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On Computing Algebraic Functions using Logarithms and
Exponentials

Dima Grigoriev!, Michael Singer?, and Andrew Yao?®

Abstract

Let p be a set of algebraic expressions constructed with radicals and arithmetic operations,
and which generate the splitting field /’ of some polynomial. Let Ng(p) be the minimum
total number of root-takings and exponentiations used in any straightline program for
computing the functions in p by taking roots, exponentials, logarithms, and performing
arithmetic operations. In this paper it is proved that Ng(p) = v(G), where v(G) is the
minimum length of any cyclic Jordan-Hélder tower for the Galois group G of F. This
generalizes a result of Ja’Ja’ [1], and shows that the inclusion of certain new primitives,
such as taking exponentials and logarithms, does not improve the cost of computing such

expressions as compared with programs which use only root-takings.
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1 Introduction

The question of how efficiently one can evaluate expressions such

as (Zl<i<j<n \/(962 —z;)2 + (i — yj)Q) /(3), the mean distance among n points in the
plane, was raised in Shamos and Yuval [8]. A systematic study of this question was given

in Pippenger [6,7]. Let p be a family of algebraic expressions constructed from indeter-
minates using radicals and arithmetic operations. Define the cost of a program to be
the number of root-takings used, with arithmetic operations given for free. Let F be the
extension field generated by the members of p over the field of rational functions with com-
plex coefficients. It was shown [6,7] that, when the members of p are rational functions of
the roots of rational functions, the mimimum cost is equal to the number of the torsion
orders? for the Galois group of F (an Abelian group in this case). An extension was given
in Ja’Ja’ [1], who showed that the minimum cost is equal to the minimum length of any
cyclic Jordan-Hoélder tower for the Galois group of F, provided that F is a finite Galois
extension over the field of rational functions. It is known [1,7] that the former result is a

special case of the latter.

These results can be used to determine the minimum cost for computing p in many
cases. For example, for the mean distance problem, the Galois group can be shown [6] to

be isomorphic to (Zz)(g), which clearly has () torsion orders.

As taking a root y'/? can be simulated by taking the logarithm logy followed by
an exponentiation exp((logy)/d), a natural question is whether the availability of the
lograrithm and exponential operations can substantially reduce the cost of evaluating
algebraic expressions. In particular, can one evaluate the expression ) j<;«, \/Z; using
o(n) exponentiations and logarithm-takings? (Clearly, the expression can be evaluated
with n root-takings.) The possible use of logarithms and exponentials, as well as other

primitives, was mentioned in [8], but was not studied in later papers [1,6,7].

In this paper, we show that under the same assumption as in [1] (i.e. F being a
finite Galois extension), the availability of taking logarithms and exponentials does not
reduce the cost. In particular, we prove that n or more operations are needed to evaluate
Y 1<i<n \/Ti, with arithmetic operations given for free. In the next section, we give a
pregis_e statement of the main result (Theorem 1), after introducing the needed notations
and background. The result is then proved in Section 3; some additional concepts and

results from Differential Algebra (see [2-4]) are used in the proof.

*Any finite Abelian group G can be uniquely decomposed into a direct sum of cyclic groups Za., ®

Zd2 D Zdt, such that d; > 1 and d; is divisible by d;41 for 1 <12 < ¢t. The integers d; are called the

torston orders of GG; t is the number of torsion orders for G.



We remark that the complexity question under other cost measures, in which the cost
of taking a d-th root may depend on d, were discussed in [1,6,7]. We will not pursue it

here.

2 The Main Result

We use the standard teminology in Algebra (as in Lang [3]). In what follows, let Z1 be

the set of all positive integers.

An a-program A is a sequence of instructions of the form z; « Iy, 29 « Iy, -+, 2z, «
I,,, where [; are of the form (r;(x1, 22, -+, @pn, 21, -,zi_l))l/di with r; is a rational func-
tion in x1,--+,%n, 21, -+, 21 with complex coefficients and d; € Z*. We call m the
cost of A. For 1 < ¢ < m, let g;(x1,22,---,2,) be the functions defined inductively by
gi(x1, 20, ) = (ri(z1, 22, @0, g1(T1, -y 20), o+, gic1 (@1, - -,xn)))l/di. We shall

always assume that the r; have been chosen so that the denominators of these func-

tions do not vanish identically. Informally, g;(#1, 232, --,2,) are the values assumed by
the variables z; for input (21,22, --,2,). Let E4 denote the set of all functions of the
form r(z1, 22, Tn, g1(@1, -+, Tp )y -y Gl @1, - - -, T, )) where 7 is arational function with

complex coefficients whose denominator does not vanish identically when the substitution
is made. We note that each element of F4 defines a function algebraic over the field
Fo = C(x1,---,2,) of rational functions in n variables with coeffcients in the complex

numbers C.

A solvable algebraic expression is any element of F4 for any a-program A. Let p =
(f1, f2,- -+, fs) be a finite set of solvable algebraic expressions. We say that p is computed
by A, if each f; € F4. Let N,(p) be the minimum cost of any a-program computing p.
Clearly, N,(p) is finite. For any such p, we can form the field Fo(p) which is the algebraic
extension of Fg formed by adjoining the functions corredponding to the elements fi,-- -, fs

of p.

Following [1], p is said to be normal, if Fo(p) is a finite Galois extension of Fg. In

other words, p is normal if p generates the splitting field of some polynomial over Fy.
For any solvable group G, a cyclic Jordan-Holder tower is a normal tower of groups
G=Gor G- Gy avG, =1,

where G;_1/G; is cyclic for each 1 <7 < m. Let v(G) be the length m of the shortest

cyclic Jordan-Holder tower for G.

The next result is from Ja’Ja’ [1] which we state as a lemma:



Lemma 1 [1] If p is normal, then N,(p) = v(G), where G is the Galois group for Fo(p)

over Fy.

A B-program B is a sequence of instructions of the form z; « Iy, 29 <« Iy, -+, 2 «— I,
where I; are of the form a}/di, exp(a;), or log(a;), where a; = ri(z1, 22, Tn, 21,5 Zi-1)
with 7; is a rational function in xq,---, ., 21, - -, z,_1 with complex coefficients and d; €
Zt. We shall again always assume that the r; have been chosen so that the denominators
of these functions do not vanish identically. Let 7(B) be the number of instructions which
either take roots or exponentials. Let g;(z1,z2,---,2,) be the functions associated with
variables z;, defined exactly as in the case for a-programs. Let Fp denote the set of
all functions of the form r(z1, 22, -+, 20, ¢1(21, -, 20), -+, gm(21, -+, 2,)) where 7 is a
rational function with complex coefficients whose denomincators do not vanish identically

when the substituion is made.

Let p = (f1, f2,- -+, fs) be a finite set of solvable algebraic expressions. We say that
p is computed by B, if each element f; of p equals a function in Ep. Let Ng(p) be the

minimum 7(B) of any f-program B computing p.
Our main result is the following theorem:

Theorem 1 If p is normal, then Ng(p) = v(G), where G is the Galois group for Fo(p)

over Fy.

Corollary 1 If p is normal, then Ng(p) = N.(p).

Corollary 2 Let p = { [}, where f =37,,<, /2. Then Ng(p) =n.

Remark It is an interesting open question whether Ng(p) is equal to N,(p) when p is not

required to be normal.

3 Proof of Theorem 1

Before proving the theorem, we introduce some terms in Differential Algebra (see [2],
[3], [4]). A differential field is a field k together with a set A = {¢;} of mappings §; :
k—k, called derivations, such that eaché; satisfies the conditions é;(a + b) = 6;(a) + 6;(b),
6;(ab) = 6;(a)b+ abd;(b), and 6;(6;(a)) = 6;(8;(a)) for all 6;,6; € A,a,b € k. For example,
Fy can be considered a differential field when we use the derivations A = {6y,---,6,}
where 6;(f) = 0f/0x;. In this paper we are concerned only with differential fields that
come from fields of differentiable functions ¢ and that are extensions of this differential
field. These extensions will be gotten by adjoining elements that can be interpreted as

functions on some suitable region in complex n-space C". We will use Ky to denote the



differential field obtained from the field Fg equipped with these standard derivations A.
Note that if K is a differential field containing K¢ and if @ € K, then the field obtained
by adjoining exp(a) to K gives a differential field. The element exp(a) will satisfy the
differential equations 6;(exp(a)) = 6;(a) - exp(a) for i = 1,---, n. Similarly, the adjoining
of log(a) gives a differential field and the element log(a) satisfies ¢;(log(a)) = 8;(a)/afor
i=1,---,n. We also note that if p = (f1,---, fs) is a set of solvable algebraic expressions
(or, more generally, any set of algebraic functions), the derivations A can be extended

uniquely to derivations on Fg(p) ([4], Lemma 1, p.90).

The classical Galois theory for field theory can be extended to a differential Galois
theory for differential fields (See [3] and [4] for definitions and discussions of these concepts;
[2] contains an excellent exposition of the theory in the case of only one derivation and
the essential results extend, mutatis mutandi to the case of several derivations). This
galois theory can be used to study the structure of the solutions of a system of partial
linear differential equations, provided that the equations generate a differential ideal of
finite linear dimension or, equivalently (see [4], Chapter IV.5), the solution space is a finite
dimensional vector space (i.e., the system is holonomic). This is the case for the equations
defining exponentials and logarithms (see [3] and [4]). To avoid possible confusions, we will
reserve the term Galois group for the classical Galois group, and use the term differential
Galois group when differential fields are being discussed. It should be noted, though, that
if k1 is an algebraic extension of kg, a differential field of characteristic zero, then since all
derivations on kg can be extended uniquely to derivations on ki, we can identify the Galois
group of k1 over ko with the differential galois group of k1 over ko (with respect to these
derivations). To see this note that any differential automorphism is by definition a usual
automorphism. Conversely, for any automorphism ¢ of k; over ky and any derivation ¢
of kq that leaves kg invariant, we have that 6= 0§ o o is a derivation of k; agreeing with
6 on kg. Uniqueness implies that they must be equal on all of k1 and so ¢ must be a
differential automorphism. This remark allows us to apply results concerning differential

galois theory to the galois theory of algebraic extensions of differential fields.

To prove Theorem 1, we first show that if Fo(p) is contained in a certain tower of
differential fields, then there is a tower of algebraic extension fields of no greater length
containing Fo(p). This result (Lemma 2 below) is at the heart of the proof for Theorem
1.

Let Kg C K1 C Ko C ... C Ky, be a tower of differential fields, where each Kj
is obtained from K;_; by adjoining an element w;; u; is either exp(a;) or log(a;) with
a; € K;_1. Let I be the set of 1 < ¢ < m such that u; is exp(a;). We recall from dif-
ferential Galois theory that in this case each Kj is a Picard-Vessiot extension of K;_q.

Furthermore, it is known (see [3, Section 4], or [4, Chapter VI.6]; [2, Lemmas 3.9 and



3.10] contains simillar results for the case of one derivation) that, if ¢« € I, the differential
Galois group of K; over K;_7 is an algebraic subgroup of C*, the multiplicative group
of non-zero complex numbers, and if i ¢ I, then the differential Galois group of K; over
K;_; is an algebraic subgroup of CT, the additive group of complex numbers. Finally, we
note that the proper algebraic subgroups of C* are precisely the finite cyclic groups and
the only proper algebraic subgroup of Ct is the trivial group. This can be seen by noting
that a proper Zariski closed subset of either of these two groups must be finite and that
in the first case, we will have a finite multiplicative subgroup of a field and in the second

case we will have a finite subgroup of a torsion free group.

Lemma 2 If Fo(p) C Ky then v(G) <| 1.

Proof LetF; = Fo(p)nK;jfor1l < i< m. Then Fy, = Fo(p). Note that Fo = Fo(p)nKp.
Let H; be the differential Galois group of K; over K;_1. We claim that the following state-

ment is true for 1 < ¢ < m:

Fact 1 F;is a Galois extension of F;_q.

To prove this fact, let E; be the subfield of elements of K; algebraic over K;_1. E;
is a differential field and is left invariant by all elements of H;. Therefore the differential
Galois group of K; over E; is a normal subgroup of H; and so E; is a Galois extension
of K;j_1. Note that F; = E; N Fo(p). Let p(x) be a polynomial with coeffcients in Fj_;.
If p(z) = 0 has a root in F;, it must split in both E; and Fo(p) (since Fo(p) is a fortiori
normal over F;_;). Therefore p(z) = 0 splits in F; and so F; is a Galois extension of
Fi_1.

Now let J; be the Galois group of F; over F;_;. We claim that the following statement

1s true:

Fact 2 For 1 <i < m,J; is the trivial group if i ¢ I, and a cyclic group if i € I.

To prove this fact, consider the field K;_; - Fj. This is a subfield of K;. Since H; is
an abelian group, all of its subgroups are normal, so K;_q - F; is a normal extension of
K;_; whose differential Galois group L; is the quotient of If; by a closed subgroup of I7;.

Furthermore, since K;_7 - F; is a finite extension of K;_7 , L; is finite and thus coincides



with the Galois group of this extension. If ¢ ¢ I, then H; is either CT or the trivial
group. The only finite quotient of either of these groups by a closed subgroup is trivial.
If ¢ € I, then H; is either C* or a finite cyclic group. The only possible finite quotients
of these groups by closed subgroups are cyclic. To finish the proof of Fact 2, we note that
K;_1 N F; = Fj_1 and so the Galois group J; of F; over F;_q is isomorphic to L; (see [5,
Corollary, p. 400] or [4, Chapter VII, Theorem 1.12]; [2, Lemma 5.10] is a related result

but deals only with the case of one derivation.)

We can now finish the proof of Lemma 2. Let G; denote the group of automorphisms
of Fo(p) leaving Fy fixed. By Facts 1 and 2, one concludes from the Galois theory that
the series G = Gy, G1,Ga, ..., Gy = 1 forms a cyclic Jordan-Hélder tower, with G;_1/G;
being isomorphic to J;. Deleting all i ¢ I, we have a tower of length | I |. Hence
v(G)y<|I]. O

We now turn to the proof of Theorem 1. Observe that Ng(p) < N,(p), which is no
greater than v(G) by Lemma 1. Thus, we only need to prove that Ng(p) > v(G).

Let B be any g-program for computing p. Without loss of generality, we may assume
that no root-taking operations are used in B, as we can replace any instruction z «— r1/4
by two instructions y — (logr)/d, z — exp(y) without changing the value of 7(B). Let
the instructions be z; — I, z9 «— I3, -+, 2z — Ip,. Let g;(21,22,---,2,) be the functions

associated with variables z;.

For 1 <7 < m, let K; be the differential field obatained by adjoining g; to K;_1.
By definition, the functions of Ep correspond to elements of Ky, and Fo(p) C K. By
Lemma 2, this implies v(G') < 7(B). This proves v(G) < Ng(p), and completes the proof

of Theorem 1. Corollary 1 follows immediately from the theorem and Lemma 1.

To prove Corollary 2, we note that p is normal and the Galois group G of Fy(p) over
Fy is isomorphic to Zo™. ;From the result in [1, 7] (see [7, p. 399, Lemma 3.2]), v(G) is
equal to the number of torsion orders of G which is cleary n. Corollary 2 follows from the

theorem immediately.
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