—l, where j € N,
Pr{|S — % > %1-] < 2¢"THT,

Proof. See (3]. =

3 Measure and Weak Stochasticity

In this section, after reviewing some fundamentals of measure in exponential
time complexity classes, we prove the Weak Stochasticity Theorem. This
theorem will be useful in the proof of our main result in §4. We also expect
it to be useful in future investigations of the measure structure of E and E,.

Resource-bounded measure {10, 11] is a very general theory whose special
cases include classical Lebesgue measure, the measure structure of the class
REC of all recursive languages, and measure in various complexity classes.
In this paper we are interested only in measure in E and E,, so our discussion
of measure is specific to thoses classes.

Throughout this section, we identify every language A C {0,1}* with its
characteristic sequence x4 € {0,1}*, defined as in §2.

A constructoris a function § : {0,1}* — {0,1}" such that z & 6(z) for all
z € {0,1}". The result of a constructor § (i.e., the language constructed by
§) is the unique language R(8) such that §*(A) C R(§) for all » € N. Intu-
itively, § constructs R(§) by starting with A and their iteratively generating
successively longer prefixes of R(§). Given a set A of functions from {0,1}*
into {0,1}", we write R(A) for the set of all languages R(§) such that § € A
and § is a constructor.

We first note that the exponential time complexity classes E and E; can
be characterized in terms of constructors.



Notation. The classes p; = p and p2, both consisting of functions f :
{0,1}* — {0,1}", are defined as follows.

p1 = p = {f|f is computable is polynomial time}
P2 {f|f is computable is n(logn)o) time}

Lemma 3.1.[8]
1. R(p) =E.
2. R(pz) = Eg.

Using Lemma 3.1, the measure structures of E and E; are now developed
in terms of the classes p;, for i = 1,2.

Definition A density function is a function d : {0,1}* — [0, c0) satisfying

d(w) > d(w0) ;— d(wl) < (1)

for all w € {0,1}". The global value of a density function d is d(A). The set
covered by a density function d is

Sd= U Cu (2)
we{o,1}*
)21
(Recall that C, = {z € {0,1}*® | w C z} is the cylinder generated by w.) A
density function d covers a set X C {0,1}* if X C S[d].

For all density functions in this paper, equality actually holds in (3.1)
above, but this is not required.

Consider the random experiment in which a sequence z € {0,1}* is cho-
sen by using an independent toss of a fair coin to decide each bit of z. Taken
together, (3.1) and (3.2) imply that Pr[z € S[d]] < d(A) in this experiment.
Intuitively, we regard a density function d as a “detailed verification” that
Pr[z € X] < d()) for all sets X C S[d].

More generally, we will be interested in “uniform systems” of density
functions that are computable within some resource bound.
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Definition An n-dimensional density system (n-DS) is a function
d:N" x {0,1}* — [0,00)

such that d; is a density function for every k € N™. It is sometimes convenient
to regard a density function as a 0-DS.

Definition A computation of an n-DS d is a function d : N**1x {0,1}* — D
such that

| di(w) = d(w) | £ 277

forall k € N*, r € N, and w € {0,1}". Fori = 1,2, a p;-computation of an
n-DS d is a computation d of d such that d € pi. An n-DS d is p;-computable
if there exists a p;-computation d of d.

If d is an n-DS such that d : N® x {0,1} — D and d € p;, then d is
trivially p;-computable. This fortunate circumstance, in which there is no
need to compute approximations, occurs frequently in practice. In any case,
we will sometimes abuse notation by writing & for d, relying on context and
subscripts to distinguish an n-DS d from a computation d of d.

We now come to the key idea of resource-bounded measure theory.

Definition A null cover of a set X C {0,1}* is a 1-DS d such that, for all
k € N, di covers X with global value di(A) < 2-%. Fori = 1,2, a p;-null
cover of X is a null cover of X that is p;-computable.

In other words, a null cover of X is a uniform system of density functions
that cover X with rapidly vanishing global value. It is easy to show that a
set X C {0,1}* has classical Lebesgue measure 0 (i.e., probability 0 in the
above coin-tossing experiment) if and only if there exists a null cover of X.

Definition A set X has p;-measure 0, and we write up,,(X) = 0, if there exists
a p;-null cover of X. A set X has p;-measure 1, and we write pp,(X) =1, if
poi(X¢) =0,

Thus a set X has p;-measure 0 if p; provides sufficient computational
resources to compute uniformly good approximations to a system of density
functions that cover X with rapidly vanishing global value.
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We now turn to the internal measure structures of E = R(p;) and E; =

R(p2)-

Definition A set X has measure 0 in R(p;), and we write p(X | R(p:)) = 0,
if pp;(X 0 R(p:i)) = 0. A set X has measure 1 in R(p;), and we write
p(X | RB(pi)) = 1, if p(X° | R(pi)) = 0. If u(X | R(p:)) = 1, we say that
almost every language in R(p;) is in X.

The following lemma is obvious but useful.
Lemma 3.2. For every set X C {0,1},

pp(X) =0 = pp (X)=0 = PrlcecX]=0

Y U
#X|E) =10 #(X|Ez) =0,

where the probability Pr[z € X] is computed according to the random ex-
periment in which a sequence z € {0,1}* is chosen probabilistically, using
an independent toss of a fair coin to decide each bit of z. '

Thus a proof that a set X has p-measure 0 gives information about the
size of X in E, in E,, and in {0,1}*.

It was noted in Lemma 3.2 that pp(X) = 0 implies pp (X) = 0. In fact,
more is true.

Lemma 3.3. [12] Let Z be the union of all sets X such that pp(X) = 0.
Then pp,(Z) = 0.

(The proof of Lemma 3.3 makes essential use of the fact that p, contains
a universal function for p. It is not the case that p,(Z) = 0.)

It is shown in [10] that these definitions endow E and E, with internal
measure structure. Specifically, for ¢ = 1, 2, if T is either the collection I,
of all p;-measure 0 sets or the collection Zp(p,;) of all sets of measure 0 in
R(p;), then T is a “p;-ideal”, i.e., is closed under subsets, finite unions, and
“pi-unions” (countable unions that can be generated with the resources of
Pi). More importantly, it is shown that the ideal Zgy,) is a properideal, i.e.,
that E does not have measure 0 in E and E; does not have measure 0 in E,.
Taken together, these facts justify the intuition that, if x(X|E) = 0, then
X NEis a negligibly small subset of E (and similarly for E,).

10
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Our proof of the Weak Stochasticity Theorem does not directly use the
above definitions. Instead we use a sufficient condition, proved in [10], for a
set to have measure 0. To state this condition we need a polynomial notion
of convergence for infinite series. All our series here consist of nonnegative

o0
terms. A modulus for a series ). a, is a function m : N — N such that
n=0

o0

Z a, < 27

n=m(3)
for all j € N. A series is p-convergent if it has a modulus that is a polynomial.
A sequence

Za.j,k (j=0,1,2,...)
k=0

of series is uniformly p-convergent if there exists a polynomial m : N? » N
[==]
such that, for each 7 € N, m; is a modulus for the series } ajx. We will

k=0
use the following sufficient condition for uniform p-convergence. (This well-

known lemma is easily verified by routine calculus.)

Lemma 3.4. Let a;x € [0,00) for all j,k € N. If there exist areal ¢ > 0 and
a polynomial g : N — N such that a;; < e forall 7,k € N with k > g(j),
then the series

(=}
Zaj_k (j=0,1,2,...)
k=0
are uniformly p-convergent. a

The proof of the Weak Stochasticity Theorem is greatly simplified by
using the following special case (for p) of a uniform, resource-bounded gen-
eralization of the classical first Borel-Cantelli lemma.

Lemma 3.5.[10]. If d is a p-computable 2-DS such that the series
> dix(A) (G=0,1,2,...)
k=0

are uniformly p-convergent, then

Kp ( Oﬁg S[d,-,k]) = 0.

.8

11
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If we write §; = n U S[djx) and S = U Si, then Lemma 3.5 gives a

sufficient condition for concludmg that S has p-measure 0. Note that each S;
consists of those languages A that are in infinitely many of the sets S[d; ;).

We now formulate our notion of weak stochasticity. For this we need
a few definitions. Our notion of advice classes is standard [6]. An advice
functionis a function h : N — {0,1}*. Given a function g : N — N, we write
ADV(q) for the set of all advice functions h such that |A(n)| < g(n) for all
n € N. Given a language A C {0,1}" and an advice function k, we define
the language A/h (“A with advice A”) by

Afh = {z € {0,1}" | (=, A(|z])} € A}.
Given functions ¢,q : N — N, we define the advice class
DTIME(t)/ADV(q) = {A/h | A € DTIME(t),h € ADV(q)}.

Definition Let ¢t,q,v : N — N and let A C {0,1}*. Then A is weakly
(t,q,v)-stochastic if, for all B € DTIME(t)/ADV(gq) and all C € DTIME(t)
such that |C=,| = v(n) for all sufficiently large n,

- N(ABB)NGCal _1
n—occ Ic=n! - 2'

Intuitively, B and C together form a “prediction scheme” in which B
tries to guess the behavior of A on the set C. A is weakly (¢, g, v)-stochastic
if no such scheme is better in the limit than guessing by random tosses of a
fair coin.

The following lemma captures the main technical content of this section.

Lemma 3.6. Fix c€ N and 0 <y € R and let
WS.,={AC{0,1}"|A is weakly (2°*, cn, 27")-stochastic}.
Then p,(WS.y) =1

Proof. Assume the hypothesis. Let U € DTIME(2(¢+))") be a language that
is universal for DTIME(2°*) x DTIME(2®) in the following sense: For each
1 € N, let _

Ci = {z € {0,1}"|(0*,0z) € U},

12
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D; = {z € {0,1}*|(0%,1z) € U}.

Then DTIME(2°") x DTIME(2") = {(C;, D;)|: € N}.
For all 7,7,k € N, define the set Y; ;« of languages as follows. If k is not
a power of 2, then Y; ;x = 0. Otherwise, if k = 2", where n € N, then

Y= U Yies

z€{0,1}<en

where each

Yiins ={ AC (0,1} | [(C)nl = 27

I(AA(D:i/2)) N (Ci)=n| 1| 1
a.nd' I(O.‘)zn| 2|ZJ+1 }.

It is immediate from the definition of weak stochasticity that the complement

WS:, of WS, satisfies
WS(?.‘[ g U U ﬂ U Yi‘jlk.
1=0 j=0m=0k=m
It follows by Lemma 3.5 that it suffices to exhibit a p-computable 3-DS d
with the following two properties.

(I) The series § d; ;k(}), for 2,5 € N, are uniformly p-convergent.
k=0

(II) Forall i,5,k € N, Y ;i C S(d; ;xl.

Define the function d : N3 x {0,1}* — [0,00) as follows. If k is not a
power of 2, then d; jx(w) = 0. Otherwise, if k = 2", where n € N, then

dije(w)= D  Pr(Yik:lCu),
ze{0,1}Sen
where the conditional probabilities Pr(Y; ;k :[Cuw) = Pr[4 € Y jx:|A € Cu]
are computed according to the random experiment in which the language
A C {0,1}" is chosen probabilistically, using an independent toss of a fair
coin to decide membership of each string in A.

13
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It follows immediately from the definition of conditional probability that
dis a 3-DS. Since U € DTIME(2(*+1)") and c is fixed, we can use binomial
coefficients to (exactly) compute d; jx(w) in time polynomial in i +j +k+ |w].
Thus d is p-computable.

To see that d has property (I), note first that the Chernoff bound, Lemma
2.1, tells us that, for all 1,5,k € N and z € {0,1}® (writing k = 2" and

N =k =2m),
N
Pr(Yi,j,k,z) < 2¢ G+ ’
whence
dijk(A) = > Pr(Yijk:)
z{0,1}<en

N
< 271l 927G +?

N
< PGT

Let a = [}’], let § = I, and fix ky € N such that
k¥ >k +clogk + 2
for all & > ky. Define g: N — N by
9(3) =4*(5 + 1)** + ko.

Then g € p and, for all i,j,n € N (writing k = 2" and N = k7 = k%), we
have that

k>g(j) = N = k%K%
> [4°(j + 1) (K + clogk + 2)
> 2( + 1%k +en+2)
= dijx()) < e,

Thus d; jx(A) < e~** for all 1,7,k € N such that k > g(5). Since § > 0, it
follows by Lemma 3.4 that (I) holds.

Finally, to see that (II) holds, fix ¢, 7,k € N. If kis not a power of 2, then
(II) is trivially affirmed, so assume that k = 2", where n € N. Let A € Y] jx.

14



Fix z € {0,1}5 such that A € Yk, and let w be the (2"*! — 1)-bit
characteristic string of A<,. Then

dijk(w) 2 Pr(Y; jx,:1Cu) = 1,
so A € Cy, C S(d;i jk]. This completes the proof of Lemma 3.6. a
We now have the Weak Stochasticity Theorem.

Theorem 3.7.

(1) For all ¢ € N and v > 0, almost every language A € E is weakly
(27, en, 2™ )-stochastic.

(2) Almost every language A € E; is, for all ¢ € N and v > 0, weakly
(2%, cn, 27 )-stochastic.

Proof. Part (1) follows immediately from Lemma 3.6 via Lemma 3.2. Part
(2) follows from Lemma 3.6 via Lemma 3.2. Part (2) follows from Lemma
3.6 via Lemmas 3.3 and 3.2. : a

4 The Density of Hard Languages

In this section we prove our main result, that for every real a < 1, the
set Ppa_(DENSE®) has measure 0 in E and in E;. Some terminology and
notation will be useful.

Given a query-counting function ¢ : N — Z*, a g-query function is a
function f with domain {0,1}" such that, for all z € {0,1}",

f(=) = (£i(=), s Fagen(2)) € ({0,1}7)70=D.

Each fi(z) is called a query of f on input z. A g-truth table function is a
function g with domain {0,1}* such that, for each ¢ € {0,1}", g(z) is the
encoding of a g(|z|)-input, 1-output Boolean circuit. We write g(z)(w) for
the output of this circuit on input w € {0,1}9(=). A <F_, -reduction is an
ordered pair (f,g) such that f is a g-query function, g is a g-truth table
function, and f and g are computable in polynomial time.
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Let A,B C {0,1}. A <! _,-reduction of A to B is a <F_, -reduction
(f,g) such that, for all z € {0,1}",

[= € A] = g(=)([fi(=) € B]--.[fy=)(=) € B]).

(Recall that [1] denotes the Boolean value of the condition .) In this case
we say that A <P_, B via g. We say that Ais <P_, -reducible to B, and write
A <P _..B, if there exists (f,g) such that A <F_,, B via (f,g).

The proof of our main result makes essential use of the following con-
struction.

Given an n®-query function f and n € N, the sequentially most frequent

query selection (smfq selection) for f on inputs of length n is the sequence

(501 meo), (Sh Q11y1)7 ooy (Sn“) Qn"yyﬂ")

defined as follows. Each Sy C {0,1}". Each Q is an |Si| X n® matrix of
strings, with each string in @ colored either green or red. The rows of Q%
are indexed lexicographically by the elements of S¢. For z € Sk, row = of @
is the sequence fi(z),..., faa(z) of queries of f on input z. If @« contains at
least one green string, then y is the green string occurring in the greatest
number of rows of Q. (Ties are broken lexicographically.) If Q. is entirely
red, then yx = T (“top,” i.e., undefined). The sets Sk and the coloring are
specified recursively. We set Sy = {0,1}" and color all strings in Qo green.
Assume that Si, Q, and yx have been defined, where 0 < k <n®. Ify, =T,
then (Skt+1, @e+1,¥k+1) = (Sk, @k, k). If yi # T, then Sk4q is the set of all
z € Sk such that y, appears in row z of Q. The strings in Q44 are then
colored exactly as they were in Qg, except that all y;'s are now colored red.
This completes the definition of the smfq selection.

For 0 < k < n?, it is clear that every row of @ contains at least k red
strings. In particular, the matrix Q,a is entirely red.

Our main results follow from the following lemma. Recall that WS, is
the set of all weakly (2°", cn,27")-stochastic languages.

Lemma 4.1. For every real o < 1, Pra_u(DENSE) N W55 = 0.

Proof. Let @ < 1 and assume that A <F._,, L via (f,g), where L ¢ DENSE.
It suffices to show that A ¢ WS:,"L. Fix a polynomial p such that |fi(z)] <

p(|z|) for all z € {0,1}" and 1 < i < |z|*. Let € = 152 and fix ng € N such
that the following conditions hold for all n > n,.
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(i) n>2-nl"2%,
(ii) n2 —n® > 2.

Define languages B, C, D and an advice function A : N — {0,1}" as
follows. For all n, C=p, D=n, and h(n) are defined from the smfq selection
for f on inputs of length n as follows: Let k = k(n) be the greatest integer
such that 0 < k < 72 and |Si| > 2"*. (Note that k exists because
|So| = 2™.) We then define

C=n = S,
h(n) = [yo € L]...[yk-1 € L],

and we let D., be the set of all coded pairs (z,z) such that z € Sk, z €
{0,1}*, and g(z)(b1...bna) = 1, where each

b:{zm if fi(z) =y;, 0 <j <k,
' 0 lf f,'(’.':) ¢ {yo, ...,yk_l} .

Finally, we let B = D/h. Intuitively here, B tries to predict A on C. Specifi-
cally, for each n and each z € C, = Sk, the bit [z € B] is a “guessed value”
of the bit [z € A]. The actual value, given by the reduction (f,g) to L, is

[z € A] = g(z)([w: € L]...[wna € L]),

where wy, ..., wne are the entries in row = of the matrix Q. The guessed
value [z € B] = g(z)(b1...bna) uses the advice function k to get the correct
bit b; = [w; € L] when the string w; is red in Qk, and guesses that w; € L
when the string w; is green in Q.

It is easy to see that C, D € DTIME(23") and B € DTIME(2%*)/ADV(3n).

(The bound 3n is generous here.) Also, by condition (i) in our choice of n,,
|Canl > 277" > 28

for all n.
Let
K = {n € N|n > no and |Lgpm| < 2*}-

Note that K is infinite because L is not dense.
We now show that B does a good job of predicting A on C=,, for all
n € K. Let n € K. We have two cases.

17

N PR TP



TR YRR o * EddN wivce o emmmEr

b At

(I) If k = k(n) = n*, then all strings in Qj are red, so all the guesses made
by B are correct, so

I(AA B) Canl = 0.

(II) If & = k(n) < n°, let r be the number of rows in Q, i.e., 7 = |Sk| =
|{C=n|. By our choice of k, we have

|Skqa| < 2n-(HDR < 9mny,

That is, no green string appears in more than 2="*r of the rows of Q.
Moreover, since |L¢p(n)| < 2™, there are at most 2" green strings w in
Qx such that w € L. Thus there are at most 2" -2-"“r = 2"*~""r rows
of Qk in which B makes an incorrect guess that a green string is not in
L; the guesses made by B are correct in all other rows! By condition
(ii) in our choice of ng, then, B is incorrect in at most ir rows of Q.

That is,
(AA B)A Can| < %1-.

In either case, (I) or (II), we have
[(AA B)NCzn| £ %|C=,.|.

Since this holds for all n € K, and since K is infinite,

I(AA B)n C-
|C=al

al L %
Thus B and C testify that A is not weakly (2°%, 3n,27)-stochastic, i.e., that
AgWS;,. o
Our main results are now clear.
Theorem 4.2. For every real a < 1,
£(Ppra-w(DENSE®)|E) = p(Pna—(DENSEF)|E,) = 0.

Proof. This follows immediately from Theorem 3.7 a.n‘d Lemma 4.1. a
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As noted in §1, Theorem 4.2 extends Watanabe’s result [18, 19] that every
<P.-hard language for E is dense, both by relaxing the query bound and by
imposing the measure 0 condition: If a language A4 is even weakly <F._, -
hard for E, in the sense that Ppa_.;(A) does not have measure 0 in E, then
Theorem 4.2 tells us that A must be dense.

Finally, we note the consequence for NP.

Theorem 4.3. If x(NP|E) # 0 or u(NP|E;) # 0, then for all « < 1, every
<Pa._i.-hard language for NP is dense, i.e., NP € P,._..,(DENSE®).

Proof. If NP has a <P,_  -hard language H that is not dense then The-

orem 4.2 tells us that p(NP|E) = p(Ppe-u(H)|E) = 0 and p(NP|E;) =
#(Pna..u(H)IEg) = 0- O

Note that the hypothesis and conclusion of Theorem 4.3 are both stronger
than their counterparts in Ogiwara and Watanabe’s result that

P # NP = NP € Py..(SPARSE).

Note also that Theorem 4.3 holds with NP replaced by PH, PP, PSPACE,
or any other class.

5 Conclusion

The density criterion in Theorem 4.2 cannot be improved, since for every
€ > 0 there is a language A € E that is <F-hard for E; and satisfies |A<n| <
2" for all n. It is an open question whether the query bound n® can be
significantly relaxed. A construction of Wilson (20] shows that there is an
oracle B such that EZ C Pg(n)_u(SPARSE), so progress in this direction will
require nonrelativizable techniques.

The hypothesis that u(NP|E;) # 0, i.e., that NP is not a negligibly small
subset of E,, has recently been shown to have a number of plausible conse-
quences: If u(NP|E;) # 0, then NP contains p-random languages {12]; NP
contains E-bi-immune languages [15]; every <P -hard language for NP has an
exponentially dense, exponentially hard complexity core [5]; and, by Theorem
4.3 above, every <F._,,-hard language for NP (a < 1) is exponentially dense.
Further investigation of the consequences and plausiblity of u(bNP|E;) # 0
and related strong, measure-theoretic hypotheses is clearly indicated.
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