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TOTAL PROTECTION OF ANALYTIC INVARIANT INFORMATION

IN CROSS TABULATED TABLES∗

MING-YANG KAO†

Abstract. To protect sensitive information in a cross tabulated table, it is a common practice
to suppress some of the cells in the table. An analytic invariant is a power series in terms of the
suppressed cells that has a unique feasible value and a convergence radius equal to +∞. Intuitively,
the information contained in an invariant is not protected even though the values of the suppressed
cells are not disclosed. This paper gives an optimal linear-time algorithm for testing whether there
exist nontrivial analytic invariants in terms of the suppressed cells in a given set of suppressed
cells. This paper also presents NP-completeness results and an almost linear-time algorithm for the
problem of suppressing the minimum number of cells in addition to the sensitive ones so that the
resulting table does not leak analytic invariant information about a given set of suppressed cells.

Key words. statistical tables, data security, analytic invariants, mathematical analysis, mixed
graph connectivity, graph augmentation.
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1. Introduction. Cross tabulated tables are used in a wide variety of documents
to organize and exhibit information, often with the values of some cells suppressed in
order to conceal sensitive information. Concerned with the effectiveness of the practice
of cell suppression [12], statisticians have raised two fundamental issues and developed
computational heuristics to various related problems [5, 7, 8, 9, 10, 11, 28, 29, 30, 31].
The detection issue is whether an adversary can deduce significant information about
the suppressed cells from the published data of a table. The protection issue is how a
table maker can suppress a small number of cells in addition to the sensitive ones so
that the resulting table does not leak significant information.

This paper investigates the complexity of how to protect a broad class of infor-
mation contained in a two-dimensional table that publishes (1) the values of all cells
except a set of sensitive ones, which are suppressed, and (2) an upper bound and a
lower bound for each cell, and (3) all row sums and column sums of the complete set
of cells. The cells may have real or integer values. They may have different bounds,
and the bounds may be finite or infinite. The upper bound of a cell should be strictly
greater than its lower bound; otherwise, the value of that cell is immediately known
even if that cell is suppressed. The cells that are not suppressed also have upper
and lower bounds. These bounds are necessary because some of the unsuppressed
cells may later be suppressed to protect the information in the sensitive cells. (See
Figures 1.1 and 1.2 for an example of a complete table and its published version.)

An unbounded feasible assignment to a table is an assignment of values to the
suppressed cells such that each row or column adds up to its published sum. An
bounded feasible assignment is an unbounded one that also obeys the bounds of the
suppressed cells. An analytic function of a table is a power series of the suppressed
cells, each regarded as a variable, such that the convergence radius is ∞ [1, 4, 21,
22, 26, 27]. An analytic invariant is an analytic function that has a unique value
at all the bounded feasible assignments. If an analytic invariant is formed by a
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linear combination of the suppressed cells, then it is called a linear invariant [17, 19].
Similarly, a suppressed cell is called an invariant cell [14, 15] if it is an invariant by
itself. For instance, in the published table in Figure 1.2, let Xp,q be the cell at row
p and column q. X6,i is an invariant because it is the only suppressed cell in row
6. X2,c and X3,c are invariant cells because their values are between 0 and 9.5, their
sum is 19, and both cells are forced to have the same unique value 9.5. Consequently,
(X3,c·X2,c + 0.5·X2,c − 95)2·X1,b + sin(X2,c·X2,a − 9.5·X2,a) is also an invariant.

Intuitively, the information contained in an analytic invariant is unprotected be-
cause its value can be uniquely deduced from the published data. In this paper, a set of
suppressed cells is totally protected if there exists no analytic invariant in terms of the
suppressed cells in the given set, except the trivial invariant that contains no nonzero
terms. As the analytic power series form a very broad family of mathematical func-
tions, total protection conceals from the adversary a very large class of information.
This paper gives a very simple algorithm for testing whether a given set of suppress
cells is totally protected. When a graph representation, called the suppressed graph,
of a table is given as input, this algorithm runs in optimal O(m + n) time, where
m is the number of suppressed cells and n is the total number of rows and columns.
This paper also considers the problem of computing and suppressing the minimum
number of additional cells so that a given set of original suppressed cells becomes
totally protected. This problem is shown to be NP-complete. For a large class of
tables, this optimal suppression problem can be solved in O((m + n)·α(n,m + n))
time, where α is an Ackerman’s inverse function and its value is practically a small
constant [2, 3, 6, 16]. Moreover, for this class of tables, every optimal set of cells for
additional suppression forms a spanning forest of some sort. As a consequence, at
most n− 1 additional cells need to be suppressed to achieve the total protection of a
given set of original suppressed cells. As the size of a table may grow quadratically
in n, the suppression of n − 1 additional cells is a negligible price to pay for total
protection for a reasonably large table.

Previously, four other levels of data security have been considered that protect
information contained, respectively, in individual suppressed cells [14, 15], in a row
or column as a whole, in a set of k rows or k columns as a whole, and in a table
as a whole [18]. These four levels of data security and total protection differ in two
major aspects. First, these four levels of data security primarily protect information
expressible as linear invariants, whereas total protection protects the much broader
class of analytic invariant information. Second, these four levels of data security em-
phasize protecting regular regions of a table, whereas total protection protects any
given set of suppressed cells and is more flexible. These four levels of data security and
total protection share some interesting similarities. As total protection corresponds to
spanning forests in suppressed graphs, these four levels of data security are equivalent
to some forms of 2-edge connectivity [14, 15], 2-vertex connectivity, k-vertex connec-
tivity and graph completeness [18]. In this paper, the NP-completeness results and
efficient algorithms for total protection rely heavily on its graph characterizations.
Similarly, the equivalence characterizations of these four levels of data security have
been key in obtaining efficient algorithms [14, 15, 18] and NP-completeness proofs [18]
for various detection and protection problems.

Section 2 discusses basic concepts. Section 3 formally defines the notion of to-
tal protection and gives a linear-time algorithm to test for this notion. Sections 4
and 5 give NP-completeness results and efficient algorithms for optimal suppression
problems of total protection. Section 6 concludes this paper with discussions.
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2. Basics of two-dimensional tables. This section discusses basic relation-
ships between tables and graphs.

A mixed graph is one that may contain both undirected and directed edges. A
traversable cycle or path in a mixed graph is one that can be traversed along the
directions of its edges. A direction-blind cycle or path is one that can be traversed if
the directions of its edges are disregarded. The word direction-blind is often omitted
for brevity. A mixed graph is connected (respectively, strongly connected) if each pair
of vertices are contained in a direction-blind path (respectively, traversable cycle). A
connected component (respectively, strongly connected component) of a mixed graph
is a maximal subgraph that is connected (respectively, strongly connected). A set of
edges in a mixed graph is an edge cut if its removal disconnects one or more connected
components of that graph. An edge cut is a minimal one if it has no proper subset
that is also an edge cut.

From this point onwards, let T be a table, and let H′ = (A,B,E′) and H =
(A,B,E) be the bipartite mixed graphs constructed below. H′ and H are called the
total graph and the suppressed graph of T , respectively [15]. For each row (respectively,
column) of T , there is a unique vertex in A (respectively, B). This vertex is called
a row (respectively, column) vertex. For each cell Xi,j at row i and column j in T ,
there is a unique edge e in E between the vertices of row i and column j. If the
value of Xi,j is strictly between its bounds, then e is undirected. Otherwise, if the
value is equal to the lower (respectively, upper) bound, then e is directed towards to
its column (respectively, row) endpoint. Note that H′ is a complete bipartite mixed
graph, i.e., there is exactly one edge between each pair of vertices from the two vertex
sets of the graph. The graph H is the subgraph of H′ whose edge set consists of only
those corresponding to the suppressed cells of T . Figure 2.1 illustrates a table and
its suppressed graph. For convenience, a row or column of T will be regarded as a
vertex in H and a cell as an edge, and vice versa.

Theorem 2.1 ([15]). A suppressed cell of T is an invariant cell if and only if it

is not in an edge-simple traversable cycle of H.

The effective area of an analytic function F of T , denoted by EA(F ), is the set of
variables in the nonzero terms of F . The function F is called nonzero if EA(F ) 6= ∅.
Note that because the convergence radius of F is ∞, EA(F ) is independent of the
point at which F is expanded into a power series.

Theorem 2.2 ([17]). For every minimal edge cut Y of a strongly connected

component of H, T has a linear invariant F with EA(F ) = Y .

The bounded kernel (respectively, unbounded kernel) of T , denoted by BK(T )
(respectively, UK(T )), is the real vector space consisting of all linear combinations
of x − y, where x and y are arbitrary bounded (respectively, unbounded) feasible
assignments of T .

Because H is bipartite, every cycle of H is of even length. Thus, the edges of
an edge-simple direction-blind cycle of H can be alternately labeled with +1 and −1.
Such a labeling is called a direction-blind labeling. A direction-blindly labeled cycle
is regarded as an assignment to the suppressed cells of T . If the corresponding edge
of a suppressed cell is in the given cycle, then the value assigned to that cell is the
label of that edge; otherwise, the value is 0. Note that this assignment needs not be
an unbounded feasible assignment of T .

Theorem 2.3 ([19]).

1. UK(T ) = BK(T ) if every connected component of H is strongly connected.

2. Every direction-blindly labeled cycle of H is a vector in UK(T ).
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3. Total protection. A set Q of suppressed cells of T is totally protected in T
if there is no nonzero analytic invariant F of T with EA(F ) ⊆ Q. The goal of total
protection can be better understood by considering Q as the set of suppressed cells
that contain sensitive data. The total protection of Q means that no precise analytic
information about these data, not even their row and column sums, can be deduced
from the published data of T . As analytic power series form a very large class of
functions in mathematical sciences, this notion of protection requires a large class of
information about Q to be concealed from the adversary.

The next lemma and theorem characterize the notion of total protection in graph
concepts.

Lemma 3.1. If F is a nonzero analytic invariant of T such that the edges in

EA(F ) are contained in the strongly connected components of H, then for some

strongly connected component D of H, EA(F ) ∩D is an edge cut of D.

Remark. The converse of this lemma is not true; for a counter example, consider
the linear combination X1,a + 2·X1,b for the table in Figure 2.1. Also, if F is a
nonzero linear invariant, then for every strongly connected component D of H, the
set D ∩ EA(F ) is either empty or is an edge cut of D [17].

Proof. Let Ts be the table constructed from T by also publishing the suppressed
cells that are not in the strongly connected components of H. By Theorem 2.1, F
remains a nonzero analytic function of Ts. Also, the connected components of the
suppressed graph Hs of Ts are the strongly connected components of H. Thus, to
prove the lemma, it suffices to prove it for Ts, Hs, and F .

Let x0 be a fixed bounded feasible assignment of Ts. Let K = {x − x0|x is a
bounded feasible assignment of Ts}. Since F is an analytic invariant of Ts, the function
G(x) = F (x)−F (x0) is an analytic invariant of Ts with EA(G) = EA(F ) and its value
is zero over x0+K. Because K contains a nonempty open subset of BK(Ts), G is zero
over x0 + BK(Ts). By Theorem 2.3(1) and the strong connectivity of the connected
components of Hs, BK(Ts) = UK(Ts) and G is zero over x0 + UK(Ts). Thus, it
suffices to show that if D−EA(F ) is connected for all connected components D ofHs,
then G(x0+z0) 6= 0 for some z0 ∈ UK(Ts). To construct z0, let EA(G) = {e1, . . . , ek}.
Let Di be the connected component of Hs that contains ei. By the connectivity of
Di − EA(F ), there is a vertex-simple path Pi in Di − EA(F ) between the endpoints
of ei. Let Ci be the vertex-simple cycle formed by ei and Pi. Next, direction-blindly
label Ci with ei labeled +1. Since G is a nonzero power series, G(x0+y0) 6= 0 for some

vector y0. Note that y0 is not necessarily in UK(Ts). So, let z0 =
∑k

i=1
hi·Ci, where

hi is the component of y0 at variable ei. Then, by Theorem 2.3(2), z0 ∈ UK(Ts).

Because Pi is in Hs −EA(F ), ei appears only in the term Ci in
∑k

i=1
hi·Ci. Thus z0

and y0 have the same component values at the variables in EA(G). Since the variables
not in EA(G) do not appear in any expansion of G, G(x0 + z0) = G(x0 + y0) 6= 0,
proving the lemma.

Theorem 3.2. A set Q of suppressed cells is totally protected in T if and only

if the two statements below are both true:

1. The edges in Q are contained in the strongly connected components of H.

2. For each strongly connected component D of H, the graph D−Q is connected.

Proof. It is equivalent to show that Q is not totally protected if and only if
Q contains some edges not in the strongly connected components of H or for some
strongly connected component D of H, the graph D − Q is not connected. The ⇒
direction follows from Lemma 3.1. As for the ⇐ direction, if Q contains some edges
not in the strongly connected components of H, then by Theorem 2.1, Q contains
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some invariant cells of T and thus cannot be totally protected. If for some strongly
connected component D of H, the graph D − Q is not connected, then some subset
Y of Q is a minimal edge cut of D. By Theorem 2.2, T has a linear invariant F with
EA(F ) = Y and thus Q is not totally protected.

This paper investigates the following two problems concerning how to achieve
total protection.

Problem 1 (Protection Test).
• Input: The suppressed graph H and a set Q of suppressed cells of a table T .
• Output: Is Q totally protected in T ?

Theorem 3.3. Problem 1 can be solved in linear time in the size of H.

Proof. This problem can be solved within the desired time bound by means of
Theorem 3.2 and linear-time algorithms for computing connected components and
strongly connected components [2, 3, 6, 16].

Problem 2 (Optimal Suppression).
• Input: A table T , a subset Q of E, and an integer p ≥ 0, where E is the set
of all suppressed cells in T .

• Output: Is there a set P consisting of at most p published cells of T such
that Q is totally protected in the table T formed by T with the cells in P

also suppressed?
This problem is clearly in NP. Section 4 shows that this problem with Q = E is

NP-complete. In contrast, Section 5 proves that if the total graph of T is undirected,
then this problem with general Q can be solved in almost linear time.

4. NP-completeness of optimal suppression. Throughout this section, the
total graph of T may or may not be undirected.

Theorem 4.1. Problem 2 with Q = E is NP-complete.

To prove this theorem, the idea is to first transform Problem 2 with Q = E to the
following graph problem and then prove the NP-completeness of the graph problem.

Problem 3.
• Input: A complete bipartite mixed graph H′ = (A,B,E′), a subgraph H =
(A,B,E), and an integer p ≥ 0.

• Output: Does any set P of at most p edges in E′ −E hold the following two
properties?
Property N1: Every connected component of (A,B,E ∪ P ) is strongly con-
nected.
Property N2: The vertices of each connected component of H are connected
in (A,B, P ), i.e., contained in a connected component in (A,B, P ).

Lemma 4.2. Problem 2 with Q = E and Problem 3 can be reduced to each other

in linear time.

Proof. Given an instance T and p of Problem 2 with Q = E, the desired instance of
Problem 3 is the total graph H′ = (A,B,E′) and the suppressed graph H = (A,B,E)
of T , and p itself. This transformation can easily be computed in linear time. There
are two directions to show that it reduces Problem 2 to Problem 3. Assume that P
is a desired set for Problem 3. By Property N1, Statement 1 in Theorem 3.2 is true.
Also, every strongly connected component of (A,B,E ∪P ) is a union of edge-disjoint
connected components in H and (A,B, P ). Therefore, by Property N2, Statement 2
of Theorem 3.2 holds. As a result, P itself is a desired set for Problem 2. On the other
hand, assume that P is a desired set for Problem 2. Let P ′ be the set of all edges in
P that are also in the strongly connected components of (A,B,E∪P ). By Statement
1 of Theorem 3.2 and the total protection of E in T , the connected components of
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(A,B,E∪P ′) are the strongly connected components of (A,B,E∪P ). Thus, P ′ holds
Property N1. Next, because a connected component of H is included in a strongly
connected component of (A,B,E ∪P ′), by Statement 2 of Theorem 3.2, P ′ also holds
Property N2 and thus is a desired set for Problem 3.

Given an instance H′, H, and p of Problem 3, the desired instance of Problem 2
with Q = E is p itself and the table defined as follows. For each vertex in A (re-
spectively, B), there is a row (respectively, column). The upper and lower bounds for
each cell are 2 and 0. For each edge e in E′, its corresponding cell is at the row and
column corresponding to its endpoints. The value of that cell is 1 (respectively, 0 and
2) if e is undirected (respectively, directed from A to B, or directed from B to A).
For each edge e in H, its corresponding cell is suppressed. Note that the total and
suppressed graphs of this table are H′ and H themselves. Thus, the remaining proof
details for this reduction are essentially the same as for the other reduction.

Both Problem 2 with Q = E and Problem 3 are clearly in NP. To prove their
completeness in NP, by Lemma 4.2 it suffices to reduce the following NP-complete
problem to Problem 3.

Problem 4 (Hitting Set [13]).

• Input: A finite set S, a nonempty family W of subsets of S, and an integer
h ≥ 0.

• Output: Is there a subset S′ of S such that |S′| ≤ h and S′ contains at least
one element in each set in W?

Given an instance S = {s1, . . . , sq}, W = {S1, . . . , Sr}, h of Problem 4, an in-
stance H′ = (A,B,E′),H = (A,B,E), p of Problem 3 is constructed as follows:

• Rule 1: Let A = {a0, a1, . . . , aq}. The vertices a1, . . . , aq correspond to
s1, . . . , sq, but a0 corresponds to no si.

• Rule 2: Let B = {b0, b1, . . . , br}. The vertices b1, . . . , br correspond to
S1, . . . , Sr of S, but b0 corresponds to no Sj .

• Rule 3: Let E′ be the union of the following sets of edges:
1. {b0 → a0}.
2. {a0 → bj | ∀ j with 1 ≤ j ≤ r}.
3. {ai → b0 | ∀ i with 1 ≤ i ≤ q}.
4. {bj → ai | ∀ si and Sj with si ∈ Sj}.
5. {ai → bj | ∀ si and Sj with si 6∈ Sj}.

• Rule 4: Let E = {a0 → b1, . . . , a0 → br}.
• Rule 5: Let p = h+ r + 1.

The above construction can easily be computed in polynomial time. The next
two lemmas show that it is indeed a desired reduction.

Lemma 4.3. If some set S′ ⊆ S with |S′| ≤ h contains at least one element

in each Sj, then there is a set P ⊆ E′ − E consisting of at most p edges that holds

Properties N1 and N2.

Proof. For each Sj , let sij be an element in S′ ∩ Sj ; by the assumption of
this lemma, these elements exist. Next, let P1 = {b1 → ai1 , . . . , br → air} and
P2 = {ai1 → b0, . . . , air → b0}; by Rule 3, these two sets exist. Now, let P =
P1∪P2∪{b0 → a0}. Note that P ⊆ E′−E. Since P1 consists of r edges and P2 consists
of at most |S′| edges, P has at most p edges. P holds Property N1 because E ∪ P

consists of the edges in the traversable cycles b0 → a0, a0 → bj , bj → aij , aij → b0.
Property N2 of P follows from the fact that P connects {a0, b1, . . . , br}, which forms
the only connected component of H with more than one vertex.

Lemma 4.4. If some set P ⊆ E′−E consisting of at most p edges holds Properties
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N1 and N2, then there exists a set S′ ⊆ S with |S′| ≤ h that contains at least one

element in each Sj.

Proof. By Property N1, P must contain some edge bj → aij for each j with
1 ≤ j ≤ r. By Rule 3(4), sij ∈ Sj . Now let S′ = {si1 , . . . , sir}. To calculate the
size of S′, note that by Property N1, P must also contain b0 → a0 and at least
one edge leaving aij for each j. Thus |P | ≥ |S′| + r + 1. Then |S′| ≤ h because
|P | ≤ p = r + h+ 1.

The above lemma completes the proof of Theorem 4.1.

5. Optimal suppression in almost linear time. Under the assumption that
the total graph of T is undirected, this section considers the following optimization
version of Problem 2.

Problem 5 (Optimal Suppression).

• Input: The suppressed graph H = (A,B,E) of a table T and a subset Q of
E.

• Output: A set P consisting of the smallest number of published cells in T
such that Q is totally protected in the table T formed by T with the cells in
P also suppressed.

For all positive integers n and m, let α denote the best known function such that
m + n unions and finds of disjoint subsets of an n-element set can be performed in
O((m+ n)·α(n,m+ n)) time [2, 3, 6, 16].

Theorem 5.1. Problem 5 can be solved in O((m + n)·α(n,m + n)) time, where

m is the number of suppressed cells and n is the total number of rows and columns in

T .

To prove Theorem 5.1, Problem 5 is first converted to the next problem.

Problem 6.

• Input: An undirected bipartite graph H = (A,B,E) and a subset Q of E.
• Output: A forest P formed by the smallest number of undirected edges be-
tween A and B but not in E such that the vertices of each connected com-
ponent of (A,B,Q) are connected in (A,B, (E −Q)∪P ), i.e., contained in a
connected component of (A,B, (E −Q) ∪ P ).

Lemma 5.2. Problems 5 and 6 can be reduced to each other in linear time.

Proof. The proof uses arguments similar to those in the proof of Lemma 4.2. The
strong connectivity properties in Problem 3 and Theorem 3.2 can be ignored because
this section assumes that the total graph of T is undirected. The forest structure of
P follows from its minimality.

Note that because Q ⊆ E, the vertices of each connected component of (A,B,Q)
are connected in (A,B, (E − Q) ∪ P ) if and only if the vertices of each connected
component of H are connected in (A,B, (E − Q) ∪ P ). Using this equivalence, the
next stage of the proof of Theorem 5.1 further reduces Problem 6 to another graph
problem with the steps below:

M1. Compute the connected components D1, · · · , Dr of H.
M2. For each Di, compute a maximal forest Ki over the vertices of Di using only the

edges in E −Q.
M3. For each Di, extend Ki to a maximal forest Li over the vertices of Di using

additional edges only from the complement graph Dc
i of Di.

M4. Construct a graph Ĥ from H by contracting each tree in each Li into a single
vertex.

M5. For each Di, compute its contracted version D̂i in Ĥ.
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M6. Divide the vertices of Ĥ into three sets, VA, VB , VAB , where a vertex in VA

(respectively, VB) consists of a single vertex from A (respectively, B), and a
vertex in VAB contains at least two vertices (thus with at least one from each of
A and B).

A set of undirected edges between vertices in VA, VB , VAB is called semi-tripartite

if every edge in that set is between two of the three sets or is between two vertices in
VAB . Note that the set of edges in Ĥ is semi-tripartite.

Problem 7.

• Input: Three disjoint finite sets VA, VB , VAB, and a partition D̂1, . . . , D̂r of
VA ∪ VB ∪ VAB.

• Output: A semi-tripartite set P̂ consisting of the smallest number of edges
such that no edge in P̂ connects two vertices in the same Di and the vertices
in each Di are connected in the graph formed by is P̂ .

Lemma 5.3. Problem 6 can be reduced to Problem 7 in O((m + n)·α(n,m + n))
time, where m is the number of edges and n is the number of vertices in H.

Proof. The key idea is that an optimal P for Problem 6 can be obtained by
connecting the vertices of each Di first with edges in E − Q, which can be used
for free, next with edges in Dc

i , and then with edges outside Di ∪ Dc
i . Let P ′ be

a set of |P̂ | edges in the complement of H that becomes P̂ after Step M4. Then,
P ′ ∪ (L1 −K1) ∪ · · · ∪ (Lr −Kr) is a desired output P for Problem 6, showing that
Steps M1–M6 can indeed reduce Problem 6 to Problem 7. Step M3 is the only step
that requires more than linear time. It is important to avoid directly computing Dc

i

at Step M3. Computing these complement graphs takes Θ(|A|·|B|) time if some Di

contains a constant fraction of the vertices in H. In such a case, if H is sparse, then
the time spent on computing Dc

i alone is far greater than the desired complexity.
Instead of this naive approach, Step M3 uses efficient techniques recently developed
for complement graph problems [20] and takes the desired O((m + n)·α(n,m + n))
time.

The last stage of the proof of Theorem 5.1 is to give a linear-time algorithm for
Problem 7. A component D̂i is good if it has at least two vertices with at least one
from VAB; it is bad if it has at least two vertices with none from VAB (and thus with
at least one from each of VA and VB). The goal is to use as few edges as possible to
connect the vertices in each of these components. Let wg and wb be the numbers of
good and bad components, respectively. There are three cases based on the value of
wg.

Case 1: wg = 0. If wb = 0, then let P̂ = ∅ because no D̂i needs to be connected.

If wb > 0 and |VAB | > 0, then include in P̂ an edge between each vertex in the bad
components and an arbitrary vertex in VAB. If wb > 0 and |VAB | = 0, then there
does not exist a desired P̂ and the given instance of Problem 7 has no solution.

Case 2: wg = 1. Let D̂j be the unique good component.

If wb > 0, then find a bad component D̂k, and three vertices u ∈ VAB ∩ D̂j ,

v1 ∈ VA ∩ D̂k, v2 ∈ VB ∩ D̂k. Next, include in P̂ an edge between v2 and each vertex
in (D̂j ∩ (VA ∪ VAB))− {u}, an edge between v1 and each vertex in D̂j ∩ VB , and an
edge between u and each vertex in the bad components.

If wb = 0 and VAB − D̂j 6= ∅, then include in P̂ an edge between every vertex in

D̂j and an arbitrary vertex in VAB − D̂j .

If wb = 0 and VAB − D̂j = ∅, then there are sixteen subcases depending on

whether VA ∩ D̂j = ∅, VA − D̂j = ∅, VB ∩ D̂j = ∅, VB − D̂j = ∅. If VA ∩ D̂j 6= ∅,
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VA − D̂j 6= ∅, VB ∩ D̂j 6= ∅, VB − D̂j 6= ∅, then include in P̂ an edge between each

vertex in VA∩ D̂j and a vertex v2 ∈ VB − D̂j, an edge between each vertex in VB ∩ D̂j

and a vertex v1 ∈ VA − D̂j , and an edge between v1 and each vertex in VAB ∪ {v2}.
The other fifteen subcases are handled similarly.

Case 3: wg ≥ 2. Let d be the total number of vertices in the good and bad

components. Let w′ be the number of connected components in P̂ that contain the
vertices of at least one good or bad D̂i; let d′ be the number of vertices in these
connected components of P̂ that are not in any good or bad D̂i. By its minimality, P̂
forms a forest and |P̂ | = d′ + d−w′. The techniques for Cases 1 and 2 can be used to
show that there exists an optimal P̂ with d′ = 0. Thus, to minimize |P̂ | is to maximize
w′. Because two bad components cannot be connected by edges between them alone,
the strategy for maximizing w′ is to pair a good component with a bad one, whenever
possible, and include in P̂ edges between them to connect their vertices into a tree.
After this step, if there remain unconnected bad components but no unconnected good
ones, then add to P an edge between each vertex in the remaining bad components
and an arbitrary vertex in the intersection of VAB and a good component. On the
other hand, if there remain good components but no bad ones, then pair up these good
components similarly. After this step, if there remains a good component, then add
to P̂ an edge between each vertex in this last good component and an arbitrary vertex
in the intersection of VAB and another good component. (As a result, if wg ≤ wb,

then |P̂ | = d− wg; otherwise, |P̂ | = d− ⌊wg+wb

2
⌋.)

The above discussion yields a linear-time algorithm for Problem 7 in a straight-
forward manner. This finishes the proof of Theorem 5.1.

6. Discussions. Lemma 5.2 has several significant implications. Since P is a
forest, it has at most n−1 edges. Thus, for a table with an undirected total graph, no
more than n−1 additional cells need to be suppressed to achieve total protection. This
is a small number compared to the size of the table, which may grow quadratically
in n. Moreover, when H is connected and E = Q, (A,B, P ) is a spanning tree. In
this case, many well-studied tree-related computational concepts and tools, such as
minimum-cost spanning trees, can be applied to consider other optimal suppression
problems for total protection.
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row
column
index

a b c d e f g h i row
sum

1 9.5 4.5 1.5 7 1.5 1.5 5.5 2 3 36.0

2 4.5 9.5 9.5 4.5 4.5 9.5 9.5 9.5 4.5 65.5

3 6 1.5 9.5 0 9.5 6 5.5 2 5.5 45.5

4 2 1.5 4 7 1.5 4.5 9.5 5.5 2 37.5

5 1.5 5.5 4 6 5.5 0 0 4.5 9.5 36.5

6 2 3 3 4 6 5.5 2 2 9.5 37.0

column
sum 25.5 25.5 31.5 28.5 28.5 27.0 32.0 25.5 34.0

Fig. 1.1. A Complete Table.

row
column
index

a b c d e f g h i row
sum

1 1.5 7 1.5 1.5 5.5 2 3 36.0

2 65.5

3 6 1.5 6 5.5 2 5.5 45.5

4 2 1.5 4 7 1.5 5.5 2 37.5

5 1.5 5.5 4 6 5.5 36.5

6 2 3 3 4 6 5.5 2 2 37.0

column
sum 25.5 25.5 31.5 28.5 28.5 27.0 32.0 25.5 34.0

Note: Let Xp,q denote the cell at row p and column q. The lower and

upper bounds for all suppressed cells except X2,c and X3,c are −∞ and

+∞. The lower and upper bounds for X2,c and X3,c are 0 and 9.5.

Fig. 1.2. A Published Table.
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row
column
index

a b c row
sum

1 0 9 1 10

2 9 9 0 18

3 6 0 5 11

column
sum 15 18 6

③ ③ ③

③ ③ ③

✲ ✲

✛✛

❄ ❄

Ca R2 Cc

R1 Cb R3

In the above 3 × 3 table, the number in each cell is the value of that cell. A cell with a

box is a suppressed cell. The lower and upper bounds of the suppressed cells are 0 and 9.

The graph below the table is the suppressed graph of the table. Vertex Rp corresponds to

row p, and vertex Cq to column q.

Fig. 2.1. A Table and Its Suppressed Graph.


