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Abstract. This paper considers how many character comparisons are needed to find all occur-
rences of a pattern of length m in a text of length n. The main contribution is to show an upper
bound of the form of n + O(n/m) character comparisons, following preprocessing. Specifically, we
show an upper bound of n + 8

3(m+1)
(n −m) character comparisons. This bound is achieved by an

online algorithm which performs O(n) work in total and requires O(m) space and O(m2) time for
preprocessing. The current best lower bound for online algorithms is n + 16

7m+27
(n −m) character

comparisons for m = 16k+ 19, for any integer k ≥ 1, and for general algorithms is n+ 2
m+3

(n−m)

character comparisons, for m = 2k + 1, for any integer k ≥ 1.
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1. Introduction. String matching is the problem of finding all occurrences of
a pattern p[1 . . .m] in a text t[1 . . . n]. We assume that the characters in the text
are drawn from a general (possibly infinite) alphabet unknown to the algorithm. We
investigate the time complexity of string matching measuring both the exact number
of comparisons and the time complexity counting all operations. As is standard, the
time complexity refers to operations performed following preprocessing of the pattern;
prepossessing of the text is not allowed. Our goal is to minimize the number of
comparisons while still maintaining a total linear-time complexity and a polynomial-
in-m preprocessing cost.

Note that if the algorithm is permitted to know the alphabet, then there is a finite
automaton which performs string matching by reading each text character exactly
once (which can be obtained from the failure function of [KMP77]). However, in this
case the running time depends on the alphabet size.

Perhaps the most widely known linear-time algorithms for string matching are
the Knuth–Morris–Pratt [KMP77] and Boyer–Moore [BM77] algorithms. We refer to
these as the KMP and BM algorithms, respectively. The KMP algorithm makes at
most 2n −m + 1 comparisons and this bound is tight. The exact complexity of the
BM algorithm was an open question until recently. It was shown in [KMP77] that
the BM algorithm makes at most 6n comparisons if the pattern does not occur in the
text. Guibas and Odlyzko [GO80] reduced this to 4n under the same assumption.
Cole [Co91] finally proved an essentially tight bound of 3n − Ω(n/m) comparisons
for the BM algorithm, whether or not the pattern occurs in the text. Colussi [Col91]
gave a simple variant of the KMP algorithm which makes at most 3

2n comparisons.
Apostolico and Giancarlo [AG86] gave a variant of the BM algorithm which makes at
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most 2n−m+ 1 comparisons. Crochemore et al. [CCG92] showed that remembering
just the most recently matched portion reduces the upper bound of BM from 3n to
2n comparisons.

Recently, Galil and Giancarlo [GG92] gave a string-matching algorithm which
makes at most 4

3n comparisons. This was the strongest upper bound for string match-
ing known prior to our work. In fact, [GG92] gave this bound in a sharper form as a

function of the period z of the pattern; the bound becomes n + min{1
3 ,

min{z,m−z}+2
2m }

(n−m).
Galil and Giancarlo [GG91] gave a lower bound of n(1 + 1

2m ) comparisons. For
online algorithms, [GG91] showed an additional lower bound of n(1+ 2

m+3 ). An online
algorithm is an algorithm which examines text characters only in a window of size
m sliding monotonically to the right; further, the window can slide to the right only
when all matching pattern instances to the left of the window or aligned with the
window have been discovered. Recently, Zwick and Paterson gave additional lower
bounds, including a bound of 4n

3 for patterns of length 3 in the general case [ZP92].
Our contribution is a linear-time online algorithm for string matching which makes

at most n(1 + 8
3(m+1) ) character comparisons. Our algorithm requires O(m) space

and O(m2) preprocessing time and runs in O(m + n) time overall (exclusive of pre-
processing). Independently, Breslauer and Galil discovered a similar algorithm which
performs at most n + O(n logm

m ) comparisons [BG92]; this algorithm requires O(m)
preprocessing space and time and runs in linear time. Recently, Hancart [Ha93] and
Breslauer et al. [BCT93] have independently shown an upper and lower bound of
(2 − 1

m )n on the number of comparisons required for string matching when compar-
isons must involve only text characters in a window of size one sliding monotonically
to the right.

Nearly matching lower bounds are given in a companion paper [CHPZ92]. They
show the following bounds: for online algorithms, a bound of n + 16

7m+27 (n − m)
character comparisons for m = 16k + 19, for any integer k ≥ 1; and for general
algorithms, a bound of n + 2

m+3 (n −m) character comparisons, for m = 2k + 1, for
any integer k ≥ 1.

Even if exponential (in m) preprocessing and exponential space are available, it
is not clear that the above upper bound can be achieved (assuming that a result
independent of the alphabet size is sought). The difficulty is that text characters
which are mismatched may need to be compared repeatedly. In order to minimize
the total number of comparisons, this has to be offset by other text characters which
do not need to be compared. The hardest patterns to handle are those which have
proper suffixes which are also prefixes of the pattern. We refer to such substrings as
presufs.1 Our algorithm has two parts: a basic algorithm and a presuf handler. The
basic algorithm handles primary patterns, i.e., patterns with no presufs; this is also
the core of the algorithm for the general case. The presuf handler copes with presufs;
its design constituted the main challenge in this work. Understanding the structure
of the presufs was a key ingredient in its design. Understanding this structure also
led to the new lower bound constructions given in [CHPZ92].

The flavor of the algorithm is as follows. Initially, the pattern is aligned with the
left end of the text. Repeatedly, an attempt to match the pattern against the text
is made. When a mismatch is found or the pattern is fully matched the pattern is
shifted to the right. The goal is to maximize this shift without missing any possible

1 Presufs are also called borders in the literature. Strings without presufs are called primary
strings.
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matches. The basic algorithm has the property that the length of each shift is at
least equal to the number of comparisons since the previous shift (or the start of the
algorithm). This results in an algorithm that performs at most n comparisons if the
pattern has no presuf (the algorithms of [GG92] and [CP89] also have this property).

The presuf handler cannot quite match the performance of the basic algorithm
(which is not surprising given that the lower bounds for this problem are larger than
n comparisons). Here the approach is to follow the basic algorithm until a suffix
which is also a prefix is matched. The only possible matches in which a new instance
of the pattern overlaps the current partially (or fully) matched instance arise with
an overlap by a presuf. Ignoring, for the moment, problems introduced by periodic
patterns, it is the case that at most one of these overlapping pattern instances can
result in a match. An elimination is performed to determine which one, if any, of the
overlapping pattern instances might result in a match. Following this elimination,
a further nontrivial sequence of comparisons is made; this can lead to one of two
situations: another match of a suffix which is also a prefix, or a mismatch which
causes a return to the basic algorithm. The presuf handler is invoked at most once for
every m

2 text characters and performs a number of comparisons at most two greater
than the number of characters shifted over. (Actually, there are two possible scenarios:
an invocation after 3

4m text characters and at most two excess comparisons, or an
invocation after m

2 text characters and at most one excess comparison.) Periodic
patterns have the added difficulty that the presuf handler could be invoked more
frequently. In this case, we show the additional fact that if the presuf handler is
invoked after fewer than m

2 text characters, then the number of comparisons is at
most the number of characters shifted over.

This structure of the algorithm of Breslauer and Galil is similar; their analogue
of the presuf handler works in a completely different way, however.

Section 2 provides several definitions. The basic algorithm is described in section
3. In section 4, the presuf handler for nonperiodic strings is presented. Section 5 gives
a technical construction deferred from section 4. Finally, in section 6, the result is
extended to periodic patterns.

We remark here that the properties of strings which we develop in section 4 and
later are mostly new and appropriate references are given otherwise.

2. Definitions and preliminaries. A string v is a presuf of p if it is both a
proper suffix and a proper prefix of p. Let x be the length of the largest presuf of
p. The period of a pattern p with length m is defined to be m − x. x is called the
s-period (or shift period) of p. A string p is cyclic in string v if it is of the form vk,
k > 1. A primitive string is a string which is not cyclic in any string.

A string p is periodic if p = wvk, where w is a (possibly null) proper suffix of v
and k > 1. The smallest such v is called the core of p and the corresponding w is
called the head of p. Note that the core is primitive. A cyclic shift of p is any string vu
where p = uv. |v and v| refer, respectively, to the leftmost and rightmost characters
in string v; on occasion, we will call these characters, respectively, the left end and
right end of v. Two characters are said to be distance d apart if they are separated
by d− 1 other characters.

For the rest of the paper, let p be a pattern with length m. Let the text t have
length n. p[i] denotes the ith character of p, reading from the left end; i is called the
index of p[i] in p. The same notation and terminology is used for string t.

The algorithm will be comparing the pattern with substrings of the text with
which the pattern is aligned; as the algorithm proceeds, the pattern is shifted to the
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Fig. 1. Periodicity.

right across the text. Each possible alignment of the pattern with the text is called
an instance of the pattern. Note that an instance is not necessarily an occurrence.

For each pair of overlapping instances of the pattern a location at which the two
differ, if any, will be precomputed. This location is called the difference point of the
two instances. Note, however, that for a given pair, a difference point may not exist,
but this can happen only if the pattern has a nonempty presuf. Let p1 and p2 denote
two pattern instances, where p1[i] is aligned with p2[1]; then difi is the difference
point if any; i.e., p1[difi] 6= p2[difi − i+ 1].

Let q be a pattern instance. Those pattern instances to the right of q, overlapping
q, but which do not have a difference point with q are called the presuf overlaps of q.

We quote a few standard results concerning strings.

Lemma 2.1. Let w be a presuf of string v. If |w| > |v|
2 , then v is periodic.

Proof. See Fig. 1. Let s = |v| − |w|. Let v′ denote string v shifted distance
s to the right. Then the portion of v′ overlapping v is presuf w which matches the
corresponding portion of v. Let u denote the suffix of v′ of length s. An easy induction
shows that v = xuk for some k ≥ 2, where x is a proper suffix of u.

The following appear in different forms in [Lo82] (see Propositions 1.3.2, 1.3.4,
and 1.3.5 there).

Lemma 2.2 (see [LS62, FW65]). If x and y are two distinct periods of a string v
such that x+ y ≤ m+ gcd{x, y}, then gcd{x, y} is also a period of v.

Lemma 2.3. Suppose that v = xy, where both x and y are presufs of v. Then v
is cyclic in some string w of length gcd{|x|, |y|}.

Lemma 2.4. If v is periodic and can be expressed both as x1u
k1
1 and x2u

k2
2 , where

xi is a suffix of ui, u1 > u2, and k1, k2 ≥ 2, then either u1 is cyclic in u2 or both u1

and u2 are cyclic in some smaller string.

3. The basic algorithm. The algorithm in this section also appears in [Col91]
and is also exposed in [GG92]. We describe it again for the sake of completeness.

If all the characters in p are identical, then it is easily seen that the KMP algorithm
makes at most n character comparisons. Further, if m = 2 and p consists of two
distinct characters, then the BM algorithm makes at most n character comparisons.
Henceforth, we assume that m > 2 and that p has at least two distinct characters.

The algorithm proceeds by eliminating pattern instances as possible matches. It
repeatedly performs the following two steps: first, it attempts to match the leftmost
surviving pattern instance with the aligned text substring; then, it shifts to the next
leftmost surviving pattern instance.

After a shift occurs, the strategy followed depends on the nature of the shift. The
order in which pattern characters are compared ensures that all the shifts satisfy one
of the following two properties.
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1. A shift has size greater than or equal to the number of comparisons made
since the previous shift. This is called a basic shift.

2. When property 1 is not true, a proper prefix x of p is completely matched
with the text after the shift. Moreover, x is also a suffix of p. This is called
a presuf shift.

Following a basic shift, the basic algorithm is continued; a presuf shift results in a
transfer to the presuf handler.

The following observation is the key to the basic algorithm. Consider two overlap-
ping instances of the pattern p. Then comparing either of the two pattern characters
at their difference point with the aligned text character is sure to eliminate one of
the two pattern instances from being a potential match. As long as the overlap is not
a presuf of p, there will be a difference point. This is exactly the notion of duelling
introduced by Vishkin [Vi85].

More formally, let pa and pb be the two leftmost surviving pattern instances,
where pb is not a presuf overlap of pa. Let d be the difference point of pa and pb.
pa[d] is compared with the aligned text character. A match eliminates pb; a mismatch
eliminates pa.

Next, we give the exact sequence of comparisons made by the above strategy. We
precompute the following sequence S. S is the sequence of indices dif2, dif3, . . . , difm
omitting repetitions and undefined indices. Henceforth, where no ambiguity will re-
sult, we will use the sequence S to refer both to the indices it contains and to the
corresponding characters in pa.

The characters in pa are compared with their corresponding text characters in two
passes, stopping if a mismatch is found. In pass 1, those characters in pa contained
in S are compared in sequence. If all of these match, then the remaining pattern
characters are compared from right to left in pass 2.

Lemma 3.1. If a mismatch occurs at the character given by the kth index in S,
then the resulting shift has size at least k.

Proof. Let the kth index in S be difl. Note that k < l. Recall that l ≤ difl ≤ m
and p[difl] 6= p[difl − l+ 1]). Suppose for a contradiction that the shift was of length
j < k. Let pa and pb be the pattern instances as specified in the algorithm above,
before this shift. Note that pb becomes pa after the shift; i.e., pb is pa shifted j units.
But then pa and pb have a difference point and hence difj+1 is defined. difj+1 is the
ith index in S, for some i ≤ j; hence since j < k, difj+1 occurs prior to difl in S.
Therefore, pa[difj+1] would have been matched against the text and one of pa or pb
eliminated before pa[difl] was compared. The contradiction proves the lemma.

Consequently, all shifts resulting from mismatches in pass 1 are basic shifts. When
a basic shift is made, the basic algorithm is restarted. It is easy to see that if all shifts
are basic shifts, then the total number of comparisons made is upper bounded by n.

Next, suppose that all comparisons in pass 1 result in matches.

Lemma 3.2. Suppose pass 2 results in a mismatch at pa[l]. The resulting shift
has length at least l.

Proof. Suppose for a contradiction that the resulting shift has length i, i < l. Let
pb be pa shifted distance i. Then l is a difference point for pa and pb; hence one of pa
and pb would have been eliminated in pass 1, a contradiction.

Consequently, for each shift resulting from pass 2 with length less than the number
of comparisons made since the previous shift, a proper prefix of p (which is also a
suffix of p) is matched with the text; i.e., it is a presuf shift. The main challenge in
minimizing the exact number of comparisons is to handle presuf shifts.
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Preprocessing. The sequence S, as defined above, is not unique. We show that a
particular instance of S can be precomputed in a manner akin to the computation of
the KMP shift function or the BM shift function. The KMP shift function comprises,
for each j, 1 < j ≤ m, a number sj . sj is the largest i, i < j, such that p[1 . . . i− 1] =
p[j − i + 1 . . . j − 1] and p[i] 6= p[j]; note that i = difj−i+1. If no such i exists,
then sj is defined to be zero. Consider the set of all those values of j for which
sj > 0. Furthermore, let this set be ordered by the increasing value of j−sj +1. This
provides the sequence S. For every k, 2 ≤ k ≤ m, if difk is defined, then for some
l ∈ S, k ≤ l ≤ m, p[1 . . . l − k] = p[k . . . l − 1] and p[l − k + 1] 6= p[l]; hence the value
difk occurs in S (though not necessarily indexed by k). Finally, it is straightforward
to compute S in O(m) time.

4. The presuf handler. In this section, the presuf handler for nonperiodic pat-
terns p is described. This presuf handler also deals with some presuf shifts for periodic
p, as specified in the next few paragraphs.

With each presuf shift, we associate a presuf x′1 of p, defined as follows. If p is not

periodic, then x′1 is the longest presuf of p. Otherwise, suppose p = upv
ip
p is periodic

with core vp and head up. Then if the presuf of p matching the text is at least |vp|
long, x′1 = upv

ip−1
p . Otherwise, if the above presuf is shorter than |vp|, then x′1 is

defined to be the longest presuf of p of length less than |vp|.
In this section, we give an algorithm for handling presuf shifts for the case |x′1| <

m
2 . The case |x′1| ≥ m

2 is considered in section 6. Note that |x′1| < m
2 always holds

for nonperiodic p and may hold for periodic p.
Consider the situation immediately following a presuf shift. Some prefix of p,

which is also a presuf, matches the text substring that it is aligned with. It is con-
venient for the presuf handler to assume that the pattern was shifted by m − |x′1|
characters and that x′1 matches the text. Note that this will not be the case if pass 2
in the basic algorithm mismatches before x′1 is completely matched. A simple check
will prevent the declaration of any incorrect complete match that might result from
the above assumption. To facilitate this check, a variable tlast is used. Suppose pass
2 in the basic algorithm ends in a mismatch. Then tlast is set to the index of the text
character where the mismatch occurred. Otherwise, if no mismatch occurs, tlast ← φ.

Since |x′1| < m
2 , p = x′1ux

′
1, for some string u. Let tA be the substring of the

text aligned with the prefix x′1 of p immediately following the presuf shift; note that
x′1 matches tA. Order all the presufs of x′1 by decreasing length and let this order
be x1, x2, x3, . . . , xk, xk+1, where xk is the smallest nonnull presuf of x′1 and xk+1 is
the null string and hence a trivial presuf of x′1. Note that x1 = x′1. Let the future
instances of p (i.e., potential match instances) before its left end slides beyond tA|, in
left to right order, be p1, p2, . . . , pk. Let pk+1 be the pattern instance whose left end
is to the immediate right of tA|. Then pi, 1 ≤ i ≤ k + 1, is the pattern instance with
the prefix xi of p aligned with the suffix xi of tA. xi is said to be the presuf associated
with pi. p1, p2, . . . , pk, pk+1 are called the presuf pattern instances.

Lemma 4.1. If |x′1| < m
2 , then at most one of p1, . . . , pk, pk+1 can lead to a

complete match.
Proof. This is a proof by contradiction. Suppose some two of them, say pi and

pj , i < j, each result in a complete match. It follows that there is a prefix of p of size
m− |xi|+ |xj | that matches a suffix of p. Since |xi| − |xj | < m

2 , m− |xi|+ |xj | > m
2 ;

also, |xi|− |xj | ≤ |x′1|. This implies that p is periodic with core of length at most |x′1|,
contrary to our assumption.

The presuf handler begins by eliminating all but at most one of p1, p2, . . . , pk, pk+1.
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This is carried out by a procedure that performs j ≤ k comparisons; at most two of
these comparisons are unsuccessful. We seek to minimize the number of unsuccessful
comparisons because while successful comparisons can be remembered, unsuccessful
comparisons may lead to repeated comparison of some text characters.

The elimination procedure is described in section 4.1. The remainder of the presuf
handler procedure for all but two special cases is given in section 4.2, and its analysis
is presented in section 4.3. The special cases are handled in section 4.4. Finally, data
structure details are described in section 4.5.

4.1. Elimination strategy. Before describing the exact sequence of compar-
isons made by the elimination strategy, we need to understand some structural prop-
erties of these overlapping instances of p.

Lemma 4.2. Suppose xi = uvl is the ith presuf, where u is a proper suffix of v,
v is primitive, and l ≥ 2. Then xi+1 = uvl−1.

Proof. Certainly, uvl−1 is a presuf, so the only question is whether there is a presuf
x between uvl and uvl−1. Suppose there is such an x. Since |uvl−1| < |x| < |uvl| and
since x is a prefix of uvl, the suffix of x of length |v| is a cyclic shift of v. But x is a
suffix of uvl, which implies that a proper cyclic shift of v matches v. By Lemma 2.3,
v is cyclic, contrary to our assumption.

Lemma 4.3. The presuf pattern instances can be partitioned into g = O(logm)
groups2 A1, A2, . . . , Ag. The groups preserve the left-to-right ordering of the pattern
instances ; i.e., the pattern instances in group Ai are all to the left of those in group
Ai+1, for i = 1, . . . , g − 1. Let Bi be the set of presufs associated with the pattern
instances in Ai. Then either Bi = {uivkii , . . . , uiv3

i , uiv
2
i } or Bi = {uivkii , . . . , uivi}

or Bi = {uivkii , . . . , uivi, ui}, where ki ≥ 1 is maximal, ui is a proper suffix of vi, and
vi is primitive.

Proof. The proof is by construction. The groups are constructed in left-to-right
order. Inductively suppose Ai is being built presently and all presuf pattern instances
with associated presufs longer than uiv

ki
i have been placed in groups to the left of Ai.

{uivkii , . . . , uiv2
i } are all added to Bi. uivi is also added if and only if it is not

periodic; otherwise, uivi starts set Bi+1. By Lemma 4.2, all presuf pattern instances
with associated presufs longer than uivi are in group Ai or by induction in a group
to its left. In addition, if ui is empty and vi has no presufs, then ui is also added.

The maximality of ki can be seen as follows. Suppose ki is not maximal; i.e., there
exists a presuf w of the form uiv

ki+1
i , ki+1 ≥ 2. By the inductive hypothesis describing

the construction, this presuf would already be in one of the groups B1, . . . , Bi−1. By
Lemma 4.2, it follows that w is the smallest presuf in Bi−1. w is clearly periodic. By
construction, w = ui−1v

2
i−1 = uiv

ki+1
i , ki + 1 ≥ 2. Then by Lemma 2.4, vi−1 must

be cyclic, which contradicts the assumption that vi−1 is primitive. Thus ki must be
maximal.

This shows that the presuf pattern instances are partitioned into groups. It
remains to show that there are only O(logm) groups. Let xji be the leftmost presuf
in Bi. If xji+1

= uivi, then |xji+1
| ≤ 2

3 |xji |, and otherwise |xji+1
| ≤ 1

2 |xji |. (The
latter claim follows because xji+1

is both a prefix and a suffix of xji and this prefix
and suffix are nonoverlapping.) The O(logm) bound follows immediately.

Lemma 4.4. The groups satisfy the following properties.
Property 1. Consider the presufs xi corresponding to the pattern instances pi in

some group Aj. For j 6= g, all of these presufs xi, except possibly the rightmost one,

2 Actually, a sharper bound of logφm groups is known [KMP77, B94], where φ is the golden ratio.
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are periodic with the same core and head. For j = g, all but the rightmost two presufs
are periodic with the same core and head.

Property 2. Let pi be the rightmost instance in its group. If xi is periodic then
so is xi+1.

Property 3. Suppose pi is the rightmost instance in its group Aj and xi is periodic
with head u and core v; then |xi+2| < |v|. Further, suppose xi+1 = u′(v′)l, where v′

is primitive and u′ is a proper suffix of v′. Then |v′| > |u|.
Property 4. Suppose pi is the rightmost instance in its group Aj, where |Aj | > 1;

further, suppose that xi−1 is periodic with core v and xi is not periodic. Then |xi+1| <
|v|.

Property 5. Both pk and pk+1 are in the group Ag.

Proof. Let pi be in group Aj .

Property 1 is true by definition. To see Property 2, note that since xi is periodic,
xi = uvl, where u is a proper suffix of primitive v and l ≥ 2. But if l > 2, then
the pattern instance corresponding to either presuf uv2 or presuf uv would be the
rightmost item in Aj . Thus l = 2; however, by definition, the pattern instance
corresponding to uv is not in Aj only if uv is periodic. Finally, by Lemma 4.2,
xi+1 = uv.

Property 3 can be seen as follows. As in the previous paragraph, xi = uv2 and
xi+1 = uv. Again uv is periodic; that is, uv = u′(v′)l for some l ≥ 2, where u′ is
a proper suffix of v′ and v′ is primitive. By Lemma 4.2, xi+2 = u′(v′)l−1. Suppose
|v′| ≤ |u|. Since v is primitive, there must be a substring v′ of u′(v′)l = uv which
straddles the boundary between u and v. Thus the substring of u′(v′)l aligned with
the rightmost |v′|-sized substring of u is a proper cyclic shift of v′. But since u is
a suffix of v this substring is also identical to v′. By Lemma 2.3, v′ is cyclic, a
contradiction. Thus |v′| > |u| and hence |xi+2| < |v|.

Property 4 can be seen as follows. As with the previous properties, it follows
that xi = uv, where u is a proper suffix of v and v is primitive. If |xi+1| ≥ |v|, then
|xi+1| > |xi|/2. But xi+1 is a presuf of xi; by Lemma 2.1, xi would be periodic, a
contradiction.

Property 5 can be seen as follows. Since xk is the smallest nonnull presuf of p, no
nonnull prefix of xk matches a suffix of xk. Therefore, all strings in Bg have the form
ugv

l
g, 0 ≤ l ≤ kg, where ug is the null string and vg = xk. Since both xk and xk+1

have this form, Property 5 is true.

Remark. The elimination strategy described below and the algorithm in section
4.2, which uses this elimination strategy to handle presuf shifts, work for most pat-
terns p. However, there are some patterns for which presuf shifts must be handled
differently. The reason for this is made clear in section 5, which gives a technical
portion of the analysis of the algorithm in section 4.2. These exception patterns are
precisely those in which xk, the smallest nonnull presuf, is a single character and g,
the number of groups, is one. Presuf shifts for these exception patterns are handled
separately in section 4.4.

Definition. A clone set is a set Q = {s1, s2, . . .} of strings, with si = uvki ,
where u is a proper suffix of primitive v and ki ≥ 0. A set U of pattern instances is
half-done if |U | ≤ 2 or the set of associated presufs forms a clone set.

The following lemma is the key to our elimination strategy.

Lemma 4.5. Consider three presuf pattern instances pa, pb, pc, a < b < c. (The
order of the indices corresponds to the left-to-right order of the pattern instances.)
Suppose the set {xa, xb, xc} is not a clone set. Then there exists an index d in p1
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Fig. 2. Overlapping pattern instances.

with the following properties. The characters in p1, p2, . . . , pa aligned with p1[d] are
all equal ; however, the character aligned with p1[d] in at least one of pb and pc differs
from p1[d]. Moreover, m− |xa|+ 1 ≤ d ≤ m; i.e., p1[d] lies in the suffix xa of p1.

Proof. The substrings of p1, . . . , pa aligned with the suffix xa of p1 are all identical
to the string xa. Let the substring of pb (respectively, pc) aligned with the suffix xa
of p1 be yb (respectively, yc). See Fig. 2. It suffices to show that at least one of yb or
yc is not identical to xa. Suppose for a contradiction that yb = yc = xa.

Let yb = zbxb and yc = zcxc. Note that zb is a suffix of zc. Since yb = yc, a simple
induction shows that yb = uvl, where u is a proper prefix of v and l ≥ 1, |v| is either
|xb| − |xc| or some proper divisor of |xb| − |xc|, and v is primitive. Since xa = yb, if
l ≥ 2, xa is periodic with core v.

First, suppose xa is periodic with head u and core v. By Lemma 4.2, if |xb| > |uv|,
xb = uvh for some h, 1 ≤ h < l. If |xb| < |uv|, since |xb| − |xc| is a multiple of |v|,
|xb| = |v| + |xc|, so xb = wv for some string w, |w| < |u|. But then wv is a prefix
of uv, which implies that v is cyclic; this is a contradiction. Thus xb = uvh. Since
|xb| − |xc| is a multiple of |v|, xc = uvj for some j, 0 ≤ j < h, contradicting the fact
that {xa, xb, xc} is not a clone set.

Consequently, xa = uv. If xa is not periodic, then |xb| < |xa|
2 and |v| ≤ |xb|−|xc| <

|xa|
2 . But then |xa| < 2|v| < |xa|, a contradiction. If xa is periodic, xa = u′(v′)k for

some k ≥ 2. Also, |v′| > |u| by Property 3 of Lemma 4.4. Hence |xb| < |v|. But
|xc| ≤ |xb| − |v| < 0, a contradiction. .

Lemma 4.5 implies that a comparison of p1[d] with the aligned text character has
the following effect: if it is a mismatch, all of p1, . . . , pa are eliminated, while if it is
a match, at least one of pb and pc is eliminated.

Lemma 4.5 enables the elimination of essentially all but one group of pattern
instances with at most one mismatch. At each step, for the rightmost d yielded by
Lemma 4.5, p1[d] is compared with the aligned text character. If there is a mismatch,
the surviving set of pattern instances is half-done, as we show in the following lemma.
If there is no such d, the surviving set of pattern instances is half-done by Lemma
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Fig. 3. (a) pi1 ∈ A1. (b) pi1 6∈ A1.

4.5. This procedure comprises Phase 1 of the elimination procedure.

Lemma 4.6. If there is a mismatch in Phase 1 of the elimination procedure, the
set X of surviving pattern instances is half-done.

Proof. Suppose it was not; i.e., for some subset {pa, pb, pc} of X, {xa, xb, xc} is
not a clone set. The characters in the xi suffix of p1, for i = a, b, c, match the aligned
substring of pi. Hence the mismatch at p1[d], which created set X, lies to the left of
the suffix xi of p1, for i = a, b, c. However, by Lemma 4.5, at least one of pa, pb, and
pc could have been eliminated by a comparison made within the suffix of p1 of size
max{|xa|, |xb|, |xc|}. This contradicts the choice of d as the rightmost index at which
a comparison eliminates some pattern instance.

The elimination among the remaining half-done set of pattern instances also re-
quires at most one mismatch.

Lemma 4.7. Let O = {pi1 , pi2 , . . . , pil}, l ≥ 2, be an uneliminated half-done set
and let pi1 ∈ Ar. Then xij = uvh−j, where u is a proper suffix of primitive v and
h ≥ l. Further, there exists an index d such that the characters in {pi1 , pi2 , . . . , pil−1

}
aligned with pil [d] are all equal, but differ from the character pil [d]. pil [d] is aligned
with or to the left of pi1 [m]. In addition, if pi1 6∈ A1 then pil [d] is to the right of p1[m]
and within distance |xo|− |xi1 | of p1[m], where po is the rightmost pattern instance in
Ar−1. If pi1 ∈ A1, then pil [d] is to the right of tA and aligned with or to the left of
p1[m].

Proof. Each xij , 1 ≤ j ≤ l, is of the form uvhj , for some hj ≥ 0, where u is a
proper suffix of primitive string v.

See Fig. 3. Let y denote the string pi1 if pi1 ∈ A1 and the string xo otherwise.
Clearly, y cannot be periodic with core v. If pi1 ∈ A1, then let w denote the suffix of
pi1 of length m− |x1|+ |v|. If pi1 6∈ A1, then let w denote the substring of pi1 which
has length |xo| − |xi1 |+ |v| and which overlaps p1 in exactly |v| characters. Note that
w 6= uvh

′
, where h′ > 0; otherwise, by Lemma 2.3 and the fact that v is primitive,

the suffix of y of length |w| − |v| is cyclic in v and therefore y is periodic with core v,
contrary to our assumption.

Let w′ be the smallest suffix of w which is not of the form u′vh
′
, with u′ a suffix

of v and h′ > 0. Define d to be the index in pi1 corresponding to |w′. Clearly,
|w′| > |xi1 | ≥ (l− 1)|v|. Therefore, pi1 [d+ (l− 1)|v|] is a character in w. In addition,
if pi1 ∈ A1, then |w′| > |x1| and therefore pi1 [d + (l − 1)|v|] is aligned with or to the
left of p1[m]. The lemma follows if pil [d] is aligned with pi1 [d + (l − 1)|v|] and the
characters in pi1 , . . . , pil−1

which are aligned with pil [d] are all identical and different
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Fig. 4. The half-done set is complete.

from pil [d]. We show that these two claims are indeed true.

First, we show that |xij |− |xij+1 | = |v|, for 1 ≤ j < l. Suppose for a contradiction

that there is a pattern instance pb 6∈ O with xb = uvh
′′
, h′′ > 0, and there are pattern

instances pa, pc ∈ O, pa to the left of pb and pc to the right of pb. See Fig. 4. Let
pa[e] be the rightmost character in pa such that the substring of pa which starts at
pa[e] and overlaps p1 is longer than |xa| and not periodic with core v. Consider the
character p1[e′] aligned with pc[e]. The portions of pa, pb, and pc which overlap the
suffix of p1 to the right of e′ are all identical. If Phase 1 had stayed to the right of
e′, then pa, pb, and pc would all have been eliminated by the mismatch at the end
of Phase 1. Thus p1[e′] must have been compared in Phase 1. A mismatch at e′

eliminates pa and pb while a match eliminates pc. Either way, a contradiction results.

Finally, note that the character in pij , 1 ≤ j ≤ l − 1, which is aligned with pil [d]
is precisely the character pil [d + (l − j)|v|]. But pil [d] 6= pil [d + |v|] = pil [d + 2|v|] =
· · · = pil [d+ (l − 1)|v|].

Corollary 4.8. To eliminate all but one of the pattern instances in any half-
done set (in particular, the Phase 1 survivors set) {pi1 , pi2 , . . . , pij}, it suffices to
compare a sequence of characters with the property that any two consecutive characters
in the sequence are distance |v| apart, where v is the core of xi1 . Further, the pattern
instances in this set are eliminated in right-to-left order by this comparison sequence
(i.e., in decreasing value of j).

Let pil be as in Lemma 4.7; the character in pi1 aligned with pil [d] is compared
with the aligned text character. A match eliminates pil ; a mismatch leaves only pil
surviving. Iteration of this step ends with one pattern instance surviving after at
most one mismatch. This comprises Phase 2 of the elimination procedure.

The sequence of comparisons made in Phase 2 is clearly a right-to-left sequence.
If p1 is eliminated in Phase 1, then all comparisons in Phase 2 are made to the right
of the characters compared in Phase 1. Otherwise, if p1 is not eliminated in Phase 1,
all comparisons in Phase 2 are made to the left of the characters compared in Phase
1.

We recapitulate the elimination strategy now. In Phase 1, characters in p1 at in-
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dices given by a precomputed sequence S1 are compared in sequence until a mismatch
occurs or until the sequence is exhausted. Associated with a mismatch at the ith
comparison given by S1 is an auxiliary sequence S2i of indices. If a mismatch occurs
at the ith comparison in S1, Phase 2 begins and comparisons are now made according
to the auxiliary sequence S2i . A mismatch at any index in the relevant auxiliary
sequence completes the elimination process as does the exhaustion of that auxiliary
sequence. In either case, only one pattern instance from the set {p1, . . . , pk, pk+1}
survives.

Let |S1| = j. The sequences S1 and S21
, S22

, . . . , S2j collectively form a tree ET
(the elimination tree). ET is a binary tree. Each internal node x of ET stores an
index indicating the comparison to be made. Each internal node has two children.
The computation continues at the left child if the comparison at x is successful and at
the right child otherwise. The computation starts at the root of ET . Each external
node stores the one pattern instance to survive the two phases of comparisons leading
to that external node. The external nodes are also called terminal nodes. Note that
no pattern instance pi can be the survivor at two distinct terminal nodes of ET . This
is because one of the two outcomes of the comparison at the least common ancestor
of these two nodes in ET is bound to eliminate pi. It follows that the size of ET is
O(k).

The total number of mismatches occurring in the elimination process is at most
two because each phase terminates when a mismatch occurs.

Lemma 4.9. All but at most one of p1, . . . , pk, pk+1 can be eliminated by making
up to k comparisons using the O(k)-sized binary comparison tree ET . At most two
of these comparisons result in mismatches. The sequence of comparisons made by the
elimination strategy consists of two left-to-right sequences. The second sequence is
either entirely to the right or entirely to the left of the first one.

4.2. Strategy for handling presuf shifts. Subsequent to the elimination due
to tree ET , the presuf handler proceeds in a manner reminiscent of the basic algorithm.
That is, there is a current pattern instance, pa, which is being matched and which is
the leftmost surviving pattern instance. The next leftmost surviving pattern instance,
pb, which has a difference point with pa is a candidate for elimination. Indeed, a
comparison of pa with the text is made at the difference point.

The analysis of the presuf handler has the following flavor. With a few exceptions,
comparisons are charged to distinct text characters. To be precise, for each suffix shift,
at most two comparisons are charged to the shift rather than to text characters. Even
more precisely, if two comparisons are charged to the shift, the next presuf shift is at

distance at least 3(m+1)
4 to the right, and otherwise it is at distance at least m+1

2 to
the right. The complexity bound of the algorithm now follows readily.

Theorem 4.10. The algorithm performs at most n + 8
3(m+1) (n −m) character

comparisons.
There are three ways in which text characters are charged:
(i) The character compared is charged.
(ii) The text character aligned with the left end of the pattern instance eliminated

by the comparison is charged.
(iii) The text character to the immediate right of tA| (i.e., aligned with |pk+1) is

charged.
The three charging methods do not interact readily. To ensure that no text

character is charged twice, the switching from one charging method to the other will
occur only at carefully selected points in the algorithm. In addition, mismatches
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are not charged according to rule (i) since the text characters in question may be
compared again.

Basically, charging method (i) is used if a pattern instance is successfully matched
(at least up to a suffix which is a presuf). Charging method (iii) is used only for the
comparison that eliminates the presuf pattern instance which survives the elimination
procedure ET . Charging method (ii) is used otherwise. A partial exception arises for
the characters compared by procedure ET ; this is discussed further below.

Following the use of procedure ET , the aim is to perform comparisons essentially
as in the basic algorithm, that is, to compare the character at the difference point
of the two leftmost surviving pattern instances which are not prefix overlaps of each
other. The analysis ceases to be as straightforward because of the additional j ≤ k
comparisons performed by procedure ET ; indeed, to cope with this, a modified form
of the basic algorithm is needed.

There are two objectives:

1. to avoid repeating comparisons at the text characters successfully compared
by procedure ET ;

2. to perform essentially j fewer comparisons than in the basic algorithm.

Objective 1 is achieved by keeping a record of the successful comparisons in a bit
vector of length roughly m.

The major difficulty, however, is caused by the method used for charging the
j comparisons made by procedure ET . It is natural to charge these comparisons
to the text characters compared. Unfortunately, this may conflict with charging
using method (ii). To avoid this difficulty, a single additional comparison, with text
character tb, is performed before using procedure ET . The following lemma can then
be shown.

Lemma 4.11. For each text character tc compared by procedure ET , with at most
α ≤ 2 exceptions, there is a distinct previously uncharged text character tc′ , with tc′
aligned with or to the left of tc and to the right of |pk+1, such that the pattern instance
qc whose left end is aligned with tc′ mismatches either the text character tb or some
text character matched in procedure ET .

Let β be the number of mismatches performed by procedure ET . Then, in addition,
α+ β ≤ 2.

The lemma is proven by specifying a transfer function f , which associates c with
c′. The form of f depends on the sequence of comparisons performed by procedure
ET . The proof of the lemma is quite nontrivial; it is deferred until section 5.

Lemma 4.11 is used as follows. Let qe be the next pattern instance to match
the text (or at least to have a suffix, which is also a presuf, matching the text).
All pattern instances to the left of qe, eliminated by comparisons made after the
use of procedure ET , are charged used charging method (ii). Using the transfer
function, those comparisons to the left of |qe made by procedure ET are charged to
text characters which are not otherwise charged. By contrast, text characters aligned
with qe are charged using charging method (i). There will be no more than two
comparisons performed by the presuf handler that are not thereby charged to a text
character; these comparisons are charged to the presuf handler itself.

The algorithm requires a total of five subphases, whose details depend on exactly
how qe arises.

It is helpful to distinguish three scenarios that may ensue. To this end, let pe
denote the presuf pattern instance to survive the elimination using tree ET . In
addition, let ta denote the text character tA|.
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The three scenarios follow:

1. All pattern instances overlapping pe are eliminated apart from its presuf over-
laps, and pe or at least a suffix of pe is matched.

2. pe is eliminated. In addition, there is some pattern instance qc overlapping
pe such that all pattern instances overlapping qc are eliminated apart from its presuf
overlaps; further, qc or at least a suffix of qc is matched.

3. pe is eliminated, as are all pattern instances overlapping pe. Let qd denote the
leftmost surviving pattern instance in this case.

The first scenario causes no problems from the perspective of the analysis. It
suffices to ensure that none of the successful comparisons made by ET are repeated.
The third scenario is handled by using charging scheme (iii) for the comparison which
eliminates pe and charging scheme (ii) for the remaining comparisons in the post-ET
phase. Lemma 4.11 ensures that for each comparison made by ET (with at most two
exceptions) with a text character strictly between ta and |qd, there is a distinct pattern
instance whose left end lies strictly between |pk+1 and |qd and which is eliminated by
the comparisons made by ET plus the one other comparison at text character tb.
Again, this leads to the desired complexity bound without difficulty.

The second scenario provides the greatest difficulty. In order to avoid unnecessary
comparisons, the locations of successful comparisons are recorded. Then if a difference
point occurs at one of these matched text characters, the present pattern instance pb
(see the first paragraph of the subsection) can be removed without further compar-
isons. However, following a mismatch, it is not clear how to maintain this property:
with only linear storage, it is not clear how to ensure that the current pattern instance
following the mismatch agrees with the text on a previously matched character, at
least if the total work bound is to be linear. (There is no problem if exponential-in-
m space is available for precomputed structures.) To avoid this difficulty, only the
successful comparisons since the last mismatch are recorded.

In fact, this is not quite good enough. It appears necessary to keep track of the
characters compared by procedure ET regardless of how many characters are com-
pared. This avoids subsequent comparison of these characters. Indeed, any pattern
instances mismatching on one or more of these characters are eliminated immediately
after the computation with procedure ET . This is done with the help of precomputed
information.

With this motivation, we proceed with a precise description of the presuf handler
procedure. It proceeds in five steps.

Step 1 (before the use of tree ET ). The characters in p1, . . . , pk aligned with p1[m],
the rightmost character in p1, are identical. If the character in pk+1 aligned with
p1[m] is also identical to it, then p1[m] is compared with the aligned text character.
A mismatch eliminates all of p1, . . . , pk, pk+1 and the basic algorithm is restarted with
|pa placed immediately to the right of |pk+1. A match is not immediately beneficial
since it does not eliminate any of p1, . . . , pk, pk+1. However, it ensures the elimination
of sufficiently many appropriate pattern instances for scenarios 2 and 3 described
above.

Step 2. The elimination strategy using tree ET is applied to the pattern instances
p1, . . . , pk, pk+1.

Following Step 2, at most one presuf pattern instance survives. Call it pe. Let
Q denote the set of pattern instances which overlap pe and have their left end to the
right of |pk+1. In the elimination process, some elements of Q may have also been
eliminated from being potential matches. They need not be reconsidered. Indeed,
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since the characters successfully matched in Step 2 must not be compared anew, it
appears that these pattern instances must not be considered anew. To this end, a
subset Qx of Q is associated with each terminal node x in ET .

Let Tx denote the indices of the text characters successfully compared in Steps 1
and 2. Qx contains those pattern instances in Q which match at all the text indices
in Tx, except possibly the last. This seemingly odd exception is necessary in order to
store Qx efficiently. Actually, Qx satisfies further constraints, but they are not needed
for this section. The complete definition of Qx and the method for computing it are
described in section 4.5. Here it suffices to work with the following property: all but
at most two of the comparisons in Steps 1 and 2 are successful and are remembered
by pattern instances in Qx.

Suppose that the elimination process terminates at terminal node x. Let Q′ =
{pe} ∪Qx. The elimination procedure of Step 3 is applied to the pattern instances in
Q′.

Step 3. This step eliminates among the elements of Q′. qc will denote the leftmost
pattern instance to survive Step 3. If qc = pe, then every surviving pattern instance
overlapping qc will be a presuf overlap of qc.

The strategy used here is similar to the one for the basic algorithm. One of two
overlapping pattern instances is eliminated by comparing at the difference point of
the two instances.

To prevent repeated comparisons of text characters to the right of ta, two addi-
tional data structures are used. The first is a bit vector BV [1 . . . 2m]. BV [i] = 1 if
the ith text character to the right of ta has been successfully compared in Steps 1
and 2 or in Step 3 since the last mismatch. The second is a list LBV ; it stores the
indices of the bits in BV set to one in Step 3 since the last mismatch. Initially, LBV
is empty.

The elimination procedure for Step 3 follows. Let qa and qb denote the two
leftmost uneliminated pattern instances in Q′. Suppose that qb lies i units to the
right of qa. The reader is advised to refer to section 2 to review the definition of
difi+1. If difi+1 is undefined, then qb is removed from Q′.

If difi+1 is defined, then the bit in BV corresponding to the text character aligned
with qa[difi+1] is read. If this bit is 1, then qb is removed from Q′. (qb can be
eliminated since it does not match an already compared text character.) Otherwise,
qa[difi+1] is compared with the aligned text character. If the two characters are
equal, the corresponding bit in BV is set, the bit’s index is added to LBV , and qb is
eliminated. If they are not equal, then the bits in BV at all indices currently in LBV
are reset to 0, LBV is reset to empty, and qa is eliminated.

The elimination procedure is iterated until only one pattern instance remains in
Q′. Let qc denote this remaining pattern instance.

Step 4. In this step, either all pattern instances overlapping qc, apart from presuf
overlaps, are eliminated or qc is eliminated.

Let Q′′ be the set of pattern instances whose left end lies to the right of pe| but
not to the right of qc|. The following step is repeated until either qc is eliminated
or Q′′ = φ. Let qd be the leftmost pattern instance in Q′′. Suppose qd lies i units
to the right of qc. If difi+1 does not exist, then qd is removed from Q′′. Otherwise,
the following bit in BV is read: the bit corresponding to the text character aligned
with qc[difi+1]. If this bit is 1, qd is eliminated. If it is 0, qc[i] and the aligned text
character are compared. If they match, then the corresponding bit in BV is set, its
index is added to LBV , and qd is eliminated. Otherwise, qc is eliminated and Step 4
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comes to an end.
If qc is eliminated, then LBV is reset to be empty, BV is reset to 0, and the basic

algorithm is restarted with pa = qd. Otherwise, Step 5 is performed.
Step 5. This step seeks to complete the match of qc. If at least a presuf of qc

is matched, the complete match or the partial match results in a new presuf shift.
Otherwise, the basic algorithm is resumed with |pa immediately to the right of qc|.

Step 5 compares the characters in qc to the right of ta, apart from those matched
in Steps 1 and 2, and those matched in Steps 3 and 4 following the most recent
mismatch. (Incidentally, there was no mismatch in Step 4 since qc survived Step 4 if
Step 5 is performed.) These characters are identified with the help of bit vector BV .
They are matched in right-to-left order until either a mismatch occurs or they are all
matched.

If they all match qc is declared a complete match if either tlast = φ or tlast lies to
the left of |qc. Recall that tlast is the index of the text character mismatched, if any,
immediately prior to the most recent presuf shift (if there was no mismatch, tlast = φ).

Next, BV is reset to zero, LBV is reset to be empty, and tlast is updated as
follows. If the above right-to-left pass results in a mismatch, then tlast is set to the
index of the text character at which the mismatch occurs. Otherwise, tlast retains its
value unless |qc is to its right. In the latter case, tlast := φ.

The present situation is identical to that preceding a presuf shift in the basic
algorithm. This resulting shift is treated in the same way; it too is called a presuf
shift.

4.3. The analysis. The comparison complexity of the algorithm of section 4.2
is given by the following lemma.

Lemma 4.12. If p is not a special case pattern and |x′1| < m
2 for each presuf shift,

then the comparison complexity of the algorithm is bounded by n(1 + 8
3(m+1) ).

Proof. We give a charging scheme to account for the comparisons made by the
algorithm. This scheme charges almost every comparison to a distinct text character.
The only exceptions are a few of the comparisons made by the presuf shift handler.
For each presuf shift, depending on the distance between this presuf shift and the next
one, the charging scheme fails to charge for up to two of the comparisons made by the
presuf shift handler. We refer to the number of comparisons which the charging scheme
fails to charge to distinct text characters as the overhead of the presuf shift. If a presuf
shift has an overhead of two, we show that the next presuf shift must occur at least

distance 3(m+1)
4 to the right of the current presuf shift. The comparison complexity of

our algorithm now follows from the fact that any two consecutive presuf shifts must
occur at least distance m+1

2 apart.
Charging scheme. The charging scheme charges in phases. The phases begin and

end at shifts and at reversions to the basic algorithm. There are four types of phases;
for each phase type, a different charging scheme is used:

1. a phase beginning and ending with a basic shift;
2. a phase beginning in the basic algorithm and ending with a presuf shift;
3. a phase beginning with a presuf shift and ending with a reversion to the basic

algorithm;
4. a phase beginning and ending with a presuf shift.

Consider any phase and let q1 and q2 refer to the leftmost surviving pattern
instances at the beginning and end of the phase, respectively. Note that for Type
3 and Type 4 phases, q1 is a presuf overlap of the pattern instance q′, the leftmost
uneliminated pattern instance prior to the presuf shift which initiated this phase.
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Specifically, the prefix x′1 of q1 is aligned with the suffix x′1 of q′. (Recall from the
start of section 4 that on a presuf shift, we assume that the suffix x′1 of q1 matches
the text.)

The charging scheme obeys the following properties.

1. At the start of a Type 1 or Type 2 phase, only text characters to the left of q1
have been charged.

2. At the start of a Type 3 or Type 4 phase, only text characters aligned with or
to the left of the prefix x′1 of q1 have been charged.

Type 1 phase. Suppose i comparisons were made in this phase. These i com-
parisons are charged to text characters which are aligned with q1 but to the left of
|q2. By Lemma 3.1, |q2 lies at least i characters to the right of |q1. Thus each text
character aligned with q1 and to the left of |q2 is charged at most once in this process.
Clearly, property 1 holds at the start of the next phase.

Type 2 phase. In each comparison, a distinct character in q1 is compared with
the aligned text character. Each of these comparisons is charged to the text character
compared. Thus each text character aligned with q1 is charged at most once in this
process. Clearly, property 2 holds at the start of the next phase.

The charging scheme for Type 3 and Type 4 phases is more involved. Before
describing the scheme, we mention the ranges of the text characters charged in each
case.

Type 3 phase. The text characters charged lie to the right of the right end of the
prefix x′1 of q1 and to the left of |q2. Each text character in this range is charged at
most once. Clearly, property 1 holds at the start of the next phase.

Type 4 phase. The text characters charged lie to the right of the right end of the
prefix x′1 of q1 and are aligned with or to the left of the rightmost character in the
prefix x′1 of q2. Each text character in this range is charged at most once. Clearly,
property 2 holds at the start of the next phase.

Clearly, the ranges of the text characters charged for different phases are disjoint.
Next, we specify the charging scheme for Type 3 and Type 4 phases and justify the
claims regarding the overhead.

Consider a presuf shift which initiates a new Type 3 or Type 4 phase. Let q′

be the leftmost uneliminated pattern instance immediately before the presuf shift.
Recall that ta is the text character aligned with q′|. Consider the comparisons made
by the current use of the presuf shift handler. If a mismatch occurs in Step 1, the
current phase ends immediately and the basic algorithm is resumed. The presuf shift
in this case has overhead 1 and the next presuf shift occurs at least distance m+ 1 to
the right. Next, suppose that the comparison in Step 1 is successful. Let pe be the
presuf pattern instance that survives the elimination using tree ET in Step 2. After
the presuf shift handler finishes, one of the three scenarios mentioned in section 4.2
ensues. We consider each in turn.

1. All pattern instances overlapping pe are eliminated, apart from its presuf
overlaps, and pe or at least a suffix of pe is matched. This is a Type 4 phase.

All comparisons made by the presuf shift handler, except the unsuccessful com-
parisons in Step 2, are charged to the text characters compared. The bit vector BV
ensures that each of these comparisons involves a different text character. Thus each
text character which lies to the right of ta and is aligned with or to the left of pe| is
charged at most once. At most two comparisons in Step 2 are unsuccessful, so this
shift has overhead at most 2.
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Consider the situation when there are exactly two mismatches in Step 2. p1 is
clearly eliminated in this case. In addition, we show in the next paragraph that if x1

is periodic, with core v and head u, say, then all pattern instances whose associated
presufs have the form uvo, o ≥ 1, are also eliminated. Let xe be the presuf associated
with pe. It follows that x1 = xewxe for some nonempty string w. Since p = x1zx1,
for some nonempty string z, |xe| ≤ m−3

4 . This guarantees that the next presuf shift

occurs at least distance 3(m+1)
4 to the right. If there is just one mismatch in Step 2,

then since |x′1| < m
2 , the next presuf shift occurs at least distance m+1

2 to the right.

To see that two mismatches in Step 2 eliminate all presuf pattern instances with
associated presufs of the form uvo, o ≥ 1, it suffices to show that at most one such
pattern instance survives the first mismatch; the second mismatch will surely eliminate
this pattern instance. Suppose two pattern instances pi1 and pi2 , i1 < i2, i1, i2 6= 1,
xi1 = uvo1 , xi2 = uvo2 , o1, o2 ≥ 1, survive the first mismatch, which occurs at text
character tx, say. The portions of p1 and pi1 to the right of tx match each other while
the characters in p1 and pi1 aligned with tx are different. This implies that p1 and
pi2 have a difference point strictly between tx and tb; more precisely, the character
in p1 which is distance (o2 − o1)|v| to the right of tx is a difference point. Therefore,
either p1 or pi2 would have been eliminated before the first mismatch, which is a
contradiction.

2. pe is eliminated. In addition, there is some pattern instance qc overlapping
pe such that all pattern instances overlapping qc are eliminated apart from its presuf
overlaps; further, qc or at least a suffix of qc is matched. This is also a Type 4 phase.

Each comparison in Steps 1 and 2 with a text character to the left of |qc for which
function f is defined is charged to the text character specified by the function f , called
its f value; f values are distinct by definition. Comparisons in Step 3 fall into one of
three categories (see Lemma 4.11 and the following paragraph):

1. comparisons which eliminate pattern instances whose left ends lie to the right
of |pk+1 and to the left of |qc;

2. comparisons which eliminate pattern instances whose left ends are aligned
with or to the right of |qc;

3. the comparison which eliminates pe.

Each comparison in the first category is charged to the text character aligned with the
left end of the pattern instance eliminated. By the definition of the function f , these
text characters do not occur in the range of f values. Comparisons in the second
category, along with the comparisons made in Steps 4 and 5 and those successful
comparisons in Steps 1 and 2 that involve text characters overlapping qc, are charged
to the text characters compared. BV ensures that each of these comparisons involves
a distinct text character. Thus each text character which lies to the right of |pk+1

and is aligned with or to the left of qc| is charged at most once. The comparison that
eliminates pe is charged to the text character aligned with |pk+1. Since all f values lie
to the right of |pk+1 and all pattern instances eliminated by comparisons in the first
category are with left ends to the right of |pk+1, this text character is charged exactly
once. The two comparisons in Step 2 lacking f values constitute the overhead of this
presuf shift. Since pe is eliminated, the next presuf shift occurs at least distance m+1
to the right of the current presuf shift.

3. pe is eliminated, as are all pattern instances overlapping pe. This is a Type 3
phase.

Let qd denote the leftmost surviving pattern instance. All comparisons in Steps
1 and 2 for which function f is defined are charged to their f values. f values are
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distinct by definition. Excluding the comparison which eliminates pe, each comparison
in Steps 3 and 4 eliminates some pattern instance whose left end lies to the right of
|pk+1 and to the left of |qd. Each such comparison is charged to the text character
aligned with the left end of the pattern instance eliminated. These text characters
cannot occur in the range of the function f and hence are charged only once. Thus
each text character which lies to the right of |pk+1 and to the left of |qd is charged
at most once. The comparison that eliminates pe is charged to the text character
aligned with |pk+1. The two comparisons in Step 2 lacking f values constitute the
overhead of this presuf shift. Since pe is eliminated, the next presuf shift occurs at
least distance m+ 1 to the right of the current presuf shift.

The following lemma is shown in section 4.5.
Lemma 4.13. The total space used by the algorithm for the case when |x′1| < m

2 for
all presuf shifts is O(m). Further, for any terminal node x of ET , Qx can be obtained
in O(m) time. The preprocessing required by the algorithm can be accomplished in
O(m2) time.

Lemma 4.14. Suppose that p is not a special-case pattern and |x′1| < m
2 for

all presuf shifts. Then the total time taken by the algorithm is O(n + m), following
preprocessing of the pattern, which takes O(m2) time.

Proof. By Lemma 4.12, the number of character comparisons made is O(n). It
remains to count the time spent in all other operations. The basic algorithm makes
only character comparisons. Next, consider the presuf handler of section 4.2. Steps 1
and 2 make only character comparisons. Following Step 2, computing Qx takes O(m)
time by Lemma 4.13. Steps 3 and 4 take O(m) time because |Q′|, |Q′′| = O(m) and
each of the operations in these steps, except the operations used for resetting BV ,
leads to the removal of a pattern instance from one of Q′′ or Q′. Further, the total
time spent by Steps 3 and 4 in resetting BV is bounded by the time taken by these
steps to set bits in BV , which is O(m). Clearly, Step 5 takes O(m) time. Thus the
total time taken by the presuf handler of section 4.2 is O(m). Since any two presuf
shifts occur at least m−|x′1| > m

2 distance apart, the total time taken by the algorithm
is O(n+m).

4.4. Handling presuf shifts for special-case patterns. As mentioned in sec-
tion 4.1, a different algorithm is needed to handle presuf shifts for patterns for which
|xk| = 1 and g = 1. We give an algorithm which handles presuf shifts for such patterns
when |x′1| < m

2 . (Recall that x′1 for a presuf shift was defined towards the start of
section 4.) The case where |x′1| ≥ m

2 is handled in section 6.
The goal of this algorithm is to reach one of the following two situations:
1. the identification of a pattern instance qc satisfying the following property: no

pattern instance qd which precedes qc survives and a pattern instance overlapping qc
survives only if it is a presuf overlap of qc;

2. a return to the basic algorithm.
Further, this is achieved with at most two mismatches.

Let xk = b. Any character other than b is called a non-b character. Since we
assume that the pattern contains at least two different characters, it contains a non-b
character. Let p[j] be the leftmost non-b character in p and let tc denote the text
character aligned with |pk+1. Let td be the leftmost non-b text character, if any, to
the right of, and including, tc.

By the definition of special-case patterns, all presufs consist solely of b’s. There-
fore, p1[j] lies to the right of ta. Note that no complete match can occur with one of
p[1 . . . j−1] aligned with td. Thus if td lies to the left of p1[j], then the next potential
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match instance of p would have its left end to the right of td. Otherwise, the next
potential match instance of p has p[j] aligned with td. Also notice that if td does
not exist, then there are no more complete matches. These observations lead to the
following three-step procedure.

Step 1. This step locates td and then eliminates all but at most one pattern
instance qc overlapping td. Starting at tc, a left-to-right scan of the text is performed
to locate td (i.e., each text character is compared to b; td is the character at which
the first mismatch occurs). If td does not exist, the algorithm halts. If td exists and
lies to the left of p1[j], then the basic algorithm is restarted with |p placed to the
immediate right of td. Otherwise, qc is chosen to be the pattern instance such that
qc[j] is aligned with td. qc is the next potential match instance to be considered.

Step 2. In this step, either qc is eliminated or all pattern instances overlapping qc,
except for presuf overlaps of qc, are eliminated. This is done using the basic algorithm,
slightly modified to account for the matched prefix. Suppose the leftmost difference
points are used in the sequence S in the basic algorithm, as against any arbitrary
difference points. Then dif2, . . . , difj are all equal to j and difj+1, . . . , difm are all
greater than j, whenever defined. In Step 2, the characters in qc to the right of qc[j]
which are at the indices given by S are compared with the aligned text characters in
the order in which they appear in S. This continues until either a mismatch occurs
or the sequence is exhausted. A mismatch leads to the basic algorithm with |p shifted
to the right of qc by distance at least j − 1 plus the number of comparisons made in
this step. If no mismatch occurs, then Step 3 follows.

Step 3. Characters in qc which are not yet matched are compared from right to
left with their aligned text characters until a mismatch occurs or qc is fully matched.
The present situation is now identical to the situation at the beginning of a presuf
shift and is handled in the same way.

The comparison complexity of the above algorithm is determined by the following
lemma.

Lemma 4.15. If p is a special-case pattern and |x′1| < m
2 for each presuf shift,

then the comparison complexity of the algorithm is n(1 + 2
m+1 ).

Proof. We give a charging scheme to account for the comparisons made by the
algorithm for handling special-case patterns. The definition of a phase, the charging
scheme for Type 1 and Type 2 phases, and the ranges of text characters charged in
each phase type remain the same as in Lemma 4.12. Only the charging scheme for
Type 3 and Type 4 phases needs to be modified in accordance with the presuf shift
handler for special-case patterns.

Consider a presuf shift which initiates a new Type 3 or Type 4 phase. We show
that it has an overhead of at most one. The comparison complexity of the algorithm
now follows from the fact that |x′1| < m

2 and therefore any two consecutive presuf
shifts must occur at least m+1

2 characters apart.

Charging scheme for the presuf shift handler. Let q′ and q1 be the leftmost une-
liminated pattern instances immediately before and after the presuf shift, respectively.
Recall that ta is the text character aligned with q′|.

We show that presuf shifts have overhead at most one for these patterns. Let qc
be the leftmost pattern instance which survives Step 1. All successful comparisons
in Step 1 are charged to the text characters compared. These text characters lie to
the left of qc[j], where j is the least index such that p[j] differs from p[m]. The lone
unsuccessful comparison in Step 1 constitutes the overhead of this shift. Now consider
two cases.
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1. Suppose qc survives Step 2. All comparisons made in Steps 2 and 3 are charged
to the text characters compared. Thus each text character which lies to the right of ta
and is aligned with or to the left of qc| is charged at most once. All future comparisons
will be charged to text characters to the right of qc|.

2. Suppose qc does not survive Step 2. Each successful comparison in Step 2
eliminates some pattern instance lying entirely to the right of qc[j] and is charged to
the text character aligned with the left end of that pattern instance. The unsuccessful
comparison which eliminates qc in Step 2 is charged to the text character aligned with
qc[j]. Thus each text character lying strictly between ta and |qd is charged at most
once, where qd is the leftmost surviving pattern instance at the end of Step 2. All
future comparisons will be charged to text characters aligned with or to the right of
|qd.

Lemma 4.16. Suppose that p is a special-case pattern and |x′1| < m
2 for all presuf

shifts. Then the total time taken by the algorithm is O(n+m), following preprocessing
of the pattern, which takes O(m2) time. The total space used by the algorithm is
O(m).

Proof. The lemma, except for the preprocessing time, is obvious from the above
description. Since no extra preprocessing is required for special-case patterns, the
lemma follows from Lemma 4.14.

Theorem 4.17. Suppose for all presuf shifts that |x′1| < m
2 . Then the total

space used by the algorithm is O(m) and the total time taken by the algorithm, after
preprocessing, is O(n+m). The preprocessing required by the algorithm takes O(m2)
time.

Proof. The proof follows from Lemmas 4.14 and 4.16.

4.5. Data structure details. We prove Lemma 4.13 in this section. The fol-
lowing data structures are used by the algorithm:

1. the array S used in the basic algorithm;
2. an array, indexed by i, storing difi, 2 ≤ i ≤ m, used by the presuf shift

handler;
3. BV and LBV , the bit vector and its associated list;
4. ET , the elimination tree;
5. Qx, for each terminal node x of ET , as defined after Step 2 in section 4.2.

Of these, the first three have size O(m) by definition. By Theorem 4.9, ET
also has size O(m).

It remains to show how to represent Qx, for each terminal node x of ET , using
O(m) space overall. The following definitions are helpful. Let tb be the text character
aligned with p1|. Let Q refer to the set of pattern instances which overlap pk+1, have
left ends to the right of |pk+1 and either match or do not overlap tb.

Before showing how to maintain Qx, it is helpful to recapitulate some structural
properties of ET . ET is a binary tree with each internal node having two children.
At each internal node y, a character cy in p is potentially compared with the text
character tcy. A successful comparison leads to the left child of y while a mismatch
leads to the right child. Comparisons are made starting at the root of ET and
continuing until a terminal node (a leaf) is reached. A node in ET lies in the right
subtree of at most two of its ancestors.

Node x is said to be a failing descendant of node y if x is a proper descendant of
y and lies in the right subtree of y. A terminal node x can be a failing descendant of
at most two nodes in ET . Let p(x) denote the parent of x. For each terminal node
x, let Anc(x) be defined as follows. If both children of p(x) are terminal nodes and
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p(x) is the right child of p(p(x)), then Anc(x) is the set of proper ancestors of p(x).
Otherwise, Anc(x) is the set of proper ancestors of x.

q ∈ Q is said to occur at terminal node x of ET if q ∈ Qx. In section 4.2, we
tentatively defined Qx to be the set of pattern instances in Q which match at all
text characters compared successfully at nodes in Anc(x) (actually, the definition was
not this precise). Now we refine this definition by letting Qx satisfy some additional
constraints. Informally, q should occur at x if it is consistent with all comparisons
made at nodes in Anc(x). This motivates the following characterization of Qx. Let
Y ⊂ Anc(x) consist of those nodes with respect to which x is a failing descendant.
Then Qx is the maximal subset of Q such that each q ∈ Qx satisfies the following
properties:

1. ∀y ∈ Anc(x) − Y , the character in q aligned with tcy, if any, matches the
character cy;

2. ∀y ∈ Y , the character in q aligned with tcy, if any, is different from cy.

ET may have θ(m) terminal nodes. Even though |Qx| < m for each terminal
node x, storing Qx explicitly for each terminal node x could require Ω(m2) space
overall. We show how to store the sets Qx so that O(m) space is used in total and
any particular Qx can be retrieved in O(m) time.

Let l1, l2, . . . , lh, in that order, be the nodes along the leftmost path in ET starting
at the root and ending at the terminal node lh. Define the right subtree of li to be the
subtree rooted at the right child of li. Note that tcl1 , . . . , tclh−1

form a right-to-left
sequence. We show how to maintain Qx, for all terminal nodes x in the right subtrees
of l1, . . . , lh−1, in O(m) space altogether. Only the terminal node lh remains and Qlh
can be stored explicitly in O(m) space.

We mark some of the nodes l1, . . . , lh−1. Node li is marked if its right child is
neither a terminal node nor the parent of two terminal nodes. Thus node li is marked
if Phase 2 could make at least two comparisons following a mismatch at tcli . Let
l′1, . . . , l

′
s, in that order, be the nodes marked.

The following lemmas are helpful.

Lemma 4.18. Consider terminal nodes x1 and x2 of ET and let their least
common ancestor be y. Suppose at most one of the following is true: first, y is the
parent of both x1 and x2, and second, y is the right child of p(y). If q occurs at x1

and at x2, then q does not overlap tcy.

Proof. Clearly, y ∈ Anc(x1) and y ∈ Anc(x2). Suppose q overlaps tcy. Let c be
the character in q aligned with tcy. Without loss of generality, assume that x1 is a
failing descendant of y. Then x2 is not a failing descendant of y. By the definition of
Qx1 , c 6= cy. By the definition of Qx2 , c = cy, a contradiction.

Corollary 4.19. Let i ≥ 1 be the smallest number such that q ∈ Q does not
overlap tcli . q can occur at terminal nodes in the right subtrees of at most one of
l1, . . . , li−1. Further, if q occurs at some terminal node in the subtree rooted at li, it
cannot occur at terminal nodes in the right subtrees of any of l1, . . . , li−1.

Lemma 4.20. Let i ≥ 1 be the smallest number such that q ∈ Q does not overlap
tcli . Suppose q occurs at a terminal node in the subtree rooted at li. Then q occurs
at all terminal nodes in the right subtrees of each of those nodes among li, . . . , lh−1

which are unmarked. Further, q occurs at lh.

Proof. Clearly, the characters in q which overlap tcl1 , . . . , tcli−1
match the charac-

ters cl1 , . . . , cli−1 , respectively. Further, q does not overlap tcli , . . . , tclh−1
. Therefore,

q occurs at lh. In addition, if a terminal node x is in the right subtree of an unmarked
node lj , j ≥ i, then either lj = p(x) or lj = p(p(x)) and p(x) 6∈ Anc(x). From the
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definition of Qx, q must occur at x.

Lemma 4.21. Consider marked node l′i, 1 ≤ i ≤ s, and let j be the smallest
number such that tcl′

i
is to the left of the suffix xj of p1. pj−1 must be the rightmost

pattern instance in its group. In addition, pj is the leftmost presuf pattern instance
to survive a mismatch at tcl′

i
.

Proof. Since l′i is marked, at least three presuf pattern instances must survive
a mismatch at tcl′

i
. Let the leftmost three such pattern instances be pa, pb, and pc

(listed in left-to-right order). Let Aw be the group containing pj . Write xj as uve,
where e ≥ 1, u is a proper suffix of primitive v, and all presufs associated with Aw
have the form uve

′
, e′ ≥ 1.

By Lemma 4.5, successful comparisons within the suffix xj of p1 suffice to elim-
inate all but at most two of the pattern instances in the groups Aw+1, . . . , Ag. (At
most two pattern instances in Aw+1, . . . , Ag can form a half-done set with pj .) There-
fore, pa ∈ Aw and xa = uvea , ea ≥ 1. Since pa, pb, and pc all survive the mismatch
at tcl′

i
, {pa, pb, pc} is a half-done set and therefore ea ≥ 2. It follows that xb = uveb ,

eb ≥ 0, and xc = uvec , ec ≥ 0.

Next, suppose pj−1 is not the rightmost pattern instance in its group. Then
pj−1 ∈ Aw and xj−1 has the form uve+1, e+1 ≥ 2. We show that pb would have been
eliminated by a comparison to the right of tcl′

i
, which is a contradiction. Note that

pj−1 and pa have a difference point, which is aligned with or to the right of tcl′
i

and
aligned with p1. Let pj−1[d] be the rightmost such difference point. Clearly, pj−1[d] is
to the left of the suffix xa of p1. pj−1[d+ (ea− eb)|v|] is a difference point of pj−1 and
pb which is aligned with p1. A match at this difference point would have eliminated
pb.

Finally, suppose pa 6= pj . Then pj and pa have a difference point, which is
aligned with or to the right of tcl′

i
and aligned with p1. Let pj [d] be the rightmost

such difference point. An argument similar to the one in the previous paragraph
shows that pj and pb have a difference point to the right of pj [d] and aligned with
p1; a match at this difference point would have eliminated pb, which is a contradic-
tion.

Corollary 4.22. Consider marked nodes l′i1 and l′i2 , 1 ≤ i1 < i2 ≤ s. Let xi−1

and xj−1 be the smallest suffixes (which are also presufs) of p1 which overlap tcl′
i1

and

tcl′
i2

, respectively. Then i 6= j.

Proof. If i = j, then by Lemma 4.21, pj is the leftmost presuf pattern instance to
survive the mismatches at both tcl′

i1
and tcl′

i2
. But since a pj survives a mismatch at

tcl′
i1

, it cannot survive a match at tcl′
i1

and therefore it cannot survive a mismatch at

tcl′
i2

.

Lemma 4.23. The size of the presuf corresponding to the rightmost pattern in-
stance in Aj, 1 ≤ j ≤ g, is at most m

(3/2)j .

Proof. For j = 1, the claim is clearly true. Assume that the claim is true for Aj−1;
i.e.; the size of the presuf corresponding to rightmost pattern instance pe in Aj−1 is
less than m

(3/2)j−1 . xe has either the form uvv or the form uv, where u is a proper

suffix of v. In the former case, xe+1 = uv, and in the latter case, xe = xe+1zxe+1 for

some nonempty string z (since uv is not periodic). Thus |xe+1| < 2|xe|
3 . The claim

follows.

Lemma 4.24. The number of pattern instances in Q which overlap tb and are
entirely to the right of tcl′

i
is less than m

(3/2)s−i+1 , for all i, 1 ≤ i ≤ s.
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Proof. From Lemma 4.21 and Corollary 4.22, the rightmost presuf pattern in-
stance pj such that the suffix xj of p1 overlaps tcl′

i
must be the rightmost pat-

tern instance in some group Aj′ , j
′ ≥ s − i + 1. The lemma follows from Lemma

4.23.
Consider the right subtrees of l′1, . . . , l

′
s. Note that the comparisons made in

each of these subtrees are aimed at eliminating half-done sets whose leftmost pattern
instances are in distinct groups. Each of these comparisons is made to the right of
p1[m], as described in Lemma 4.7 and Corollary 4.8.

Lemma 4.25. The number of pattern instances in Q which are entirely to the
right of tb and overlap some text character compared in the right subtree of l′i is at
most m

(3/2)s−i+1 , for all i, 1 ≤ i ≤ s.
Proof. Recall from Lemma 4.7 that a half-done set whose leftmost pattern instance

is in group Aj , j > 1, is eliminated in Phase 2 of the elimination strategy by making
comparisons at text characters which are at most distance |xj′−1| − |xj′ | to the right
of tb, where pj′ is the leftmost presuf pattern instance in Aj . From Lemma 4.23,
|xj′−1| < m

(3/2)j−1 , and the lemma follows.

Lemma 4.26. Consider a marked node l′i and the set of terminal nodes in its
right subtree. If a pattern instance q occurs at two of these terminal nodes, say w
and y, then q occurs at all terminal nodes in the subtree rooted at the least common
ancestor z of w and y.

Proof. By Lemma 4.18, q does not overlap the character tcz. Since comparisons
made in the right subtree of l′i constitute a right-to-left sequence, q does not overlap
tcz′ , where z′ is any descendant of z. The lemma now follows immediately from the
definition of the sets Qx.

We are now ready to describe the data structure for storing the Qx’s. The fol-
lowing subsets of Q are required: Z1, . . . , Zh−1, Y1, . . . , Yh−1 and W1, . . . ,Ws. The
Z and the Y sets are used for terminal nodes which lie in the right subtrees of the
unmarked nodes among l1, . . . , lh−1. The W sets are used for terminal nodes which
lie in the right subtrees of marked nodes.

The Z sets are defined first. For each i, 1 ≤ i ≤ h − 1, where li is unmarked,
define Zi to be the set of pattern instances in Q which overlap tc(li) and occur only

at terminal nodes in the right subtree of li. Clearly,
∑h−1
i=1 Zi = O(m).

The Y sets are defined next. For each i, 1 ≤ i ≤ h− 1, define Yi to be the set of
pattern instances q ∈ Q with the following properties.

1. q does not overlap tcli .
2. If i > 1, q overlaps tcli−1

.
3. q occurs at a terminal node in the subtree rooted at li.

Clearly,
∑h−1
i=1 Yi = O(m). Further, each pair of Y sets is disjoint and Zi is disjoint

from Y1, . . . , Yi. The following lemma explains the significance of the Y and Z sets.
Lemma 4.27. If terminal node x is in the right subtree of unmarked node li,

Qx = Y1 ∪ Y2 ∪ · · · ∪ Yi ∪ Zi.
Proof. Suppose q ∈ Qx. If q overlaps tcli then by Corollary 4.19, q ∈ Zi. If q

does not overlap tcli , then clearly q must be in some Yj , j ≤ i.
Next, suppose q ∈ Yj , j ≤ i. By Lemma 4.20, q ∈ Qx. Finally, if q ∈ Zi,

then q ∈ Qx since the only internal node (if any) in the right subtree of li is not in
Anc(x).

Finally, the W sets are defined. For each i, 1 ≤ i ≤ s, Wi consists of those pattern
instances which occur at some terminal node in the right subtree of marked node l′i.
Let W ′i denote the set obtained from Wi by removing those pattern instances which
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do not overlap any of the text characters compared in the right subtree of l′i.

Lemma 4.28.

∑s
i=1 |W ′i | = O(m).

Proof. Split W ′i into two disjoint subsets, W 1
i and W 2

i . W 1
i consists of those

pattern instances which overlap tcl′
i

and W 2
i consists of pattern instances which do

not overlap tcl′
i
.

By Lemma 4.18, pattern instances in W 1
i occur only at terminal nodes in the right

subtree of l′i. Therefore, it suffices to show that
∑s
i=1 |W 2

i | = O(m). From Lemmas
4.24 and 4.25, it follows that

∑s
i=1 |W 2

i | =
∑s
i=1(2 m

(3/2)s−i+1 ) = O(m).

Consider some i, 1 ≤ i ≤ s. The manner in which Wi is maintained so as to
facilitate the recovery of Qx for each terminal node x in the right subtree of marked
node l′i remains to be shown. Clearly, pattern instances in Wi −W ′i occur at all such
nodes x and can be stored implicitly in constant space by just storing the rightmost
text position compared in the right subtree of l′i. For the terminal nodes x in li’s
right subtree, we show how to store the pattern instances in Qx ∩W ′i using a total
of O(|W ′i |) space (summing over all x). The linear-space bound then follows from
Lemma 4.28.

At each internal node y in the right subtree T of l′i, a set Comy is stored. At
each terminal node x in T , a set Specx is stored. For each q ∈W ′i , if q occurs only at
terminal node x, then it is added to Specx. Otherwise, if q occurs at more than one
terminal node in T , then q is added to the set Comy, where y is the least common
ancestor of those terminal nodes at which q occurs. Clearly, all Com and Spec sets
are disjoint and therefore the total space taken by them is O(|W ′i |). The following
lemma shows how Qx can be retrieved from the Com and Spec sets, for each terminal
node x in T .

Lemma 4.29. For each terminal node x ∈ T , Qx = (Wi − W ′i ) ∪ Comy1 ∪
Comy2 ∪ · · · ∪ Comyj ∪ Specx, where y1, . . . , yj are the proper ancestors of x in T .

Proof. The proof follows immediately from Lemma 4.26.

To compute Qx as an ordered list, it suffices to maintain each of the Y , Z,
Com, and Spec sets as ordered lists which are then appended together in O(m) time
according to either Lemma 4.27 or Lemma 4.29, as the case may be.

This concludes the data structure description. We remark that all of the data
structures mentioned at the beginning of this section can be computed using näıve
algorithms in O(m2) time.

5. The transfer function f . Before giving the definition of the function f , we
prove a number of preliminary lemmas.

5.1. Preliminary lemmas. These lemmas describe some properties of periodic
strings and the distribution of text characters compared in Step 2 (the elimination-tree
phase) of the presuf handler described in section 4.2.

Let V = {p1, p2, . . . , pk, pk+1}. Consider the set of pattern instances in V which
are rightmost in their respective groups. Let pi be a pattern instance in this set. We
introduce a function h(xi) which is central to the analysis.

Definition. If i < k, then h(xi) is defined by one of the following three cases:

1. xi is periodic. Then xi+1 is also periodic. Let u and v be the head and core,
respectively, of xi. Let w be the core of xi+1. h(xi) is defined to be the suffix of p1 of
length |v|+ |w|.

2. xi = uvu is not periodic, where |u| is its s-period. Further, xi+1 is periodic
with core w. h(xi) is defined to be the suffix of p1 of length |v|+ |u|+ |w|.
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3. xi = uvu is not periodic, where |u| is its s-period. Further, xi+1 is not periodic.
h(xi) is defined to be the suffix of p1 of length |u|.

If i = k + 1, then h(xi) is defined to be the empty string. Note that i 6= k as pk
and pk+1 are both in the same group.

The first two lemmas consider the case when i < k and xi+1 is periodic with core
w. They show that h(xi) cannot be periodic with core w.

Lemma 5.1. Suppose xi = uv2, where v is the core of xi. Further, suppose
xi+1 = uv = w′wk1 is periodic with core w, |w| < |v|. Then h(xi) is not periodic with
core w.

Proof. w is a suffix of v. Since v is primitive, |v| is not a multiple of |w|. If h(xi)
were periodic with core w, then the prefix of h(xi) of size |w| would have the form
xy, with x a proper suffix of w and y a proper prefix of w. But this prefix of h(xi)
is a suffix of v and hence is the string w. This implies that w is cyclic and cannot be
the core of xi+1, a contradiction.

Lemma 5.2. Suppose xi = uvu is not periodic, where |u| is the s-period of xi.
Suppose the string xi+1 = u = w′wk1 is periodic with core w, |w| < |u|. Then h(xi)
is not periodic with core w.

Proof. w is a suffix of u. vu is primitive; otherwise, xi would be periodic. Suppose
h(xi) is periodic with core w. Then |vu| is not a multiple of |w|. Therefore, the prefix
of h(xi) of size |w| is of the form xy, with x a proper suffix and y a proper prefix of
w. But this prefix of h(xi) is a suffix of u and hence is the string w. This implies that
w is cyclic and cannot be the core of xi+1, a contradiction.

The next lemma describes the order in which pattern instances in a half-done set
are eliminated in Step 2 of the presuf shift handler.

Lemma 5.3. Let pi1 , . . . , pir , r ≥ 3, be pattern instances in V comprising a half-
done set. For any l, 3 ≤ l ≤ r, if pi1 and pil both survive at any instant in Step 2,
then pi1 , . . . , pil−1

also survive at that instant.

Proof. We show that the lemma is true for any instant in Phase 1 and at the end
of Phase 1. For Phase 2, the lemma follows from Corollary 4.8.

Consider the rightmost position e such that pi1 [e] is to the left of tb (recall that
tb is the text character aligned with p1[m]) and different from the character in pil
aligned with it. The portions of pi1 , . . . , pil whose left and right ends are aligned with
pi1 [e + 1] and tb, respectively, are identical and periodic with core v, where v is the
core of xi1 . The portions of pi1 , . . . , pil−1

whose left and right ends are aligned with
pi1 [e] and tb, respectively, are identical. Therefore, a comparison to the right of pi1 [e]
eliminates none or all of pi1 , . . . , pil depending upon whether it succeeds or fails. A
comparison at pi1 [e] eliminates either pil or all of pi1 , . . . , pil−1

. Thus if pi1 and pil
survive at any instant in Phase 1 or at the end of Phase 1, then all comparisons made
until that instant are to the right of pi1 [e]. Each of these comparisons eliminates none
or all of pi1 , . . . , pil .

The next lemma establishes that if all comparisons in the suffix xi of p1 are
successful, then at most two pattern instances to the right of pi survive.

Lemma 5.4. Suppose all comparisons made by S1 within the suffix xi of p1 result
in matches. Then at most two instances in V among those lying to the right of pi
survive. Further, if two instances py and pz survive, then {xi, xy, xz} is a clone set.

Proof. First, suppose xi is periodic. Then by the manner in which groups were
defined, xi has the form uv2. Let pa, pb ∈ V , a, b > i. If {xi, xa, xb} is not a clone set
then by Lemma 4.5, successful comparisons in the suffix xi of p1 suffice to eliminate
one of pa, pb. Thus two or more pattern instances in V to the right of pi can survive
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only if their presufs form a clone set with xi. But the only candidates are the pattern
instances py and pz whose presufs are uv and u, respectively.

Second, suppose xi is not periodic. Then it is of the form uvu, where u is its
s-period. For no two pattern instances py and pz, y, z > i, can {xi, xy, xz} be a clone
set. By Lemma 4.5, one of py, pz, for every such y and z, can be eliminated by a
successful comparison made within the suffix xi of p1. Thus in this case, at most one
pattern instance in V to the right of pi survives.

The next two lemmas establish that if all comparisons within h(xi) are successful,
then at most two pattern instances in V to the right of pi survive.

Lemma 5.5. Suppose xi+1 is periodic with core w and all comparisons made by
S1 within h(xi) result in matches. Then at most two instances in V among those to
the right of xi survive.

Proof. Since the case i = k + 1 is vacuous, we assume that i < k.

The proof is based on Lemmas 5.1, 5.2, 5.3, and 5.4. Let As be the group
containing pi. Let pi+1, . . . , py be the pattern instances in group As+1. Consider
the set V ′ of pattern instances in V which are to the right of pi and which sur-
vive successful comparisons in the suffix xy of p1. By Lemma 5.4, with at most
one exception (call it po), the pattern instances in V ′ form a half-done set. By
Lemma 5.3, the presufs corresponding to the pattern instances in this half-done
set comprise the set {w′wk2, . . . , w′wk3+1, w′wk3}, where k3 equals 0, 1, or 2. Let
V ′ = {pi1 , pi2 , . . . , pij , po}. We show that successful comparisons in h(xi) eliminate
all but at most one of {pi1 , pi2 , . . . , pij}.

Note that {pi1 , pi2 , . . . , pij} is a half-done set. By Lemmas 5.1 and 5.2, the suffix
h(xi) of p1 (and of xi) is not periodic with core w. Let the rightmost suffix of p1 which
is longer than |xi+1| and not periodic with core w begin at p1[e]; p1[e] lies in h(xi).
Consider the largest h, 1 ≤ h ≤ j, such that pih survives all comparisons made to the
right of p1[e]. Then by Lemma 5.3, pi1 , . . . , pih−1

also survive these comparisons while
pih+1

, . . . , pij are eliminated. If h ≤ 1, then we are done. Otherwise, as shown in
the next paragraph, the characters in pi1 , . . . , pih−1

aligned with p1[e] are identical to
each other yet different from p1[e]. Hence there will be a comparison involving p1[e],
which by assumption is a match; this leaves only pih and po uneliminated.

Since the rightmost eligible character is always chosen by the elimination strategy
for comparison, the portions of pi1 , . . . , pih aligned with the suffix of p1 which lies to
the right of p1[e] match that suffix. Suppose for some r, 1 ≤ r < h, a = pir [c] 6= pir [c+
|w|] = b, where pir [c] is aligned with p1[e]. Since pir+1

is |w| units to the right of pir , the
character in pir+1

aligned with pir [c+ |w|] = b is an a, a contradiction. Therefore, the
characters in pi1 , . . . , pih−1

aligned with p1[e] are all equal to the character p1[e+ |w|].
However, from the definition of e, p1[e+ |w|] 6= p1[e]. This proves the lemma.

Lemma 5.6. Suppose xi+1 is not periodic and all comparisons made by S1 within
the suffix h(xi) of p1 result in matches. Then at most two instances in V among those
to the right of pi survive.

Proof. Since the case i = k + 1 is vacuous, we assume that i < k.

By the manner in which groups were defined, xi is not periodic. Since xi+1 is not
periodic, pi+1 is the rightmost instance in its group. Thus xi+1 cannot form a clone
set with any two of its presufs. By Lemma 5.4, at most one pattern instance to the
right of pi+1 survives successful comparisons in the suffix xi+1 = h(xi) of p1.

The following lemma relates the length of the presufs xi and xi+2 with the suffix
h(xi) of p1 for i ≤ k − 1.

Lemma 5.7. |xi+2|+ |h(xi)| ≤ |xi|.
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Proof. First, suppose xi = uvu is not periodic, where u is its s-period. Then
|xi+2| < |u|. If xi+1 is not periodic, then h(xi) = u and |xi+2|+ |h(xi)| < 2|u| < |xi|.
If xi+1 is periodic with core w, then |h(xi)| = |u| + |v| + |w| and xi+2 = |u| − |w|.
This implies that |xi+2|+ |h(xi)| = |xi|.

Next, suppose xi is periodic with core v and head u. Then xi+1 is also periodic, say
with core w. Thus |h(xi)| = |v|+|w| and |xi+2| = |v|+|u|−|w|. Then |xi+2|+|h(xi)| =
2|v|+ |u| = |xi|.

Definitions. Let the term misfit refer to any character that differs from the
rightmost character of p. If |xk| > 1, let ri be the number of pattern instances in
V which lie to the right of pi. Otherwise, if |xk| = 1, let ri be one more than the
number of pattern instances in V which lie to the right of pi and do not belong to the
rightmost group. For convenience, we define ri to be 0 if |xk| = 1 and pi belongs to
the rightmost group.

We provide some lower bounds on the number of occurrences of misfit characters
in the presufs of p and in the cores of periodic presufs.

Lemma 5.8. Let |xk| > 1. Let pj, j ≤ k, be any pattern instance in V . Then xj
contains at least rj instances of the string xk and hence rj misfit characters.

Proof. Since xk is the smallest nonnull suffix of p that matches a prefix of p, no
nonnull suffix of xk matches a prefix of xk. Hence all instances of xk in any string are
disjoint. Since xk itself contains xk and rk = 1, the lemma is true for j = k. Next,
suppose j < k and assume inductively that xj+1 contains at least rj+1 instances of
xk. Then since xj+1 is a proper prefix and a proper suffix of xj , xj must contain at
least rj+1 + 1 = rj instances of xk. Since the first character of xk differs from its last
character, xj has at least rj misfit characters.

Lemma 5.9. Suppose |xk| = 1. Let pj be any pattern instance in V . Then xj has
at least rj misfit characters.

Proof. If pj belongs to the rightmost group, then rj = 0 and the lemma holds
trivially. Therefore, suppose pj is not in the rightmost group. Let py be the rightmost
pattern instance not in the rightmost group. xy contains at least one misfit character;
otherwise, it would be in the rightmost group. Since ry = 1, the lemma is true for
j = y. Next, assume that j < y and assume inductively that xj+1 contains at least
rj+1 misfit characters. Then since xj+1 is a proper prefix and a proper suffix of xj ,
xj must have at least rj+1 + 1 = rj misfit characters.

Lemma 5.10. Let pj be any instance in V and suppose xj is periodic with head
u and core v, |v| > 1. Then v contains a misfit character.

Proof. If v does not contain a misfit character, then xj does not contain a mis-
fit character either. This implies that all the characters in xj are identical. This
contradicts the assumption that |v| > 1.

We conclude this section of lemmas with two key lemmas, the h-suffix mapping
lemma and the half-done set mapping lemma. In the h-suffix mapping lemma, a set
R1(i) of text characters is defined for each i, 1 ≤ i ≤ k − 1, such that pi is the
rightmost instance in its group. In the half-done set mapping lemma, a set R2(O) of
text characters is defined for a half-done set O consisting of pattern instances from
V . These two sets are used as ranges for the f function.

Recall that V = {p1, . . . , pk} and tb is the text character aligned with the right-
most character of p1.

Let i ≤ k−1 and pi be the rightmost instance in its group. Let h′i be the suffix of
length |xi+2| of the prefix xi of p. Let R1(i) be the set of text characters with which
|p is aligned when some misfit character in h′i is aligned with tb.
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Fig. 5. The h-suffix mapping lemma.

Lemma 5.11 (the h-suffix mapping lemma). |R1(i)| ≥ ri − 2. All text characters
in R1(i) lie strictly to the left of |h(xi) but within the suffix xi of p1.

Proof. (See Fig. 5.) By Lemmas 5.8 and 5.9, xi+2 and hence h′i contain at least
ri−2 = max{0, ri − 2} misfit characters. Therefore, |R1(i)| ≥ ri − 2. By Lemma 5.7,
the left end of any pattern instance in which h′i overlaps tb is strictly to the left of
|h(xi) and within the suffix xi of p1.

Definition. Let O ⊂ V be a half-done set consisting of the pattern instances
{ph1

, . . . , phj}, j ≥ 3, ph1
= p1. Let the head and core of xh1

be denoted u and v,
respectively. Let v = u′u. Suppose |v| > 1. Further, suppose phi is phi−1

shifted
distance |v| to the right, for 1 < i ≤ j. Let ic, 2 ≤ c ≤ j, be the largest index
such that ph1 [ic] is different from the character in phc aligned with it (such an index
exists by Lemma 4.7). Note that ic − ic−1 = |v|, for all c, 3 ≤ c ≤ j, and that
ph1 [i2] = ph1 [i3] = · · · = ph1 [ij ]. The text character tic aligned with ph1 [ic] is called
the characteristic character of phc .

Let d be the leftmost character in the prefix uu′ of p which differs from ph1
[i2].

Define R2(tic), 3 ≤ c ≤ j, to be the text character with which |p is aligned when d is
aligned with tic . In addition, define R2(Oe) to be the set of text characters R2(tic),
3 ≤ c ≤ e ≤ j. For convenience, let R2(O) denote R2(Oj).

Lemma 5.12 (the half-done set mapping lemma). All text characters in R2(Oj)
are distinct. R2(tic) is aligned with or to the left of tic and strictly to the right of
tic−1 , for 3 ≤ c ≤ j. All characters in R2(Oc) are aligned with or to the left of the
characteristic character of phc ; in addition, they are strictly to the right of |pk+1, for
3 ≤ c ≤ j.

Proof. By construction, R2(tic) is aligned with or to the left of tic , 3 ≤ c ≤ j. In
addition, R2(tic) is at most distance |v| − 1 to the left of tic . Since ic − ic−1 = |v|,
R2(tic) is strictly to the right of tic−1

.

The only part of the lemma still unproven is the claim that all characters in
R2(Oj) are strictly to the right of |pk+1. Note that ti3 is distance |v| to the right of
ti2 , R2(ti3) is at most distance |v| − 1 to the left of ti3 , and all characters in R2(Oj)
are aligned with or to the right of R2(ti3). Since ti2 is aligned with or to the right of
|pk+1, the lemma follows.

Note that phc is eliminated by the time a comparison is made strictly to the left
of its characteristic character, for 3 ≤ c ≤ j. Further, if a successful comparison
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eliminates phc , then this comparison must involve its characteristic character.

5.2. The transfer function f . Let C be the set of text characters involved
in comparisons in Steps 1 and 2 of the presuf shift handler of section 4.2. For each
character tc ∈ C, with at most two exceptions, we define f(tc) to be a text character
td satisfying the following properties.

1. td is to the right of |pk+1.
2. td either coincides with tc or lies to the left of tc.
3. The pattern instance whose left end is aligned with td is eliminated as a result

of comparisons in Steps 1 and 2 of the presuf shift handler.
4. For every distinct tc1 , tc2 ∈ C, f(tc1) 6= f(tc2).

Furthermore, the mismatches, if any, are always included among the exceptions. We
refer to the above properties as Properties 1, 2, 3 and 4, respectively.

Since patterns with g = 1 and |xk| = 1 are special-case patterns, we assume that
g > 1 if |xk| = 1. Further, if p1[m] does not match the text, then Steps 1 and 2 of
the presuf shift handler together make at most one comparison. Therefore, we also
assume that p1[m] matches the text. Let pl be the rightmost pattern instance in A1.
Let pr be the rightmost pattern instance in V outside Ag, if any.

We split the sequence C ′ of comparisons made in Steps 1 and 2 of the presuf shift
handler into three disjoint classes as follows.

1. Class 1 consists of the comparison in Step 1. In addition, if |xk| = 1, then
Class 1 contains the comparisons which comprise the smallest prefix of C ′ having
the following property: either the last comparison in this prefix is unsuccessful or
following that comparison, exactly one pattern instance in Ag survives.

2. Class 2 consists of the comparisons in C ′ which follow all Class 1 comparisons
and are made in the suffix h(xl) of p1.

3. Class 3 consists of comparisons in C ′ which follow all Class 2 comparisons.

Note that if Class 1 contains an unsuccessful comparison, then Class 2 is empty
because no further comparisons are made in the suffix h(xl) of p1. Thus Classes 1
and 2 together have at most one unsuccessful comparison. The only other possibly
unsuccessful comparison is the last comparison in Class 3. We do not define an f
value for the last comparison in Class 3. In addition, one other comparison may not
receive an f value. If Classes 1 and 2 contain an unsuccessful comparison, then this
comparison does not receive an f value. If all comparisons in Classes 1 and 2 are
successful, then one successful comparison in one of the three classes may not receive
an f value. All other comparisons receive f values. Thus f values are never defined
for mismatches and at most two comparisons in C ′ do not receive f values.

We define f values for each class in turn. f values for Class 2 comparisons are
always defined using the set R1(l). These f values are aligned with the suffix xl of p1

and to the left of h(xl). f values for Class 3 comparisons are defined in one of three
ways. If all comparisons in Classes 1 and 2 are successful, then these f values are to
the left of the suffix xl of p1. If Class 2 contains a mismatch, then these f values are
defined using the set R1(l). If Class 2 is empty and Class 1 contains a mismatch, then
these f values are aligned with or to the right of the suffix xr+1 of p1. f values for
Classes 2 and 3 are easily seen to be distinct. f values for Class 1 comparisons are
aligned either with the suffix xr of p1 or with the suffix xr−1 of p1; in Lemma 5.17,
we show that these f values do not clash with the f values for Classes 2 and 3.

Classes 2 and 3. We consider three cases.

Case 1. Class 2 contains an unsuccessful comparison.
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Classes 2 and 3 together contain at most rl − 1 comparisons in addition to this
unsuccessful comparison. To see this, note that rl − 1 comparisons in addition to the
comparisons in Class 1 suffice to eliminate all but one of the pattern instances in V to
the right of pl. Further, excluding the unsuccessful Class 2 comparison and the last
comparison in Class 3, all other comparisons in Classes 2 and 3 are successful. f is
defined to map the text characters involved in these rl − 2 successful comparisons to
the text characters in R1(l) in some arbitrary order. By the h-suffix mapping lemma
and the fact that all Class 3 comparisons are to the right of p1[m] in this case, all the
text characters in R1(l) lie to the left of all the text characters involved in Class 2
and Class 3 comparisons. Clearly, Properties 2, 3, and 4 are true for these f values.
Property 1 follows from the fact that |xl| ≤ |x1| < m

2 , and hence |pk+1 is to the left
of the suffix xl of p1.

Case 2. All comparisons in Classes 1 and 2 are successful.

There are at most rl comparisons in Class 2, all of which are successful. f is
defined to map the text characters involved in rl − 2 of these rl comparisons to the
text characters in R1(l) in some arbitrary order. As in Case 1, Properties 1, 2, 3, and
4 are satisfied by these f values. This leaves at most s Class 2 comparisons for some
s ≤ 2.

Next, we define f values for Class 3 comparisons and s Class 2 comparisons.
These f values will be defined for all comparisons in Class 3 plus the s comparisons in
Class 2, with at most two exceptions. These f values will be to the left of the suffix
xl of p1 and thus clearly distinct from f values for Class 2 comparisons.

Following Class 2 comparisons, at most min{rl, 2} − s of the pattern instances
to the right of pl survive along with pattern instances in A1. Let O′ denote the
following set of min{rl, 2} pattern instances: those pattern instances to the right of
pl which survive Class 1 and Class 2 comparisons and those pattern instances which
are eliminated by one of the s Class 2 comparisons under consideration. Let O refer
to the largest half-done set consisting of pattern instances in A1 and O′. Redefine
O′ by removing pattern instances in it which are also in O. Considering comparisons
which eliminate pattern instances in O and O′ is equivalent to considering Class 3
comparisons plus the s Class 2 comparisons.

Let O = {ph1 , . . . , phe}. If l = 1, then the number of comparisons in Class 3
plus s is at most 2 − s + s = 2. In this case, we do not define f values for the
comparisons in Class 3 and the s comparisons in Class 2. Therefore, suppose that
l > 1. Each successful comparison which eliminates a pattern instance in O involves
the characteristic character of the pattern instance eliminated. Let v and u be the
core and head, respectively, of xh1 and let v = u′u. |v| > 1 because either |xk| > 1 or
|xk| = 1 and g > 1. By Lemma 5.10, v contains a misfit character.

First, consider successful comparisons which eliminate pattern instances in O. If
|O| ≤ 2, there is at most one such comparison in Class 3 and we do not define an f
value for it. Therefore, suppose |O| > 2. There are two subcases depending on the
location of the characteristic character tie of phe .

Subcase 2a. Either O′ is not empty and tie is strictly to the left of the left end of
the suffix xhe−1

of p1 or O′ is empty and tie is strictly to the left of the left end of the
suffix xhe−2 of p1.

For 3 ≤ c ≤ e, if a successful comparison is made at tic , f(tic) is defined to be
R2(tic). By the half-done set mapping lemma, these f values are strictly to the left
of the suffix xhe−1 of p1 if O′ is not empty and strictly to the left of the suffix xhe−2 of
p1 if O′ is empty. A simple case analysis (O′ equals 0, 1, 2) shows that these f values
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are strictly to the left of the left end of the suffix xl of p1, as claimed. Properties
1, 2, and 4 for these f values follow easily from the half-done set mapping lemma
while Property 3 follows from the definition of the set R2(O). At most one successful
comparison eliminating pattern instances in O does not have an f value: the one
eliminating ph2 .

Subcase 2b. Either O′ is not empty and tie is aligned with some character in the
suffix xhe−1

of p1 or O′ is empty and the characteristic character of phe is aligned with
some character in the suffix xhe−2 of p1.

In the first case, tic , the characteristic character of phc , is aligned with some
character in the suffix xhc−1

of p1, for 2 ≤ c ≤ e. Consider the set R′2 of e − 2 text
characters with which |p is aligned when the rightmost misfit character in the prefix
xhc of p, 1 ≤ c ≤ e− 2, is aligned with tb. Since v contains a misfit character, the cth
leftmost text character in R′2 is aligned with some character in the suffix xhc of p1 and
is strictly to the left of the left end of the suffix xhc+1 of p1. A successful comparison
at tic , 3 ≤ c ≤ e, is mapped by f to the (c− 2)nd leftmost character in R′2. Clearly,
all characters in R′2 are distinct and f(tic) is strictly to the left of tic . All characters
in R′2 are aligned with some character in the suffix x1 of p1. Thus Properties 1, 2,
3, and 4 are satisfied by these f values. These f values are strictly to the left of the
left end of the suffix xhe−1 of p1. Since O′ is not empty, he−1 ≤ l. Therefore, these
f values are strictly to the left of the left end of the suffix xl of p1. Again, the only
successful comparison without an f value, if any, is the one eliminating ph2

.

In the second case, tic , 4 ≤ c ≤ e, is aligned with some character in the suffix xhc−2

of p1. f values are not defined for the two leftmost comparisons under consideration.
The remaining comparisons involve text characters aligned with some character in
the suffix xh2

of p1. A successful comparison at tic , 4 ≤ c ≤ e, is mapped by f to the
(c − 3)rd leftmost character in R′2. Clearly, f(tic) is strictly to the left of tic . As in
the first case, Properties 1, 2, 3, and 4 are satisfied by these f values. All of these f
values are to the left of the left end of the suffix xhe−2

of p1. Since he−2 ≤ l for this
case, these f values are strictly to the left of the left end of the suffix xl of p1. The
only successful comparisons without f values, if any, are those eliminating ph3 and
ph2

. This ends Subcase 2b.

Before we define f values for comparisons which eliminate pattern instances in
O′, we need a lemma which will be used later when Class 3 comparisons are defined.
This lemma can be verified easily from the above description.

Lemma 5.13. If O ⊂ A1 and |O′| ≤ 1, then the f values defined in Subcases 2a
and 2b are to the left of the suffix xl−1 of p1.

Next, consider successful comparisons which eliminate pattern instances in O′.
If |O′| < 2 or no successful comparison eliminates a pattern instance in O′, then no
further f values are defined. Therefore, suppose |O′| = 2 and a successful comparison
is made to eliminate one of the pattern instances in O′. By Lemma 4.5, this com-
parison involves a text character tc which is aligned with some character in the suffix
xhe of p1. f(tc) is defined to be the text character with which |p is aligned when the
rightmost misfit character in the prefix xhe−1 of p1 is aligned with tb. Since v contains
a misfit character, f(tc) is aligned with some character in the suffix xhe−1

of p1 and is
strictly to the left of the suffix xhe of p1. f(tc) is thus to the right of and distinct from
all f values defined previously for comparisons which eliminate pattern instances in
O. Further, f(tc) is to the left of tc because tc is aligned with the suffix xhe of p1.
Since |O′| = 2, l = he, and therefore f(tc) is strictly to the left of the suffix xl of p1,
as claimed. Now Properties 1, 2, 3, and 4 are easily seen to be true for all Class 2
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and 3 comparisons.

Lemma 5.14. For Case 2, f values have been defined for all but two of the com-
parisons in Classes 2 and 3. Further, the omitted comparisons include mismatches, if
any.

Proof. We just need to show that at most two of the comparisons among those
which eliminate pattern instances in O and O′ do not receive f values, for the mis-
matches never receive f values.

If |O| < 2, then there are at most two comparisons which eliminate pattern
instances in O and O′. If O′ is empty, then f values are defined for all but the last
two comparisons which eliminate pattern instances in O. Therefore, suppose O′ is not
empty and |O| ≥ 2. The only possible successful comparisons for which an f value
might not be defined are those which eliminate ph2

or one of the pattern instances in
O′. There are two cases.

First, suppose |O′| = 1. Let O′ = {pz}. The only possible successful comparisons
for which an f value is not defined are those which eliminate ph2

or pz. We show
that if one of these successful comparisons actually occurs, then there can be at most
one mismatch, and if both these successful comparisons occur, then there are no mis-
matches. (Recall that all comparisons in Classes 1 and 2 are successful.) Suppose ph2

is eliminated by a successful comparison. ph1
must be alive immediately before this

comparison and ph3
. . . phe must have been eliminated prior to this comparison. This

implies that no mismatch could have occurred before this comparison and only the
pattern instances ph1 and pz survive this comparison. Therefore, if ph2 is eliminated
by a successful comparison, then there is at most one unsuccessful comparison, and if
both ph2

and pz are eliminated by successful comparisons, then there are no unsuc-
cessful comparisons. Next, suppose pz is eliminated by a successful comparison but
no successful comparison eliminates ph2

. Each of the other comparisons in Class 3
eliminates some pattern instance in O and the first such unsuccessful comparison elim-
inates all but one of the instances in O. Therefore, there is at most one unsuccessful
comparison in this case.

Second, suppose |O| ≥ 2 and |O′| = 2. If one of the pattern instances in O′

is eliminated by a successful Class 2 or 3 comparison, then an f value is defined
for this comparison. From this point onwards, |O| ≥ 2 and |O′| = 1. Therefore, the
argument in the previous paragraph applies. On the other hand, if no successful Class
2 or 3 comparison eliminates a pattern instance in O′, then the first comparison in
Class 3 must be unsuccessful. This comparison leaves at most two pattern instances
uneliminated and thus there are at most two comparisons which eliminate pattern
instances in O and O′.

Case 3. Class 1 contains an unsuccessful comparison.

In this case, |xk| = 1 and Class 2 is empty as mentioned before. We define f
values for all but the last of the comparisons in Class 3. These f values are aligned
with or to the right of the suffix xr+1 of p1. All Class 3 comparisons are made to
the right of p1[m] in this case. Each such successful comparison matches an instance
of the character xk in pr+1 against a text character tc; tc is aligned with a non-xk
character in some pattern instance ps, s > r. f is defined to map a text character tc
matched successfully by a Class 3 comparison to the text character with which |p is
aligned when the leftmost non-xk character in p is aligned with tc. Clearly, these f
values are aligned with or to the right of the suffix xr+1 of p1 and Properties 1, 2, 3,
and 4 are satisfied by these f values.
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This finishes the description of the f function for Classes 2 and 3. The following
lemma is obvious from the above description.

Lemma 5.15. f values for Class 2 and 3 comparisons belong to one of the fol-
lowing sets of text characters:

(i) the set R1(l);
(ii) the set of text characters to the left of the suffix xl of p1 and to the right of
|pk+1;

(iii) the set of text characters aligned with or to the right of the suffix xr+1 of p1.

Further, an f value can be in set (i) only if rl−2 > 0 and in set (iii) only if Class
1 contains an unsuccessful comparison.

Class 1. We consider two cases, |xk| > 1 and |xk| = 1.

Case 1. |xk| > 1.

The only comparison in Class 1 matches tb with p1[m]. f(tb) is defined to be
tb. This mapping satisfies Property 3 because the leftmost character in p is a misfit
character in this case. If g = 1, then all other comparisons in C ′ are made to the left
of tb, and therefore all other f values are to the left of tb. If g > 1, then all other f
values are either to the left of the suffix xl of p1 or to the left of the suffix h(xl) of p1.
Since |h(xl)| ≥ 1 if g > 1, these f values are to the left of tb. Therefore, Property 4
is satisfied by all f values. Properties 1 and 2 are obvious for f(tb).

Case 2. |xk| = 1.

g > 1 by assumption. f values are defined for all comparisons in Class 1 unless
either Class 1 contains an unsuccessful comparison or r = l = 1. If Class 1 contains
an unsuccessful comparison or if r = l = 1, then one comparison in Class 1 does
not receive an f value. However, in these cases, there is at most one comparison in
Classes 2 and 3 for which an f value was not defined earlier. To see this, note that if
the last Class 1 comparison is successful and r = l = 1, then Classes 2 and 3 together
can have at most one comparison, and if the last Class 1 comparison is unsuccessful,
then Class 2 is empty and Case 3 must hold for Class 3 comparisons.

All f values defined for Class 1 comparisons will be to the left of the suffix xr+1

of p1 and aligned with either the suffix xr−1 of p1 or the suffix xr of p1. Clearly, if
pl 6= pr, pr−1, then these f values are distinct from all f values defined earlier for
Class 2 and 3 comparisons. If pl = pr−1, then rl − 2 = 0 and all f values for Class 2
and 3 comparisons are either to the left of the suffix xr−1 of p1 or aligned with or to
the right of the suffix xr+1 of p1. Therefore, f values for comparisons in Class 1 are
distinct from f values for comparisons in Classes 2 and 3 in this case. If pl = pr, then
rl − 2 < 0 and, by Lemma 5.15, all f values for Class 2 and 3 comparisons are either
to the left of the suffix xr of p1 or aligned with or to the right of the suffix xr+1 of p1.
In this case, we show that if an f value for some Class 1 comparison is aligned with
the suffix xr−1 of p1 and to the left of the suffix xr of p1, then all f values for Class 2
and Class 3 comparisons are to the left of the suffix xr−1 of p1. Thus all f values are
distinct.

The following lemma describes the distribution of Class 1 comparisons.

Lemma 5.16. Let d be the rightmost misfit character in p1. Each Class 1 com-
parison involves a text character which is aligned with or to the right of d.

Proof. Suppose two pattern instances pj1 , pj2 ∈ Ag, j1 < j2, are left uneliminated
by comparisons made at or to the right of d. Let cj1 and cj2 be the portions of pj1 and
pj2 , respectively, which overlap the suffix z of p1 starting at d. Then cj1 = cj2 = z.
Consider the characters in pj1 and pj2 aligned with the (j2 − j1)th character to the
right of d in p1. Clearly, the first of these matches xk while the second is a misfit
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Fig. 6. The set R3, r > 1.

character. This is a contradiction.

Note that xr contains a misfit character. Further, its suffix and prefix xr+1

are disjoint. Each contains at least k − r instances of xk. We define a set R3 of
text characters which serves as the range of f values for Class 1 comparisons. The
definition has the following property. All characters in R3 are to the left of the suffix
xr+1 of p1. If all successful Class 1 comparisons are made to the right of d or if r = 1,
then all characters in R3 are aligned with the suffix xr of p1. If a successful Class 1
comparison is made at d and r > 1, then characters in R3 are aligned with the suffix
xr−1 of p1.

First, suppose all successful Class 1 comparisons are made to the right of d. Each
successful comparison matches an occurrence of xk to the right of d against the text.
R3 is defined to be the set of text characters with which |p is aligned when d′, the
leftmost misfit character in p, is aligned with one of the text characters matched by
a Class 1 comparison. Clearly, all characters in R3 are aligned with the suffix xr of
p1. f is defined to map the text characters compared by Class 1 comparisons to the
text characters in R3 in some arbitrary order. Properties 2, 3, and 4 readily follow
for these f values. Property 1 follows from the fact that |xr| ≤ |x1| < m

2 .

Next, suppose a successful Class 1 comparison is made at d. In this case, all
comparisons in Class 1 are successful and there are at most k + 1− r comparisons in
Class 1. R3 is defined differently depending upon whether r = 1 or r > 1.

First, suppose r = 1. R3 is defined to contain the k − r text characters with
which |p is aligned when one of k − r instances of xk to the left of d′ (recall that d′

is the leftmost misfit character in p) is aligned with d. The text characters in R3 are
clearly aligned with the suffix xr of p1. f is defined to map up to k − r of the text
characters compared by Class 1 comparisons to the k − r text characters in R3 in
some arbitrary order. All of these f values are distinct and are aligned with or to
the left of d. Properties 2, 3, and 4 immediately follow for these f values. Property
1 follows from the fact that |xr| ≤ |x1| < m

2 .

Next, suppose r > 1. See Fig. 6. When p is placed with |p aligned with the left
end of the suffix xr−1 of p1, there exist at least 2(k − r) ≥ k − r + 1 instances of xk
to the left of d in p. R3 is defined to be the set of 2(k− r) text characters with which
|p is aligned when one of these 2(k − r) instances of xk is aligned with d. Clearly,
characters in R3 are aligned with the suffix xr−1 of p1. f is defined to map the text
characters compared by Class 1 comparisons to some k − r + 1 of the 2(k − r) text
characters in R3 in some arbitrary order. Properties 2 and 3 readily follow for these f
values. Property 1 follows from the fact that |xr−1| ≤ |x1| < m

2 . The distinctness of
these f values from the f values for Classes 2 and 3 follows from the following lemma.
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Lemma 5.17. If r > 1, pl = pr, and a successful Class 1 comparison is made at
d, then f values for Class 2 and 3 comparisons are to the left of the suffix xr−1 of
p1.

Proof. At most one pattern instance pr′ ∈ Ag survives a successful comparison at
d. Further, Class 1 does not contain an unsuccessful comparison. Since rl = 1, Class
2 contains at most one comparison. If this comparison is unsuccessful, then only pr′
survives; no f values are defined for Class 2 or 3 comparisons in this case. If the sole
Class 2 comparison is a successful one, then Case 2 must hold for all Class 2 and 3
comparisons. Since rl = 1, rl − 2 < 0 and, by Lemma 5.15, no f values are defined
using the set R1(l). Therefore, all f values for Class 2 and 3 comparisons in this case
are defined as in Subcases 2a and 2b. Refer to these subcases. Note that, in this case,
O consists of the pattern instances in A1 and O′ = {pr′}. From Lemma 5.13, all f
values for Class 2 and 3 comparisons are to the left of the suffix xr−1 of p1 in this
case.

This concludes the definition of the f function.

6. Presuf shifts with |x′| ≥
m


. This case can occur only for periodic patterns.

Therefore, assume that p is periodic and has the form upv
ip
p , where vp and up are the

core and head of p, respectively, and ip ≥ 2.
Recall that the lower bound of m+1

2 on the distance between consecutive presuf
shifts was crucial in deriving the comparison complexity for the case where |x′1| < m

2 .
This lower bound does not hold if |x′1| ≥ m

2 . Consecutive presuf shifts can occur
distance |vp| � m+1

2 apart. Even a single mismatch per presuf shift leads to a large
comparison complexity. Since the problem in this case lies only in the frequency of
occurrence of presuf shifts, we use the same basic algorithm, changing only the presuf
shift handler. The new presuf shift handler ensures that either two consecutive presuf
shifts are at least distance m+1

2 apart or no mismatch occurs between consecutive
presuf shifts. In fact, we show the following stronger claim about the performance of
the presuf shift handler. A presuf shift has overhead 0 if the next presuf shift occurs
a distance less than m+1

2 ahead, overhead 1 if the next presuf shift occurs a distance

less than 3(m+1)
4 ahead, and overhead at most 2 otherwise. A comparison complexity

of n(1 + 8
3(m+1) ) comparisons follows.

6.1. The presuf shift handler for |x′| ≥
m


. Before describing the presuf
shift handler, we recall some definitions and assumptions made in section 4. Let tA
refer to the portion of the text with which the prefix x′1 of p is aligned following the
shift. We assume that prefix x′1 of p matches tA following a presuf shift and that the
variable tlast has been appropriately set to prevent this assumption from leading to
an incorrect inference. Let ta refer to the rightmost character in tA.

As for the case where |x′1| < m
2 , the presuf shift handler considers all presuf

pattern instances, i.e., those pattern instances in which a prefix (possibly null) of p
matches some suffix of tA. In a presuf pattern instance, the prefix matching a suffix of
tA is a presuf of p and is called the presuf corresponding to this presuf pattern instance.
Presuf pattern instances are of two types. The first type consists of those presuf
pattern instances whose corresponding presufs have the form upv

l
p, 1 ≤ l ≤ ip − 1.

The second type consists of those presuf pattern instances whose corresponding presufs
are less than |vp| in length. We identify a presuf pattern instance p′α of the second
type as follows. If |up| > 0, then p′α is the presuf pattern instance corresponding to
the presuf up. If |up| = 0, then p′α is the presuf pattern instance corresponding to
the null presuf; i.e., |p′α is to the immediate right of ta. The following observation
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enables us to work with only presuf pattern instances of the second type while making
comparisons within a text window γ of length |vp| to the right of ta.

Lemma 6.1. A presuf pattern instance of the first type matches all text characters
in the window γ if and only if p′α matches all characters in that window.

Proof. The portion of p′α which overlaps γ is identical to vp, as is the corresponding
portion of any presuf pattern instance of the first type.

If p′α is eliminated by comparisons in γ, then so are all presuf pattern instances of
the first type. This forces the next presuf shift to occur at least distance m− |vp| ≥
m
2 + 1 to the right. If p′α is not eliminated by comparisons in γ, then presuf pattern
instances of the first type also survive, and therefore the next presuf shift can occur
as little as distance |vp| to the right. In this case, it is important to ensure that no
mismatches are made in γ.

The presuf shift handler has five steps and works broadly as follows. As in the
presuf shift handler of section 4.2, the first two steps identify a presuf pattern instance
p′e with the following property: all presuf pattern instances that survive the first two
steps are presuf overlaps of p′e. This is accomplished by making comparisons in a
manner similar to the presuf shift handler of section 4.2, but with a single difference.
This difference is aimed at ensuring that the first mismatch eliminates p′α. Steps 3,
4, and 5 are, however, identical to the corresponding steps of the earlier presuf shift
handler.

Steps 1 and 2 proceed as follows to determine p′e. They consider only presuf
pattern instances of the second type and eliminate all but one of these. The survivor
determines p′e; i.e., if the survivor is p′α, then p′e is the leftmost presuf pattern instance,
and otherwise p′e is the survivor itself. We show that in order to eliminate among
presuf pattern instances of the second kind, it suffices to consider suitable prefixes of
these presuf pattern instances. We need the following definitions in order to describe
Steps 1 and 2 in detail. Consider the leftmost presuf pattern instance of the second
type and let β be the length of the corresponding presuf. Suppose there are k′′ + 1
presuf pattern instances of the second type. We define p′′1 , . . . , p

′′
k′′ , p

′′
k′′+1 such that p′′j ,

1 ≤ j ≤ k′′+ 1, is the prefix of length m′′ = β+ |vp| of the jth leftmost presuf pattern
instance of the second type. Let x′′j , 1 ≤ j ≤ k′′ + 1, be the presuf corresponding to
the jth leftmost presuf pattern instance of the second type. We call x′′j the presuf
corresponding to p′′j . Let p′′α refer to the length m′′ prefix of p′α and p′′ refer to the
length m′′ prefix of p. The following lemma shows that in order to eliminate all but
one of the presuf pattern instances of the second kind, it suffices to consider only
p′′1 , . . . , p

′′
k′′ , p

′′
k′′+1.

Lemma 6.2. At most one of p′′1 , . . . , p
′′
k′′ , p

′′
k′′+1 matches γ.

Proof. Let x and y be the portions overlapping γ in some two of p′′1 , . . . , p
′′
k′′+1.

Then x and y are different cyclic shifts of vp. If x = y, then vp is cyclic, a contradic-
tion.

Let V ′′ = {p′′1 , . . . , p′′k′′+1}. Note that Lemmas 4.3–4.7 continue to hold if pj , xj ,
V , p, and m are replaced by p′′j , x′′j , V ′′, p′′, and m′′, respectively, for 1 ≤ j ≤ k′′+ 1.
Henceforth, these substitutions are implicit in all references to these lemmas. The
elements in V ′′ are divided into groups A′′1 , . . . , A

′′
g′′ in accordance with Lemma 4.3.

Remark. The presuf shift handler being described does not work for patterns for
which |x′′k′′ | = 1 and g′′ = 1. Presuf shifts for these exception patterns are handled
separately in section 6.5.

With this background, we describe the five steps of the presuf shift handler.

Step 1. The characters in p′′1 , . . . , p
′′
k′′ aligned with p′′1 [m′′], the rightmost character
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in p′′1 , are identical. If the character in p′′k′′+1 aligned with p′′1 [m] is also identical to it,
then p′′1 [m] is compared with the aligned text character. A mismatch eliminates all of
p′′1 , . . . , p

′′
k′′ , p

′′
k′′+1 and the basic algorithm is restarted with |p placed immediately to

the right of |pk′′+1. A match leads to Step 2.

Step 2. All but one of p′′1 , . . . , p
′′
k′′+1 are eliminated in this step by making up to

k′′ comparisons, at most two of which are unsuccessful. Further, p′′α is eliminated by
the first unsuccessful comparison. As in Step 2 of section 4.2, there are two phases.

Phase 1 is identical to Phase 1 of section 4.2; i.e., at every step the rightmost
character c in p′′1 having the following property is compared with the aligned text
character: the character aligned with c in at least one of the surviving elements in V ′′

is different from c. By Lemma 4.6, the outcome of Phase 1 is a half-done set O.

Lemma 6.3. p′′α ∈ O if and only if all of the comparisons in Phase 1 are success-
ful.

Proof. All comparisons in Phase 1 are made in the suffix x′′1 of p1 because, by
Lemma 4.5, successful comparisons in that suffix leave a half-done set uneliminated.
x′′1 is a presuf of p′′1 and therefore a suffix of vp. By the manner in which p′α is defined,
the portion of p′′α that overlaps γ is identical to the string vp. Therefore, a mismatch
in Phase 1 eliminates both p′′1 and p′′α while a match in Phase 1 eliminates neither.
The lemma follows.

If Phase 1 ends with a mismatch or if p′′α = p′′1 , then Phase 2 is identical to
Phase 2 of section 4.2; i.e., all but one of the elements in O are eliminated by making
comparisons according to a right-to-left sequence. Note that in both cases, the first
mismatch eliminates p′′α. Otherwise, if p′′α 6= p′′1 and all comparisons in Phase 1 are
successful, then we modify Phase 2 as follows so as to ensure that the first mismatch
eliminates p′′α.

Phase 2 proceeds exactly as Phase 2 of Step 2 in section 4.2 until p′′α becomes
the rightmost element in O. Any mismatch in this process terminates Phase 2 and
eliminates p′′α and all elements in O to the left of p′′α. If no mismatch occurs in this
process, then let the surviving elements in O be {p′′h1

, . . . , p′′he}, where p′′h1
= p′′1 and

p′′he = p′′α. These elements are eliminated using a left-to-right sequence of comparisons
instead of the right-to-left sequence used in Step 2 of section 4.2. This left-to-right
sequence ensures that a mismatch eliminates p′′α. Let de be the leftmost character in
p′′he such that p′′he differs from the aligned character in p′′he−1

. By Lemma 6.2, de is

aligned with or to the left of p′′1 [m′′] and to the right of ta. If e = 2, then a comparison
at de terminates Phase 2 with a mismatch eliminating p′′he and a match eliminating
p′′h1

. Suppose e > 2. Then x′′h1
is periodic with core, say, v. Let dj , 2 ≤ j ≤ e − 1,

be the character in p′′he which is distance (e − j)|v| to the left of de. The characters
d2, . . . , de are compared with the aligned text characters in sequence until either a
mismatch occurs or the sequence is exhausted. The following lemma shows that at
most one element of O survives these comparisons.

Lemma 6.4. A mismatch at dj leaves only pij−1 uneliminated. A match at dj
eliminates pij−1

.

Proof. If e = 2, then the lemma is clearly true. Suppose e > 2. From the
definition of de, it follows that the prefix of p′′he ending at de is periodic with core
of size |v| while the prefix of p′′he−1

is not; therefore, d2 = d3 = · · · = de 6= de+1,

where de+1 is the character which is distance |v| to the right of de. It follows that the
characters in p′′hj , . . . , p

′′
he

aligned with dj are identical to each other but different from

the character in p′′hj−1
aligned with dj . Therefore, a match at dj eliminates p′′hj−1

. A

mismatch at dj eliminates p′′hj , . . . , p
′′
he

and the preceding successful comparisons at
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d2, . . . , dj−1 eliminate p′′h1
, . . . , p′′hj−2

. The lemma follows.

This completes Step 2. At most k′′ comparisons are made in this step, at most two
of which result in mismatches. Further, p′′α survives only if there are no mismatches.
The sequence of comparisons made in Step 2 can be represented by a tree ET ′′, akin
to the tree ET of section 4.2. The only difference between ET ′′ and ET is that the
sequence corresponding to a portion of Phase 2 may now be a left-to-right sequence
if Phase 1 does not end in a mismatch and p′′α 6= p′′1 . We conclude Step 2 with the
following lemma.

Lemma 6.5. All but at most one of p′′1 , . . . , p
′′
k′′ , p

′′
k′′+1 can be eliminated by making

up to k′′ comparisons using the O(k′′)-sized binary comparison tree ET ′′. At most
two of these comparisons result in mismatches. If p′′α survives, then no comparisons
result in mismatches. Moreover, the sequence of comparisons made by the elimination
strategy consists of two sequences: a right-to-left sequence followed by either another
right-to-left sequence or a left-to-right sequence.

We describe Steps 3, 4, and 5 next. Let p′′e be the only element of V ′′ to survive
Steps 1 and 2. If p′′e = p′′α, then define p′e to be the leftmost presuf pattern instance. If
p′′e 6= p′′α, then let p′e be the presuf pattern instance of which p′′e is a prefix; i.e., p′e and
p′′e have their left ends aligned. Clearly, p′e is the leftmost presuf pattern instance to
survive Steps 1 and 2. Let Q denote the set of pattern instances which overlap p′e and
have their left end to the right of |p′′k′′+1. In the elimination process, some elements
of Q may also have been eliminated from being potential matches. They need not be
reconsidered. To this end, a subset Qx of Q consisting of pattern instances consistent
with comparisons in Steps 1 and 2 is associated with each terminal node x in ET ′′.
The maintenance of Qx is similar to the description in section 4.5 and is described in
section 6.4. Suppose that the elimination process terminates at terminal node x. Let
Q′ = {p′e} ∪ Qx. Steps 3, 4, and 5 are now identical to the corresponding steps in
section 4.2.

6.2. Comparison complexity. In order to determine the comparison complex-
ity, we need to define a transfer function f ′′ akin to the transfer function f defined in
section 5. We state the following lemma describing the properties of f ′′. The proof
of this lemma is deferred to section 6.3.

Lemma 6.6. Let C be the set of text characters involved in comparisons in Steps
1 and 2 of the presuf shift handler of section 6.1. For each character tc ∈ C, with at
most two exceptions, there exists a text character f ′′(tc) = td satisfying the following
properties:

1. td is to the right of |p′′k′′+1.
2. td either coincides with tc or lies to the left of tc.
3. The pattern instance whose left end is aligned with td is eliminated as a result

of comparisons in Steps 1 and 2 of the presuf shift handler.
4. For every distinct tc1 , tc2 ∈ C, f(tc1) 6= f(tc2).

Furthermore, mismatches, if any, are always included among the exceptions.
The following lemma determines the comparison complexity of the algorithm.
Lemma 6.7. If p is not a special-case pattern, then the comparison complexity of

the algorithm is bounded by n(1 + 8
3(m+1) ).

Proof. A presuf shift occurs either with |x′1| < m
2 or with |x′1| ≥ m

2 . In the former
case, it was shown in Lemma 4.12 that a presuf shift can have overhead at most two
and that an overhead of two implies that the next presuf shift occurs at least distance
3(m+1)

4 to the right. Further, m+1
2 is a lower bound on the distance between two

consecutive presuf shifts in this case. We show similar properties for presuf shifts
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with |x′1| ≥ m
2 . Specifically, we show that a presuf shift can have overhead at most

two. Further, we show that an overhead of one forces the next presuf shift to occur at
least distance m+1

2 to the right and an overhead of two forces the next presuf shift to

occur at least distance 3(m+1)
4 to the right. We show the above by giving a charging

scheme for the presuf shift handler of section 6.1. The comparison complexity of the
algorithm now follows.

Charging scheme. As in Lemma 4.12, the run of the algorithm is divided into
phases; a phase can be of one of four types. The ranges of the text characters charged
in each phase type remain exactly the same as in Lemma 4.12. The charging scheme
for Type 1 and Type 2 phases also remains exactly the same. Only the charging
scheme for Type 3 and Type 4 phases is modified in accordance with the presuf shift
handler of section 6.1.

We consider a single phase, which could be a Type 3 or a Type 4 phase. We
assume that this phase begins with a presuf shift with |x′1| ≥ m

2 . Let q1 and q2 refer
to the leftmost surviving pattern instances at the beginning and end of that phase,
respectively. Note that q1 is a presuf overlap of the pattern instance q′, the leftmost
uneliminated pattern instance prior to the presuf shift which initiated this phase.
Specifically, the prefix x′1 of q1 is aligned with the suffix x′1 of q′ (recall that on a
presuf shift, we assume that the prefix x′1 of q1 matches the text). Recall that ta is
the text character aligned with q′|.

Consider the comparisons made by the current use of the presuf shift handler of
section 6.1. If a mismatch occurs in Step 1, the current phase ends immediately and
the basic algorithm is resumed. The presuf shift in this case has overhead one and the
next presuf shift occurs at least distance m + 1 to the right. Next, suppose that the
comparison in Step 1 is successful. Let p′e be the presuf pattern instance to survive
the elimination using tree ET ′′ in Step 2. After the presuf shift handler finishes, one
of three scenarios ensues. We consider each in turn.

1. All pattern instances overlapping p′e are eliminated apart from its presuf over-
laps, and p′e or at least a suffix of p′e is matched. This is a Type 4 phase. We consider
two cases, depending upon whether p′e is a presuf pattern instance of the first or the
second type.

First, suppose p′e is of the first type; i.e., it is the leftmost presuf pattern instance.
Then no mismatches are made in Steps 1, 2, 3, 4, or 5. All comparisons made by the
presuf shift handler are charged to the text characters compared. The bit vector BV
ensures that each of these comparisons involves a different text character. Thus each
text character which lies to the right of ta and is aligned with or to the left of p′e| is
charged at most once. In this case, the overhead of this presuf shift is zero.

Next, suppose p′e is of the second type. Then p′′α is eliminated in Step 2. All
comparisons in Steps 1, 3, 4, and 5 and all but at most two comparisons in Step 2
are successful. Each successful comparison is charged to the text character compared.
The bit vector BV ensures that each of these comparisons involves a different text
character. Thus each text character which lies to the right of ta and is aligned with
or to the left of p′e| is charged at most once. At most two comparisons in Step 2 are
unsuccessful, so this shift has overhead at most two. If there are two mismatches
in Step 2, then we claim that p′′1 is eliminated; in addition, if x′′1 is periodic, with
core v and head u, say, then all elements in V ′′ whose associated presufs have the
form uvo, o ≥ 1, are also eliminated. (This can be shown in a manner similar to the
corresponding proof in Lemma 4.12.) Let p′′e be the m′′-length prefix of p′e and let
x′′e be the presuf associated with p′′e . From the above, it follows that x′′1 = x′′ezx

′′
e , for
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some nonempty string z. Since |x′′1 | < |vp|, p′′e = x′′1wx
′′
1 for some nonempty string w.

Therefore, |x′′e | ≤ m′′−3
4 ≤ m−3

4 . This guarantees that the next presuf shift occurs at

least distance 3(m+1)
4 to the right. If there is just one mismatch in Step 2, then since

|x′′1 | < |vp| ≤ m
2 , the next presuf shift occurs at least distance m+1

2 to the right.
2. p′e is eliminated. In addition, there is some pattern instance qc overlapping

p′e, such that all pattern instances overlapping qc are eliminated apart from its presuf
overlaps; further, qc or at least a suffix of qc is matched. This is also a Type 4 phase.

Each comparison in Steps 1 and 2 with a text character to the left of |qc for which
function f ′′ is defined is charged to the text character specified by the function f ′′,
called its f ′′ value; f ′′ values are distinct by definition. Comparisons in Step 3 fall
into one of three categories:

1. comparisons which eliminate pattern instances whose left ends lie to the right
of |p′′k′′+1 and to the left of |qc;

2. comparisons which eliminate pattern instances whose left ends lie to the right
of |qc;

3. the comparison which eliminates p′e.
Each comparison in the first category is charged to the text character aligned with the
left end of the pattern instance eliminated. By the definition of the function f ′′, these
text characters do not occur in the range of f ′′ values. Comparisons in the second
category, along with the comparisons made in Steps 4 and 5 and those successful
comparisons in Steps 1 and 2 that involve text characters overlapping qc, are charged
to the text characters compared. BV ensures that each of these comparisons involves
a distinct text character. Thus each text character which lies to the right of |p′′k′′+1

and is aligned with or to the left of qc| is charged at most once. The comparison
that eliminates p′e is charged to the text character aligned with |p′′k′′+1. Since all f ′′

values lie to the right of |p′′k′′+1 and all pattern instances eliminated by comparisons
in the first category have left ends to the right of |p′′k′′+1, this text character is charged
exactly once. The two comparisons in Step 2 lacking f ′′ values constitute the overhead
of this presuf shift. Since p′e is eliminated, the next presuf shift occurs at least distance
m+ 1 to the right of the current presuf shift.

3. p′e is eliminated as are all pattern instances overlapping p′e. This is a Type 3
phase.

Let qd denote the leftmost surviving pattern instance. All comparisons in Steps
1 and 2 for which function f ′′ is defined are charged to their f ′′ values. f ′′ values are
distinct by definition. Excluding the comparison which eliminates p′e, each comparison
in Steps 3 and 4 eliminates some pattern instance whose left end lies to the right of
|p′′k′′+1 and to the left of |qd. Each such comparison is charged to the text character
aligned with the left end of the pattern instance eliminated. These text characters
cannot occur in the range of the function f ′′ and hence are charged only once. Thus
each text character which lies to the right of |p′′k′′+1 and to the left of |qd is charged
at most once. The comparison that eliminates p′e is charged to the text character
aligned with |p′′k′′+1. The two comparisons in Step 2 lacking f ′′ values constitute the
overhead of this presuf shift. Since p′e is eliminated, the next presuf shift occurs at
least distance m+ 1 to the right of the current presuf shift.

6.3. The transfer function f ′′. In this section, we prove Lemma 6.6. The
definition of the function f ′′ is similar to that of the function f in section 5. This is
hardly surprising since the elimination procedure ET ′′ is similar to the elimination
process ET , the only difference between the two being that the former switches to a
left-to-right comparison sequence in some cases.
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First, note that each of the definitions and lemmas in section 5.1 continue to hold
if p′′j , x′′j , V ′′, p′′, A′′, g′′, k′′, and m′′ replace pj , xj , V , p, A, g, k, and m, respectively,
for 1 ≤ j ≤ k′′ + 1.

Since patterns with g′′ = 1 and |x′′k | = 1 are special-case patterns, we assume that
g′′ > 1 if |x′′k | = 1. If p′′1 [m′′] does not match the text, then Steps 1 and 2 of the presuf
shift handler make at most one comparison. Therefore, we also assume that p′′1 [m]
matches the text. Let p′′l be the rightmost element in A′′1 . Let p′′r be the rightmost
element in V ′′ outside A′′g′′ , if such a pattern instance exists.

As in section 5.2, we split the sequence C ′ of comparisons made in Steps 1 and 2
of the presuf shift handler into three classes as follows.

1. Class 1 consists of the comparison in Step 1. In addition, if |x′′k | = 1, then
Class 1 contains the comparisons which comprise the smallest prefix of C ′ having
the following property: either the last comparison in that prefix is unsuccessful or
following that comparison, exactly one pattern instance in A′′g′′ survives.

2. Class 2 consists of the comparisons in C ′ which follow all Class 1 comparisons
and are made in the suffix h(x′′l ) of p′′1 .

3. Class 3 consists of comparisons in C ′ which follow all Class 2 comparisons.

f ′′ values are defined by considering 3 cases.

Case 1. Suppose Phase 1 of Step 2 terminates with a mismatch or p′′α = p′′1 . Then
ET ′′ eliminates among elements in V ′′ exactly as ET eliminates among the elements
of V . Therefore, f ′′ values for comparisons are defined exactly as in section 5.2 with
p′′j , x′′j , V ′′, p′′, A′′, g′′, k′, and m′′ replacing pj , xj , V , p, A, g, k, and m, respectively,
for 1 ≤ j ≤ k′′ + 1.

Case 2. Suppose p′′α = p′′2 or the half-done set left uneliminated by Phase 1 has
at most two elements. The only difference between the way ET ′′ eliminates among
the elements in V ′′ and ET eliminates among elements in V is in the last comparison
of Step 2. Note that in section 5.2, the last comparison in Step 2 is not given an f
value. Therefore, f ′′ values for comparisons in this case are again defined exactly as
in section 5.2 with p′′j , x′′j , V ′′, p′′, A′′, g′′, k′′, and m′′ replacing pj , xj , V , p, A, g, k,
and m, respectively, for 1 ≤ j ≤ k′′ + 1.

Case 3. Suppose all comparisons in Phase 1 are successful, p′′α 6= p′′1 , p
′′
2 , and the

half-done set which survives Phase 1 has at least three elements. The only difference
between the way ET ′′ eliminates among the elements in V ′′ and ET eliminates among
the elements in V is in the portion of Phase 2 that makes comparisons according to
a left-to-right sequence. As we will show in Lemma 6.11, this left-to-right sequence
involves only text characters to the left of the suffix x′′1 of p′′1 . Consequently, Class 1
and Class 2 comparisons are not affected by this sequence.

f ′′ values for comparisons in Class 1 are defined exactly as in section 5.2 with p′′j ,
x′′j , V ′′, p′′, A′′, g′′, k′′, and m′′ replacing pj , xj , V , p, A, g, k, and m, respectively, for
1 ≤ j ≤ k′′ + 1. Consider Class 2 comparisons next. At most one element of V ′′ will
survive a mismatch in Class 2, if any, because Phase 1 has no mismatches. Therefore,
if a mismatch occurs in Class 2, then Class 3 is empty and f ′′ values for Class 2
comparisons are defined exactly as in section 5.2 with the appropriate substitutions
mentioned above. Otherwise, if all comparisons in Class 2 are successful, then f ′′

values for all but some s, s ≤ 2, of the comparisons in Class 2 are defined in the
same manner. It remains to define f ′′ values for Class 3 comparisons and s Class 2
comparisons when all comparisons in Class 2 are successful. This involves modifying
only Case 2 of the definition of f values for Class 2 and Class 3 comparisons in section
5.2. We define f ′′ values for all but two of these comparisons. The range of these f ′′
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values is the same as the range of the f values defined for this subcase, i.e., to the
left of the suffix x′′l of p′′1 and to the right of |p′′k+1.

Following Class 1 and 2 comparisons, at most min{rl, 2} − s of the elements of
V ′′ to the right of p′′l survive along with the elements in A′′1 . Let O′ refer to the set
of min{rl, 2} elements in V ′′ which includes elements which survive comparisons in
h(x′′l ) and elements which are eliminated by one of the s Class 2 comparisons under
consideration. Let O refer to the largest half-done set consisting of elements in A′′1 and
O′. Redefine O′ by removing pattern instances in it which are also in O. Considering
comparisons which eliminate pattern instances inO and O′ is equivalent to considering
Class 3 comparisons plus s of the Class 2 comparisons. Let O = {p′′h1

, . . . , p′′he}. Let
v and u be the core and head, respectively, of x′′h1

and let v = u′u. |v| > 1 because
either |x′′k | > 1 or |x′′k | = 1 and g′ > 1. By Lemma 5.10, v contains a misfit character.
If l = 1, then the number of comparisons in Class 3 plus s is at most 2 − s + s = 2.
In this case, we do not define an f ′′ value for the comparisons in Class 3 and the s
comparisons in Class 2. Therefore, suppose that l > 1.

The comparisons given by tree ET ′′ in this case form two sequences; the first
sequence which includes Phase 1 and part of Phase 2 is a right-to-left sequence and
the second sequence is a left-to-right sequence. The following lemmas show some
properties which are necessary for defining f ′′.

Lemma 6.8. The portion of p′′α which overlaps the suffix x′′i , 1 ≤ i ≤ α, of p′′1
matches x′′i .

Proof. x′′i is a suffix of vp. The length |vp| substring of p′′α which is to the
immediate right of ta is identical to vp.

Lemma 6.9. p′′α ∈ O and |O| ≥ 3.

Proof. Since all comparisons in Phase 1 are successful, p′′1 survives Phase 1.
By Lemma 6.3, p′′α also survives. If p′′α 6∈ O, then p′′1 and p′′α do not form a half-
done set with any other element in V ′′. Therefore, the cardinality of the half-done
set which survives Phase 1 would be at most 2, which is a contradiction. Thus
p′′α ∈ O. p′′2 must form a half-done set along with p′′1 and p′′α; otherwise, no other
element in V ′′ forms a half-done set with p′′1 and p′′α and, consequently, at most two
elements in V ′′ would survive the successful Phase 1 comparisons. By Lemma 6.8,
p′′1 and p′′α survive successful comparisons in h(x′′l ), and then by Lemma 5.3, p′′2 also
survives these comparisons. Therefore, p′′2 ∈ O also. Since p′′α 6= p′′1 , p

′′
2 , the lemma

follows.

Corollary 6.10. The half-done set which survives Phase 1 must be a subset
of O.

Proof. Both p′′1 and p′′α survive successful comparisons in Phase 1 and both are
elements of O. The only elements in V ′′ which can form a half-done set with p′′1 and
p′′α are those in O.

Lemma 6.11. The leftmost character compared by ET ′′ in the first (right-to-left)
sequence is at least distance |v| to the right of the rightmost character compared in
the second (left-to-right) sequence. The rightmost character compared in the latter
sequence is to the left of the suffix x′′1 of p′′1 .

Proof. Let d′′ be the rightmost position in p′′α such that p′′α[d′′] is aligned with
some character in p′′1 and p′′α[d′′] 6= p′′α[d′′ + |v|]. Such an index exists by Lemma 4.7.
All comparisons in the second sequence are aligned with or to the left of p′′α[d′′]. All
characters in the first sequence compared in Phase 2 are aligned with or to the right
of p′′α[d′′ + |v|]. All characters compared in Phase 1 involve characters in the suffix
x′′1 of p′′1 . By Lemma 6.8, p′′α[d′′] is to the left of the suffix x′′1 of p′′1 . The lemma
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follows.

Corollary 6.12. Successful comparisons which eliminate elements of O are
made at least distance |v| apart.

Lemma 6.13. The portion of p′′he that overlaps the suffix x′′he−2
of p′′1 matches

that suffix.

Proof. Since p′′α ∈ O and p′′α 6= p′′1 , p
′′
2 , it follows from Lemma 6.8 that (uu′)2 is

a suffix of p′′[1 . . .m′′ − |x′′1 |]. Therefore, the portion of p′′he that overlaps the suffix
x′′he−2

of p′′1 matches that suffix.

Corollary 6.14. All successful comparisons which eliminate an element of O
are made to the left of the suffix x′′he−2

of p′′1 .

We now define the f ′′ function for this case.

First, consider comparisons which eliminate elements of O′. From Corollary 6.10,
it follows that all elements of O′ must be eliminated by Phase 1 comparisons. These
comparisons have to be successful because all comparisons in Phase 1 are successful.
If |O′| = 2, then, by Lemma 4.5, the first such comparison is made in the suffix
x′′he of p′′1 . If |O′| = 2 or |O′| = 1, then, by Lemma 6.13, the portion of p′′he which
overlaps the suffix x′′he−1

of p′′1 matches that suffix and therefore, by Lemma 4.5, the

last comparison which eliminates an element of O′ is made in the suffix x′′he−1
of p′′1 .

Consider the text characters tc and t′c with which |p′′ is aligned when the rightmost
misfit characters in the prefixes x′′he−1

and x′′he−2
, respectively, of p′′ are aligned with

tb. Since v is a suffix of x′′he−1
and x′′he−2

and since v contains a misfit character, tc
is aligned with the suffix x′′he−1

of p′′1 and to the left of the suffix x′′he of p′′1 while t′c is

aligned with the suffix x′′he−2
of p′′1 and to the left of the suffix x′′he−1

of p′′1 . If |O′| = 2,

then f ′′ is defined to map the text characters involved in comparisons which eliminate
elements of O′ to the text characters tc and t′c. If |O′| = 1, then f ′′ is defined to map
the text character involved in the comparison which eliminates the only element of
O′ to the text character t′c. A simple case analysis (p′′l = p′′he , p

′′
he−1

, p′′he−2
) shows that

these f ′′ values are to the left of p′′l , as claimed. The two f ′′ values are clearly distinct
and to the left of their respective text characters. Further, they are aligned with the
suffix x′′1 of p′′1 . Since |x′′1 | < m′′

2 , these f ′′ values are to the right of |p′′k′′+1.

Next, consider comparisons which eliminate elements of O, excluding the leftmost
and the last such comparison. The remaining comparisons must be successful. f
is defined to map the text character tc involved in such a comparison to the text
character with which |p′′ is aligned when the leftmost character in p′′ which differs
from tc is aligned with tc. Clearly, f ′′(tc) is aligned with or to the left of tc. Since
uu′ contains at least two characters, f ′′(tc) is at most distance |v|− 1 to the left of tc.
It follows from Corollary 6.12 that f ′′(tc) is distinct from the f ′′ values for all other
text characters involved in successful comparisons which eliminate elements of O. By
Corollary 6.14, these f ′′ values are to the left of f ′′ values for successful comparisons
which eliminate elements of O′ and therefore to the left of p′′l . Only the leftmost
text character involved in a comparison which eliminates an element of O is within
distance |v| of ta; the rest are at least distance |v| + 1 to the right of ta. Therefore,
these f ′′ values are to the right of |p′′k′′+1.

This concludes the definition of the transfer function f ′′.

6.4. Data-structure details. It remains to describe the maintenance of the sets
Qx for each terminal node x of tree ET ′′. These sets can be maintained exactly as
described in section 4.5 but with the following difference: the sequence of comparisons
corresponding to Phase 2 in Step 2 of the elimination strategy using ET ′′ is a left-to-
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right sequence if all comparisons in Phase 1 are successful.
As in section 4.5, let l1, . . . , lh be the nodes, in order of appearance, on the

leftmost path from the root of ET ′′. Consider the largest i such that tcli , . . . , tclh−1

(recall from section 4.5 that tcx is the text character compared at node x of ET ′′) is
a left-to-right sequence. For all terminal nodes in ET ′′ which are not in the subtree
rooted at li, the data structure is maintained exactly as in section 4.5. Qlh can be
stored explicitly. It remains to describe the data structure for terminal nodes in the
right subtrees of li, . . . , lh−1.

Note that if a mismatch occurs at tclj , i ≤ j ≤ h − 1, at most two elements in
V ′′ survive. Therefore, for each terminal node x in the right subtree of lj , either p(x)
or p(p(x)) equals lj , where p(x) is the parent of x. From the definition of the sets Qx
in section 4.5, it follows that for terminal nodes x and y in the right subtree of lj ,
Qx = Qy. The following lemma is crucial.

Lemma 6.15. Let terminal node x1 be in the right subtree of lj1 and terminal
node x2 be in the right subtree of lj2 , i ≤ j1, j2 ≤ h − 1, j2 > j1. If q ∈ Qx1

and
q ∈ Qx2

, then q occurs at all terminal nodes in the right subtrees of li, . . . , lj1 .
Proof. Clearly, q cannot overlap tclj1 . Since tcli , . . . , tclh−1

form a left-to-right
sequence, q cannot overlap tci, . . . , tcj1 . Further, since q occurs at some terminal
node in the subtree rooted at li, characters in q which overlap tcl1 , . . . , tcli−1 match
the characters c1, . . . , ch−1, respectively. The lemma follows from the definition of the
sets Qx.

Corollary 6.16. Suppose q occurs at some terminal node in the subtree T
rooted at li. Further, suppose j is the largest number, if any, such that i ≤ j ≤ h− 1
and q does not overlap tclj . Then q occurs at all terminal nodes in the right subtrees
of li, . . . , lj.

Corollary 6.16 immediately gives a linear-space scheme for storing the sets Qx
for terminal nodes x in the subtree T rooted at li. Two sets Comj and Specj are
maintained at each node lj , i ≤ j ≤ h − 1. A pattern instance q is added to Comj

if it occurs at some terminal node in T and overlaps tclj+1
but not tclj . A pattern

instance q is added to Specj if it overlaps tclj and occurs at a terminal node in the
right subtree of lj . Each q can be added to at most one Com set and one Spec set;
thus, the total space used is linear. Qx is readily seen to equal Comj ∪ Comj+1 ∪
· · · ∪ Comh−1 ∪ Specj . Note that each pair of Com sets is disjoint and Comk is
disjoint from Specj , for each j ≤ k ≤ h − 1. In order to obtain Qx as a sorted list,
it suffices to maintain each of the Com and Spec sets as ordered lists which are then
appended together. Thus obtaining any particular Qx takes O(m) time. Qlh is stored
explicitly and hence can be obtained as a list in constant time.

6.5. Presuf shift handler for special-case patterns. We describe the presuf
shift handler for patterns for which |x′′k | = 1 and g′′ = 1. This presuf shift handler
leads to an overhead of at most two per presuf shift. We show that if a presuf shift

has overhead two, then the next presuf shift must occur distance at least 3(m+1)
4 to

the right, and if a presuf shift has overhead one, then the next presuf shift must occur
distance at least m+1

2 to the right. A comparison complexity of n(1+ 8
3(m+1) ) follows.

Let b = x′′k . p contains at least two different characters. Therefore, vp and p′′

both contain at least two different characters. Let p′′[j] and p′′[j′] be, respectively,
the leftmost and rightmost characters in p′′ which differ from b. Let tc be the text
character to the immediate right of ta.

We consider two cases, namely |x′′1 | <
|vp|
2 and |x′′1 | ≥

|vp|
2 . The former case has

the advantage that if all presuf pattern instances of the first type (recall that presuf
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pattern instances were classified into two types in section 6) are eliminated, then the

next presuf shift occurs distance at least 3(m+1)
4 to the right. The absence of this

property in the latter case makes it more complicated.

Case 1. |x′′1 | <
|vp|
2 .

Step 1. Step 1 locates the leftmost non-b text character td to the right of ta.
Following Step 1, either the basic algorithm is resumed or p′e, the leftmost surviving
pattern instance, is determined and Step 2 follows. This is done as follows. Text
characters to the right of ta and to the left of p′′α[j] are compared from left to right
with the character b. A mismatch in this process terminates Step 1. If no mismatch
occurs, then p′′α[j] is compared with the aligned text character. A match terminates
Step 1. In case of a mismatch, text characters aligned with or to the right of p′′α[j]
are compared from left to right with the character b. Step 1 then terminates when a
mismatch occurs or when the right end of the text is reached.

One of the following situations now holds:
1. td is to the left of p′′1 [j]. p′′1 , . . . , p

′′
k+1 are eliminated and the basic algorithm is

resumed with |p placed to the right of the text character that mismatched.
2. td is aligned with p′′i [j], i 6= α. p′e is the pattern instance whose left end is

aligned with |p′′i .
3. td is aligned with p′′α[j] and td = p′′α[j]. p′e is defined to be the leftmost presuf

pattern instance.
4. td is aligned with p′′α[j] but td 6= p′′α[j]. The basic algorithm is resumed with |p

immediately to the right of te.
5. td exists but does not satisfy any of the above cases. p′e is the pattern instance

such that p′e[j] is aligned with td.
6. td does not exist. There are no further occurrences of the pattern in the text

and the algorithm terminates.
Steps 2 and 3. Let qc denote p′e. Then Steps 2 and 3 are identical to the corre-

sponding steps in the presuf shift handler for special-case patterns described in section
4.4.

Note that at most two mismatches are made in Step 1 and the first mismatch
eliminates p′′α.

Lemma 6.17. If p is a special-case pattern and |x′′1 | <
|vp|
2 , then the comparison

complexity of the algorithm is n(1 + 8
3(m+1) ).

Proof. We give charging strategies to show that a presuf shift can have overhead
at most two. Further, we show that an overhead of one forces the next presuf shift
to occur at least distance m+1

2 to the right and an overhead of two forces the next

presuf shift to occur at least distance 3(m+1)
4 to the right. The lemma follows.

As in Lemma 4.12, the run of the algorithm is divided into phases; a phase can
be of one of four types. The range of text characters charged in each type of phase
remains exactly the same as in Lemma 4.12. The charging scheme for Type 1 and
Type 2 phases also remains exactly the same. Only the charging scheme for Type 3
and Type 4 phases is modified in accordance with the presuf shift handlers described
above.

We consider a single phase, which could be a Type 3 or a Type 4 phase. We
assume that this phase begins with a presuf shift with |x′1| ≥ m

2 .
The charging scheme. Let qc be the leftmost pattern instance which survives Step

1. Note that qc is the leftmost presuf pattern instance if and only if no mismatches oc-
cur in Step 1. All successful comparisons in Step 1 are charged to the text characters
compared. These text characters lie to the left of qc[j] if qc is not the leftmost presuf
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≥ |x′′1 |

p′′α
j′j

text

p′f

tc
ta

Fig. 7. Step 1 of Case 2.

pattern instance and are aligned with or to the left of qc[j] otherwise. If unsuccessful
comparisons occur in Step 1, then these comparisons constitute the overhead of this
shift. Otherwise, if all comparisons in Step 1 are successful, the only possible com-
parison which constitutes the overhead of this shift is the comparison in Step 2 which
eliminates qc. Thus the overhead is at most two. Since the first mismatch in Steps

1 and 2 eliminates all presuf pattern instances of the first type and since |x′′1 | <
|vp|
2 ,

either the overhead is zero or the next presuf shift occurs distance at least 3(m+1)
4 to

the right.
Now consider two cases.
1. Suppose qc survives Step 2. All comparisons made in Steps 2 and 3 are charged

to the text characters compared. Thus each text character which lies to the right of
ta and is aligned with or to the left of qc| is charged at most once over Steps 1, 2, and
3. All future comparisons will be charged to text characters to the right of qc|.

2. Suppose qc does not survive Step 2. Each successful comparison in Step 2
eliminates some pattern instance lying entirely to the right of qc[j] and is charged to
the text character aligned with the left end of that pattern instance. The unsuccessful
comparison which eliminates qc in Step 2 is charged to the text character aligned with
qc[j] if qc is not the leftmost presuf pattern instance. Thus each text character lying
between ta and |qd is charged at most once, where qd is the leftmost surviving pattern
instance at the end of Step 2. All future comparisons will be charged to text characters
aligned with or to the right of |qd.

Case 2. |x′′1 | ≥
|vp|
2 .

There are five steps in the presuf shift handler for this case. At most five mis-
matches are made in these steps. We show that three of these mismatches can be
charged to unmatched text characters; consequently, the overhead of the current pre-
suf shift is at most two. Further, the first mismatch in Step 1 eliminates p′′α and the
second mismatch eliminates all of the presuf pattern instances.

Step 1. Step 1 eliminates all but at most one of p′′1 , . . . , p
′′
k+1 as follows. See Fig.

7. The following sequence of text characters is compared with the aligned characters
in p′′α: tb, followed by the text characters strictly between tb and p′′α[j′] considered
right to left, followed by the text characters strictly between ta and p′′α[j] considered
left to right. Step 1 terminates when the first mismatch occurs or when this sequence
is exhausted.

Let p′e be the leftmost surviving presuf pattern instance following Step 1. Consider
the pattern instance p′f , |p′f aligned with the text character to the immediate right of
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j

j′j

Mismatch (possible) in Step 1

j′j

Mismatch (possible) in Step 1

j

Mismatch in Step 1tcta

j

j′j
p′f

p′′α

Fig. 8. Possible outcomes of Step 1.

tc. Let te be the text character at which the mismatch occurred, if any. Note that

since j ≥ |x′′1 |+ 1 and |x′′1 | ≥
|vp|
2 , by Lemma 6.8, p′f [j] must be to the right of p′′α[j′].

The outcome of Step 1 depends upon which of the following two cases occurs (see Fig.
8).

Case 1.1. p′f [j] is aligned with or to the left of te (first diagram in Fig. 8). Clearly,
p′′α[j′] is to the left of te. We show that a transfer function similar to the function
f ′′ of section 6.1 (see Lemma 6.6) can be used to account for the comparisons made
in Step 1. In this case, the rest of the steps are identical to Steps 3, 4, and 5 of the
presuf shift handler of section 6.1.

Case 1.2. Either there is no mismatch in Step 1 or p′f [j] is to the right of te
(second and third diagrams in Fig. 8). The leftmost surviving pattern instance with
left end to the right of tc has its jth character to the right of tb; we show this claim
in the next paragraph. Step 2 follows in this case.

Recall that p′f [j] is to the right of p′′α[j′]. The mismatch, if any, in Step 1 occurs
to the left of p′f [j]. Therefore, all text characters aligned with or to the right of p′f [j]
and to the left of (and including) tb are identical to b. The claim follows.

Step 2. If p′e does not extend to the right of tb, then no comparisons are made
in this step (this happens if and only if p′e is the leftmost presuf pattern instance).
Otherwise, Step 2 attempts to extend the match of p′e. Characters in p′e to the right
of tb (if any) are compared from left to right until a mismatch occurs or a non-b
character is matched against the text. To see that p′e will have a non-b character to
the right of tb if it extends to the right of tb, note that the distance between tb and
tc equals |vp| − 1 and that p′e has at least two non-b characters distance |vp| apart,
neither of which can be to the left of tc.

The successful comparisons in this step will be charged to the text characters
compared. Clearly, all of these text characters are to the right of the text characters
compared in Step 1.

Step 3. A pattern instance p′g with the following properties is determined in this
step.

1. p′g is the leftmost surviving pattern instance.
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2. All surviving pattern instances which overlap p′g[i] are presuf overlaps of p′g,
where i is defined as follows. If p′g 6= p′e, i = j. If p′g = p′e and p′e is the leftmost presuf
pattern instance, then p′g[i] is the character aligned with tb. Otherwise, if p′g = p′e
and p′e is not the leftmost presuf pattern instance, then p′g[i] is the leftmost non-b
character in p′g which is to the right of tb.

All text characters compared successfully in this step will be distinct from all text
characters compared successfully in Steps 1 and 2. There are two cases depending
upon the outcome of Step 2.

Case 2.1. p′e is eliminated in Step 2. At most two mismatches could have occurred
in Steps 1 and 2. Note that p′e cannot be the leftmost presuf pattern instance in this
case. The leftmost surviving pattern instance must have its left end to the right of
tc. As shown in Step 1, its jth character must be to the right of tb. There are two
subcases.

Case 2.1a. Step 2 terminates in a mismatch at a non-b character th in p′e. Then,
starting at th, a left-to-right pass is made in which each text character is compared
with b. This pass ends when a mismatch occurs or when the right end of the text is
reached. In the latter case, there are no further occurrences of the pattern and the
algorithm terminates. In the former case, p′g is defined to be the pattern instance
in which p′g[j] is aligned with the text character tx at which the mismatch occurs.
Since all text characters strictly between tb and tx are identical to b, p′g is the leftmost
surviving pattern instance and all pattern instances to the right of p′g which overlap
p′g[j] are eliminated. Note that the number of mismatches made in Steps 1–3 is at
most three in this case.

Case 2.1b. Step 2 terminates in a mismatch at a character th in p′e which is a
b. p′g is defined to be the pattern instance in which p′g[j] is aligned with the text
character at which the mismatch occurs. As in the previous case, p′g is the leftmost
surviving pattern instance and all pattern instances to the right of p′g which overlap
p′g[j] are eliminated. The number of mismatches made in Steps 1–3 is at most two in
this case.

Case 2.2. p′e survives Step 2. At most one mismatch could have occurred so far.
There are two subcases.

Case 2.2a. p′e is not the leftmost presuf pattern instance; i.e., it extends to the
right of tb. Let tx be the rightmost text character matched in Step 2. tx must be a
non-b character. Consider the pattern instance p′h, where p′h[j] is aligned with tx.

Clearly, all pattern instances to the right of p′h which overlap tx are eliminated
since each has a b aligned with tx. We claim that all pattern instances strictly between
p′e and p′h have also been eliminated. This is shown as follows. All pattern instances
to the right of p′e which overlap tc have been eliminated in Step 1. Recall from Step
1 that the leftmost surviving pattern instance after Step 1 with left end to the right
of tc has its jth character to the right of tb. Since all text characters to the right of
tb and up to but not including tx are identical to b, the claim follows.

If p′e and p′h lack a difference point or if p′h[j] does not match tx, then p′g = p′e.
Otherwise, if p′e and p′h have a difference point, the character in p′e at that difference
point is compared with the aligned text character and one of p′e and p′h is eliminated;
the difference point itself is to the right of p′h[j]. Let p′g denote the survivor. Clearly, p′g
is the leftmost surviving pattern instance in both cases. Further, all pattern instances
to the right of p′g which overlap tx (note that tx is aligned with pg[i]) have either been
eliminated or are presuf overlaps of p′g.

At most two mismatches are made in Steps 1–3 in Case 2.2a.
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Case 2.2b. Second, suppose p′e is the leftmost presuf pattern instance. Recall that
p′e[m] is aligned with tb. In this case, no comparisons are made in Step 2. Consider
the pattern instance p′h, where p′h[j] is to the immediate right of tb. Recall from Step
1 that p′h is the leftmost surviving pattern instance with left end to the right of tc.
The only surviving pattern instances to the right of p′e which overlap tc are presuf
overlaps of p′e. Therefore, p′h is the leftmost surviving pattern instance, barring p′e
and its presuf overlaps. In addition, note that any pattern instance which overlaps p′e
but not p′′α[j′] and has its jth character to the right of tb is a presuf overlap of p′e.

If |p′h is to the right of p′′α[j′], then p′h is a presuf overlap of p′e as are all pattern
instances to the right of p′h which overlap p′e. Step 5 follows with p′g = p′e in this case.

Otherwise, if p′h overlaps p′′α[j′] then p′h is not a presuf overlap of p′e. The character
p′′α[j′] is then compared with the text. A match eliminates all pattern instances which
overlap p′′α[j′] but are not presuf overlaps of p′e. (This can be seen from the following
two facts: (a) all pattern instances with left end to the right of tc which survive Step 1
have their jth character to the right of p′′α[j′], and (b) all surviving pattern instances
which overlap tc are presuf overlaps of p′e.) Clearly, all surviving pattern instances
which overlap tb are presuf overlaps of p′e. In this case, Step 5 follows with p′g = p′e.
Otherwise, if a mismatch occurs at p′′α[j′], p′e is eliminated as are all its presuf overlaps
which overlap tc. Text characters to the right of tb are now compared from left to
right with the character b until either a mismatch occurs or the right end of the text is
reached. In the former case, Step 4 follows with p′g denoting the pattern instance such
that p′g[j] is aligned with the text character at which the mismatch occurs. Clearly, p′g
is the leftmost surviving pattern instance and all pattern instances which overlap p′g[j]
have been eliminated. In the latter case (i.e., the right end of the text is reached),
the algorithm terminates as there are no further occurrences of the pattern.

At most two mismatches are made in Steps 1–3 in Case 2.2b.

Step 4. In this step, either all surviving pattern instances which overlap p′g are
eliminated (except for presuf overlaps) or p′g is eliminated. In the latter case, the basic
algorithm is resumed with the leftmost surviving pattern instance. In the former case,
Step 5 follows. All comparisons in this step are to the right of all text characters
matched in the previous steps. In addition, the left end of each pattern instance
eliminated in this step is also to the right of any text character matched in one of the
previous steps.

In Step 4, difference-point comparisons are used. This step has a number of
iterations. In each iteration, a different pattern instance overlapping p′g but strictly
to the right of p′g[i] is considered. If it is a presuf overlap of p′g, then nothing is done.
Otherwise, if it is not a presuf overlap of p′g, the character in p′g at the difference
point of the two pattern instances is considered. If the text character aligned with
this character has not been successfully compared earlier (this is ascertained using a
bit vector), the two characters are compared. Step 4 ends when a mismatch occurs or
when all pattern instances overlapping p′g (excluding presuf overlaps) are eliminated.

If no mismatch occurs in Step 4, then all comparisons in this step will be charged
to the text characters compared; otherwise, they will be charged to left ends of the
pattern instances eliminated. In both cases, the text characters charged are to the
right of all text characters matched in previous steps.

Step 5. This step attempts to complete the match of p′g. Characters in p′g which
have not yet been matched are compared with the aligned text characters from right
to left until a mismatch occurs or all of its characters are matched. In either case,
another presuf shift follows. All comparisons in this step will be charged to the text
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characters compared.

Lemma 6.18. If p is a special-case pattern with |x′′1 | ≥
|vp|
2 , then the comparison

complexity of the algorithm is n(1 + 8
3(m+1) ).

Proof. We give charging strategies to show that a presuf shift can have overhead
at most two. Further, we show that an overhead of one forces the next presuf shift
to occur at least distance m+1

2 to the right and an overhead of two forces the next

presuf shift to occur at least distance 3(m+1)
4 to the right. The lemma follows.

As in Lemma 4.12, the run of the algorithm is divided into phases; a phase can
be of one of four types. The range of text characters charged in each type of phase
remains exactly the same as in Lemma 4.12. The charging scheme for Type 1 and
Type 2 phases also remains exactly the same. Only the charging scheme for Type 3
and Type 4 phases is modified in accordance with the presuf shift handler described
above.

We consider a single phase, which could be a Type 3 or a Type 4 phase. We
assume that this phase begins with a presuf shift with |x′1| ≥ m

2 .
The charging scheme. We consider two cases.
Case A. Suppose a mismatch occurs in Step 1 at a text character te to the right

of p′′α[j′] and p′f [j] is aligned with or to the left of te (i.e., Case 1.1 in Step 1 holds).
Each successful comparison in Step 1 matches the character b against the text.

The charging scheme for this case is identical to the charging scheme in Lemma 6.7
with the function f ′′ defined as follows. f ′′ is defined to map each text character
compared successfully in Step 1 to the text character which is distance j − 1 to its
left. This definition of f ′′ is easily verified to satisfy all four required properties of
f ′′ stated in Lemma 6.6. Further, only the last Step 1 comparison can possibly be
unsuccessful and might not receive an f ′′ value. From the above charging scheme, it
follows that the overhead of the current presuf shift is at most one.

Case B. Suppose all comparisons in Step 1 are successful or p′f [j] is to the right
of te, the character at which the mismatch in Step 1 occurs (i.e., Case 1.2 in Step 1
holds).

Recall from Step 1 that the leftmost surviving pattern instance completely to the
right of tc must have its jth character to the right of tb. There are three subcases to
consider.

Subcase B1. Suppose p′e (the leftmost of the presuf pattern instances to survive
Step 1) survives Steps 2, 3, and 4.

All successful comparisons in Steps 1, 2, 3, and 4 and all comparisons in Step 5
are charged to the text characters compared. All of these comparisons involve distinct
text characters, and thus each text character which is to the right of ta and aligned
with p′e is charged at most once. Further, at most one mismatch is made in Step 1
and no mismatches are made in Steps 2, 3, and 4 (otherwise, p′e would be eliminated).
In addition, a mismatch in Step 1 eliminates p′′α, thus forcing the next presuf shift to
occur at least distance m+1

2 to the right. Thus the current presuf shift has overhead
at most one and an overhead of one forces the next presuf shift to occur distance at
least m+1

2 to the right.
Subcase B2. Suppose p′e is eliminated in one of Steps 2, 3, and 4; further, suppose

p′e is the leftmost presuf pattern instance.
In this case, the next presuf shift occurs distance at least m+ 1 to the right. We

show an overhead of at most two for this case.
All comparisons in Step 1 are successful and are charged to the text characters

compared. No comparisons are made in Step 2. p′e must be eliminated in Step 3 since
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Step 5 follows directly from Step 3 otherwise (see Case 2.2b in Step 3). All successful
comparisons in Step 3 are charged to the text characters compared. At most two
mismatches are made in Step 3 and these constitute the overhead of this shift. All
text characters matched in Steps 1–3 are to the left of p′g[j]. If p′g survives Step 4,
then all comparisons in Step 4 are charged to the text characters compared. If p′g
does not survive Step 4, then the comparison which eliminates p′g is charged to the
text character aligned with p′g[j] and all other comparisons in Step 4 are charged to
the left ends of the respective pattern instances eliminated. (From the definition of
p′g in Step 3, note that the left ends of these pattern instances are to the right of
p′g[j].) Thus all text characters charged in Step 4 are distinct and are aligned with
or to the right of p′g[j]. All comparisons in Step 5 are charged to the text characters
compared. These text characters are distinct from all text characters matched in the
previous steps. Therefore, if p′g survives Step 4, then each text character to the right
of ta and aligned with or to the left of p′g| is charged at most once. Otherwise, if p′g is
eliminated in Step 4 and p′l is the leftmost surviving pattern instance following Step
4, each text character strictly between ta and |p′l is charged at most once.

Subcase B3. Suppose p′e is eliminated in one of Steps 2, 3, and 4 and p′e is not the
leftmost presuf pattern instance.

In this case, the next presuf shift occurs distance at least m+ 1 to the right. We
show an overhead of at most two for this case.

All successful comparisons in Steps 1 and 2 and all comparisons in Step 5 are
charged to the text characters compared. If p′e does not survive Step 2 (Case 2.1 of
Step 3), then all successful comparisons in Step 3 are charged to the text characters
compared. Otherwise, if p′e survives Step 2 (Case 2.2a of Step 3), there is at most
one comparison in Step 3 and it is accounted for later. If p′g survives Step 4, then all
successful comparisons in Step 4 are charged to the text characters compared. In this
case, each text character to the right of ta and aligned with or to the left of p′g| is
charged at most once. Otherwise, if p′g is eliminated in Step 4, each successful com-
parison in Step 4 (except the one which eliminates p′g) is charged to the text character
aligned with the left end of the pattern instance eliminated by this comparison; this
text character is to the right of p′g[j]. In this case, each text character strictly between
ta and |p′l is charged at most once, where p′l is the leftmost surviving pattern instance
after p′g is eliminated.

At most four comparisons have not yet been accounted for. These include the
mismatch in Step 1, the mismatch in Step 4 (which eliminates p′g), and either the
mismatches in Steps 2 and 3 or the only comparison in Step 3, depending on whether
or not p′e survives Step 2. Note that if mismatches occur in all of Steps 2, 3, and
4, then the text character aligned with p′g[j] is not charged for any comparison. In
addition, we show that the text character aligned with p′′α[j] is also not charged for
any comparison. An overhead of two for the current presuf shift follows immediately.

Clearly, p′′α[j] is not compared in Step 1. All comparisons in Steps 2, 3, and 4 are
made to the right of tb and hence to the right of p′′α[j]. Further, p′g[i] (i as defined
in Step 3) is aligned with or to the right of tb. Therefore, the text character aligned
with p′′α[j] is not charged for any of the comparisons made in Steps 1–4. Consider
Step 5 next. If p′e survives Steps 2 and 3 and is eliminated in Step 4, then the presuf
shift handler terminates after Step 4 and the basic algorithm is resumed. Therefore,
suppose that p′e is eliminated in Step 2 or Step 3. From the definition of p′g in Step
3, p′g 6= p′e and therefore i = j. To show that all comparisons in Step 5 are made to
the right of p′′α[j], it suffices to show that |p′g is to the right of p′′α[j].
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We show this by considering two cases. First, suppose p′′α 6= p′′1 . Then, by Lemma
6.8, it follows that the character in p′′ which is to the immediate left of its suffix x′′1
is a b. Since x′′1 is the longest presuf of p′′, it follows that j = |x′′1 | + 1. By Lemma
6.8, p′′α[j′] and hence p′′α[j] are to the left of the suffix x′′1 of p′′1 . Since |p′g[j] is to the
right of tb, |p′g is aligned with or to the right of the suffix x′′1 of p′′1 . The claim follows
for this case.

Next, suppose p′′α = p′′1 . A mismatch occurs in Step 1 since p′e is not the leftmost
presuf pattern instance. Further, this mismatch occurs at some text character te to
the right of p′′α[j] since no comparisons are made to the left of p′′α[j] in Step 1 in this
case. Each comparison in Step 1 compares a text character with b. Since p′g[j] must
be to the right of tb, either |p′g is to the right of te or a b in p′g overlaps te. However,
p′g will not survive in the latter case. The claim follows.

The lemma follows.

Finally, we state the following theorem; the proof is similar to the proof of The-
orem 4.17.

Theorem 6.19. There is a string-matching algorithm with a comparison com-
plexity of n(1+ 8

3(m+1) ) comparisons which uses O(m) space and takes O(n+m) time

following preprocessing of the pattern; the preprocessing time is O(m2).
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m+1 to n+ 8(n−m)

3(m+1) .
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